JP2016042198A - Resin-filled ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using ferrite carrier - Google Patents

Resin-filled ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using ferrite carrier Download PDF

Info

Publication number
JP2016042198A
JP2016042198A JP2015228926A JP2015228926A JP2016042198A JP 2016042198 A JP2016042198 A JP 2016042198A JP 2015228926 A JP2015228926 A JP 2015228926A JP 2015228926 A JP2015228926 A JP 2015228926A JP 2016042198 A JP2016042198 A JP 2016042198A
Authority
JP
Japan
Prior art keywords
resin
carrier
filled
ferrite
ferrite carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015228926A
Other languages
Japanese (ja)
Inventor
裕樹 澤本
Hiroki Sawamoto
裕樹 澤本
隆男 杉浦
Takao Sugiura
隆男 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powdertech Co Ltd
Original Assignee
Powdertech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powdertech Co Ltd filed Critical Powdertech Co Ltd
Priority to JP2015228926A priority Critical patent/JP2016042198A/en
Publication of JP2016042198A publication Critical patent/JP2016042198A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a resin-filled carrier core material for an electrophotographic developer and a ferrite carrier, in which high carrier strength is imparted to improve durability while maintaining advantages of a resin-filled ferrite carrier and charging characteristics in long-term printing is stabilized.SOLUTION: The resin-filled ferrite carrier core material for an electrophotographic developer is to be used for manufacturing a resin-filled ferrite carrier for an electrophotographic developer which shows a carrier strength of 3% or less after the carrier is filled with a resin. The resin-filled ferrite carrier core material for an electrophotographic developer comprises porous ferrite particles having an average compression strength of 100 mN or more and a variation coefficient of the compression strength of 50% or less.SELECTED DRAWING: None

Description

本発明は、複写機、プリンター等に用いられ、真密度が軽く、高いキャリア強度を有することから耐久性に優れ、かつ耐刷時において帯電変動を引き起こさない電子写真現像剤用樹脂充填型フェライトキャリア芯材及びフェライトキャリア、並びに該フェライトキャリアを用いた電子写真現像剤に関する。   INDUSTRIAL APPLICABILITY The present invention is used in a copying machine, a printer, etc., has a low true density and high carrier strength, so it has excellent durability and does not cause charge fluctuations during printing durability. The present invention relates to a core material, a ferrite carrier, and an electrophotographic developer using the ferrite carrier.

電子写真現像方法は、現像剤中のトナー粒子を感光体上に形成された静電潜像に付着させて現像する方法であり、この方法で使用される現像剤は、トナー粒子とキャリア粒子からなる二成分系現像剤及びトナー粒子のみを用いる一成分系現像剤に分けられる。   The electrophotographic development method is a method in which toner particles in a developer are attached to an electrostatic latent image formed on a photoreceptor and developed, and the developer used in this method is composed of toner particles and carrier particles. The two-component developer and the one-component developer using only toner particles.

こうした現像剤のうち、トナー粒子とキャリア粒子からなる二成分系現像剤を用いた現像方法としては、古くはカスケード法等が採用されていたが、現在では、マグネットロールを用いる磁気ブラシ法が主流である。   Among these developers, as a developing method using a two-component developer composed of toner particles and carrier particles, the cascade method has been used in the past, but at present, the magnetic brush method using a magnet roll is the mainstream. It is.

二成分系現像剤において、キャリア粒子は、現像剤が充填されている現像ボックス内において、トナー粒子と共に攪拌されることによって、トナー粒子に所望の電荷を付与し、さらにこのように電荷を帯びたトナー粒子を感光体の表面に搬送して感光体上にトナー像を形成するための担体物質である。マグネットを保持する現像ロール上に残ったキャリア粒子は、この現像ロールから再び現像ボックス内に戻り、新たなトナー粒子と混合・攪拌され、一定期間繰り返して使用される。   In the two-component developer, the carrier particles are agitated together with the toner particles in the developing box filled with the developer, thereby imparting a desired charge to the toner particles, and thus being charged. A carrier material for transporting toner particles to the surface of the photoreceptor to form a toner image on the photoreceptor. The carrier particles remaining on the developing roll holding the magnet are returned to the developing box from the developing roll, mixed and stirred with new toner particles, and used repeatedly for a certain period.

二成分系現像剤は、一成分系現像剤とは異なり、キャリア粒子はトナー粒子と混合・攪拌され、トナー粒子を帯電させ、さらに搬送する機能を有しており、現像剤を設計する際の制御性が良い。従って、二成分系現像剤は高画質が要求されるフルカラー現像装置及び画像維持の信頼性、耐久性が要求される高速印刷を行う装置等に適している。   Unlike the one-component developer, the two-component developer has the function of mixing and stirring the carrier particles with the toner particles, charging the toner particles, and further transporting the toner particles. Good controllability. Therefore, the two-component developer is suitable for a full-color developing device that requires high image quality and a device that performs high-speed printing that requires image maintenance reliability and durability.

このようにして用いられる二成分系現像剤においては、画像濃度、カブリ、白斑、階調性、解像力等の画像特性が、初期の段階から所定の値を示し、しかもこれらの特性が耐刷期間中に変動せず、安定に維持されることが必要である。これらの特性を安定に維持するためには、二成分系現像剤中に含有されるキャリア粒子の特性が安定していることが必要になる。   In the two-component developer used in this manner, image characteristics such as image density, fog, vitiligo, gradation, and resolving power show predetermined values from the initial stage, and these characteristics are in the printing life period. It needs to be kept stable without fluctuating inside. In order to maintain these characteristics stably, it is necessary that the characteristics of the carrier particles contained in the two-component developer are stable.

二成分系現像剤を形成するキャリア粒子として、従来は、各種の、鉄粉キャリア、フェライトキャリア、樹脂被覆フェライトキャリア、磁性粉分散型樹脂キャリア等が使用されていた。   Conventionally, various types of iron powder carriers, ferrite carriers, resin-coated ferrite carriers, magnetic powder-dispersed resin carriers, and the like have been used as carrier particles for forming a two-component developer.

最近、オフィスのネットワーク化が進み、単機能の複写機から複合機への時代に進化し、サービス体制も、契約したサービスマンが定期的にメンテナンスを行って現像剤等を交換するようなシステムから、メンテナンスフリーシステムの時代へシフトしてきており、市場からは、現像剤の更なる長寿命化に対する要求が一層高まってきている。   Recently, the networking of offices has progressed and evolved from the single-function copying machine to the multifunctional machine, and the service system has been changed from a system in which contracted service personnel regularly perform maintenance and replace developer etc. However, there has been a shift to the era of maintenance-free systems, and the demand for further extending the life of the developer is increasing from the market.

このような中で、キャリア粒子の軽量化を図り、現像剤寿命を伸ばすことを目的として、特許文献1(特開平5−40367号公報)等には、微細な磁性微粒子を樹脂中に分散させた磁性粉分散型キャリアも多く提案されている。   Under such circumstances, for the purpose of reducing the weight of carrier particles and extending the developer life, Patent Document 1 (Japanese Patent Laid-Open No. 5-40367) discloses that fine magnetic fine particles are dispersed in a resin. Many magnetic powder dispersed carriers have also been proposed.

このような磁性粉分散型キャリアは、磁性微粒子の量を少なくすることにより真密度を下げることができ、攪拌によるストレスを軽減できるため、被膜の削れや剥離を防止することができ、長期にわたって安定した画像特性を得ることができる。   Such a magnetic powder-dispersed carrier can reduce the true density by reducing the amount of magnetic fine particles, and can reduce stress due to stirring, so it can prevent the film from being scraped or peeled off, and is stable over a long period of time. Image characteristics can be obtained.

しかしながら、磁性粉分散型キャリアは、磁性微粒子をバインダー樹脂で固めているものであり、撹拌ストレスや現像機内での衝撃により磁性微粒子が脱離したり、従来用いられてきた鉄粉キャリアやフェライトキャリアに比べ機械的強度に劣るためか、キャリア粒子自体が割れたりするという問題が発生することがあった。そして、脱離した磁性微粒子や割れたキャリア粒子は感光体に付着し、画像欠陥を引き起こす原因となることがあった。   However, the magnetic powder dispersion type carrier is obtained by solidifying magnetic fine particles with a binder resin, and the magnetic fine particles are detached due to agitation stress or impact in the developing machine, or the conventional iron powder carrier or ferrite carrier is used. In some cases, the mechanical strength may be inferior, or the carrier particles may be broken. The detached magnetic fine particles and broken carrier particles may adhere to the photoreceptor and cause image defects.

さらに、磁性粉分散型キャリアは、微細な磁性微粒子を用いるため、残留磁化及び保磁力が高くなり、現像剤の流動性が悪くなるという欠点がある。特にマグネットロール上に磁気ブラシを形成した場合、残留磁化及び保磁力が高いために、磁気ブラシの穂が硬くなり、高画質を得にくい。また、マグネットロールを離れても、キャリアの磁気凝集がほぐれず、補給されたトナーとの混合が速やかに行われないため、帯電量の立ち上がりが悪く、トナー飛散やかぶりといった画像欠陥を起こすという問題があった。   Furthermore, since the magnetic powder-dispersed carrier uses fine magnetic fine particles, there are disadvantages that the residual magnetization and the coercive force are increased and the fluidity of the developer is deteriorated. In particular, when a magnetic brush is formed on a magnet roll, since the residual magnetization and coercive force are high, the ears of the magnetic brush become hard and it is difficult to obtain high image quality. In addition, even when the magnet roll is separated, the magnetic aggregation of the carrier is not loosened and the toner is not quickly mixed with the replenished toner, so that the charge amount rises poorly and causes image defects such as toner scattering and fogging. was there.

この様な磁性粉分散型キャリア以外に、キャリア粒子の軽量化として、キャリア芯材粒子の内部に空孔を形成させる中空キャリアが提案されている。例えば特許文献2(特開2008−310104号公報)には、コア粒子は、断面面積基準で20%以上65%以下の空孔を少なくとも1つ有し、更に、断面面積基準の総空孔率が、20%以上70%以下であると記載されている。また、特許文献3(特開2009−244572号公報)には、キャリア芯材の外径をd、芯材内部に存在する中空部の外径をdとした時に0.1<d/d<0.9であることが望ましいと記載されている。 In addition to such a magnetic powder-dispersed carrier, there has been proposed a hollow carrier in which pores are formed inside the carrier core particle as a lighter carrier particle. For example, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2008-310104), the core particle has at least one void of 20% or more and 65% or less on the basis of the sectional area, and further, the total porosity based on the sectional area Is 20% or more and 70% or less. Further, Patent Document 3 (JP 2009-244572), 0.1 when the outer diameter of the hollow portion was d 2 the outer diameter of the carrier core material d 1, present in the inner core material <d 2 It is described that / d 1 <0.9 is desirable.

これらに記載のキャリアでは、確かに軽量化は図られるが、いずれも一つの空孔が非常に大きいため、従来の中空の存在しないフェライトキャリアに比べ、やはり機械的強度は弱く、耐刷時での撹拌ストレスや現像機内での衝撃により、キャリア粒子の破砕が発生し、破砕した粒子は感光体に付着し、画像欠陥を引き起こす原因となった。そのため、最近、特に要求されている長寿命化に対しては、全く満足のいくものではなかった。   Although the carriers described in these documents are certainly lighter in weight, each has a very large hole, so the mechanical strength is still weaker than that of a conventional ferrite carrier that does not have a hollow shape. The carrier particles were crushed by the agitation stress and the impact in the developing machine, and the crushed particles adhered to the photoconductor, causing image defects. For this reason, it has not been satisfactory at all for the long service life that has recently been required.

さらに、この様な磁性粉分散型キャリアや中空キャリアに代わるものとして多孔質フェライト粒子を用いたフェライトキャリア芯材の空隙に樹脂を充填した樹脂充填型フェライトキャリアが提案されている。   Furthermore, as an alternative to such a magnetic powder-dispersed carrier or hollow carrier, a resin-filled ferrite carrier in which a void is formed in a ferrite carrier core material using porous ferrite particles has been proposed.

