JP2016044146A - Muscle atrophy inhibitor and muscle growth promoter - Google Patents

Muscle atrophy inhibitor and muscle growth promoter Download PDF

Info

Publication number
JP2016044146A
JP2016044146A JP2014169958A JP2014169958A JP2016044146A JP 2016044146 A JP2016044146 A JP 2016044146A JP 2014169958 A JP2014169958 A JP 2014169958A JP 2014169958 A JP2014169958 A JP 2014169958A JP 2016044146 A JP2016044146 A JP 2016044146A
Authority
JP
Japan
Prior art keywords
muscle
muscle atrophy
skeletal muscle
atrophy
soybean peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014169958A
Other languages
Japanese (ja)
Inventor
山田 茂
Shigeru Yamada
茂 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014169958A priority Critical patent/JP2016044146A/en
Publication of JP2016044146A publication Critical patent/JP2016044146A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nutrient effective in skeletal muscle atrophy inhibition.SOLUTION: The inventor of this application focused on a soybean peptide, examined the effect of the soybean peptide to muscle atrophy caused by a no-load model in terms of elderly people's muscle atrophy, and as a result of eager studies, found out that the soybean peptide had a skeletal muscle atrophy-inhibiting action and a skeletal muscle growth promoting action. That is, the invention relates to a muscle atrophy inhibitor and muscle growth promoter containing the soybean peptide as an active ingredient. The kind of soybean peptide is not particularly limited, but the peptide with a molecular weight of 5000 or less is preferable.SELECTED DRAWING: None

Description

本発明は、骨格筋の萎縮を抑制する作用のある筋萎縮抑制剤と、骨格筋の成長を促進させる作用のある筋成長促進剤に関する発明である。   The present invention relates to a muscle atrophy inhibitor having an action of suppressing skeletal muscle atrophy and a muscle growth promoter having an action of promoting skeletal muscle growth.

厚生労働省によると、現在、日本には500万人近くの要支援・要介護認定者がおり、その中には寝たきり状態や、下肢の障害で歩行が困難な状態の患者がいる。このような患者では、骨格筋萎縮が進み、筋量が減少し、如いては機能低下を招く。また高齢者社会を迎え、老化によってサルコペニアを引き起こし骨格筋量が減少して、行動力の低下とともに、生活の質低下を招いている。このような骨格筋萎縮にともなう行動力の低下・変容は社会的に深刻な問題であり、そのメカニズムの解明と治療法の開発が求められている。   According to the Ministry of Health, Labor and Welfare, there are currently nearly 5 million people in need of assistance and nursing care in Japan. Among them, there are patients who are bedridden or have difficulty in walking due to lower limb disorders. In such patients, skeletal muscle atrophy progresses and muscle mass decreases, thus leading to functional decline. In addition, the aging of society has caused sarcopenia and skeletal muscle mass has decreased due to aging. Such a decline and transformation of behavioral force associated with skeletal muscle atrophy is a serious social problem, and elucidation of the mechanism and development of a treatment method are required.

また、無重力の宇宙空間では骨格筋、特に抗重力筋である遅筋線維の萎縮とそれに伴う筋力の低下など、生体に有害な変化が起こるが、有効な対処法は未だ開発されていない。しかしながら、長期間宇宙に滞在する宇宙飛行士の筋萎縮の抑制は、今後人類が宇宙開発を進める上において解決しなければならない重要な課題である。   In addition, although there are harmful changes in the body such as atrophy of skeletal muscles, especially slow muscle fibers, which are anti-gravity muscles, and a decrease in muscular strength associated with them in the zero-gravity space, an effective countermeasure has not been developed yet. However, the suppression of muscular atrophy of astronauts who stay in space for a long period of time is an important issue that human beings must solve in the future in space development.

