JP2016045161A - Distance-measuring apparatus with attachment detection function - Google Patents

Distance-measuring apparatus with attachment detection function Download PDF

Info

Publication number
JP2016045161A
JP2016045161A JP2014171545A JP2014171545A JP2016045161A JP 2016045161 A JP2016045161 A JP 2016045161A JP 2014171545 A JP2014171545 A JP 2014171545A JP 2014171545 A JP2014171545 A JP 2014171545A JP 2016045161 A JP2016045161 A JP 2016045161A
Authority
JP
Japan
Prior art keywords
light
light receiving
light emitting
detection function
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014171545A
Other languages
Japanese (ja)
Inventor
智成 吉田
Tomonari Yoshida
智成 吉田
柳井 謙一
Kenichi Yanai
謙一 柳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014171545A priority Critical patent/JP2016045161A/en
Publication of JP2016045161A publication Critical patent/JP2016045161A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To accurately detect a matter attached to a lens.SOLUTION: A distance-measuring apparatus with an attachment detection function of the present invention comprises: light-receiving means and light-emitting means; light-focusing means guiding, to the light-receiving means, reflected light obtained when light emitted from the light-emitting means is reflected by an object; reflection means that is provided on a surface of the light-focusing means and that adjusts the reception intensity of the light-receiving means; and attachment detection means that controls the light reception time of the light-receiving means, or the emission time or emission intensity of the light-emitting means on the basis of a light-receiving signal received from the light-receiving means that has received the light, and that detects whether an attached matter is attached to a front surface of the light-focusing means.SELECTED DRAWING: Figure 1

Description

本発明は、測距対象の物体との間の距離を測定する装置であって、レンズ(集光手段)の表面に付着した付着物(汚れ)を検知する機能を備えた付着物検知機能付き測距装置に関する。   The present invention is an apparatus for measuring a distance to an object to be measured, and has an attached matter detection function having a function of detecting attached matter (dirt) attached to the surface of a lens (light collecting means). The present invention relates to a distance measuring device.

特許文献1には、TOF(time-of-flight)方式のレンジ画像化システムにおいて、イメージャモジュールが検出した受信光波の振幅画像の振幅ヒストグラムに基づいて光インターフェース上の汚れの有無を判定するように構成した装置が記載されている。   In Patent Document 1, in a TOF (time-of-flight) range imaging system, the presence or absence of contamination on the optical interface is determined based on the amplitude histogram of the amplitude image of the received light wave detected by the imager module. The configured device is described.

また、特許文献2には、レンズの表面に導光部材を設け、LEDからの光を導光部材に導光するようにし、LEDを点灯したときに撮像素子で得られる画像と、LEDを消灯したときに撮像素子で得られる画像との濃度差分画像にもとづいて導光部材に付着物が付着しているか否かを判断する装置が記載されている。   In Patent Document 2, a light guide member is provided on the surface of the lens so that light from the LED is guided to the light guide member. When the LED is turned on, an image obtained by the imaging device and the LED are turned off. An apparatus is described that determines whether or not an adhering substance is attached to a light guide member based on a density difference image with an image obtained by an image pickup device.

特表2010−534000号公報Special table 2010-534000 gazette 特開2008−64630号公報JP 2008-64630 A

しかし、特許文献1の構成では、得られる振幅画像が近距離物体による反射か汚れによる反射のどちらに起因するか分からないという問題があり、汚れを正確に検出できないことがあった。また、特許文献2の構成では、強い光が入射する状況においては、付着物の有無による濃度差分画像が得られないという事態が発生することがあり、付着物の有無を正確に検出できないという問題があった。尚、例えば車載用の装置において、強い光が入射する状況の例としては、昼間の強い太陽光が入射する場合や、夜間の車両のヘッドライトの照射光が入射する場合などが考えられる。   However, in the configuration of Patent Document 1, there is a problem that it is not known whether the obtained amplitude image is caused by reflection by a short-distance object or reflection by dirt, and the dirt cannot be accurately detected. Further, in the configuration of Patent Document 2, in a situation where strong light is incident, a situation in which a density difference image due to the presence or absence of an adhering matter may not be obtained may occur, and the presence or absence of an adhering matter cannot be detected accurately. was there. For example, in an in-vehicle device, examples of situations in which strong light is incident include cases in which strong sunlight is incident during the day, or irradiation light from a headlight of a vehicle at night is incident.

そこで、本発明の目的は、レンズに付着した付着物を正確に検出することができる付着物検知機能付き測距装置を提供することにある。   Accordingly, an object of the present invention is to provide a distance measuring device with an adhering matter detection function capable of accurately detecting an adhering matter adhering to a lens.

請求項1の発明は、受光手段及び発光手段と、前記発光手段から照射された光が物体で反射し、反射した光を前記受光手段に導く集光手段と、前記受光手段での受光強度を調整するための前記集光手段表面に設けられた反射手段と、前記発光手段から光を照射させ、前記受光手段により受光した受光信号に基づいて前記受光手段の受光時間または前記発光手段の照射時間または照射強度を制御し、前記集光手段の前面に付着物が付着しているか否かを検出する付着物検出手段とを備えた付着物検知機能付き測距装置である。   According to the first aspect of the present invention, the light receiving means and the light emitting means, the light irradiated from the light emitting means is reflected by the object, the light collecting means for guiding the reflected light to the light receiving means, and the light receiving intensity at the light receiving means are obtained. Reflecting means provided on the surface of the light collecting means for adjustment, and light receiving time of the light receiving means or irradiation time of the light emitting means based on a light receiving signal received by the light receiving means by irradiating light from the light emitting means Alternatively, it is a distance measuring device with an adhering matter detection function provided with an adhering matter detecting unit that controls irradiation intensity and detects whether or not an adhering matter is attached to the front surface of the light collecting unit.

本発明の第1実施形態を示す付着物検知機能付き測距装置の部分横断面図1 is a partial cross-sectional view of a distance measuring device with an adhering matter detection function according to a first embodiment of the present invention. 反射部材周辺の拡大部分横断面図Enlarged partial cross-sectional view around the reflective member (a)は図1相当図、(b)は導光部材の部分正面図(A) is a figure equivalent to FIG. 1, (b) is a partial front view of a light guide member. 測距用受光素子及び参照光用受光素子の正面図Front view of light receiving element for distance measurement and light receiving element for reference light 付着物検知機能付き測距装置の電気的構成を示すブロック図Block diagram showing the electrical configuration of a distance measuring device with an adhering matter detection function 付着物検知制御及び測距制御のフローチャートFlow chart of adhesion detection control and distance measurement control 参照光用受光素子の受光信号の電圧を示す図The figure which shows the voltage of the light reception signal of the light receiving element for reference light 照射時間と受光時間を示すタイムチャートTime chart showing irradiation time and light reception time 本発明の第2実施形態を示す図4相当図FIG. 4 equivalent view showing the second embodiment of the present invention 本発明の第3実施形態を示す図6相当図FIG. 6 equivalent view showing a third embodiment of the present invention. 図8相当図Equivalent to FIG. 本発明の第4実施形態を示す図10相当図FIG. 10 equivalent view showing the fourth embodiment of the present invention.