特許文献4(特開2006−337579号公報)には、空隙率が10〜60%であるフェライトキャリア芯材に樹脂を充填してなる樹脂充填型フェライトキャリアが、特許文献5(特開2007−57943号公報)には立体的積層構造を持つ樹脂充填型フェライトキャリアが提案されている。更に、特許文献6(特開2009−175666号公報)や特許文献7(特開2009−244837号公報)には、樹脂が充填される多孔質フェライト粒子からなるフェライトキャリア芯材の細孔容積、細孔径及び細孔分布特性を規定されており、それぞれ絶縁破壊電圧が高くかつキャリア粒子の破壊強度を向上させた樹脂充填型フェライトキャリアや、帯電立ち上がり性が速く、帯電変動を引き起こさない樹脂充填型フェライトキャリアも提案されている。   Patent Document 4 (Japanese Patent Laid-Open No. 2006-337579) discloses a resin-filled ferrite carrier in which a ferrite carrier core material having a porosity of 10 to 60% is filled with resin. 57943) proposes a resin-filled ferrite carrier having a three-dimensional laminated structure. Furthermore, Patent Document 6 (Japanese Patent Laid-Open No. 2009-175666) and Patent Document 7 (Japanese Patent Laid-Open No. 2009-244837) describe the pore volume of a ferrite carrier core material composed of porous ferrite particles filled with a resin, Resin-filled ferrite carrier with specified pore diameter and pore distribution characteristics, high dielectric breakdown voltage and improved fracture strength of carrier particles, and resin-filled type with fast charge rise and no charge fluctuation Ferrite carriers have also been proposed.

これら記載の樹脂充填型フェライトキャリアは、樹脂を多孔質フェライト粒子内部まで樹脂を充填させ、立体的積層構造を形成させている。特に特許文献6及び7においては、細孔分布特性をより精度良く制御しているため、樹脂の充填度合いのばらつきが低減され、更に充填樹脂表面に樹脂被覆を施すことが望ましいとされている。その結果、確かに、キャリア粒子の軽量化が実現され、かつキャリア強度は一定程度向上したが、充分なキャリア強度を有しているとはいえない。そのため、特に最近要求される高耐久性に対しては満足のいくものではなかった。   In these resin-filled ferrite carriers, the resin is filled into the porous ferrite particles to form a three-dimensional laminated structure. In particular, in Patent Documents 6 and 7, since the pore distribution characteristics are controlled with higher accuracy, the variation in the degree of filling of the resin is reduced, and it is desirable to further apply a resin coating to the surface of the filled resin. As a result, although the weight reduction of the carrier particles is realized and the carrier strength is improved to a certain extent, it cannot be said that the carrier particles have sufficient carrier strength. Therefore, it was not satisfactory especially for the high durability required recently.

一方で、特許文献8(特開2007−271663号公報)には、圧縮破壊強度が150MPa以上、圧縮変化率15.0%以上の電子写真現像剤用フェライトキャリアが記載されており、現像剤として用いたときのストレスによる破壊に対する強度に優れるとされている。   On the other hand, Patent Document 8 (Japanese Patent Application Laid-Open No. 2007-271663) describes a ferrite carrier for an electrophotographic developer having a compressive fracture strength of 150 MPa or more and a compression change rate of 15.0% or more. It is said to be excellent in strength against stress when used.

しかし、この特許文献8に用いられているフェライトキャリア(フェライト粒子)は多孔質ではなく、多孔質フェライト粒子を用いた樹脂充填型フェライトキャリアでないことから、軽量化等の樹脂充填型フェライトキャリアの利点は得られない。   However, since the ferrite carrier (ferrite particles) used in Patent Document 8 is not porous and is not a resin-filled ferrite carrier using porous ferrite particles, the advantages of the resin-filled ferrite carrier such as weight reduction are obtained. Cannot be obtained.

このため、高耐久性の要求に対して、軽量化を達成させながら、キャリア強度の向上を図り、かつ耐刷時において帯電特性の安定化した電子写真現像剤用樹脂充填型フェライトキャリアが望まれている。   For this reason, a resin-filled ferrite carrier for an electrophotographic developer is desired in which the carrier strength is improved while achieving weight reduction in response to the demand for high durability and the charging characteristics are stabilized at the time of printing. ing.

特開平5−40367号公報JP-A-5-40367 特開2008−310104号公報JP 2008-310104 A 特開2009−244572号公報JP 2009-244572 A 特開2006−337579号公報JP 2006-337579 A 特開2007−57943号公報JP 2007-57943 A 特開2009−175666号公報JP 2009-175666 A 特開2009−244837号公報JP 2009-244837 A 特開2007−271663号公報JP 2007-271663 A

従って、本発明の目的は、樹脂充填型フェライトキャリアの利点を保持しつつ、高いキャリア強度を付与して耐久性を向上させ、かつ耐刷時において帯電特性の安定化した電子写真現像剤用樹脂被覆フェライトキャリア芯材及びフェライトキャリア、並びに該フェライトキャリアを用いた電子写真現像剤を提供することにある。   Accordingly, an object of the present invention is to provide a resin for an electrophotographic developer that retains the advantages of a resin-filled ferrite carrier, imparts high carrier strength, improves durability, and stabilizes charging characteristics at the time of printing. It is an object to provide a coated ferrite carrier core material, a ferrite carrier, and an electrophotographic developer using the ferrite carrier.

本発明者らは、上述のような課題を解決すべく鋭意検討した結果、フェライトキャリア芯材(多孔質フェライト粒子)の製造時に、仮焼成条件、粉砕条件、及び本焼成条件を厳密に制御することによって、高い圧縮強度、並びに一定値以下の圧縮強度の変動係数を有する多孔質フェライト粒子が得られることを知見し、この多孔質フェライト粒子に樹脂を充填することによって高強度のフェライトキャリアが得られ、耐久性が向上することを見出し、本発明に至った。   As a result of intensive studies to solve the above-described problems, the present inventors strictly control the temporary firing conditions, the pulverizing conditions, and the main firing conditions when manufacturing the ferrite carrier core material (porous ferrite particles). As a result, it was found that porous ferrite particles having a high compressive strength and a coefficient of variation of the compressive strength below a certain value can be obtained, and a high-strength ferrite carrier can be obtained by filling the porous ferrite particles with a resin. As a result, the inventors have found that the durability is improved and have reached the present invention.

すなわち、本発明は、樹脂充填後のキャリアの強度が3%以下である電子写真現像剤用樹脂充填型フェライトキャリアの製造に用いる電子写真現像剤用樹脂充填型フェライトキャリア芯材であって、平均圧縮強度が100mN以上、圧縮強度の変動係数が50%以下の多孔質フェライト粒子であることを特徴とする電子写真現像剤用樹脂充填型フェライトキャリア芯材を提供するものである。   That is, the present invention is a resin-filled ferrite carrier core material for an electrophotographic developer used for the production of a resin-filled ferrite carrier for an electrophotographic developer having a carrier strength after resin filling of 3% or less. An object of the present invention is to provide a resin-filled ferrite carrier core material for an electrophotographic developer, which is porous ferrite particles having a compressive strength of 100 mN or more and a coefficient of variation of compressive strength of 50% or less.

本発明に係る上記電子写真現像剤用樹脂充填型フェライトキャリア芯材は、細孔容積が0.04〜0.10ml/g、ピーク細孔径が0.3〜1.5μm、細孔径分布において下記式で表される細孔径のばらつきdvが1.5以下であることが望ましい。   The resin-filled ferrite carrier core material for an electrophotographic developer according to the present invention has a pore volume of 0.04 to 0.10 ml / g, a peak pore size of 0.3 to 1.5 μm, and a pore size distribution as described below. It is desirable that the variation dv of the pore diameter represented by the formula is 1.5 or less.

Figure 2016042198
Figure 2016042198

また、本発明は、上述のフェライトキャリア芯材の空隙にキャリア芯材100重量部に対して3〜20重量部の樹脂が充填され、更にその表面が樹脂で被覆されていることを特徴とする電子写真現像剤用樹脂充填型フェライトキャリアを提供するものである。   Further, the present invention is characterized in that 3-20 parts by weight of resin is filled in the voids of the above-described ferrite carrier core material with respect to 100 parts by weight of the carrier core material, and the surface thereof is further coated with the resin. A resin-filled ferrite carrier for an electrophotographic developer is provided.

本発明に係る上記電子写真現像剤用樹脂充填型フェライトキャリアは、体積平均粒径が20〜50μm、飽和磁化が30〜80Am/kg、見掛け密度が1.0〜2.2g/cmであることが望ましい。 The resin-filled ferrite carrier for an electrophotographic developer according to the present invention has a volume average particle size of 20 to 50 μm, a saturation magnetization of 30 to 80 Am 2 / kg, and an apparent density of 1.0 to 2.2 g / cm 3 . It is desirable to be.

また、本発明は、上記樹脂充填型フェライトキャリアとトナーとからなる電子写真現像剤を提供するものである。   The present invention also provides an electrophotographic developer comprising the resin-filled ferrite carrier and a toner.

本発明に係る上記電子写真現像剤は、補給用現像剤としても用いられる。   The electrophotographic developer according to the present invention is also used as a replenishment developer.

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリア芯材に樹脂を充填したフェライトキャリアは、低比重で軽量化が図れるため、耐久性に優れ長寿命化が達成でき、しかも磁性粉分散型キャリアに比して高強度であり、かつ熱や衝撃による割れ、変形、溶融がない。また、高いキャリア強度を有することから耐久性が向上し、かつ耐刷時において安定した帯電特性を有する。   The ferrite carrier in which the resin-filled ferrite carrier core material for an electrophotographic developer according to the present invention is filled with a resin has a low specific gravity and can be reduced in weight, so that it has excellent durability and can achieve a long service life. It has higher strength than carriers and does not crack, deform or melt due to heat or impact. Further, since it has high carrier strength, durability is improved, and stable charging characteristics are obtained at the time of printing.

以下、本発明を実施するための最良の形態について説明する。
<本発明に係る電子写真現像剤用樹脂充填型フェライトキャリア芯材及びフェライトキャリア>
本発明に係る電子写真現像剤用樹脂充填型フェライトキャリア芯材は、樹脂充填後のキャリアの強度が3%以下である電子写真現像剤用樹脂充填型フェライトキャリアの製造に用いる電子写真現像剤用樹脂充填型フェライトキャリア芯材であって、平均圧縮強度が100mN以上、圧縮強度の変動係数が50%以下の多孔質フェライト粒子であることを特徴とする。この電子写真現像剤用樹脂充填型フェライトキャリア芯材の平均圧縮強度は100mN以上、望ましくは100〜250mN、さらに望ましくは120〜250mNである。平均圧縮強度が100mN未満では、樹脂を充填してフェライトキャリアとして用いたときに、高いキャリア強度が得られず、耐久性に劣る。本発明でいう多孔質フェライト粒子とは、特記しない限り個々の多孔質フェライト粒子の集合体を意味し、また単に粒子とは、個々の多孔質フェライト粒子をいう。
Hereinafter, the best mode for carrying out the present invention will be described.
<Resin-filled ferrite carrier core material for electrophotographic developer and ferrite carrier according to the present invention>
The resin-filled ferrite carrier core material for an electrophotographic developer according to the present invention is for an electrophotographic developer used for producing a resin-filled ferrite carrier for an electrophotographic developer having a carrier strength of 3% or less after resin filling. A resin-filled ferrite carrier core material, characterized in that it is porous ferrite particles having an average compressive strength of 100 mN or more and a coefficient of variation of compressive strength of 50% or less. The average compressive strength of the resin-filled ferrite carrier core material for an electrophotographic developer is 100 mN or more, preferably 100 to 250 mN, and more preferably 120 to 250 mN. When the average compressive strength is less than 100 mN, when the resin is filled and used as a ferrite carrier, high carrier strength cannot be obtained and the durability is poor. Unless otherwise specified, the term “porous ferrite particles” as used in the present invention means an aggregate of individual porous ferrite particles, and the term “particles” simply refers to individual porous ferrite particles.

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリア芯材である多孔質フェライト粒子の圧縮強度の変動係数は50%以下であり、40%以下であることが望ましく、さらに望ましくは35%以下である。圧縮強度の変動係数が50%を超えると、圧縮強度のバラツキが大きくなりすぎ、たとえ平均圧縮強度が所望の範囲にあったとしても、弱い粒子の存在確率が増し、高いキャリア強度が得られず、耐久性に劣る。   The coefficient of variation of the compressive strength of the porous ferrite particles which are the resin-filled ferrite carrier core material for an electrophotographic developer according to the present invention is 50% or less, preferably 40% or less, more preferably 35% or less. It is. If the coefficient of variation of compressive strength exceeds 50%, the variation in compressive strength becomes too large, and even if the average compressive strength is in the desired range, the probability of existence of weak particles increases and high carrier strength cannot be obtained. Inferior in durability.