無重力での宇宙飛行では、抗重力筋(体幹筋、大腿四頭筋、下腿三頭筋など)が随意筋(上腕二頭筋)よりも萎縮しやすく、遅筋の速筋化が生じる。微小重力下での筋の萎縮は、最初の一、二週間が最も激しく、その後はゆっくりになる。6ヶ月の飛行後には、筋量、筋肉、最大酸素摂取能は平均10〜20%減少し、帰還後の回復には6週間を要する。   In space flight under zero gravity, anti-gravity muscles (trunk muscle, quadriceps, triceps, etc.) are more likely to atrophy than voluntary muscles (biceps), and slow muscles become faster. Muscle atrophy under microgravity is most severe in the first one or two weeks and then slows down. After 6 months of flight, muscle mass, muscle, and maximum oxygen uptake are reduced by an average of 10-20%, and recovery after returning takes 6 weeks.

身体組成は加齢とともに大きく変化する。ヒトでは30歳を過ぎると10年ごとに約5%前後の割合で筋量が減少する。また、60歳を超えるとその減少率はさらに加速するといわれている。この骨格筋の萎縮は、骨格筋内でのタンパク質の合成と分解のインバランスが生じ、筋タンパク質量が減少することによって起こる筋萎縮である。   Body composition varies greatly with age. In humans, after 30 years of age, muscle mass decreases at a rate of about 5% every 10 years. In addition, the rate of decline is said to accelerate further after age 60. This skeletal muscle atrophy is a muscle atrophy caused by an imbalance between protein synthesis and degradation in skeletal muscle and a decrease in the amount of muscle protein.

高齢者の筋萎縮の原因は、加齢、低栄養、や身体活動量の低下が要因として挙げられる。また、高齢者の場合、筋力の低下が誘導され、それがもとで転倒や骨折のリスクが増加し、寝たきりなど要介護状態に陥る場合も少なくない。この筋萎縮を改善する方法として運動が効果的である報告がなされているが、運動することのできない介護状態の方やベット生活を強いられた方の筋萎縮を予防・改善するためには運動以外の方法が必須である。   The causes of muscular atrophy in the elderly include aging, malnutrition, and a decrease in physical activity. In addition, in the case of elderly people, a decrease in muscular strength is induced, which increases the risk of falls and fractures and often results in a need for nursing care such as being bedridden. Although it has been reported that exercise is effective as a method to improve this muscle atrophy, exercise is necessary to prevent or improve muscle atrophy in those who are unable to exercise or who are forced to bet. Other methods are essential.

そこで本発明の目的は、骨格筋の萎縮抑制に効果的な栄養素を見出すことにある。さらに本発明の目的は、骨格筋の成長を促進させるのに効果的な栄養素を見出すことにある。   Therefore, an object of the present invention is to find a nutrient that is effective in suppressing skeletal muscle atrophy. It is a further object of the present invention to find nutrients that are effective in promoting skeletal muscle growth.

本願の発明者は、大豆ペプチドに着目し、高齢者の筋萎縮という観点から無負荷モデルで引き起こされる筋萎縮に対する大豆ペプチドの効果を検討し、鋭意研究を進めた結果、大豆ペプチドに、骨格筋の萎縮抑制作用と骨格筋の成長促進作用があることを見出した。   The inventor of the present application focused on soybean peptide, examined the effect of soybean peptide on muscle atrophy caused by the no-load model from the viewpoint of muscle atrophy in elderly people, and as a result of earnest research, Have been found to have an atrophy-suppressing action and a skeletal muscle growth-promoting action.

すなわち本発明は、大豆ペプチドを有効成分とする筋萎縮抑制剤及び筋成長促進剤である。大豆ペプチドの種類は特に限定されないが、好ましくは、分子量が5000以下の大豆ペプチドが望ましい。   That is, the present invention is a muscle atrophy inhibitor and a muscle growth promoter containing soybean peptide as an active ingredient. Although the kind of soybean peptide is not particularly limited, preferably a soybean peptide having a molecular weight of 5000 or less is desirable.

なお本発明において、所望の形態の製剤を調製するために、本発明の効果を損なわない範囲で、その用途や形態に応じて、様々な成分や添加物を適宜選択し、一種またはそれ以上を併用して配合させてもよい。   In the present invention, in order to prepare a preparation of a desired form, various components and additives are appropriately selected according to the use and form within a range not impairing the effects of the present invention, and one or more of them are selected. You may make it mix | blend together.