以下、本発明の第1実施形態について、図1ないし図8を参照して説明する。まず、図1は、本実施形態の付着物検知機能付き測距装置の概略構成を示す部分横断平面図である。この図1に示すように、付着物検知機能付き測距装置1は、ケース2と、ケース2内に配設されたセンサ収納部3と、センサ収納部3内に配設された受光素子(受光手段)4と、センサ収納部3の図1中の右側面部に設けられたレンズ保持部5と、レンジ保持部5に保持されたレンズ(集光手段)6とを備えている。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. First, FIG. 1 is a partial cross-sectional plan view showing a schematic configuration of a distance measuring device with an adhering matter detection function of the present embodiment. As shown in FIG. 1, the distance measuring device 1 with an adhering matter detection function includes a case 2, a sensor storage unit 3 disposed in the case 2, and a light receiving element ( A light receiving means) 4, a lens holding portion 5 provided on the right side surface in FIG. 1 of the sensor storage portion 3, and a lens (light collecting means) 6 held by the range holding portion 5.

受光素子4は、図4に示すように、2次元配置された多数の画素アレイからなる測距用撮像素子(測距用受光素子)7と、測距用撮像素子7の図4中の右辺部上部に配設された例えば1画素からなる参照光用受光素子8とを備えている。上記測距用撮像素子7を構成する各画素(受光素子)は、AC発光(例えばパルス発光)のみを受光し、DC光(例えば背景光)を除去する回路、例えば背景光差分回路を有する。そして、参照光用受光素子8は、AC発光(例えばパルス発光)のみを受光し、DC光(例えば背景光)を除去する回路、例えば背景光差分回路を有する。   As shown in FIG. 4, the light receiving element 4 includes a distance measuring image pickup element (ranging light receiving element) 7 made up of a large number of two-dimensionally arranged pixel arrays, and the right side of the distance measuring image pickup element 7 in FIG. 4. For example, a reference light receiving element 8 made of one pixel is provided at the top of the unit. Each pixel (light receiving element) constituting the distance measuring imaging element 7 has a circuit that receives only AC light emission (for example, pulse light emission) and removes DC light (for example, background light), for example, a background light difference circuit. The reference light receiving element 8 includes a circuit that receives only AC light emission (for example, pulse light emission) and removes DC light (for example, background light), for example, a background light difference circuit.

また、レンズ6の表面(前面、図1中の右側面)には、例えばガラス製の板状部材からなる導光部材9が貼り付けられている。導光部材9は、レンズ6の球面の法線に垂直となるように配設されている。導光部材9は、ケース2の図1中の右端開口部に該開口部を閉塞するように取り付けられている。ケース2内におけるセンサ収納部3の図1中の下方であってケース側壁2aの近傍には、参照光用LED(第2発光手段)10が配設されている。導光部材9の内面の図1中の下部における参照光用LED10から光が照射される部位には、プリズム11が配設されている。   A light guide member 9 made of, for example, a glass plate member is attached to the surface (front surface, right side surface in FIG. 1) of the lens 6. The light guide member 9 is disposed so as to be perpendicular to the normal line of the spherical surface of the lens 6. The light guide member 9 is attached to the right end opening of the case 2 in FIG. 1 so as to close the opening. A reference light LED (second light emitting means) 10 is disposed below the sensor housing 3 in FIG. 1 in the case 2 and in the vicinity of the case side wall 2a. A prism 11 is disposed on a portion of the inner surface of the light guide member 9 irradiated with light from the reference light LED 10 in the lower portion in FIG.

この構成の場合、参照光用LED10から照射された光は、図3(a)、(b)に示すように、プリズム11を透過することによって光の通り路が広げられ、光が導光部材9内の全ての位置(レンズ6表面の全ての位置)を通過するような構成、即ち、参照光照射用LED10、プリズム11及び導光部材9がそのような光路が形成されるような配置形態となる構成となっている。導光部材9とプリズム11とから、発光手段から照射された光が前記集光手段表面の全ての位置を通過するように光路を調整する光学素子が構成されている。尚、プリズム11の代わりにビームスプリッタ等を用いても良い。   In the case of this configuration, as shown in FIGS. 3A and 3B, the light emitted from the reference light LED 10 is transmitted through the prism 11 to widen the light path, and the light is guided to the light guide member. 9 is configured so as to pass through all positions in the lens 9 (all positions on the surface of the lens 6), that is, an arrangement configuration in which such a light path is formed by the reference light irradiation LED 10, the prism 11, and the light guide member 9. It becomes the composition which becomes. The light guide member 9 and the prism 11 constitute an optical element that adjusts the optical path so that light emitted from the light emitting means passes through all positions on the surface of the light collecting means. A beam splitter or the like may be used instead of the prism 11.

導光部材9の表面における周縁部(図1中の下部)には、反射部材(反射手段)12が取り付けられている。この反射部材12は、図2に示すように、導光部材9の表面に取付けられた反射体13と、この反射体13を覆うように導光部材9の表面に取付けられた遮光体14とを備えている。反射体13は、屈折率が雨滴、土、埃等の付着物の屈折率、すなわち屈折率1.2〜1.6と等しい材料で構成され、半球体または円錐台の形状を有している。反射体13のうちの導光部材9との接触面以外の面は、遮光体14により覆われている。反射体13と遮光体14は、例えばオプティカルコンタクトにより接合されている。遮光体14は、その内面側からの光及び外面側からの光を遮り吸収する機能を有する。   A reflecting member (reflecting means) 12 is attached to a peripheral edge (lower part in FIG. 1) on the surface of the light guide member 9. As shown in FIG. 2, the reflecting member 12 includes a reflector 13 attached to the surface of the light guide member 9, and a light shield 14 attached to the surface of the light guide member 9 so as to cover the reflector 13. It has. The reflector 13 is made of a material whose refractive index is equal to the refractive index of an adhering substance such as raindrops, earth, and dust, that is, a refractive index of 1.2 to 1.6, and has a hemispherical shape or a truncated cone shape. . Surfaces of the reflector 13 other than the contact surface with the light guide member 9 are covered with a light shield 14. The reflector 13 and the light shield 14 are joined by, for example, an optical contact. The light shield 14 has a function of blocking and absorbing light from the inner surface side and light from the outer surface side.