[平均圧縮強度及び圧縮強度の変動係数]
株式会社エリオニクス社製の超微小押し込み硬さ試験機ENT−1100aを使用した。ガラス板上に分散させた多孔質フェライト粒子を試験機にセットし、25℃の環境下で測定した。試験には直径50μmφの平圧子を使用し、49mN/sの負荷速度で490mNまで荷重した。粒子の選択は、超微小押し込み硬さ試験機の測定画面(横130μm×縦100μm)に1粒子だけで存在している多孔質フェライト粒子で、かつ球形を成し、ENT−1100a付属のソフトで計測される長径と短径の平均値がキャリア体積平均粒径の±2μmのものを使用した。荷重−変位曲線の傾きが0に近づいたときを粒子の破壊とし、変曲点の荷重を圧縮強度とした。100粒子の圧縮強度を測定し、最大値と最小値それぞれから10個を除いた80個をデータとして採用し、平均圧縮強度を求めた。
圧縮強度変動係数は、上記80個の標準偏差を算出し、下記式から求めた。
[Average compressive strength and coefficient of variation of compressive strength]
An ultra-fine indentation hardness tester ENT-1100a manufactured by Elionix Corporation was used. The porous ferrite particles dispersed on the glass plate were set in a testing machine and measured in an environment at 25 ° C. A flat indenter having a diameter of 50 μmφ was used for the test, and a load of 49 mN / s was applied to 490 mN. The selection of the particles is made of porous ferrite particles that are only one particle on the measurement screen (width 130 μm x height 100 μm) of the ultra-fine indentation hardness tester, and are spherical, and the software attached to ENT-1100a The average value of the major axis and the minor axis measured in step 1 is ± 2 μm of the carrier volume average particle size. When the slope of the load-displacement curve approached 0, the particle was broken, and the load at the inflection point was taken as the compressive strength. The compressive strength of 100 particles was measured, and 80 data obtained by removing 10 particles from each of the maximum value and the minimum value were adopted as data, and the average compressive strength was obtained.
The compressive strength variation coefficient was calculated from the following formula by calculating the above 80 standard deviations.

Figure 2016042198
Figure 2016042198

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリア芯材である多孔質フェライト粒子の細孔容積は0.04〜0.10ml/g、ピーク細孔径は0.3〜1.5μmであることが望ましい。   The pore volume of the porous ferrite particles which are the resin-filled ferrite carrier core material for an electrophotographic developer according to the present invention is 0.04 to 0.10 ml / g, and the peak pore diameter is 0.3 to 1.5 μm. It is desirable.

多孔質フェライト粒子の細孔容積が0.04ml/g未満であると、十分な量の樹脂を充填することができないため軽量化が図れない。また、多孔質フェライト粒子の細孔容積が0.10ml/gを超えると、樹脂を充填してもキャリアの強度を保つことができない。更に、多孔質フェライト粒子の細孔容積の好ましい範囲は0.05〜0.10ml/gであり、より好ましくは0.06〜0.08ml/gである。   If the pore volume of the porous ferrite particles is less than 0.04 ml / g, it is not possible to reduce the weight because a sufficient amount of resin cannot be filled. If the pore volume of the porous ferrite particles exceeds 0.10 ml / g, the carrier strength cannot be maintained even if the resin is filled. Furthermore, the preferable range of the pore volume of the porous ferrite particles is 0.05 to 0.10 ml / g, more preferably 0.06 to 0.08 ml / g.

多孔質フェライト粒子のピーク細孔径が0.3μm以上であると、芯材表面の凹凸の大きさが適度な大きさとなるため、トナーの接触面積が増加し、トナーとの摩擦帯電が効率よく行われるため、低比重でありながら、帯電の立ち上がり特性が良好化する。多孔質フェライト粒子のピーク細孔径が0.3μm未満では、このような効果が得られず、充填後のキャリア表面は平滑となるため、低比重であるキャリアにとっては、トナーとの十分なストレスが与えられず、帯電の立ち上がりが悪化する。また、多孔質フェライト粒子のピーク細孔径が1.5μmを超えると、粒子の表面積に対して、樹脂が存在する面積が大きくなるため、樹脂を充填する際に、粒子間の凝集が発生し易く、樹脂を充填したあとのキャリア粒子中に、凝集粒子や異形粒子が多く存在する。このため、耐刷におけるストレスで凝集粒子が解れ、帯電変動を引き起こす原因となる。更に、ピーク細孔径が1.5μmを超えるような多孔質フェライト粒子は、粒子表面の凹凸が大きいことを表し、このことは、粒子そのものの形状が悪いということであり、また強度的にも劣るため、耐刷におけるストレスにより、キャリア粒子自体の割れが生じ、帯電変動を引き起こす原因となる。また、多孔質フェライト粒子のピーク細孔径のより好ましい範囲は0.4〜1.2μmであり、最も好ましくは0.4〜0.8μmである。   If the peak pore size of the porous ferrite particles is 0.3 μm or more, the irregularities on the surface of the core material will be an appropriate size, so that the contact area of the toner will increase and friction charging with the toner will be performed efficiently. Therefore, the rising characteristics of charging are improved while the specific gravity is low. If the peak pore size of the porous ferrite particles is less than 0.3 μm, such an effect cannot be obtained, and the surface of the carrier after filling becomes smooth, so that a carrier having a low specific gravity has sufficient stress with the toner. It is not given, and the rising of charging is deteriorated. In addition, when the peak pore diameter of the porous ferrite particles exceeds 1.5 μm, the area where the resin exists is larger than the surface area of the particles, so that when the resin is filled, aggregation between particles is likely to occur. In the carrier particles after the resin is filled, there are many aggregated particles and irregular shaped particles. For this reason, the agglomerated particles are released by the stress in printing durability, which causes charging fluctuation. Furthermore, porous ferrite particles having a peak pore diameter exceeding 1.5 μm represent large irregularities on the particle surface, which means that the shape of the particles themselves is bad and the strength is also inferior. Therefore, the carrier particles themselves are cracked due to stress in printing durability, which causes charging fluctuation. Moreover, the more preferable range of the peak pore diameter of the porous ferrite particles is 0.4 to 1.2 μm, and most preferably 0.4 to 0.8 μm.

このように、細孔容積とピーク細孔径が上記範囲にあることで、上記した各不具合がなく、適度に軽量化された樹脂充填型フェライトキャリアを得ることができる。   Thus, when the pore volume and the peak pore diameter are in the above ranges, it is possible to obtain a resin-filled ferrite carrier that does not have the above-described problems and is appropriately reduced in weight.

〔多孔質フェライト粒子の細孔径及び細孔容積〕
この多孔質フェライト粒子の細孔径及び細孔容積の測定は、次のようにして行われる。すなわち、水銀ポロシメーターPascal140とPascal240(ThermoFisher Scientific社製)を用いて測定した。ディラトメーターはCD3P(粉体用)を使用し、サンプルは複数の穴を開けた市販のゼラチン製カプセルに入れて、ディラトメーター内に入れた。Pascal140で脱気後、水銀を充填し低圧領域(0〜400Kpa)を測定し、1st Runとした。次に再び脱気と低圧領域(0〜400Kpa)の測定を行い、2nd Runとした。2nd Runの後、ディラトメーターと水銀とカプセルとサンプルを合わせた重量を測定した。次にPascal240で高圧領域(0.1Mpa〜200Mpa)を測定した。この高圧部の測定で得られた水銀圧入量をもって、多孔質フェライト粒子の細孔容積、細孔径分布及びピーク細孔径を求めた。また、細孔径を求める際には水銀の表面張力を480dyn/cm、接触角を141.3°として計算した。
[Pore diameter and pore volume of porous ferrite particles]
The measurement of the pore diameter and pore volume of the porous ferrite particles is performed as follows. That is, it measured using mercury porosimeter Pascal140 and Pascal240 (ThermoFisher Scientific company make). As the dilatometer, CD3P (for powder) was used, and the sample was placed in a commercially available gelatin capsule having a plurality of holes and placed in the dilatometer. After degassing with Pascal 140, it was filled with mercury and the low pressure region (0 to 400 Kpa) was measured to obtain 1st Run. Next, deaeration and measurement of the low pressure region (0 to 400 Kpa) were performed again to obtain 2nd Run. After 2nd Run, the combined weight of the dilatometer, mercury, capsule and sample was measured. Next, the high pressure region (0.1 Mpa to 200 Mpa) was measured with Pascal240. The pore volume, the pore size distribution, and the peak pore size of the porous ferrite particles were determined from the amount of mercury intrusion obtained by the measurement of the high pressure part. Further, when determining the pore diameter, the surface tension of mercury was 480 dyn / cm and the contact angle was 141.3 °.

この多孔質フェライト粒子の細孔径分布において、細孔径のばらつきdvが1.5以下であることが望ましい。ここで、高圧領域における全水銀圧入量を100%とし、圧入量が84%に達した時の水銀への印加圧力から計算した細孔径をd84、圧入量が16%に達した時の水銀への印加圧力から計算した細孔径をd16とした。また、dv値は下記式(1)により計算した。   In the pore size distribution of the porous ferrite particles, the pore size variation dv is desirably 1.5 or less. Here, assuming that the total mercury intrusion amount in the high pressure region is 100%, the pore diameter calculated from the pressure applied to mercury when the indentation amount reaches 84% is d84, and the mercury when the indentation amount reaches 16%. The pore diameter calculated from the applied pressure was d16. The dv value was calculated by the following formula (1).

Figure 2016042198
Figure 2016042198

多孔質フェライト粒子の細孔径のばらつきdvが1.5を超えると、粒子間の凹凸と芯材形状のばらつきが大きくなる事を意味している。従って、dv値が所望の範囲を超えると、帯電の立ち上がりや帯電変動及び粒子の形状や充填による凝集について、粒子間ばらつきが発生しやすい。   When the variation dv of the pore diameter of the porous ferrite particles exceeds 1.5, it means that the unevenness between the particles and the variation of the core material shape become large. Therefore, when the dv value exceeds the desired range, inter-particle variation tends to occur with respect to rising of charge, charge fluctuation, particle shape and aggregation due to filling.

この多孔質フェライト粒子の組成は、Mn、Mg、Li、Ca、Sr、Cu、Znから選ばれる少なくとも1種を含むことが望ましい。近年の廃棄物規制を始めとする環境負荷低減の流れを考慮すると、Cu、Zn、Niの重金属を、不可避不純物(随伴不純物)の範囲を超えて含まないことが好ましい。   The composition of the porous ferrite particles preferably includes at least one selected from Mn, Mg, Li, Ca, Sr, Cu, and Zn. Considering the recent trend of reducing environmental burdens including waste regulations, it is preferable not to include heavy metals such as Cu, Zn and Ni beyond the range of inevitable impurities (accompanying impurities).

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリアは、上記した多孔質フェライト粒子からなる樹脂充填型フェライトキャリア芯材の空隙に樹脂を充填させてなるものである。樹脂の充填量は、フェライトキャリア芯材100重量部に対して3〜20重量部が望ましく、より望ましくは、4〜15重量部であり、更に望ましくは、5〜12重量部である。樹脂の充填量が3重量部未満であると充填が不十分なフェライトキャリアとなり、樹脂被覆による帯電量の制御が困難となる。また、樹脂の充填量が20重量部を超えると、充填時に凝集粒子が発生しやすくなり、帯電変動の原因となる。   The resin-filled ferrite carrier for an electrophotographic developer according to the present invention is obtained by filling a resin in a void of a resin-filled ferrite carrier core material composed of the above-described porous ferrite particles. The filling amount of the resin is desirably 3 to 20 parts by weight, more desirably 4 to 15 parts by weight, and further desirably 5 to 12 parts by weight with respect to 100 parts by weight of the ferrite carrier core material. If the filling amount of the resin is less than 3 parts by weight, the ferrite carrier is insufficiently filled, and it becomes difficult to control the charging amount by the resin coating. On the other hand, when the filling amount of the resin exceeds 20 parts by weight, agglomerated particles are likely to be generated at the time of filling, resulting in charging fluctuation.