ギブスなどによる固定や不使用、老化、寝たきり、無重力の宇宙空間への暴露などによって筋重量の低下を起こし得る環境下であっても、本発明の筋萎縮抑制剤を継続して摂取することにより、骨格筋の萎縮を効果的に抑制できる。また、本発明の筋成長促進剤を継続して摂取することにより、骨格筋の萎縮を効果的に抑制できると同時に、骨格筋の成長を促進させることができる。   By continuously ingesting the muscle atrophy inhibitor of the present invention even in an environment where muscle weight can be reduced by fixation or non-use with casts, aging, bedridden, exposure to weightless space, etc. It is possible to effectively suppress skeletal muscle atrophy. Moreover, by continuously ingesting the muscle growth promoter of the present invention, it is possible to effectively suppress skeletal muscle atrophy and promote skeletal muscle growth.

したがって、本発明の筋萎縮抑制剤及び筋成長促進剤は、例えば、加齢に伴う筋力低下の予防、こどもの体力低下の予防、病後体力回復(骨折などによる筋萎縮の回復)、閉経後の筋力低下予防、カヘキシーによる筋萎縮の予防、宇宙飛行士の筋萎縮の予防などに有用である。さらに、本発明の筋成長促進剤は、スポーツ選手の筋力アップ、発育期の筋力アップ、労働者の筋力アップなどにも有用である。   Therefore, the muscle atrophy inhibitor and the muscle growth promoter of the present invention can prevent, for example, prevention of muscular weakness accompanying aging, prevention of physical strength of children, recovery of physical strength after illness (recovery of muscular atrophy due to fractures, etc.), postmenopausal It is useful for preventing muscle weakness, preventing muscular atrophy due to cachex, and preventing astronaut muscle atrophy. Furthermore, the muscle growth promoting agent of the present invention is also useful for increasing the strength of athletes, increasing the strength of the growing season, increasing the strength of workers, and the like.

マウスに対する筋萎縮誘導方法である尾部懸垂法を示す図である。It is a figure which shows the tail suspension method which is a muscle atrophy induction method with respect to a mouse | mouth. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result.

[実験1]AM摂取の筋湿重量に対する効果
この実験では、雄性ICRリタイアマウス (体重;平均42.3±2.7 g、日本エスエルシー株式会社) 20匹を用いた。
[Experiment 1] Effect of AM intake on muscle wet weight In this experiment, 20 male ICR retired mice (body weight; average: 42.3 ± 2.7 g, Nippon SLC Co., Ltd.) were used.

室温24±1℃、12時間昼夜逆転明暗サイクルの環境下にて、食餌及び飲料水を自由摂取とし、7日間個別ゲージにて飼育した。食餌はMF (オリエンタル酵母工業株式会社)を用い、飲料水は純水(正起薬品工業株式会社)及び175 mg/mLに調製した大豆ペプチドハイニュートAM (不二製油株式会社)を用いた。この実験で用いた大豆ペプチの分子量は5000以下であった。   In an environment of room temperature 24 ± 1 ° C., 12 hours day / night reversal light / dark cycle, food and drinking water were allowed to be freely ingested and reared on an individual gauge for 7 days. MF (Oriental Yeast Industry Co., Ltd.) was used as the diet, and pure water (Seiki Pharmaceutical Co., Ltd.) and Soy Peptide High Newt AM (Fuji Oil Co., Ltd.) prepared to 175 mg / mL were used as the drinking water. The molecular weight of soybean peptides used in this experiment was 5000 or less.

以下の表に示すとおり、これらのマウスを純水摂取群(以下「W群」)、純水摂取+尾部懸垂群(以下「WTS群」)、大豆ペプチドハイニュートAM摂取群(以下「AM群」)大豆ペプチドハイニュートAM摂取+尾部懸垂群(以下「AMTS群」)の 4群に5匹ずつ分けた。不活動方法として1949年にEmily R.Moreyが考案した尾部懸垂法を用いた(図1参照)。   As shown in the table below, these mice were treated with a pure water intake group (hereinafter “W group”), a pure water intake + tail suspension group (hereinafter “WTS group”), a soybean peptide high newt AM intake group (hereinafter “AM group”). “) Soy peptide high-newt AM intake + tail suspension group (hereinafter referred to as“ AMTS group ”) was divided into 5 groups of 5 animals. The tail suspension method devised by Emily R. Morey in 1949 was used as the inactivity method (see Fig. 1).