上記構成においては、参照光用LED10から照射された光は、反射部材12で反射し、その反射光は参照光用受光素子8が受光するように構成されている。この構成の場合、参照光用受光素子8と反射部材12は、レンズ6の中心に対して、点対称の位置に配設されている。   In the above configuration, the light emitted from the reference light LED 10 is reflected by the reflecting member 12 and the reflected light is received by the reference light receiving element 8. In the case of this configuration, the reference light receiving element 8 and the reflecting member 12 are disposed at point-symmetrical positions with respect to the center of the lens 6.

また、ケース2のケース側壁2aの図1中の右端部外面には、測距用LED(第1発光手段)15が配設されている。測距用LED15から照射された光は、対象物で反射し、その反射光は測距用撮像素子7が受光するように構成されている。参照光用LED10と測距用LED15とから発光手段が構成されている。   Further, a distance measuring LED (first light emitting means) 15 is disposed on the outer surface of the right end portion in FIG. 1 of the case side wall 2 a of the case 2. The light emitted from the ranging LED 15 is reflected by the object, and the reflected light is configured to be received by the ranging imaging device 7. The reference light LED 10 and the distance measuring LED 15 constitute light emitting means.

また、ケース2内において、参照光用LED10と受光素子4との間には、遮光板31が配設されている。遮光板31の右端部は、導光部材9に当接している。この構成の場合、測距用LED15と、参照光用LED10と、受光素子4は、それぞれ互いに遮光される構成となっている。   In the case 2, a light shielding plate 31 is disposed between the reference light LED 10 and the light receiving element 4. The right end portion of the light shielding plate 31 is in contact with the light guide member 9. In the case of this configuration, the ranging LED 15, the reference light LED 10, and the light receiving element 4 are configured to be shielded from each other.

図5は、上記した構成の付着物検知機能付き測距装置1の電気的構成を示すブロック図である。この図5に示すように、付着物検知機能付き測距装置1は、制御部16と、検知用受光部17と、測距用受光部18と、検知用照射部19と、測距用照射部20とを備えている。制御部16は、付着物検知機能付き測距装置1全体を制御する機能を有しており、付着物検出手段及び制御手段としての各機能を備えている。制御部16は、検知用受光部17及び測距用受光部18を受光制御し、検知用受光部17及び測距用受光部18から受光信号を受ける。そして、制御部16は、検知用照射部19及び測距用照射部20を照射(点灯)制御する。   FIG. 5 is a block diagram showing an electrical configuration of the distance measuring device 1 with an adhering matter detection function configured as described above. As shown in FIG. 5, the distance measuring device 1 with an adhering matter detection function includes a control unit 16, a light receiving unit 17 for detection, a light receiving unit 18 for distance measurement, an irradiation unit 19 for detection, and an irradiation for distance measurement. Part 20. The control unit 16 has a function of controlling the entire distance measuring device 1 with an adhering matter detection function, and has functions as an adhering matter detection unit and a control unit. The control unit 16 controls light reception of the detection light receiving unit 17 and the ranging light receiving unit 18 and receives light reception signals from the detection light receiving unit 17 and the ranging light receiving unit 18. The control unit 16 performs irradiation (lighting) control on the detection irradiation unit 19 and the distance measurement irradiation unit 20.

検知用受光部17は、制御部16から参照光用受光制御信号を受けて参照光用受光素子8の露光時間を制御すると共に、参照光用受光素子8により受光された参照光用受光信号を制御部16へ出力する。測距用受光部18は、制御部16から測距用受光制御信号を受けて測距用撮像素子7の受光時間を制御すると共に、測距用撮像素子7により受光(撮像)された測距用受光信号を制御部16へ出力する。   The detection light receiving unit 17 receives the reference light reception control signal from the control unit 16 to control the exposure time of the reference light reception element 8 and receives the reference light reception signal received by the reference light reception element 8. Output to the control unit 16. The ranging light-receiving unit 18 receives the ranging light-receiving control signal from the control unit 16 and controls the light-receiving time of the ranging image-capturing element 7 and measures the distance received (imaged) by the ranging image-capturing element 7. The received light signal is output to the control unit 16.

検知用照射部19は、制御部16から参照光用照射制御信号を受けて参照光照射用LED10の照射(点灯)時間を制御する。測距用照射部20は、制御部16から測距用照射制御信号を受けて測距用LED15の照射(点灯)時間を制御する。   The detection irradiation unit 19 receives the reference light irradiation control signal from the control unit 16 and controls the irradiation (lighting) time of the reference light irradiation LED 10. The distance measurement irradiation unit 20 receives the distance measurement irradiation control signal from the control unit 16 and controls the irradiation (lighting) time of the distance measurement LED 15.

次に、上記構成の動作について、図6ないし図8を参照して説明する。図6のフローチャートは、付着物検知機能付き測距装置1の制御部16の制御の内容を示す。図8のタイムチャートは、測距用LED15の点灯動作と、参照光用LED10の点灯動作と、測距用撮像素子7及び参照光用受光素子8の受光(露光)動作とを示している。   Next, the operation of the above configuration will be described with reference to FIGS. The flowchart of FIG. 6 shows the content of control of the control part 16 of the distance measuring device 1 with an adhering matter detection function. The time chart of FIG. 8 shows the lighting operation of the ranging LED 15, the lighting operation of the reference light LED 10, and the light receiving (exposure) operation of the ranging imaging element 7 and the reference light receiving element 8.

測距用LED15の点灯動作は、図8(a)に示すように、1フレーム分、即ち、時間t1、時間t2、時間t3、時間t4の各間、点灯(パルス点灯)される。尚、各時間t1〜t4は例えば数us〜数ms程度の時間であり、各時間t1〜t4の間の消灯時間は例えば数us〜数百us程度の時間である。この場合、各時間t1〜t4の間は、図8(b)に示すように、短いパルス間隔Tで点灯動作がオンオフされる。尚、パルス間隔Tは例えば数ns〜数百ns程度の時間である。測距用撮像素子7の受光(露光)動作は、測距用LED15の点灯動作に対応して、図8(a)に示すように、1フレーム分、即ち、時間t1、時間t2、時間t3、時間t4の各間、受光され、各時間t1〜t4の間は、図8(b)に示すように、短いパルス間隔Tで受光動作がオンオフされる。そして、測距用撮像素子7の受光動作は、時間t1を基準にして時間t2、t3、t4と進む毎に、T/2ずつ遅れるように設定されている。   As shown in FIG. 8A, the distance measurement LED 15 is turned on (pulsed) for one frame, that is, during each of time t1, time t2, time t3, and time t4. Each time t1 to t4 is, for example, about several us to several ms, and the turn-off time between each time t1 to t4 is, for example, about several us to several hundred us. In this case, during each time t1 to t4, as shown in FIG. 8B, the lighting operation is turned on / off at a short pulse interval T. The pulse interval T is, for example, about several ns to several hundreds ns. The light receiving (exposure) operation of the ranging image pickup device 7 corresponds to the lighting operation of the ranging LED 15 as shown in FIG. 8A, that is, one frame, that is, time t1, time t2, time t3. During each time t4, light is received, and during each time t1 to t4, the light receiving operation is turned on and off at a short pulse interval T as shown in FIG. The light receiving operation of the distance measuring image sensor 7 is set to be delayed by T / 2 every time the time t2, t3, and t4 are advanced with respect to the time t1.