充填する樹脂は、特に制限されず、組み合わせるトナー、使用される環境等によって適宜選択できる。例えば、フッ素樹脂、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、フッ素アクリル樹脂、アクリル−スチレン樹脂、シリコーン樹脂、あるいはアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、アルキッド樹脂、ウレタン樹脂、フッ素樹脂等の各樹脂で変性した変性シリコーン樹脂等が挙げられる。使用中の機械的ストレスによる樹脂の脱離を考慮すると、熱硬化性樹脂が好ましく用いられる。具体的な熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂及びそれらを含有する樹脂が挙げられる。   The resin to be filled is not particularly limited and can be appropriately selected depending on the toner to be combined, the environment in which it is used, and the like. For example, fluorine resin, acrylic resin, epoxy resin, polyamide resin, polyamideimide resin, polyester resin, unsaturated polyester resin, urea resin, melamine resin, alkyd resin, phenol resin, fluorine acrylic resin, acrylic-styrene resin, silicone resin, Alternatively, modified silicone resins modified with resins such as acrylic resin, polyester resin, epoxy resin, polyamide resin, polyamideimide resin, alkyd resin, urethane resin, and fluororesin can be used. In view of the detachment of the resin due to mechanical stress during use, a thermosetting resin is preferably used. Specific examples of thermosetting resins include epoxy resins, phenol resins, silicone resins, unsaturated polyester resins, urea resins, melamine resins, alkyd resins, and resins containing them.

キャリアの電気抵抗や帯電量、帯電速度をコントロールすることを目的に、充填樹脂中に導電性剤を添加することができる。導電性剤はそれ自身の持つ電気抵抗が低いことから、添加量が多すぎると急激な電荷リークを引き起こしやすい。従って、添加量としては、充填樹脂の固形分に対し0.25〜20.0重量%であり、好ましくは0.5〜15.0重量%、特に好ましくは1.0〜10.0重量%である。導電性剤としては、導電性カーボンや酸化チタン、酸化スズ等の酸化物、各種の有機系導電剤が挙げられる。   A conductive agent can be added to the filled resin for the purpose of controlling the electrical resistance, charge amount, and charging speed of the carrier. Since the conductive agent itself has a low electric resistance, an excessive amount of the conductive agent tends to cause an abrupt charge leak. Therefore, the addition amount is 0.25 to 20.0% by weight, preferably 0.5 to 15.0% by weight, particularly preferably 1.0 to 10.0% by weight, based on the solid content of the filled resin. It is. Examples of the conductive agent include conductive carbon, oxides such as titanium oxide and tin oxide, and various organic conductive agents.

また、充填樹脂中には、帯電制御剤を含有させることができる。帯電制御剤の例としては、トナー用に一般的に用いられる各種の帯電制御剤や、各種シランカップリング剤が挙げられる。これは多量の樹脂を充填した場合、帯電付与能力が低下することがあるが、各種の帯電制御剤やシランカップリング剤を添加することにより、コントロールできるためである。使用できる帯電制御剤やカップリング剤の種類は特に限定されないが、ニグロシン系染料、4級アンモニウム塩、有機金属錯体、含金属モノアゾ染料等の帯電制御剤、アミノシランカップリング剤やフッ素系シランカップリング剤等が好ましい。   In addition, the charge resin can contain a charge control agent. Examples of the charge control agent include various charge control agents generally used for toners and various silane coupling agents. This is because, when a large amount of resin is filled, the charge imparting ability may be lowered, but it can be controlled by adding various charge control agents and silane coupling agents. The types of charge control agents and coupling agents that can be used are not particularly limited, but charge control agents such as nigrosine dyes, quaternary ammonium salts, organometallic complexes, and metal-containing monoazo dyes, aminosilane coupling agents, and fluorine-based silane couplings. An agent or the like is preferable.

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリアは、被覆樹脂により表面被覆することが望ましい。キャリア特性、特に帯電特性を初めとする電気特性はキャリア表面に存在する材料や性状に影響されることが多い。従って、適当な樹脂を表面被覆することによって、所望とするキャリア特性を、精度良く調整することができる。   The resin-filled ferrite carrier for an electrophotographic developer according to the present invention is preferably surface-coated with a coating resin. Carrier characteristics, particularly electrical characteristics such as charging characteristics, are often affected by materials and properties existing on the carrier surface. Therefore, the desired carrier characteristics can be adjusted with high accuracy by coating the surface with an appropriate resin.

被覆樹脂は特に制限されない。例えば、フッ素樹脂、アクリル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエステル樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、フッ素アクリル樹脂、アクリル−スチレン樹脂、シリコーン樹脂、あるいはアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、アルキッド樹脂、ウレタン樹脂、フッ素樹脂等の各樹脂で変性した変性シリコーン樹脂等が挙げられる。使用中の機械的ストレスによる樹脂の脱離を考慮すると、熱硬化性樹脂が好ましく用いられる。具体的な熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂及びそれらを含有する樹脂等が挙げられる。樹脂の被覆量は、充填型キャリア(樹脂被覆前)100重量部に対して、0.5〜5.0重量部が好ましい。   The coating resin is not particularly limited. For example, fluorine resin, acrylic resin, epoxy resin, polyamide resin, polyamideimide resin, polyester resin, unsaturated polyester resin, urea resin, melamine resin, alkyd resin, phenol resin, fluorine acrylic resin, acrylic-styrene resin, silicone resin, Alternatively, modified silicone resins modified with resins such as acrylic resin, polyester resin, epoxy resin, polyamide resin, polyamideimide resin, alkyd resin, urethane resin, and fluororesin can be used. In view of the detachment of the resin due to mechanical stress during use, a thermosetting resin is preferably used. Specific examples of thermosetting resins include epoxy resins, phenol resins, silicone resins, unsaturated polyester resins, urea resins, melamine resins, alkyd resins, and resins containing them. The coating amount of the resin is preferably 0.5 to 5.0 parts by weight with respect to 100 parts by weight of the filling type carrier (before resin coating).

これら被覆樹脂中にも上記と同様な目的で導電性剤や帯電制御剤を含有することができる。導電性剤や帯電制御剤の種類や添加量は、上記充填樹脂の場合と同様である。   These coating resins can also contain a conductive agent and a charge control agent for the same purpose as described above. The kind and addition amount of the conductive agent and the charge control agent are the same as in the case of the above filling resin.

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリアの体積平均粒径(D50)は、20〜50μmであることが望ましく、この範囲でキャリア付着が防止され、また良好な画質が得られる。平均粒径が20μm未満であると、キャリア付着の原因となるため好ましくない。また、平均粒径が50μmを超えると、帯電付与能力の低下による画質劣化の原因となるため好ましくない。 The volume average particle diameter (D 50 ) of the resin-filled ferrite carrier for an electrophotographic developer according to the present invention is desirably 20 to 50 μm, and carrier adhesion is prevented in this range, and good image quality is obtained. . An average particle size of less than 20 μm is not preferable because it causes carrier adhesion. On the other hand, if the average particle diameter exceeds 50 μm, it is not preferable because it causes image quality deterioration due to a decrease in charge imparting ability.

〔体積平均粒径(マイクロトラック)〕
この平均粒径は、次のようにして測定される。すなわち、日機装株式会社製マイクロトラック粒度分析計(Model9320−X100)を用いて測定される。分散媒には水を用いた。試料10gと水80mlを100mlのビーカーに入れ、分散剤(ヘキサメタリン酸ナトリウム)を2〜3滴添加する。次いで超音波ホモジナイザー(SMT.Co.LTD.製UH−150型)を用い、出力レベル4に設定し、20秒間分散を行った。その後、ビーカー表面にできた泡を取り除き、試料を装置へ投入した。
[Volume average particle size (Microtrack)]
This average particle diameter is measured as follows. That is, it is measured using a Nikkiso Co., Ltd. Microtrac particle size analyzer (Model 9320-X100). Water was used as the dispersion medium. Place 10 g of sample and 80 ml of water in a 100 ml beaker and add 2-3 drops of dispersant (sodium hexametaphosphate). Subsequently, using an ultrasonic homogenizer (UH-150 type manufactured by SMT Co Ltd), the output level was set to 4 and dispersion was performed for 20 seconds. Thereafter, bubbles formed on the beaker surface were removed, and the sample was put into the apparatus.

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリアの飽和磁化は、30〜80Am/kgが望ましい。飽和磁化が30Am/kg未満であると、キャリア付着の原因となるため望ましくない。飽和磁化が80Am/kgを超えると、磁気ブラシの穂が硬くなるために、良好な画質を得ることが難しい。 The saturation magnetization of the resin-filled ferrite carrier for an electrophotographic developer according to the present invention is preferably 30 to 80 Am 2 / kg. If the saturation magnetization is less than 30 Am 2 / kg, it is not desirable because it causes carrier adhesion. When the saturation magnetization exceeds 80 Am 2 / kg, the ears of the magnetic brush become hard, and it is difficult to obtain good image quality.

[飽和磁化]
ここで磁化の測定は、積分型B−HトレーサーBHU−60型(株式会社理研電子製)を使用して測定した。電磁石間に磁場測定用Hコイル及び磁化測定用4πIコイルを入れる。この場合、試料は4πIコイルに入れる。電磁石の電流を変化させ磁場Hを変化させたHコイル及び4πIコイルの出力をそれぞれ積分し、H出力をX軸に、4πIコイルの出力をY軸に、ヒステリシスループを記録紙に描く。ここで測定条件としては、試料充填量:約1g、試料充填セル:内径7mmφ±0.02mm、高さ10mm±0.1mm、4πIコイル:巻数30回にて測定した。
[Saturation magnetization]
Here, the magnetization was measured using an integral BH tracer BHU-60 type (manufactured by Riken Denshi Co., Ltd.). A magnetic field measuring H coil and a magnetization measuring 4πI coil are placed between the electromagnets. In this case, the sample is placed in a 4πI coil. The outputs of the H coil and the 4πI coil whose magnetic field H is changed by changing the current of the electromagnet are respectively integrated, and the H output is drawn on the X axis, the output of the 4πI coil is drawn on the Y axis, and a hysteresis loop is drawn on the recording paper. As measurement conditions, sample filling amount: about 1 g, sample filling cell: inner diameter 7 mmφ ± 0.02 mm, height 10 mm ± 0.1 mm, 4πI coil: measured with 30 turns.

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリアの強度は、3%以下であることが望ましく、1.5%以下であることがさらに望ましい。キャリアの強度が3%を超えると、キャリア強度が弱いため、経時での衝撃による割れが発生し、経時での帯電変動を助長する。   The strength of the resin-filled ferrite carrier for an electrophotographic developer according to the present invention is desirably 3% or less, and more desirably 1.5% or less. When the carrier strength exceeds 3%, the carrier strength is weak, so that cracks due to impact with time occur, and the charging fluctuation with time is promoted.

[キャリア強度]
フェライトキャリア20gを、50ccガラス瓶に入れ、そのガラス瓶をペイントシェーカーにて、30時間攪拌した。攪拌によるストレスで、粒子に割れ、削れや微粒子が発生すると、攪拌後のフェライトキャリアの平均粒径は小さくなる。強度の弱いフェライトキャリアほど、削れや微粒子が発生し、平均粒径は小さくなるため、攪拌前後の平均粒径の変化率をキャリア強度の指標とした。平均粒径は、前述した日機装株式会社製マイクロトラック粒度分析計(Model9320−X100)を用いて測定された体積平均粒径とし、粒径の変化率及び強度の判定基準は下記の通りである。
[Carrier strength]
20 g of ferrite carrier was placed in a 50 cc glass bottle, and the glass bottle was stirred for 30 hours with a paint shaker. If the particles are cracked, scraped, or generated by stress due to stirring, the average particle size of the ferrite carrier after stirring becomes small. The lower the strength of the ferrite carrier, the smaller the average particle size and the smaller the particle size. Therefore, the rate of change of the average particle size before and after stirring was used as an index of carrier strength. The average particle diameter is the volume average particle diameter measured using the aforementioned Nikkiso Co., Ltd. Microtrac particle size analyzer (Model 9320-X100), and the rate of change in particle diameter and the criteria for determining the strength are as follows.