尾部懸垂7日後、W群、WTS群、AM群、AMTS群の各マウスを麻酔下で屠殺して、体重および遅筋であるヒラメ筋と速筋である足底筋をそれぞれ採取した。ヒラメ筋と足底筋の重量は電子天秤(METTLER TOLEDO株式会社)にて小数第2位まで計測した。   Seven days after the tail suspension, mice in the W group, WTS group, AM group, and AMTS group were sacrificed under anesthesia, and the soleus muscle, which is the soleus muscle and the fast muscle, which were the body weight and the slow muscle, were collected. The weight of soleus and plantar muscles was measured to the second decimal place with an electronic balance (METTLER TOLEDO Co., Ltd.).

今回の実験では、大豆ペプチドであるAM摂取により筋湿重量、骨格筋タンパク質量、筋細胞面積の萎縮が抑制した。しかしながら、今回の実験で尾部懸垂モデルは、ヒラメ筋に影響を与えたが、足底筋の筋湿重量と筋細胞面積に多少の減少傾向がみられただけで有意な差は観察されなかった。   In this experiment, the intake of soy peptide AM suppressed the muscle wet weight, skeletal muscle protein, and muscle cell atrophy. However, in this experiment, the tail suspension model affected the soleus muscle, but no significant difference was observed with only a slight decrease in the soleus muscle wet weight and muscle cell area. .

[実験2]AM摂取の骨格筋タンパク質量に対する効果
実験1で採取した骨格筋を分析するまで-80℃で保存し使用した。筋原線維タンパク質含有量は、ブラッドフォード法に基づき595nmの波長でOdyssey(LI-OCR,Inc) にて吸光度を測定した。検量線は、BSA (BIO RAD, Bovine Serum Alubumin Standard Set)を使って引き、タンパク質量を求めた。図2に示すように、明らかに、大豆ペプチドハイニュートAM(以下必要に応じて「AM」と略称)の投与により、骨格筋の萎縮が抑制された。
[Experiment 2] Effect of AM intake on skeletal muscle protein amount The skeletal muscle collected in Experiment 1 was stored and used at -80 ° C until analysis. The myofibrillar protein content was measured for absorbance with Odyssey (LI-OCR, Inc) at a wavelength of 595 nm based on the Bradford method. A calibration curve was drawn using BSA (BIO RAD, Bovine Serum Alubumin Standard Set) to determine the amount of protein. As shown in FIG. 2, skeletal muscle atrophy was clearly suppressed by administration of soybean peptide high-newt AM (hereinafter abbreviated as “AM” as necessary).

[実験3]AM摂取の筋細胞横断面積に対する効果
試料は、筋細胞横断面積を測定するために実験1と同様にマウスを飼育・採取した骨格筋を液体窒素で冷やしたイソペンタンで凍結させたのち液体窒素に移し保存したものを使用した。クリオスタット(LEICA,CM1510 S)で骨格筋中腹部の切片を作製した。HE染色を行い、筋細胞面積を各群100個ずつデジタルマイクロスコープ (KH-7700,株式会社HYROX) で計測した。
[Experiment 3] Effect of AM ingestion on the cross-sectional area of muscle cells In order to measure the cross-sectional area of muscle cells, the skeletal muscles were reared and collected with isopentane cooled in liquid nitrogen in the same manner as in Experiment 1 after the mice were raised and collected. What was transferred to liquid nitrogen and stored was used. A section of the middle abdomen of skeletal muscle was prepared with cryostat (LEICA, CM1510 S). HE staining was performed, and the muscle cell area was measured with 100 digital microscopes (KH-7700, HYROX) in each group.

<統計的処理>
データは平均±標準偏差で表した。データは一元配置分散分析を用いて有意差を確認し、多重比較 (Tukey) で各群の有意性について検討した。P<0.05を有意とした。
<Statistical processing>
Data were expressed as mean ± standard deviation. The data were checked for significance using a one-way analysis of variance, and the significance of each group was examined by multiple comparison (Tukey). P <0.05 was considered significant.