また、参照光用LED10の点灯動作が、図8(a)に示すように、時間t5の間、点灯(パルス点灯)される(短いパルス間隔Tで点灯動作がオンオフされる)。これに対応して、参照光用受光素子8の受光(露光)動作は、図8(b)に示すように、時間t5の間、受光される(短いパルス間隔Tで受光動作がオンオフされる)。   Further, as shown in FIG. 8A, the lighting operation of the reference light LED 10 is lit (pulse lighting) for a time t5 (the lighting operation is turned on / off at a short pulse interval T). Correspondingly, the light receiving (exposure) operation of the reference light receiving element 8 is received for a time t5 as shown in FIG. 8B (the light receiving operation is turned on and off at a short pulse interval T). ).

そして、参照光用LED10の点灯動作(時間t5)及び参照光用受光素子8の受光動作(時間t5)が1回実行された後、測距用LED15の点灯動作(時間t1、時間t2、時間t3、時間t4)及び測距用撮像素子7の受光動作(時間t1、時間t2、時間t3、時間t4)がN回(即ち、Nフレーム分)実行されるようになっている。更に、測距用LED15が点灯動作している間は、参照光用LED10は点灯動作されない。そして、測距処理が実行されている間、1回分の参照光用LED10の点灯動作及び参照光用受光素子8の受光動作と、Nフレーム分の測距用LED15の点灯動作及び測距用撮像素子7の受光動作とが、交互に繰り返し実行されるようになっている。   Then, after the lighting operation of the reference light LED 10 (time t5) and the light receiving operation of the reference light receiving element 8 (time t5) are performed once, the lighting operation of the ranging LED 15 (time t1, time t2, time) t3, time t4) and the light receiving operation (time t1, time t2, time t3, time t4) of the distance measuring image sensor 7 are executed N times (that is, for N frames). Further, the reference light LED 10 is not turned on while the distance measuring LED 15 is turned on. During the distance measurement process, the lighting operation of the reference light LED 10 and the light receiving operation of the reference light receiving element 8 for one time, the lighting operation of the ranging LED 15 for N frames, and the imaging for the distance measurement are performed. The light receiving operation of the element 7 is repeatedly executed alternately.

次に、図6のフローチャートを参照して、付着物検知機能付き測距装置1の制御部16の制御(付着物検知制御及び測距制御)の内容を説明する。まず、図6のステップS10においては、初期設定を実行する。そして、ステップS20へ進み、参照光用LED10を照射し(図8(a)の時間t5参照)、続いて、ステップS30へ進み、参照光用LED10発光を参照光用受光素子8で受光する(図8(a)の時間t5参照)。   Next, the contents of the control (attachment detection control and distance measurement control) of the control unit 16 of the distance measuring device 1 with an attachment detection function will be described with reference to the flowchart of FIG. First, in step S10 of FIG. 6, initial setting is executed. Then, the process proceeds to step S20 to irradiate the reference light LED 10 (see time t5 in FIG. 8A). Subsequently, the process proceeds to step S30, and the reference light LED 10 emits light by the reference light receiving element 8 (see FIG. 8A). (See time t5 in FIG. 8A).

この後、ステップS40へ進み、参照光用受光素子8の受光電圧が第1の所定値V1(図7(a)、(b)参照)以上であるか否かを判断する。この場合、参照光用受光素子8は、図7(a)、(b)に示すように、受光電圧が第1の所定値V1と第2の所定値V2の間で動作することが要求されている。外乱光の影響が弱い場合には、図7(a)に示すように、参照光用受光素子8の受光電圧は第1の所定値V1と第2の所定値V2の間に存在する。しかし、外乱光の影響が強い場合には、図7(b)に示すように、参照光用受光素子8の受光電圧は第1の所定値V1よりも高くなることがある。このような場合には、参照光用受光素子8の受光電圧を低下させて、該受光電圧が第1の所定値V1と第2の所定値V2の間に存在するように調整する必要がある。   Thereafter, the process proceeds to step S40, and it is determined whether or not the light reception voltage of the reference light receiving element 8 is equal to or higher than a first predetermined value V1 (see FIGS. 7A and 7B). In this case, the reference light receiving element 8 is required to operate between a first predetermined value V1 and a second predetermined value V2 as shown in FIGS. 7A and 7B. ing. When the influence of disturbance light is weak, as shown in FIG. 7A, the received light voltage of the reference light receiving element 8 exists between the first predetermined value V1 and the second predetermined value V2. However, when the influence of disturbance light is strong, the light receiving voltage of the reference light receiving element 8 may be higher than the first predetermined value V1, as shown in FIG. 7B. In such a case, it is necessary to reduce the light receiving voltage of the reference light receiving element 8 so that the light receiving voltage exists between the first predetermined value V1 and the second predetermined value V2. .

具体的には、上記ステップS40において、参照光用受光素子8の受光電圧が第1の所定値V1以上であるときには、「YES」へ進み、ステップS100へ進み、参照光用受光素子8の露光(受光)時間を短くし、更に、参照光用LED10の照射強度を強くする。この後は、ステップS20へ戻り、上述した処理を繰り返す。これにより、図7(b)に示すように、参照光用受光素子8の受光電圧が低下し、該受光電圧が第1の所定値V1と第2の所定値V2の間に存在するように調整することができる。   Specifically, in step S40, when the light reception voltage of the reference light receiving element 8 is equal to or higher than the first predetermined value V1, the process proceeds to “YES”, and the process proceeds to step S100 to expose the reference light receiving element 8. (Reception time) is shortened, and the irradiation intensity of the reference light LED 10 is increased. Thereafter, the process returns to step S20 and the above-described processing is repeated. As a result, as shown in FIG. 7B, the light reception voltage of the reference light receiving element 8 is lowered, and the light reception voltage is present between the first predetermined value V1 and the second predetermined value V2. Can be adjusted.

この結果、ステップS40において、参照光用受光素子8の受光電圧が第1の所定値V1より小さくなるから、「NO」へ進み、ステップS50へ進む。このステップS50では、測距用撮像素子7の中の各画素(受光素子)の受光電圧が第3の所定値以上のものがあるか否かを判断する。ここで、測距用撮像素子7の中の各画素(受光素子)の受光電圧が第3の所定値以上のものがあるときには、「YES」へ進み、ステップS110へ進む。   As a result, in step S40, the light reception voltage of the reference light receiving element 8 becomes smaller than the first predetermined value V1, so the process proceeds to “NO”, and the process proceeds to step S50. In this step S50, it is determined whether or not there is a light receiving voltage of each pixel (light receiving element) in the distance measuring image pickup element 7 equal to or higher than a third predetermined value. Here, when the light receiving voltage of each pixel (light receiving element) in the distance measuring image sensor 7 is higher than the third predetermined value, the process proceeds to “YES”, and the process proceeds to step S110.