Figure 2016042198
Figure 2016042198

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリアの帯電量変化率は、望ましくは80%以上、さらに望ましくは85%以上である。帯電量変化率が80%未満では、経時での帯電変動が発生し、トナー飛散やカブリ、キャリア付着といった画像欠陥を助長し、良好な画像品質を安定的に維持できない。   The charge amount change rate of the resin-filled ferrite carrier for an electrophotographic developer according to the present invention is desirably 80% or more, and more desirably 85% or more. If the rate of change in charge amount is less than 80%, charging fluctuations with time occur, and image defects such as toner scattering, fogging, and carrier adhesion are promoted, and good image quality cannot be stably maintained.

(帯電量変化率)
帯電量は、キャリアとトナーとの混合物を、吸引式帯電量測定装置(Epping q/m−meter、PES−Laboratoriumu社製)により測定し求めた。トナーはフルカラープリンターに使用されている市販の負極性トナー(シアントナー、富士ゼロックス株式会社製DocuPrintC3530用;平均粒径約5.8μm)を用い、現像剤量を10g、トナー濃度を10重量%に調製した。調製した現像剤を50ccのガラス瓶に入れ、そのガラス瓶を直径130mm、高さ200mmの円柱のホルダーに収納、固定し、株式会社シンマルエンタープライズ社製のターブラーミキサーにて、30分攪拌し、635Mの網を用いて、帯電量測定を行った。
上述したトナーと同じ市販の負極性トナー(シアントナー、富士ゼロックス株式会社製DocuPrintC3530用;平均粒径約5.8μm)を用い、現像剤量を20g、トナー濃度を10重量%に調整し、50ccのガラス瓶に入れ、そのガラス瓶を浅田鉄工株式会社製のペイントシェーカーにて、30時間攪拌した。攪拌終了後、現像剤を取り出し、635Mの網を用いて、トナーを吸引し、キャリアのみを取り出した。得られたキャリアを上述した帯電量の測定方法にて、帯電量を測定し、強制攪拌後の帯電量とした。
そして、下記式により、帯電量変化率を算出した。
(Charge amount change rate)
The charge amount was determined by measuring a mixture of carrier and toner with a suction charge amount measuring device (Epping q / m-meter, manufactured by PES-Laboratorium). The toner used is a commercially available negative polarity toner (cyan toner, for DocuPrint C3530 manufactured by Fuji Xerox Co., Ltd .; average particle size of about 5.8 μm) used in a full-color printer, with a developer amount of 10 g and a toner concentration of 10% by weight. Prepared. The prepared developer is put into a 50 cc glass bottle, and the glass bottle is stored and fixed in a cylindrical holder having a diameter of 130 mm and a height of 200 mm, and stirred for 30 minutes with a tumbler mixer manufactured by Shinmaru Enterprise Co., Ltd., 635M The amount of charge was measured using a net of
Using the same commercially available negative-polarity toner as the above-mentioned toner (cyan toner, for DocuPrint C3530 manufactured by Fuji Xerox Co., Ltd .; average particle size of about 5.8 μm), the developer amount is adjusted to 20 g, the toner concentration is adjusted to 10% by weight, The glass bottle was stirred for 30 hours with a paint shaker manufactured by Asada Iron Works. After the stirring, the developer was taken out, the toner was sucked using a 635M net, and only the carrier was taken out. The charge amount of the obtained carrier was measured by the above-described charge amount measurement method to obtain the charge amount after forced stirring.
Then, the charge amount change rate was calculated by the following formula.

Figure 2016042198
Figure 2016042198

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリアの見掛け密度は、1.0〜2.2g/cmであることが望ましい。見掛け密度が1.0g/cm未満であると、キャリアが軽量過ぎるために帯電付与能力が低下し易い。見掛け密度が2.2g/cmを超えると、キャリアの軽量化が十分でなく、耐久性に劣る。 The apparent density of the resin-filled ferrite carrier for an electrophotographic developer according to the present invention is desirably 1.0 to 2.2 g / cm 3 . If the apparent density is less than 1.0 g / cm 3 , the carrier is too light and the charge imparting ability tends to be lowered. When the apparent density exceeds 2.2 g / cm 3 , the weight of the carrier is not sufficient and the durability is inferior.

(見掛け密度)
この見掛け密度の測定は、JIS−Z2504(金属粉の見掛け密度試験法)に従って測定される。
(Apparent density)
The apparent density is measured in accordance with JIS-Z2504 (Apparent density test method for metal powder).

<本発明に係る電子写真現像剤用樹脂充填型フェライトキャリア芯材及びフェライトキャリアの製造方法>
本発明に係る電子写真現像剤用樹脂充填型フェライトキャリア芯材及びフェライトキャリアの製造方法について説明する。
<Resin-filled ferrite carrier core material for electrophotographic developer according to the present invention and method for producing ferrite carrier>
The resin-filled ferrite carrier core material for an electrophotographic developer according to the present invention and a method for producing the ferrite carrier will be described.

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリア芯材として用いられる多孔質フェライト粒子を製造するには、まず、原材料を適量秤量した後、ボールミル又は振動ミル等で0.5時間以上、好ましくは1〜20時間粉砕混合する。原料は特に制限されない。   In order to produce porous ferrite particles used as a resin-filled ferrite carrier core material for an electrophotographic developer according to the present invention, first, after weighing a suitable amount of raw materials, 0.5 hours or more in a ball mill or vibration mill, It is preferably pulverized and mixed for 1 to 20 hours. The raw material is not particularly limited.

このようにして得られた粉砕物は加圧成型機等を用いてペレット化した後、700〜1200℃の温度で仮焼成する。   The pulverized product thus obtained is pelletized using a pressure molding machine or the like, and then calcined at a temperature of 700 to 1200 ° C.

仮焼成後さらにボールミル又は振動ミル等で粉砕した後、水を加えてビーズミル等を用いて微粉砕を行う。次に必要に応じて分散剤、バインダー等を添加し、粘度調整後、スプレードライヤーにて粒状化し、造粒を行う。仮焼後に粉砕する際は、水を加えて湿式ボールミルや湿式振動ミル等で粉砕しても良い。   After calcination, the mixture is further pulverized by a ball mill or a vibration mill, and then water is added and fine pulverization is performed using a bead mill or the like. Next, if necessary, a dispersant, a binder, etc. are added, and after adjusting the viscosity, it is granulated with a spray dryer and granulated. When pulverizing after calcination, water may be added and pulverized by a wet ball mill, a wet vibration mill or the like.

上記のボールミル、振動ミル、ビーズミル等の粉砕機は特に限定されないが、原料を効果的かつ均一に分散させるためには、使用するメディアに1mm以下の粒径を持つ微粒なビーズを使用することが好ましい。また使用するビーズの径、組成、粉砕時間を調整することによって、粉砕度合いをコントロールすることができる。   The above-mentioned ball mill, vibration mill, bead mill and other pulverizers are not particularly limited, but in order to disperse the raw materials effectively and uniformly, it is necessary to use fine beads having a particle diameter of 1 mm or less for the media to be used. preferable. Further, the degree of grinding can be controlled by adjusting the diameter, composition and grinding time of the beads used.

次いで、得られた造粒物を、400〜800℃で加熱し、添加した分散剤やバインダーといった有機成分の除去を行う。分散剤やバインダーが残ったまま本焼成を行うと、有機成分の分解、酸化によって本焼成装置内の酸素濃度が変動しやすく、磁気特性に大きく影響を与えるため、安定して製造することが困難である。また、これらの有機成分は多孔質性の制御、つまりフェライトの結晶成長を変動させる原因となる。   Next, the obtained granulated product is heated at 400 to 800 ° C., and organic components such as added dispersant and binder are removed. If firing is performed with the dispersant and binder remaining, the oxygen concentration in the firing device is likely to fluctuate due to decomposition and oxidation of the organic components, greatly affecting the magnetic properties, making it difficult to produce stably. It is. Further, these organic components cause the control of the porosity, that is, the fluctuation of the crystal growth of ferrite.

その後、得られた造粒物を、酸素濃度の制御された雰囲気下で、800〜1500℃の温度で、1〜24時間保持し、本焼成を行う。その際、ロータリー式電気炉やバッチ式電気炉または連続式電気炉等を使用し、焼成時の雰囲気も、窒素等の不活性ガスや水素や一酸化炭素等の還元性ガスを打ち込んで、酸素濃度の制御を行っても良い。   Thereafter, the obtained granulated product is held at a temperature of 800 to 1500 ° C. for 1 to 24 hours in an atmosphere in which the oxygen concentration is controlled to perform main firing. At that time, a rotary electric furnace, a batch electric furnace or a continuous electric furnace is used, and an atmosphere at the time of firing is oxygenated by implanting an inert gas such as nitrogen or a reducing gas such as hydrogen or carbon monoxide. The concentration may be controlled.

このようにして得られた焼成物を、粉砕し、分級する。分級方法としては、既存の風力分級、メッシュ濾過法、沈降法など用いて所望の粒径に粒度調整する。   The fired product thus obtained is pulverized and classified. As a classification method, the particle size is adjusted to a desired particle size using an existing air classification, mesh filtration method, sedimentation method, or the like.

その後、必要に応じて、表面を低温加熱することで酸化皮膜処理を施し、電気抵抗調整を行うことができる。酸化被膜処理は、一般的なロータリー式電気炉、バッチ式電気炉等を用い、例えば300〜700℃で熱処理を行うことができる。この処理によって形成された酸化被膜の厚さは、0.1nm〜5μmであることが好ましい。0.1nm未満であると、酸化被膜層の効果が小さく、5μmを超えると、磁化が低下したり、高抵抗になりすぎたりするため、所望の特性を得にくくなり好ましくない。また、必要に応じて、酸化被膜処理の前に還元を行っても良い。このようにして、平均圧縮強度が一定以上で、圧縮強度の変動係数が一定以下にある多孔質フェライト粒子(フェライトキャリア芯材)を調製する。   Then, if necessary, the surface can be heated at a low temperature to perform an oxide film treatment to adjust the electric resistance. The oxide film treatment can be performed by heat treatment at, for example, 300 to 700 ° C. using a general rotary electric furnace, batch electric furnace or the like. The thickness of the oxide film formed by this treatment is preferably 0.1 nm to 5 μm. If the thickness is less than 0.1 nm, the effect of the oxide film layer is small, and if it exceeds 5 μm, the magnetization decreases or the resistance becomes too high. Moreover, you may reduce | restore before an oxide film process as needed. In this way, porous ferrite particles (ferrite carrier core material) having an average compressive strength of a certain level or more and a coefficient of variation of the compressive strength of a level or less are prepared.

多孔質フェライト粒子の平均圧縮強度を一定以上とし、圧縮強度の変動係数を一定以下とするためには、仮焼成条件、粉砕条件及び本焼成条件を厳密に制御することが必要である。詳述すると、仮焼成温度は高いほうが好ましい。仮焼成の段階で原料のフェライト化が進んでいた方が、本焼成の段階で粒子内に生じる歪を低減できる。粉砕条件として、粉砕時間が長い方が好ましい。スラリーの粒径を小さくしておくことで、多孔質フェライト粒子内にかかる外的ストレスが均一に分散されるようになる。本焼成条件として、焼成時間が長い方が好ましい。焼成時間が短いと焼成物にムラができ、圧縮強度を含む諸物性にバラツキが生じる。   In order to keep the average compressive strength of the porous ferrite particles above a certain level and the coefficient of variation of the compressive strength below a certain level, it is necessary to strictly control the temporary firing conditions, the pulverizing conditions, and the main firing conditions. More specifically, it is preferable that the calcination temperature is higher. If the raw material is ferritized at the pre-baking stage, the strain generated in the particles at the main baking stage can be reduced. As pulverization conditions, it is preferable that the pulverization time is long. By reducing the particle size of the slurry, the external stress applied to the porous ferrite particles is uniformly dispersed. As the main firing condition, a longer firing time is preferable. When the firing time is short, the fired product is uneven, and various physical properties including compressive strength vary.

このようにして得られた多孔質粒子からなるフェライトキャリア芯材の空隙に樹脂を充填する。充填方法としては、様々な方法が使用できる。その方法としては、例えば乾式法、流動床によるスプレードライ方式、ロータリードライ方式、万能攪拌機等による液浸乾燥法等が挙げられる。ここで用いられる樹脂としては、上述した通りである。   The resin is filled into the voids of the ferrite carrier core material made of the porous particles obtained in this way. Various methods can be used as the filling method. Examples of the method include a dry method, a spray drying method using a fluidized bed, a rotary drying method, an immersion drying method using a universal stirrer, and the like. The resin used here is as described above.