図3に示すように明らかにヒラメ筋の尾牽引による萎縮はAM投与により抑制された。このようにAMは何らかの機構で骨格筋の萎縮を抑制しているものと思われる。   As shown in FIG. 3, atrophy caused by tail traction of the soleus was obviously suppressed by AM administration. Thus, AM seems to suppress skeletal muscle atrophy by some mechanism.

[実験4]AM摂取が筋萎縮を促進するTNFα発現に及ぼす効果
TNFαは尾牽引による骨格筋萎縮を誘導する有力な因子として報告されている。従って、AMがこのTNFαの阻害因子として働いている可能性が考えられることから、このTNFαの活性と萎縮筋での遺伝子発現について検討した。
[Experiment 4] Effect of AM intake on TNFα expression that promotes muscle atrophy TNFα has been reported as a powerful factor inducing skeletal muscle atrophy by tail traction. Therefore, since there is a possibility that AM works as an inhibitor of TNFα, the activity of TNFα and gene expression in atrophy muscle were examined.

<RT-PCR法によるTNF-αmRNA遺伝子発現>
a. サンプルの調整
骨格筋を採取前に使用する器具類はオートクレーブで滅菌操作を行った。また加熱できないものに関してはRNase AWAY (Molevular Bio Productsa)を用いた。採取した骨格筋はRNAlater(QUIAGEN)で安定化させた。
<TNF-α mRNA gene expression by RT-PCR method>
a. Preparation of samples The instruments used before collecting skeletal muscle were sterilized by autoclaving. For those that cannot be heated, RNase AWAY (Molevular Bio Productsa) was used. The collected skeletal muscle was stabilized with RNAlater (QUIAGEN).

b. RNA精製
QUIAGENのmiRNeasy Mini kitを用いてRNAの精製をおこなった。
上記aで調整したサンプルをチューブ(1.5mL滅菌バイオマッシャー:株式会社アシスト)に移し、700μLのQlAzol Lysis Regentを加えて、ホモジナイズした。ホモジナイズは株式会社ニッピのパワーマッシャーを用いた。操作方法はkitのプロトコルに従った。遠心操作は日立工機株式会社のhimac CR 15Dを用いた。
b. RNA purification
RNA was purified using QUIAGEN's miRNeasy Mini kit.
The sample prepared in the above a was transferred to a tube (1.5 mL sterilized biomasher: Assist Co., Ltd.), and 700 μL of QlAzol Lysis Regent was added and homogenized. For homogenization, a power smasher from Nippi Corporation was used. The operation method followed the kit protocol. The centrifuge operation used Himac CR 15D of Hitachi Koki Co., Ltd.

c. RNA精製度の確認
上記bで精製したRNAの一部を別のチューブに移し、10mM Tris - HCl pH7.5で12倍に希釈をした。これをA260とA280で測定し精製度を確認した。測定にはBio Photometer Plus(eppendorf)を用いた。精製度はA260/A280が1.8〜2.1が適当である。またRNA濃度の算出は、A260=1が40μg/mLとしてRNA濃度=40μg/mL× A260 ×希釈倍率の式より算出を行った。
c. Confirmation of RNA purity A portion of the RNA purified in b above was transferred to another tube and diluted 12-fold with 10 mM Tris-HCl pH 7.5. This was measured with A260 and A280 to confirm the degree of purification. Bio Photometer Plus (eppendorf) was used for the measurement. A suitable degree of purification is 1.8 to 2.1 for A260 / A280. The RNA concentration was calculated from the formula of RNA concentration = 40 μg / mL × A260 × dilution ratio, assuming that A260 = 1 was 40 μg / mL.

d. cDNAの合成
上記bで精製したRNAを用いてcDNAの合成を行った。cDNAの合成は、Applied BiosystemsのHigh Capacity RNA-to-cDNA kitを用いた。操作方法はkitのプロトコルに従った。酵素反応装置はタイテック株式会社のGene Thermo Unit GTU-1615を用いた。
d. Synthesis of cDNA cDNA was synthesized using the RNA purified in b above. For synthesis of cDNA, Applied Biosystems High Capacity RNA-to-cDNA kit was used. The operation method followed the kit protocol. The enzyme reaction apparatus used was Gene Thermo Unit GTU-1615 manufactured by Taitec Corporation.