上記ステップS110では、測距用撮像素子7の中の各画素(受光素子)の受光電圧が第3の所定値以上のものの個数が設定個数以上であるか否かを判断する。ここで、レンズ6(導光部材9)の表面に付着物が付着している場合には、測距用撮像素子7の中の各画素(受光素子)の受光電圧が第3の所定値以上のものの個数が設定個数以上となることから、「YES」へ進み、ステップS130へ進む。このステップS130では、レンズ6(導光部材9)の表面に付着物が付着していること、即ち、付着物を検出したことを示すフラグ(付着物検出フラグ)をオンに設定する。そして、この制御(付着物検知処理及び測距処理)を終了する。   In step S110, it is determined whether or not the number of light receiving voltages of the respective pixels (light receiving elements) in the distance measuring image sensor 7 is equal to or greater than a set number. Here, when an adhering substance is attached to the surface of the lens 6 (light guide member 9), the light reception voltage of each pixel (light receiving element) in the distance measuring image sensor 7 is equal to or greater than a third predetermined value. Since the number of items exceeds the set number, the process proceeds to “YES”, and the process proceeds to step S130. In step S130, a flag (adherent matter detection flag) indicating that the adhering matter has adhered to the surface of the lens 6 (light guide member 9), that is, the adhering matter has been detected, is set to ON. Then, this control (attachment detection process and distance measurement process) is terminated.

一方、上記ステップS110において、レンズの表面に付着物が付着していない場合には、測距用撮像素子7の中の各画素(受光素子)の受光電圧が第3の所定値以上のものの個数が設定個数よりも少ないことから、「NO」へ進み、ステップS120へ進む。このステップS120では、測距用撮像素子7の中の各画素(受光素子)の受光電圧が第3の所定値以上の画素(受光素子)を無効化する(即ち、測距の際に上記無効化した画素からの受光電圧を使用しないようにする)。この後は、ステップS60へ進む。   On the other hand, in the above step S110, when there is no deposit on the surface of the lens, the number of light receiving voltages of the respective pixels (light receiving elements) in the distance measuring image sensor 7 that are equal to or greater than a third predetermined value. Is smaller than the set number, the process proceeds to “NO”, and the process proceeds to step S120. In this step S120, the pixels (light receiving elements) in which the light reception voltage of each pixel (light receiving element) in the distance measuring image sensor 7 is not less than the third predetermined value are invalidated (that is, the above-mentioned invalidity at the time of distance measurement). (Do not use the light-receiving voltage from the converted pixels). After this, the process proceeds to step S60.

また、上記ステップS50において、測距用撮像素子7の中の各画素(受光素子)の受光電圧が第3の所定値以上の画素(受光素子)が無い場合には、「NO」へ進み、ステップS60へ進む。   In step S50, if there is no pixel (light receiving element) in which the light receiving voltage of each pixel (light receiving element) in the distance measuring image sensor 7 is equal to or greater than the third predetermined value, the process proceeds to “NO”. Proceed to step S60.

次いで、ステップS60においては、測距用LED15を照射し(図8(a)のフレーム(時間t1〜t4)参照)、続いて、ステップS70へ進み、測距用LED15発光(即ち、対象物に照射されて反射された光)を測距用撮像素子7で受光する(図8(a)のフレーム(時間t1〜t4)参照)。   Next, in step S60, the distance measuring LED 15 is irradiated (see the frame (time t1 to t4) in FIG. 8A), and then the process proceeds to step S70, and the distance measuring LED 15 emits light (that is, the object is irradiated). The light that has been irradiated and reflected is received by the distance measuring image sensor 7 (see the frame (time t1 to t4) in FIG. 8A).

この後、ステップS80へ進み、測距用撮像素子7により受光した受光信号に基づいて対象物までの距離を算出(測距)する。次いで、ステップS90へ進み、測距処理をN回(Nフレーム)実行したか否かを判断する。ここで、測距処理をN回実行していないときには、「NO」へ進み、ステップS60へ戻り、上述した処理を繰り返す。一方、上記ステップS90において、測距処理をN回実行したときには、「YES」へ進み、ステップS20へ戻り、上述した処理を繰り返す。   Thereafter, the process proceeds to step S80, and the distance to the object is calculated (ranging) based on the light reception signal received by the ranging image sensor 7. Next, the process proceeds to step S90, and it is determined whether or not the ranging process has been executed N times (N frames). If the distance measurement process has not been executed N times, the process proceeds to “NO”, returns to step S60, and repeats the above process. On the other hand, when the distance measuring process is executed N times in step S90, the process proceeds to “YES”, returns to step S20, and repeats the above process.

上記した構成の本実施形態においては、参照光用LED10をケース2内に設置し、その照射光が導光部材9の表面の反射部材12で反射し、その反射光が背景光差分回路を画素内に有する参照光用受光素子8に到達するように構成した。そして、測距用LED15を消灯した状態で参照光用LED10から光を照射させ、反射部材12で反射した反射光を参照光用受光素子8で受光したときに受光電圧(参照光用LED10の照射強度)が所定のレベル(第1の所定値V1と第2の所定値V2の間)になるように参照光用受光素子8(及び測距用撮像素子7)の露光(受光)時間または参照光用LED10の照射強度を制御するように構成した。   In the present embodiment having the above-described configuration, the reference light LED 10 is installed in the case 2, and the irradiation light is reflected by the reflecting member 12 on the surface of the light guide member 9, and the reflected light passes through the background light difference circuit. It was configured to reach the reference light receiving element 8 included therein. Then, when the distance measuring LED 15 is turned off, light is emitted from the reference light LED 10, and when the reflected light reflected by the reflecting member 12 is received by the reference light receiving element 8, the received light voltage (irradiation of the reference light LED 10 is performed). Exposure (light reception) time or reference of the reference light receiving element 8 (and the distance measuring image pickup element 7) so that the intensity is a predetermined level (between the first predetermined value V1 and the second predetermined value V2). It was comprised so that the irradiation intensity | strength of LED10 for light might be controlled.