上記樹脂を充填する工程において、減圧下で多孔質フェライト粒子と充填樹脂を混合撹拌しながら、多孔質フェライト粒子の空孔に樹脂を充填することが好ましい。このように減圧下で樹脂を充填することによって、空孔部分に効率良く樹脂を充填することができる。減圧の程度としては、10〜700mmHgが好ましい。700mmHgを超えると減圧する効果がなく、10mmHg未満では、充填工程中に樹脂溶液が沸騰しやすくなるため、効率良い充填ができなくなる。   In the step of filling the resin, it is preferable to fill the pores of the porous ferrite particles with the resin while mixing and stirring the porous ferrite particles and the filling resin under reduced pressure. By filling the resin under reduced pressure in this way, it is possible to efficiently fill the hole portion with the resin. The degree of decompression is preferably 10 to 700 mmHg. If it exceeds 700 mmHg, there is no effect of reducing the pressure, and if it is less than 10 mmHg, the resin solution tends to boil during the filling step, so that efficient filling cannot be performed.

上記樹脂を充填する工程を複数回に分けて行うことが好ましい。1回の充填工程で樹脂を充填することは可能である。あえて複数回に分ける必要はない。しかし、樹脂の種類によっては、一度に多量の樹脂を充填しようとした場合、粒子の凝集が発生する場合がある。凝集が発生するとキャリアとして現像機内で使用した場合、現像器の撹拌ストレスによって凝集が解れることがある。凝集していた粒子の界面は、帯電特性が大きく異なるため、経時で帯電変動が発生し、好ましくない。このような場合には、複数回に分けて充填することによって、凝集を防ぎつつ、過不足なく充填が行える。   The step of filling the resin is preferably performed in a plurality of times. It is possible to fill the resin in a single filling step. There is no need to divide it multiple times. However, depending on the type of resin, when a large amount of resin is filled at once, particle aggregation may occur. When aggregation occurs, when it is used as a carrier in a developing machine, the aggregation may be released due to agitation stress of the developing device. The interface of the aggregated particles is not preferable because the charging characteristics are greatly different, and charging fluctuation occurs over time. In such a case, the filling can be performed without being excessive or deficient by preventing the agglomeration by filling in a plurality of times.

樹脂を充填させた後、必要に応じて各種の方式によって加熱し、充填した樹脂を芯材に密着させる。加熱方式としては、外部加熱方式又は内部加熱方式のいずれでもよく、例えば固定式又は流動式電気炉、ロータリー式電気炉、バーナー炉でもよく、もしくはマイクロウェーブによる焼き付けでもよい。温度は、充填する樹脂によって異なるが、融点又はガラス転移点以上の温度は必要であり、熱硬化性樹脂又は縮合架橋型樹脂等では、充分硬化が進む温度まで上げることにより、衝撃に対して強い樹脂充填型フェライトキャリアを得ることができる。   After filling the resin, the resin is heated by various methods as necessary, and the filled resin is brought into close contact with the core material. The heating method may be either an external heating method or an internal heating method, and may be, for example, a fixed or fluid electric furnace, a rotary electric furnace, a burner furnace, or a microwave baking. The temperature varies depending on the resin to be filled, but a temperature higher than the melting point or glass transition point is necessary. With a thermosetting resin or a condensation-crosslinking resin, etc., it is resistant to impact by raising the temperature to a point where the curing proceeds sufficiently. A resin-filled ferrite carrier can be obtained.

上述のように、多孔質フェライト粒子に樹脂を充填した後、樹脂により表面を被覆することが望ましい。キャリア特性、特に帯電特性を初めとする電気特性はキャリア表面に存在する材料や性状に影響されることが多い。従って、適当な樹脂を表面被覆することによって、所望とするキャリア特性を、精度良く調整することができる。被覆する方法としては、公知の方法、例えば刷毛塗り法、乾式法、流動床によるスプレードライ方式、ロータリードライ方式、万能攪拌機による液浸乾燥法等により被覆することができる。被覆率を向上させるためには、流動床による方法が好ましい。樹脂被覆後、焼き付けする場合には、外部加熱方式又は内部加熱方式のいずれでもよく、例えば固定式又は流動式電気炉、ロータリー式電気炉、バーナー炉でもよく、もしくはマイクロウェーブによる焼き付けでもよい。UV硬化樹脂を用いる場合は、UV加熱器を用いる。焼き付けの温度は使用する樹脂により異なるが、融点又はガラス転移点以上の温度は必要であり、熱硬化性樹脂又は縮合架橋型樹脂等では、充分硬化が進む温度まで上げる必要がある。   As described above, it is desirable to coat the surface with a resin after filling the porous ferrite particles with the resin. Carrier characteristics, particularly electrical characteristics such as charging characteristics, are often affected by materials and properties existing on the carrier surface. Therefore, the desired carrier characteristics can be adjusted with high accuracy by coating the surface with an appropriate resin. As a coating method, the coating can be performed by a known method such as a brush coating method, a dry method, a spray drying method using a fluidized bed, a rotary drying method, an immersion drying method using a universal stirrer, or the like. In order to improve the coverage, a fluidized bed method is preferred. In the case of baking after resin coating, either an external heating method or an internal heating method may be used. For example, a stationary or fluid electric furnace, a rotary electric furnace, a burner furnace, or microwave baking may be used. When a UV curable resin is used, a UV heater is used. Although the baking temperature varies depending on the resin to be used, a temperature equal to or higher than the melting point or the glass transition point is necessary. For a thermosetting resin or a condensation-crosslinking resin, it is necessary to raise the temperature to a point where the curing proceeds sufficiently.

<本発明に係る電子写真現像剤>
次に、本発明に係る電子写真現像剤について説明する。
本発明に係る電子写真現像剤は、上記した電子写真現像剤用樹脂充填型フェライトキャリアとトナーとからなるものである。
<Electrophotographic developer according to the present invention>
Next, the electrophotographic developer according to the present invention will be described.
The electrophotographic developer according to the present invention comprises the above-described resin-filled ferrite carrier for an electrophotographic developer and a toner.

本発明の電子写真現像剤を構成するトナー粒子には、粉砕法によって製造される粉砕トナー粒子と、重合法により製造される重合トナー粒子とがある。本発明ではいずれの方法により得られたトナー粒子を使用することができる。   The toner particles constituting the electrophotographic developer of the present invention include pulverized toner particles produced by a pulverization method and polymerized toner particles produced by a polymerization method. In the present invention, toner particles obtained by any method can be used.

粉砕トナー粒子は、例えば、結着樹脂、荷電制御剤、着色剤をヘンシェルミキサー等の混合機で充分に混合し、次いで、二軸押出機等で溶融混練し、冷却後、粉砕、分級し、外添剤を添加後、ミキサー等で混合することにより得ることができる。   The pulverized toner particles are, for example, a binder resin, a charge control agent, and a colorant are sufficiently mixed with a mixer such as a Henschel mixer, then melt-kneaded with a twin screw extruder or the like, cooled, pulverized, classified, After adding the external additive, it can be obtained by mixing with a mixer or the like.

粉砕トナー粒子を構成する結着樹脂としては特に限定されるものではないが、ポリスチレン、クロロポリスチレン、スチレン−クロロスチレン共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸共重合体、更にはロジン変性マレイン酸樹脂、エポキシ樹脂、ポリエステル樹脂及びポリウレタン樹脂等を挙げることができる。これらは単独又は混合して用いられる。   The binder resin constituting the pulverized toner particles is not particularly limited, but polystyrene, chloropolystyrene, styrene-chlorostyrene copolymer, styrene-acrylic acid ester copolymer, styrene-methacrylic acid copolymer, Furthermore, rosin modified maleic acid resin, epoxy resin, polyester resin, polyurethane resin and the like can be mentioned. These may be used alone or in combination.

荷電制御剤としては、任意のものを用いることができる。例えば正荷電性トナー用としては、ニグロシン系染料及び4級アンモニウム塩等を挙げることができ、また、負荷電性トナー用としては、含金属モノアゾ染料等を挙げることができる。   Any charge control agent can be used. For example, nigrosine dyes and quaternary ammonium salts can be used for positively charged toners, and metal-containing monoazo dyes can be used for negatively charged toners.

着色剤(色剤)としては、従来より知られている染料、顔料が使用可能である。例えば、カーボンブラック、フタロシアニンブルー、パーマネントレッド、クロムイエロー、フタロシアニングリーン等を使用することができる。その他、トナーの流動性、耐凝集性向上のためのシリカ粉体、チタニア等のような外添剤をトナー粒子に応じて加えることができる。   As the colorant (colorant), conventionally known dyes and pigments can be used. For example, carbon black, phthalocyanine blue, permanent red, chrome yellow, phthalocyanine green, etc. can be used. In addition, external additives such as silica powder and titania for improving the fluidity and aggregation resistance of the toner can be added according to the toner particles.

重合トナー粒子は、懸濁重合法、乳化重合法、乳化凝集法、エステル伸長重合法、相転乳化法といった公知の方法で製造されるトナー粒子である。このような重合法トナー粒子は、例えば、界面活性剤を用いて着色剤を水中に分散させた着色分散液と、重合性単量体、界面活性剤及び重合開始剤を水性媒体中で混合攪拌し、重合性単量体を水性媒体中に乳化分散させて、攪拌、混合しながら重合させた後、塩析剤を加えて重合体粒子を塩析させる。塩析によって得られた粒子を、濾過、洗浄、乾燥させることにより、重合トナー粒子を得ることができる。その後、必要により乾燥されたトナー粒子に外添剤を添加する。   The polymerized toner particles are toner particles produced by a known method such as a suspension polymerization method, an emulsion polymerization method, an emulsion aggregation method, an ester elongation polymerization method, or a phase inversion emulsification method. Such polymerized toner particles are prepared by, for example, mixing and stirring a colored dispersion in which a colorant is dispersed in water using a surfactant, a polymerizable monomer, a surfactant, and a polymerization initiator in an aqueous medium. Then, the polymerizable monomer is emulsified and dispersed in an aqueous medium, polymerized while stirring and mixing, and then a salting-out agent is added to salt out the polymer particles. Polymerized toner particles can be obtained by filtering, washing and drying the particles obtained by salting out. Thereafter, if necessary, an external additive is added to the dried toner particles.

更に、この重合トナー粒子を製造するに際しては、重合性単量体、界面活性剤、重合開始剤、着色剤以外に、定着性改良剤、帯電制御剤を配合することができ、これらにより得られた重合トナー粒子の諸特性を制御、改善することができる。また、水性媒体への重合性単量体の分散性を改善するとともに、得られる重合体の分子量を調整するために連鎖移動剤を用いることができる。   Further, in the production of the polymerized toner particles, in addition to the polymerizable monomer, the surfactant, the polymerization initiator, and the colorant, a fixability improving agent and a charge control agent can be blended and obtained. Various characteristics of the polymerized toner particles can be controlled and improved. A chain transfer agent can be used to improve the dispersibility of the polymerizable monomer in the aqueous medium and adjust the molecular weight of the resulting polymer.

上記重合トナー粒子の製造に使用される重合性単量体に特に限定はないが、例えば、スチレン及びその誘導体、エチレン、プロピレン等のエチレン不飽和モノオレフィン類、塩化ビニル等のハロゲン化ビニル類、酢酸ビニル等のビニルエステル類、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸2−エチルヘキシル、アクリル酸ジメチルアミノエステル及びメタクリル酸ジエチルアミノエステル等のα−メチレン脂肪族モノカルボン酸エステル類等を挙げることができる。   The polymerizable monomer used for the production of the polymerized toner particles is not particularly limited. For example, styrene and its derivatives, ethylene unsaturated monoolefins such as ethylene and propylene, vinyl halides such as vinyl chloride, Α-methylene aliphatic monocarboxylic acids such as vinyl esters such as vinyl acetate, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, 2-ethylhexyl methacrylate, dimethylamino acrylate and diethylaminoester methacrylate Examples include esters.

上記重合トナー粒子の調製の際に使用される着色剤(色材)としては、従来から知られている染料、顔料が使用可能である。例えば、カーボンブラック、フタロシアニンブルー、パーマネントレッド、クロムイエロー及びフタロシアニングリーン等を使用することができる。また、これらの着色剤はシランカップリング剤やチタンカップリング剤等を用いてその表面が改質されていてもよい。   Conventionally known dyes and pigments can be used as the colorant (coloring material) used in the preparation of the polymerized toner particles. For example, carbon black, phthalocyanine blue, permanent red, chrome yellow, phthalocyanine green, and the like can be used. Moreover, the surface of these colorants may be modified using a silane coupling agent, a titanium coupling agent, or the like.