e. RT-PCR ΔΔCt法による解析
合成したcDNAをテンプレートとしてPCRを行った。RT-PCRはApplied Bio systemsのABI PRISM 7000を用いた。96wellプレートで内在性コントロールをβ‐アクチンとし、ΔΔCt法により解析を行った。
e. Analysis by RT-PCR ΔΔCt PCR was performed using the synthesized cDNA as a template. RT-PCR used ABI PRISM 7000 from Applied Biosystems. Analysis was performed by ΔΔCt method using β-actin as the endogenous control in a 96-well plate.

<統計処理>
解析を行い、ターゲット遺伝子、及び内在性コントロール遺伝子(β-actin)のCt値をソフトウェア上で算出し、ターゲット遺伝子のCt値及び内在性コントロールのCt値の平均値と標準偏差を求めた。内在性コントロールのCt値を用いた初期RNA量の補正を行い、標準偏差の値から、ΔCt値の標準偏差を算出した。基準とするサンプルのΔCt値をその他サンプルのΔCt値から引いて得られた値をΔΔCt値とした。
<Statistical processing>
Analysis was performed, Ct values of the target gene and the endogenous control gene (β-actin) were calculated on the software, and the average value and standard deviation of the Ct value of the target gene and the Ct value of the endogenous control were determined. The initial RNA amount was corrected using the Ct value of the endogenous control, and the standard deviation of the ΔCt value was calculated from the standard deviation value. The value obtained by subtracting the ΔCt value of the reference sample from the ΔCt values of the other samples was defined as the ΔΔCt value.

結果は、図4及び図5に示すとおりである。   The results are as shown in FIGS.

TNFαの血液中の濃度はAM投与により明らかに低下を示し、TNFαの活性を抑制したものと考えられる。しかしながら骨格筋での遺伝子発現をみるとAMのTNFαの活性を抑制したものとは考えられない。   It is considered that the concentration of TNFα in the blood was clearly decreased by AM administration and the activity of TNFα was suppressed. However, the gene expression in skeletal muscle is not considered to suppress the activity of AM TNFα.

[実験5]AM摂取が筋成長を促進するIGF−1発現に及ぼす効果
上記のTNFαによるタンパク質分解系の抑制効果をAM投与に求めたが明確な変化は観察されなかった。そこで、AM投与はがより積極的に骨格筋萎縮を抑制している可能性を考え、骨格筋の肥大を誘導する因子IGF−1に注目して実験を進めた。IGF−1は骨格筋肥大時、あるいは骨格筋の発育発達時に顕著に増加することが知られている。
[Experiment 5] Effect of ingestion of AM on IGF-1 expression that promotes muscle growth The above-mentioned TNFα-induced proteolytic inhibitory effect was sought for AM administration, but no clear change was observed. Therefore, considering the possibility that AM administration more positively suppresses skeletal muscle atrophy, the experiment was advanced focusing on the factor IGF-1, which induces skeletal muscle hypertrophy. It is known that IGF-1 significantly increases during skeletal muscle hypertrophy or during development of skeletal muscle.

遺伝子は発現に関する実験方法はTNFαの測定方法と基本的に同じである。   The experimental method for gene expression is basically the same as the method for measuring TNFα.

結果は、図6〜図8に示すとおりである。   The results are as shown in FIGS.

実験の結果、図に示すように明らかにAM投与によりIGF−1の濃度が増加することが判明した。さらにこのIGF−1の遺伝子発現かAM投与により増加することが明らかとなった。またIGF−1の受容体であるIGF−1Rの増加が観察された。以上の結果から、AM投与によりIGF−1の遺伝子が発現し、合成されたIGF−1は自己分泌機構によりタンパク質合成を促し筋萎縮を抑制しているものと考えられる。   As a result of the experiment, it was found that the concentration of IGF-1 was clearly increased by AM administration as shown in the figure. Furthermore, it was revealed that the gene expression of IGF-1 increases with AM administration. An increase in IGF-1R, which is a receptor for IGF-1, was also observed. From the above results, it is considered that the IGF-1 gene is expressed by AM administration, and the synthesized IGF-1 promotes protein synthesis by the autocrine mechanism and suppresses muscle atrophy.