上記した構成の本実施形態によれば、背景光差分回路を画素内に有する測距用撮像素子7により、外乱光の影響を低減した状態で付着物検知を行うことができる。更に、反射部材12と参照光用受光素子8を用いて常に最適な露光制御または照射制御を行うことにより、強い外乱光が入射したときにおいても、測距用撮像素子7及び参照光用受光素子8に対する露光時間または参照光用LED10に対する照射強度を調整することが可能となり、付着物を正確に検知することができる。   According to this embodiment having the above-described configuration, the object detection can be performed in a state where the influence of disturbance light is reduced by the distance measuring image sensor 7 having the background light difference circuit in the pixel. Further, by always performing optimum exposure control or irradiation control using the reflecting member 12 and the reference light receiving element 8, even when strong disturbance light is incident, the ranging image pickup element 7 and the reference light receiving element. It is possible to adjust the exposure time with respect to 8 or the irradiation intensity with respect to the reference light LED 10, and the deposits can be detected accurately.

また、本実施形態では、レンズ6(導光部材9)の表面の付着物を検知する際に、参照光用LED10から照射される光が付着物で反射され、測距用撮像素子7で受光され、更に、測距用撮像素子7の中の各画素(受光素子)の受光電圧が第3の所定値以上のものがあると共に、各画素(受光素子)の受光電圧が第3の所定値以上のものの個数が設定個数以上であるときに、レンズ6(導光部材9)の表面に付着物が付着していると判断したので、付着物を正確に判定できる。この場合、受光電圧が第3の所定値以上である受光素子の配置位置を取得するように構成すれば、付着物がレンズ6(導光部材9)上のどの位置に付着しているかを判断することも可能となる。   Further, in the present embodiment, when detecting the deposit on the surface of the lens 6 (light guide member 9), the light emitted from the reference light LED 10 is reflected by the deposit and received by the distance measuring image sensor 7. Further, the light receiving voltage of each pixel (light receiving element) in the distance measuring image sensor 7 is higher than a third predetermined value, and the light receiving voltage of each pixel (light receiving element) is a third predetermined value. When the number of the above is equal to or greater than the set number, it is determined that the deposit is attached to the surface of the lens 6 (light guide member 9), and therefore the deposit can be accurately determined. In this case, if it is configured to acquire the arrangement position of the light receiving element whose light reception voltage is equal to or higher than the third predetermined value, it is determined at which position on the lens 6 (the light guide member 9) the attached matter is attached. It is also possible to do.

また、本実施形態では、N回測距処理を実行する毎に、付着物検知処理を1回実行するように構成したので、付着物検知処理の参照光用LED10の駆動時間を少なくすることができるから、電力消費を低減できる。   Further, in the present embodiment, since the adhering matter detection process is executed once every time the distance measurement process is performed N times, the drive time of the reference light LED 10 in the adhering matter detection process may be reduced. As a result, power consumption can be reduced.

図9は、本発明の第2実施形態を示すものである。尚、第1実施形態と同一構成には、同一符号を付している。第1実施形態では、測距用撮像素子7と参照光用受光素子8を図4に示すように、別体の半導体チップで構成したが、これに代えて、第2実施形態では、測距用撮像素子21の一部、例えば、測距用撮像素子21の図9中の上部右端部の1個の受光画素(受光素子)21aを、参照光用受光素子21aとして使用するように構成した。   FIG. 9 shows a second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same structure as 1st Embodiment. In the first embodiment, the distance measuring imaging element 7 and the reference light receiving element 8 are configured as separate semiconductor chips as shown in FIG. 4, but instead of this, in the second embodiment, the distance measuring For example, one light receiving pixel (light receiving element) 21a at the upper right end in FIG. 9 of the distance measuring image sensor 21 is used as the reference light receiving element 21a. .

尚、上述した以外の第2実施形態の構成は、第1実施形態の構成と同じ構成となっている。従って、第2実施形態においても、第1実施形態とほぼ同じ作用効果を得ることができる。   The configurations of the second embodiment other than those described above are the same as the configurations of the first embodiment. Therefore, in the second embodiment, substantially the same operational effects as in the first embodiment can be obtained.

図10及び図11は、本発明の第3実施形態を示すものである。尚、第1実施形態と同一構成には、同一符号を付している。この第3実施形態においては、S/N比を大きくするための処理としてステップS210を、ステップS80とステップS90との間に挿入した。   10 and 11 show a third embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same structure as 1st Embodiment. In the third embodiment, step S210 is inserted between step S80 and step S90 as a process for increasing the S / N ratio.

S/N比は、(単位時間当たりの信号光電子数*露光時間)/((単位時間当たりの信号光電子数+単位時間当たりの外乱光電子数)*露光時間)1/2で効いてくる。このため、例えば露光時間を2倍にすると、S/N比は、21/2倍になる。従って、S/N比を大きくするには、露光時間を長く設定するように制御することが好ましい。 The S / N ratio works as follows: (number of signal photoelectrons per unit time * exposure time) / ((number of signal photoelectrons per unit time + number of disturbing photoelectrons per unit time) * exposure time) 1/2 . For this reason, for example, if the exposure time is doubled, the S / N ratio is times. Therefore, in order to increase the S / N ratio, it is preferable to control the exposure time to be set longer.

そこで、第3実施形態では、S/N比を大きくする処理の一例として、図11に示すように、測距用撮像素子7及び参照光用受光素子8の露光時間を、第1実施形態(図3参照)に比べて、例えば2倍の時間に設定した。尚、この場合、測距用LED15及び参照光用LED10の照射時間も、第1実施形態(図3参照)に比べて、2倍の時間に設定した。   Therefore, in the third embodiment, as an example of the process for increasing the S / N ratio, as shown in FIG. 11, the exposure times of the distance measuring image sensor 7 and the reference light receiving element 8 are set in the first embodiment ( Compared to (see FIG. 3), for example, the time is set to double. In this case, the irradiation time of the ranging LED 15 and the reference light LED 10 is also set to twice as long as that of the first embodiment (see FIG. 3).

更に、第3実施形態では、測距を実行する回数N(Nフレーム)の数値を第1実施形態に比べて大きく設定することにより、距離検出に要する時間、即ち、距離検出間隔を長くする。これにより、参照光用LED10を照射させない時間が長くなる分、測距に使用する露光時間を長くすることができる。この結果、S/N比をより一層大きくすることができる。   Furthermore, in the third embodiment, the time required for distance detection, that is, the distance detection interval is lengthened by setting the numerical value of the number of times N (N frames) to perform distance measurement larger than that in the first embodiment. As a result, the exposure time used for distance measurement can be increased by the amount of time during which the reference light LED 10 is not irradiated. As a result, the S / N ratio can be further increased.

尚、上述した以外の第3実施形態の構成は、第1実施形態の構成と同じ構成となっている。従って、第2実施形態においても、第1実施形態とほぼ同じ作用効果を得ることができる。特に、第3実施形態によれば、S/N比を大きく設定するように構成したので、距離の検出精度を高くすることができる。   The configuration of the third embodiment other than that described above is the same as the configuration of the first embodiment. Therefore, in the second embodiment, substantially the same operational effects as in the first embodiment can be obtained. In particular, according to the third embodiment, since the S / N ratio is set to be large, the distance detection accuracy can be increased.