上記重合トナー粒子の製造に使用される界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、両イオン性界面活性剤及びノニオン系界面活性剤を使用することができる。   As the surfactant used in the production of the polymerized toner particles, an anionic surfactant, a cationic surfactant, an amphoteric surfactant and a nonionic surfactant can be used.

ここで、アニオン系界面活性剤としては、オレイン酸ナトリウム、ヒマシ油等の脂肪酸塩、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等を挙げることができる。また、ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン、脂肪酸エステル、オキシエチレン−オキシプロピレンブロックポリマー等を挙げることができる。更に、カチオン系界面活性剤としては、ラウリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド等の第4級アンモニウム塩等を挙げることができる。また、両イオン性界面活性剤としては、アミノカルボン酸塩、アルキルアミノ酸等を挙げることができる。   Here, examples of the anionic surfactant include fatty acid salts such as sodium oleate and castor oil, alkyl sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalenesulfonic acid. Salt, alkyl phosphate ester salt, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl sulfate ester salt and the like. Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin, fatty acid ester, and oxyethylene-oxypropylene block polymer. . Furthermore, examples of the cationic surfactant include alkylamine salts such as laurylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride and stearyltrimethylammonium chloride. Examples of amphoteric surfactants include aminocarboxylates and alkylamino acids.

上記のような界面活性剤は、重合性単量体に対して、通常は0.01〜10重量%の範囲内の量で使用することができる。このような界面活性剤の使用量は、単量体の分散安定性に影響を与えるとともに、得られた重合トナー粒子の環境依存性にも影響を及ぼすことから、単量体の分散安定性が確保され、かつ重合トナー粒子の環境依存性に過度の影響を及ぼしにくい上記範囲内の量で使用することが好ましい。   The surfactant as described above can be used usually in an amount in the range of 0.01 to 10% by weight with respect to the polymerizable monomer. The amount of such a surfactant used affects the dispersion stability of the monomer and also affects the environmental dependency of the obtained polymerized toner particles. It is preferably used in an amount within the above range that is ensured and does not exert an excessive influence on the environment dependency of the polymerized toner particles.

重合トナー粒子の製造には、通常は重合開始剤を使用する。重合開始剤には、水溶性重合開始剤と油溶性重合開始剤とがあり、本発明ではいずれをも使用することができる。本発明で使用することができる水溶性重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、水溶性パーオキサイド化合物を挙げることができ、また、油溶性重合開始剤としては、例えば、アゾビスイソブチロニトリル等のアゾ系化合物、油溶性パーオキサイド化合物を挙げることができる。   For the production of polymerized toner particles, a polymerization initiator is usually used. The polymerization initiator includes a water-soluble polymerization initiator and an oil-soluble polymerization initiator, and any of them can be used in the present invention. Examples of the water-soluble polymerization initiator that can be used in the present invention include persulfates such as potassium persulfate and ammonium persulfate, water-soluble peroxide compounds, and oil-soluble polymerization initiators. Examples thereof include azo compounds such as azobisisobutyronitrile and oil-soluble peroxide compounds.

また、本発明において連鎖移動剤を使用する場合には、この連鎖移動剤としては、例えば、オクチルメルカプタン、ドデシルメルカプタン、tert−ドデシルメルカプタン等のメルカプタン類、四臭化炭素等を挙げることができる。   When a chain transfer agent is used in the present invention, examples of the chain transfer agent include mercaptans such as octyl mercaptan, dodecyl mercaptan, tert-dodecyl mercaptan, and carbon tetrabromide.

更に、本発明で使用する重合トナー粒子が、定着性改善剤を含む場合、この定着性改良剤としては、カルナバワックス等の天然ワックス、ポリプロピレン、ポリエチレン等のオレフィン系ワックス等を使用することができる。   Further, when the polymerized toner particles used in the present invention contain a fixability improver, a natural wax such as carnauba wax, an olefin wax such as polypropylene or polyethylene can be used as the fixability improver. .

また、本発明で使用する重合トナー粒子が、帯電制御剤を含有する場合、使用する帯電制御剤に特に制限はなく、ニグロシン系染料、4級アンモニウム塩、有機金属錯体、含金属モノアゾ染料等を使用することができる。   Further, when the polymerized toner particles used in the present invention contain a charge control agent, the charge control agent to be used is not particularly limited, and nigrosine dyes, quaternary ammonium salts, organometallic complexes, metal-containing monoazo dyes, etc. Can be used.

また、重合トナー粒子の流動性向上等のために使用される外添剤としては、シリカ、酸化チタン、チタン酸バリウム、フッ素樹脂微粒子、アクリル樹脂微粒子等を挙げることができ、これらは単独であるいは組み合わせて使用することができる。   Examples of the external additive used for improving the fluidity of polymerized toner particles include silica, titanium oxide, barium titanate, fluororesin fine particles, and acrylic resin fine particles. Can be used in combination.

更に、水性媒体から重合粒子を分離するために使用される塩析剤としては、硫酸マグネシウム、硫酸アルミニウム、塩化バリウム、塩化マグネシウム、塩化カルシウム、塩化ナトリウム等の金属塩を挙げることができる。   Furthermore, examples of the salting-out agent used for separating the polymer particles from the aqueous medium include metal salts such as magnesium sulfate, aluminum sulfate, barium chloride, magnesium chloride, calcium chloride, and sodium chloride.

上記のようにして製造されたトナー粒子の平均粒径は、2〜15μm、好ましくは3〜10μmの範囲内にあり、重合トナー粒子の方が粉砕トナー粒子よりも、粒子の均一性が高い。トナー粒子が2μmよりも小さくなると、帯電能力が低下しカブリやトナー飛散を引き起こしやすく、15μmを超えると、画質が劣化する原因となる。   The average particle size of the toner particles produced as described above is in the range of 2 to 15 μm, preferably 3 to 10 μm, and the polymerized toner particles have higher particle uniformity than the pulverized toner particles. If the toner particles are smaller than 2 μm, the charging ability is lowered and fog and toner scattering are liable to occur, and if it exceeds 15 μm, the image quality is deteriorated.

上記のように製造されたキャリアとトナーとを混合し、電子写真現像剤を得ることができる。キャリアとトナーの混合比、すなわちトナー濃度は、3〜15重量%に設定することが好ましい。3重量%未満であると所望の画像濃度が得にくく、15重量%を超えると、トナー飛散やかぶりが発生しやすくなる。   An electrophotographic developer can be obtained by mixing the carrier and toner manufactured as described above. The mixing ratio of the carrier and the toner, that is, the toner concentration is preferably set to 3 to 15% by weight. If it is less than 3% by weight, it is difficult to obtain a desired image density. If it exceeds 15% by weight, toner scattering and fogging are likely to occur.

上記のように製造されたキャリアとトナーとを混合し得られた現像剤を、補給用現像剤として用いることができる。この場合、キャリアとトナーの混合比、キャリア1重量部に対して、トナー2〜50重量部の比率で混合される。   A developer obtained by mixing the carrier and toner manufactured as described above can be used as a replenishment developer. In this case, the toner is mixed at a ratio of 2 to 50 parts by weight of the toner with respect to 1 part by weight of the carrier and toner.

上記のように調製された本発明に係る電子写真現像剤は、有機光導電体層を有する潜像保持体に形成されている静電潜像を、バイアス電界を付与しながら、トナー及びキャリアを有する二成分現像剤の磁気ブラシによって反転現像する現像方式を用いたデジタル方式のコピー機、プリンター、FAX、印刷機等に使用することができる。また、磁気ブラシから静電潜像側に現像バイアスを印加する際に、DCバイアスにACバイアスを重畳する方法である交番電界を用いるフルカラー機等にも適用可能である。
以下、実施例等に基づき本発明を具体的に説明する。
The electrophotographic developer according to the present invention prepared as described above uses an electrostatic latent image formed on a latent image holding member having an organic photoconductor layer, while applying a bias electric field to the toner and the carrier. The present invention can be used in digital copiers, printers, fax machines, printers, and the like that use a developing method in which reversal development is performed using a two-component developer magnetic brush. Further, the present invention can also be applied to a full color machine using an alternating electric field, which is a method of superimposing an AC bias on a DC bias when a developing bias is applied from the magnetic brush to the electrostatic latent image side.
Hereinafter, the present invention will be specifically described based on examples and the like.

[実施例1]
MnO:38mol%、MgO:11mol%、Fe:50.3mol%及びSrO:0.7mol%になるように原料を秤量し、乾式のメディアミル(振動ミル、1/8インチ径のステンレスビーズ)で4.5時間粉砕し、得られた粉砕物をローラーコンパクターにて、約1mm角のペレットにした。MnO原料としては四酸化三マンガンを、MgO原料としては水酸化マグネシウムを、SrO原料としては、炭酸ストロンチウムを用いた。このペレットを目開き3mmの振動篩にて粗粉を除去し、次いで目開き0.5mmの振動篩にて微粉を除去した後、ロータリー式電気炉で、1050℃で3時間加熱し、仮焼成を行った。
[Example 1]
MnO: 38mol%, MgO: 11mol %, Fe 2 O 3: 50.3mol% and SrO: materials were weighed so that 0.7 mol%, dry media mill (vibration mill, 1/8-inch diameter stainless steel The resulting pulverized product was formed into pellets of about 1 mm square by a roller compactor. Trimanganese tetraoxide was used as the MnO raw material, magnesium hydroxide was used as the MgO raw material, and strontium carbonate was used as the SrO raw material. After removing the coarse powder with a vibrating sieve having a mesh opening of 3 mm and then removing the fine powder with a vibrating sieve having a mesh opening of 0.5 mm, the pellets are heated in a rotary electric furnace at 1050 ° C. for 3 hours and pre-baked. Went.

次いで、乾式のメディアミル(振動ミル、1/8インチ径のステンレスビーズ)を用いて平均粒径が約4μmまで粉砕した後、水を加え、さらに湿式のメディアミル(縦型ビーズミル、1/16インチ径のステンレスビーズ)を用いて10時間粉砕した。このスラリーの粒径(粉砕の一次粒子径)をマイクロトラックにて測定した結果、D50は1.4μmであった。このスラリーに分散剤を適量添加し、適度な細孔容積をえるために、バインダーとしてPVA(20%溶液)を固形分に対して0.2重量%添加し、次いでスプレードライヤーにより造粒、乾燥し、得られた粒子(造粒物)の粒度調整を行い、その後、ロータリー式電気炉で、700℃で2時間加熱し、分散剤やバインダーといった有機成分の除去を行った。 Next, after pulverizing to an average particle size of about 4 μm using a dry media mill (vibration mill, 1/8 inch diameter stainless steel beads), water was added, and a wet media mill (vertical bead mill, 1/16) was added. Inch stainless steel beads) for 10 hours. The slurry particle size (primary particle diameter of the grinding) results measured at Microtrac, D 50 was 1.4 [mu] m. In order to add an appropriate amount of a dispersant to this slurry and obtain an appropriate pore volume, 0.2% by weight of PVA (20% solution) as a binder is added to the solid content, and then granulated and dried by a spray dryer. Then, the particle size of the obtained particles (granulated product) was adjusted, and then heated in a rotary electric furnace at 700 ° C. for 2 hours to remove organic components such as a dispersant and a binder.

その後、トンネル式電気炉にて、焼成温度1070℃、酸素ガス濃度1.1容量%雰囲気下にて、5時間保持した。この時、昇温速度を150℃/時、降温速度を110℃/時とした。その後、解砕し、さらに分級して粒度調整を行い、磁力選鉱により低磁力品を分別し、多孔質フェライト粒子からなるフェライトキャリア芯材を得た。   Thereafter, it was held for 5 hours in a tunnel type electric furnace under a firing temperature of 1070 ° C. and an oxygen gas concentration of 1.1 vol%. At this time, the temperature rising rate was 150 ° C./hour and the temperature decreasing rate was 110 ° C./hour. Thereafter, the mixture was crushed, further classified to adjust the particle size, and the low-magnetic force product was separated by magnetic separation, so that a ferrite carrier core material composed of porous ferrite particles was obtained.