ヒトが大豆ペプチドを摂取した際の骨格筋に及ぼす影響について調べるため、以下の実験を行った。   The following experiment was conducted to examine the effects of human consumption of soy peptide on skeletal muscle.

[実験の対象者]
実践女子大学ラクロス部に所属する20〜22歳の女子大学生30名である。
[Target of experiment]
There are 30 female college students aged 20-22 years old who belong to the lacrosse club of Jissen Women's University.

[実験の群分け]
大豆ペプチドハイニュートAM(不二製油株式会社)摂取群4名、プラセボ(乳糖)摂取群3名、何も摂取しない対照群10名の3群に分けて行った。大豆ペプチドハイニュートAM摂取群と、プラセボ(乳糖)摂取群には、サプリメントの形態で学生に摂取させた。なお
、この実験で用いた大豆ペプチの分子量は5000以下であった。
[Experiment grouping]
It was divided into 3 groups: 4 soy peptide high-newt AM (Fuji Oil Co., Ltd.) intake group, 3 placebo (lactose) intake group, and 10 control group not taking anything. The soy peptide high newt AM intake group and the placebo (lactose) intake group were ingested by students in the form of supplements. In addition, the molecular weight of the soybean peptite used in this experiment was 5000 or less.

[サプリメント摂取期間]
99日間である。
[Supplement intake period]
99 days.

[サプリメント摂取量]
朝、運動直後、就寝前の1日3錠(計150mg)各自で摂取してもらった。
[Supplement intake]
In the morning, immediately after exercise, each day before bedtime 3 tablets (total 150mg) were taken by themselves.

[実験の測定方法]
体組成測定は株式会社バイオスペース社のボディコンポジションアナライザーInbodyを用いて測定した。
[Measurement method of experiment]
The body composition was measured using a body composition analyzer Inbody manufactured by Biospace Corporation.

[実験結果]
図9は身体を構成する体タンパク質量を測定した結果である。大豆ペプチドハイニュートAMを摂取した群は明らかに摂取後増加した。
[Experimental result]
FIG. 9 shows the results of measuring the amount of body protein constituting the body. The group that took soybean peptide high-newt AM clearly increased after ingestion.

また、図10に示すように、その体タンパク質の中でも骨格筋の量は統計的に有意に増加した。   Also, as shown in FIG. 10, the amount of skeletal muscle among the body proteins increased statistically significantly.

また、図11に示すように、また、脂肪の量は骨格筋とは逆に減少した。   Moreover, as shown in FIG. 11, the amount of fat decreased conversely with skeletal muscle.

[実験結果まとめ]
上述した各実施例の実験結果より、廃用性筋萎縮を惹起する条件下であっても、大豆ペプチドを継続して与えることで、骨格筋の萎縮が効果的に抑制されると同時に、骨格筋の成長が促進されることが確認された。
[Summary of experimental results]
From the experimental results of each of the above-described examples, the skeletal muscle atrophy can be effectively suppressed and the skeletal muscle atrophy can be effectively suppressed by continuously providing soy peptide even under conditions that cause disuse muscle atrophy. It was confirmed that muscle growth was promoted.

したがって、ギブスなどによる固定や不使用、老化、寝たきり、無重力の宇宙空間への暴露などによって筋重量の低下を起こし得る環境下であっても、本発明の筋萎縮抑制剤を継続して摂取することにより、骨格筋の萎縮を効果的に抑制できる。また、本発明の筋成長促進剤を継続して摂取することにより、骨格筋の萎縮を効果的に抑制できると同時に、骨格筋の成長を促進させることができる。   Therefore, the muscle atrophy inhibitor of the present invention is continuously ingested even in an environment where muscle weight can be reduced by fixation or non-use with casts, aging, bedridden, exposure to weightless space, etc. Thus, skeletal muscle atrophy can be effectively suppressed. Moreover, by continuously ingesting the muscle growth promoter of the present invention, it is possible to effectively suppress skeletal muscle atrophy and promote skeletal muscle growth.