図12は、本発明の第4実施形態を示すものである。尚、第3実施形態と同一構成には、同一符号を付している。この第4実施形態においては、第3実施形態(図10参照)のステップS110の判断処理とステップS120の処理を省略し、ステップS50にて「YES」へ進むときに、ステップS130へ進むように構成した。   FIG. 12 shows a fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same structure as 3rd Embodiment. In the fourth embodiment, the determination process in step S110 and the process in step S120 in the third embodiment (see FIG. 10) are omitted, and when the process proceeds to “YES” in step S50, the process proceeds to step S130. Configured.

尚、上述した以外の第4実施形態の構成は、第3実施形態の構成と同じ構成となっている。従って、第4実施形態においても、第3実施形態とほぼ同じ作用効果を得ることができる。   The configurations of the fourth embodiment other than those described above are the same as the configurations of the third embodiment. Therefore, in the fourth embodiment, substantially the same operational effects as in the third embodiment can be obtained.

尚、上記各実施形態では、参照光用受光素子8を1個の画素(受光素子)で構成したが、これに代えて、複数個の画素(受光素子)で構成しても良い。このように構成する場合、複数個の画素を1個の半導体チップで構成しても良いし、複数個の画素を測距用撮像素子7の一部で構成しても良い。   In each of the above embodiments, the reference light receiving element 8 is configured by one pixel (light receiving element), but may be configured by a plurality of pixels (light receiving elements) instead. In such a configuration, the plurality of pixels may be configured by one semiconductor chip, or the plurality of pixels may be configured by a part of the distance measuring image sensor 7.

図面中、1は付着物検知機能付き測距装置、2はケース、4は受光素子(受光手段)、6はレンズ(集光手段)、7は測距用撮像素子、8は参照光用受光素子、9は導光部材、10は参照光用LED(第2発光手段)、11はプリズム、12は反射部材(反射手段)、13は反射体、14は遮光体、15は測距用LED(第1発光手段)、16は制御部(付着物検出手段、制御手段)、17は検知用受光部、18は測距用受光部、19は検知用照射部、20は測距用照射部、21は測距用撮像素子である。   In the drawings, 1 is a distance measuring device with an adhering matter detection function, 2 is a case, 4 is a light receiving element (light receiving means), 6 is a lens (light collecting means), 7 is a distance measuring image sensor, and 8 is a reference light receiving light. Element, 9 is a light guide member, 10 is a reference light LED (second light emitting means), 11 is a prism, 12 is a reflecting member (reflecting means), 13 is a reflector, 14 is a light shield, and 15 is a distance measuring LED. (First light emitting means), 16 is a control unit (attachment detection means, control means), 17 is a light receiving unit for detection, 18 is a light receiving unit for distance measurement, 19 is an irradiation unit for detection, and 20 is an irradiation unit for distance measurement. , 21 are distance measuring image sensors.

Claims (12)

受光手段及び発光手段と、
前記発光手段から照射された光が物体で反射し、反射した光を前記受光手段に導く集光手段と、
前記受光手段での受光強度を調整するための前記集光手段表面に設けられた反射手段と、
前記発光手段から光を照射させ、前記受光手段により受光した受光信号に基づいて前記受光手段の受光時間または前記発光手段の照射時間または照射強度を制御し、前記集光手段の前面に付着物が付着しているか否かを検出する付着物検出手段と
を備えた付着物検知機能付き測距装置。
A light receiving means and a light emitting means;
A light collecting means for reflecting the light emitted from the light emitting means by an object and guiding the reflected light to the light receiving means;
Reflecting means provided on the surface of the light collecting means for adjusting the intensity of light received by the light receiving means;
Light is emitted from the light emitting means, and the light receiving time of the light receiving means or the irradiation time or irradiation intensity of the light emitting means is controlled based on the light reception signal received by the light receiving means, and an adhering matter is placed on the front surface of the light collecting means. A distance measuring device with an adhering matter detection function, comprising adhering matter detecting means for detecting whether or not the adhering matter is present.
前記受光手段は少なくとも1つ以上の受光素子から成り、前記発光手段からのAC発光のみを受光し、DC光を除去する回路を有することを特徴とする請求項1記載の付着物検知機能付き測距装置。   2. The measurement with an adhering matter detection function according to claim 1, wherein the light receiving means comprises at least one light receiving element, and has a circuit for receiving only AC light emitted from the light emitting means and removing DC light. Distance device. 前記反射手段は、前記集光手段の前面周縁部に少なくとも1つ以上配置されていることを特徴とする請求項1記載の付着物検知機能付き測距装置。   The distance measuring device with an adhering matter detection function according to claim 1, wherein at least one of the reflecting means is disposed on a front peripheral portion of the light collecting means. 前記反射手段は、屈折率が雨滴、土、埃等の付着物の屈折率、すなわち屈折率1.2〜1.6と等しい材料で構成されていることを特徴とする請求項1記載の付着物検知機能付き測距装置。   2. The attachment according to claim 1, wherein the reflection means is made of a material having a refractive index equal to a refractive index of a deposit such as raindrop, soil, and dust, that is, a refractive index of 1.2 to 1.6. Distance measuring device with kimono detection function. 前記反射手段は、半球体または円錐台の形状を有していることを特徴とする請求項1記載の付着物検知機能付き測距装置。   The distance measuring device with an adhering matter detection function according to claim 1, wherein the reflecting means has a hemispherical shape or a truncated cone shape. 前記反射手段は、その前面を覆うように取り付けられた遮光体を備えることを特徴とする請求項1記載の付着物検知機能付き測距装置。   The distance measuring device with an adhering matter detection function according to claim 1, wherein the reflecting means includes a light shield attached so as to cover a front surface thereof. 前記発光手段は物体までの距離を測定するための第1発光手段と、前記集光手段に付着した汚れを検出するための第2発光手段を備えることを特徴とした請求項1記載の付着物検知機能付き測距装置。   2. The deposit according to claim 1, wherein the light emitting means includes a first light emitting means for measuring a distance to an object and a second light emitting means for detecting dirt attached to the light collecting means. Distance measuring device with detection function. 前記第1発光手段と、前記第2発光手段と、前記受光手段は、それぞれ互いに遮光されていることを特徴とした請求項7記載の付着物検知機能付き測距装置。   8. The distance measuring apparatus with an adhering matter detection function according to claim 7, wherein the first light emitting means, the second light emitting means, and the light receiving means are shielded from each other. 前記発光手段から照射された光が前記集光手段表面の全ての位置を通過するように光路を調整する光学素子を備えたことを特徴とする請求項1記載の付着物検知機能付き測距装置。   2. A distance measuring device with an adhering matter detection function according to claim 1, further comprising an optical element for adjusting an optical path so that light emitted from the light emitting means passes through all positions on the surface of the light collecting means. . 前記第1発光手段を点灯中には前記第2発光手段を消灯させ、前記第2発光手段を点灯中には前記第1発光手段を消灯させる制御手段を備えたことを特徴とする請求項7記載の付着物検知機能付き測距装置。   8. A control unit for turning off the second light emitting unit while the first light emitting unit is turned on and turning off the first light emitting unit while turning on the second light emitting unit. Ranging device with attached substance detection function as described. 前記受光手段の受光信号の情報に基づきその時刻でのSN比を算出し、SN比に応じて前記受光手段の露光時間または前記発光手段の照射時間または照射強度を制御する制御手段を備えたことを特徴とする請求項7記載の付着物検知機能付き測距装置。   Control means for calculating the SN ratio at that time based on the information of the light reception signal of the light receiving means and controlling the exposure time of the light receiving means or the irradiation time or intensity of the light emitting means according to the SN ratio. The distance measuring device with an adhering matter detection function according to claim 7. 前記付着物検出手段による検出制御で付着物が検出された後、検出された前記受光手段の数が所定値以内であればその受光手段を無効化し処理を継続する制御手段を備えたことを特徴とする請求項1記載の付着物検知機能付き測距装置。   After the adhering matter is detected by the detection control by the adhering matter detecting means, the apparatus comprises a control means for invalidating the light receiving means and continuing the processing if the number of the detected light receiving means is within a predetermined value. The rangefinder with attached matter detection function according to claim 1.
JP2014171545A 2014-08-26 2014-08-26 Distance-measuring apparatus with attachment detection function Pending JP2016045161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014171545A JP2016045161A (en) 2014-08-26 2014-08-26 Distance-measuring apparatus with attachment detection function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014171545A JP2016045161A (en) 2014-08-26 2014-08-26 Distance-measuring apparatus with attachment detection function