Claims (2)

大豆ペプチドを有効成分とする筋萎縮抑制剤。   A muscle atrophy inhibitor comprising soybean peptide as an active ingredient. 大豆ペプチドを有効成分とする筋成長促進剤。   A muscle growth promoter containing soy peptide as an active ingredient.
JP2014169958A 2014-08-22 2014-08-22 Muscle atrophy inhibitor and muscle growth promoter Pending JP2016044146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014169958A JP2016044146A (en) 2014-08-22 2014-08-22 Muscle atrophy inhibitor and muscle growth promoter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014169958A JP2016044146A (en) 2014-08-22 2014-08-22 Muscle atrophy inhibitor and muscle growth promoter

Publications (1)

Publication Number Publication Date
JP2016044146A true JP2016044146A (en) 2016-04-04

Family

ID=55635030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014169958A Pending JP2016044146A (en) 2014-08-22 2014-08-22 Muscle atrophy inhibitor and muscle growth promoter

Country Status (1)

Country Link
JP (1) JP2016044146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115349629A (en) * 2022-08-02 2022-11-18 仙乐健康科技股份有限公司 Composition for activating muscle satellite cells and method of use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115349629A (en) * 2022-08-02 2022-11-18 仙乐健康科技股份有限公司 Composition for activating muscle satellite cells and method of use thereof

Similar Documents

Publication Publication Date Title
JP6942165B2 (en) Muscle atrophy inhibitor containing quercetin glycosides
Roubenoff The pathophysiology of wasting in the elderly
Lei et al. The effect of probiotic treatment on elderly patients with distal radius fracture: a prospective double-blind, placebo-controlled randomised clinical trial
Bauer et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group
Singh et al. Paraprobiotic preparation from Bacillus amyloliquefaciens FPTB16 modulates immune response and immune relevant gene expression in Catla catla (Hamilton, 1822)
Pereira et al. Correlation between manual muscle strength and interleukin-6 (IL-6) plasma levels in elderly community-dwelling women
CN113398144B (en) Application of nucleotide mixture in preparation of preparation for preventing or relieving sarcopenia of old people
EP2337569A2 (en) Compositions and methods for characterizing and restoring gastrointestinal, skin, and nasal microbiota
Chethan et al. Immunomodulatory potential of β-glucan as supportive treatment in porcine rotavirus enteritis
Casterlow et al. An antimicrobial peptide is downregulated in the small intestine of Eimeria maxima-infected chickens
Kong et al. Polarization of macrophages induced by Toxoplasma gondii and its impact on abnormal pregnancy in rats
KR20200138333A (en) Compositions and methods for treating inflammatory bowel disease
Moriwaki et al. The effect of branched chain amino acids-enriched nutritional supplements on activities of daily living and muscle mass in inpatients with gait impairments: a randomized controlled trial
Stefanaki et al. The impact of probiotics' administration on glycemic control, body composition, gut microbiome, mitochondria, and other hormonal signals in adolescents with prediabetes–a randomized, controlled trial study protocol
Drummond et al. Gene and protein expression associated with protein synthesis and breakdown in paraplegic skeletal muscle
Zhang et al. Acute effect of soy and soy products on serum uric acid concentration among healthy Chinese men
Jayaraman et al. Effects of dietary standardized ileal digestible tryptophan: lysine ratio on performance, plasma urea nitrogen, ileal histomorphology and immune responses in weaned pigs challenged with Escherichia coli K88
Öztekin et al. Vitamin D levels in patients with recurrent herpes labialis
JP2016044146A (en) Muscle atrophy inhibitor and muscle growth promoter
JP2019048775A (en) Muscle atrophy inhibitor and muscle growth promoter
Cao et al. Chronic sleep deprivation alters the myosin heavy chain isoforms in the masseter muscle in rats
Zhang et al. Oral administration of Lactobacillus casei Shirota improves recovery of hand functions after distal radius fracture among elder patients: a placebo-controlled, double-blind, and randomized trial
Gupta et al. Myositis in a patient with coronavirus disease 2019: A rare presentation
Glowacki et al. Osteoporosis and mechanisms of skeletal aging
Brenner et al. The role of vitamin D in critical illness