Publications (1)

Publication Number Publication Date
JP2016045161A true JP2016045161A (en) 2016-04-04

Family

ID=55635844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014171545A Pending JP2016045161A (en) 2014-08-26 2014-08-26 Distance-measuring apparatus with attachment detection function

Country Status (1)

Country Link
JP (1) JP2016045161A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159032A1 (en) * 2015-03-30 2016-10-06 株式会社ニコン Image-capturing element and image-capturing device
WO2020038061A1 (en) * 2018-08-22 2020-02-27 Oppo广东移动通信有限公司 Flight time module and control method thereof, controller and electronic device
JP2022542916A (en) * 2019-08-06 2022-10-07 ウェイモ エルエルシー Window occluder imager near focal plane
KR102568503B1 (en) * 2022-10-31 2023-08-22 대한민국 Apparatus for detecting contamination on glass dome capable of protecting solar observation sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102092A (en) * 1992-09-22 1994-04-12 Japan Radio Co Ltd Optical sensor
JPH07167945A (en) * 1993-12-15 1995-07-04 Nikon Corp Distance measuring device
JPH10142335A (en) * 1996-11-07 1998-05-29 Omron Corp Apparatus for detecting information of object
JP2001318146A (en) * 2000-05-11 2001-11-16 Omron Corp Body information detecting device
JP2002296342A (en) * 2001-01-09 2002-10-09 Nissan Motor Co Ltd Object information detecting apparatus
JP2008064630A (en) * 2006-09-07 2008-03-21 Hitachi Ltd Vehicle imager with deposit sensing function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102092A (en) * 1992-09-22 1994-04-12 Japan Radio Co Ltd Optical sensor
JPH07167945A (en) * 1993-12-15 1995-07-04 Nikon Corp Distance measuring device
JPH10142335A (en) * 1996-11-07 1998-05-29 Omron Corp Apparatus for detecting information of object
JP2001318146A (en) * 2000-05-11 2001-11-16 Omron Corp Body information detecting device
JP2002296342A (en) * 2001-01-09 2002-10-09 Nissan Motor Co Ltd Object information detecting apparatus
JP2008064630A (en) * 2006-09-07 2008-03-21 Hitachi Ltd Vehicle imager with deposit sensing function

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159032A1 (en) * 2015-03-30 2016-10-06 株式会社ニコン Image-capturing element and image-capturing device
JPWO2016159032A1 (en) * 2015-03-30 2017-11-24 株式会社ニコン Imaging device and imaging apparatus
US10298836B2 (en) 2015-03-30 2019-05-21 Nikon Corporation Image sensor and image-capturing apparatus
WO2020038061A1 (en) * 2018-08-22 2020-02-27 Oppo广东移动通信有限公司 Flight time module and control method thereof, controller and electronic device
JP2022542916A (en) * 2019-08-06 2022-10-07 ウェイモ エルエルシー Window occluder imager near focal plane
US11681031B2 (en) 2019-08-06 2023-06-20 Waymo Llc Window occlusion imager near focal plane
KR102568503B1 (en) * 2022-10-31 2023-08-22 대한민국 Apparatus for detecting contamination on glass dome capable of protecting solar observation sensor

Similar Documents

Publication Publication Date Title
JP6314418B2 (en) Radar equipment
JP7177065B2 (en) Methods and systems for encoding and decoding lidar
CN111142088B (en) Light emitting unit, depth measuring device and method
JP5617554B2 (en) Distance measuring device and distance measuring program
EP3516415A1 (en) Adaptive transmission power control for a lidar
JP2020076589A (en) Object detection device
JP2019144186A (en) Optical distance measuring device and method therefor
JP2016045161A (en) Distance-measuring apparatus with attachment detection function
US11662443B2 (en) Method and apparatus for determining malfunction, and sensor system
JP2019144184A (en) Optical distance measuring device and method therefor
JP6804949B2 (en) Controls, measuring devices, and computer programs
JP2017003391A (en) Laser radar system
CN113767305A (en) Extended dynamic range and reduced power imaging of LIDAR detector arrays
CN113167905A (en) Laser radar system and motor vehicle
JP2008064630A (en) Vehicle imager with deposit sensing function
JP2016534355A (en) Automotive equipment incorporating an object distance measuring device
CN107782732B (en) Automatic focusing system, method and image detection instrument
US11487008B2 (en) Distance measuring device
EP4258012A1 (en) Detection apparatus, detection method, and laser radar
US20210026012A1 (en) Distance measuring device, and distance measuring method
US9720132B2 (en) Illumination for the detection of raindrops on a window by means of a camera
US20200300978A1 (en) Dynamic range improvements in lidar applications
US20240103134A1 (en) Distance measuring device
JP6246933B2 (en) Lighting to detect raindrops on the window glass using a camera
JP6102225B2 (en) Rain sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807