メチルシリコーン樹脂溶液を25重量部(樹脂溶液濃度20%のため固形分としては5重量部)に、触媒として、チタンジイソプロポキシビス(エチルアセトアセテート)を、樹脂固形分に対して25重量%(Ti原子換算で3重量%)加えたあと、アミノシランカップリング剤として3−アミノプロピルトリエトキシシシランを、樹脂固形分に対して5重量%添加し、充填樹脂溶液を得た。   25 parts by weight of the methylsilicone resin solution (5 parts by weight as the solid content because the resin solution concentration is 20%) and 25% by weight of titanium diisopropoxybis (ethyl acetoacetate) as the catalyst (3% by weight in terms of Ti atom) After addition, 3-aminopropyltriethoxysilane was added as an aminosilane coupling agent in an amount of 5% by weight based on the resin solid content to obtain a filled resin solution.

この樹脂溶液を、上記多孔質フェライト粒子100重量部と、60℃、6.7kPa(約50mmHg)の減圧下で混合撹拌し、トルエンを揮発させながら、樹脂を多孔質フェライト粒子の空隙に浸透、充填させた。容器内を常圧に戻し、常圧下で撹拌を続けながら、トルエンをほぼ完全に除去したのち、充填装置内から取り出し、容器に入れ、熱風加熱式のオーブンに入れ、220℃で1.5時間、加熱処理を行った。   This resin solution was mixed and stirred with 100 parts by weight of the porous ferrite particles at 60 ° C. under a reduced pressure of 6.7 kPa (about 50 mmHg), and the resin was permeated into the voids of the porous ferrite particles while volatilizing toluene. Filled. The inside of the container is returned to normal pressure, and toluene is almost completely removed while continuing stirring under normal pressure. Then, the toluene is taken out from the filling apparatus, placed in the container, placed in a hot air heating oven, and heated at 220 ° C. for 1.5 hours. The heat treatment was performed.

その後、室温まで冷却し、樹脂が硬化されたフェライト粒子を取り出し、200Mの目開きの振動篩にて粒子の凝集を解し、磁力選鉱機を用いて、非磁性物を取り除いた。その後、再度振動篩にて粗大粒子を取り除き樹脂が充填されたフェライト粒子を得た。   Then, it cooled to room temperature, the ferrite particle | grains by which resin was hardened were taken out, the aggregation of particle | grains was released with the vibration sieve of 200M opening, and the nonmagnetic substance was removed using the magnetic separator. Thereafter, coarse particles were removed again with a vibrating sieve to obtain ferrite particles filled with resin.

次に、固形のアクリル樹脂(製品名:BR−73、三菱レーヨン社製)を準備し、上記アクリル樹脂20重量部をトルエン80重量部に混合して、アクリル樹脂をトルエンに溶解させ、樹脂溶液を調製した。この樹脂溶液に、更に導電性制御剤として、カーボンブラック(製品名:Mogul L、Cabot社製)をアクリル樹脂に対して3重量%添加し、被覆樹脂溶液を得た。   Next, a solid acrylic resin (product name: BR-73, manufactured by Mitsubishi Rayon Co., Ltd.) is prepared, 20 parts by weight of the acrylic resin is mixed with 80 parts by weight of toluene, the acrylic resin is dissolved in toluene, and a resin solution Was prepared. To this resin solution, 3% by weight of carbon black (product name: Mogul L, manufactured by Cabot) was added as a conductivity control agent to the acrylic resin to obtain a coating resin solution.

得られた樹脂が充填されたフェライト粒子を万能混合撹拌器に投入し、上記のアクリル樹脂溶液を添加して、液浸乾燥法により樹脂被覆を行った。この際、アクリル樹脂は、樹脂充填後のフェライト粒子の重量に対して2重量%とした。被覆した後、145℃で2時間加熱を行ったのち、200Mの目開きの振動篩にて粒子の凝集を解し、磁力選鉱機を用いて、非磁性物を取り除いた。その後、再度振動篩にて粗大粒子を取り除き表面に樹脂被覆を施した樹脂充填型フェライトキャリアを得た。   The ferrite particles filled with the obtained resin were put into a universal mixing stirrer, the above acrylic resin solution was added, and the resin coating was performed by the immersion drying method. At this time, the acrylic resin was 2% by weight with respect to the weight of the ferrite particles after filling the resin. After the coating, the mixture was heated at 145 ° C. for 2 hours, and then the particles were agglomerated with a vibrating sieve having a 200-M aperture, and the non-magnetic material was removed using a magnetic separator. Thereafter, coarse particles were again removed with a vibrating sieve to obtain a resin-filled ferrite carrier having a resin coating on the surface.

[実施例2]
本焼成条件として焼成温度を1055℃、酸素濃度を1.0容量%とした以外は、実施例1と同様にして多孔質フェライト粒子(フェライトキャリア芯材)を得た。
[Example 2]
Porous ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1 except that the firing temperature was 1055 ° C. and the oxygen concentration was 1.0 vol% as the main firing conditions.

この多孔質フェライト粒子に、実施例1と同様にシリコーン樹脂を充填し、またアクリル樹脂を被覆して、樹脂充填型フェライトキャリアを得た。   The porous ferrite particles were filled with a silicone resin in the same manner as in Example 1 and coated with an acrylic resin to obtain a resin-filled ferrite carrier.

[実施例3]
本焼成条件として焼成温度を1085℃、酸素濃度を0.9容量%とした以外は、実施例1と同様にして多孔質フェライト粒子(フェライトキャリア芯材)を得た。
[Example 3]
Porous ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1 except that the firing temperature was 1085 ° C. and the oxygen concentration was 0.9 vol% as the main firing conditions.

この多孔質フェライト粒子に、実施例1と同様にシリコーン樹脂を充填し、またアクリル樹脂を被覆して、樹脂充填型フェライトキャリアを得た。   The porous ferrite particles were filled with a silicone resin in the same manner as in Example 1 and coated with an acrylic resin to obtain a resin-filled ferrite carrier.

[実施例4]
本焼成条件として酸素濃度を1.4容量%とした以外は、実施例1と同様にして多孔質フェライト粒子(フェライトキャリア芯材)を得た。
[Example 4]
Porous ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1 except that the oxygen concentration was 1.4 vol% as the main firing condition.

この多孔質フェライト粒子に、実施例1と同様にシリコーン樹脂を充填し、またアクリル樹脂を被覆して、樹脂充填型フェライトキャリアを得た。   The porous ferrite particles were filled with a silicone resin in the same manner as in Example 1 and coated with an acrylic resin to obtain a resin-filled ferrite carrier.

[実施例5]
本焼成条件として焼成温度を1085℃、酸素濃度を0容量%とした以外は、実施例1と同様にして多孔質フェライト粒子(フェライトキャリア芯材)を得た。
[Example 5]
Porous ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1, except that the firing temperature was 1085 ° C. and the oxygen concentration was 0% by volume.

この多孔質フェライト粒子に、実施例1と同様にシリコーン樹脂を充填し、またアクリル樹脂を被覆して、樹脂充填型フェライトキャリアを得た。   The porous ferrite particles were filled with a silicone resin in the same manner as in Example 1 and coated with an acrylic resin to obtain a resin-filled ferrite carrier.

[実施例6]
本焼成条件として焼成温度を1048℃、酸素濃度を0.9容量%とした以外は、実施例1と同様にして多孔質フェライト粒子(フェライトキャリア芯材)を得た。
[Example 6]
Porous ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1 except that the firing temperature was 1048 ° C. and the oxygen concentration was 0.9 vol% as the main firing conditions.

この多孔質フェライト粒子に、実施例1と同様にシリコーン樹脂を充填し、またアクリル樹脂を被覆して、樹脂充填型フェライトキャリアを得た。   The porous ferrite particles were filled with a silicone resin in the same manner as in Example 1 and coated with an acrylic resin to obtain a resin-filled ferrite carrier.

[比較例1]
湿式粉砕を5Hr、スラリー粒径を2.1μm、本焼成条件として焼成温度を1065℃、酸素濃度を1.7容量%とした以外は、実施例1と同様にして多孔質フェライト粒子(フェライトキャリア芯材)を得た。
[Comparative Example 1]
Porous ferrite particles (ferrite carrier) were prepared in the same manner as in Example 1 except that the wet pulverization was 5 hr, the slurry particle size was 2.1 μm, the main firing conditions were a firing temperature of 1065 ° C., and the oxygen concentration was 1.7 vol%. A core material) was obtained.

この多孔質フェライト粒子に、実施例1と同様にシリコーン樹脂を充填し、またアクリル樹脂を被覆して、樹脂充填型フェライトキャリアを得た。   The porous ferrite particles were filled with a silicone resin in the same manner as in Example 1 and coated with an acrylic resin to obtain a resin-filled ferrite carrier.

[比較例2]
仮焼成温度を1000℃とし、本焼成条件として焼成温度を1150℃、酸素濃度を0容量%とした以外は、実施例1と同様にして多孔質フェライト粒子(フェライトキャリア芯材)を得た。
[Comparative Example 2]
Porous ferrite particles (ferrite carrier core material) were obtained in the same manner as in Example 1 except that the pre-baking temperature was 1000 ° C., the main baking conditions were 1150 ° C., and the oxygen concentration was 0% by volume.

この多孔質フェライト粒子に、実施例1と同様にシリコーン樹脂を充填し、またアクリル樹脂を被覆して、樹脂充填型フェライトキャリアを得た。   The porous ferrite particles were filled with a silicone resin in the same manner as in Example 1 and coated with an acrylic resin to obtain a resin-filled ferrite carrier.

[比較例3]
本焼成条件として酸素濃度を1.7容量%、本焼成条件として焼成温度を1090℃、焼成時間を3Hr、昇温速度を300℃/時、降温速度を200℃/時とした以外は、実施例1と同様にして多孔質フェライト粒子(フェライトキャリア芯材)を得た。
[Comparative Example 3]
Implementation was performed except that the oxygen concentration was 1.7% by volume as the main firing conditions, the firing temperature was 1090 ° C, the firing time was 3Hr, the heating rate was 300 ° C / hour, and the cooling rate was 200 ° C / hour. In the same manner as in Example 1, porous ferrite particles (ferrite carrier core material) were obtained.

この多孔質フェライト粒子に、実施例1と同様にシリコーン樹脂を充填し、またアクリル樹脂を被覆して、樹脂充填型フェライトキャリアを得た。   The porous ferrite particles were filled with a silicone resin in the same manner as in Example 1 and coated with an acrylic resin to obtain a resin-filled ferrite carrier.

この多孔質フェライト粒子に、実施例1と同様にシリコーン樹脂を充填し、またアクリル樹脂を被覆して、樹脂充填型フェライトキャリアを得た。ただし、シリコーン樹脂の充填量は多孔質フェライト粒子に対して1重量%とした。   The porous ferrite particles were filled with a silicone resin in the same manner as in Example 1 and coated with an acrylic resin to obtain a resin-filled ferrite carrier. However, the filling amount of the silicone resin was 1% by weight with respect to the porous ferrite particles.

実施例1〜6及び比較例1〜3の製造条件である湿式解砕、スラリー粒径、本焼成条件(温度、酸素濃度、降温条件)及び樹脂充填量を表1に示す。また、得られたフェライトキャリア芯材の特性等(細孔容積、ピーク細孔径、細孔径分布、平均圧縮強度及び圧縮強度変動係数)とフェライトキャリアの特性等(平均粒径、飽和磁化、キャリア強度、帯電量変化率及び見掛け密度)を表2にそれぞれ示す。   Table 1 shows wet crushing, slurry particle size, main firing conditions (temperature, oxygen concentration, temperature lowering conditions) and resin filling amount, which are production conditions of Examples 1 to 6 and Comparative Examples 1 to 3. In addition, the properties of the obtained ferrite carrier core material (pore volume, peak pore size, pore size distribution, average compressive strength and coefficient of variation in compressive strength) and the properties of ferrite carrier (average particle size, saturation magnetization, carrier strength) , Charge amount change rate and apparent density) are shown in Table 2.

Figure 2016042198
Figure 2016042198

Figure 2016042198
Figure 2016042198

表2に示した結果から明らかなように、実施例1〜6に示したフェライトキャリア芯材は、平均圧縮強度や圧縮強度変動係数が所望の範囲にある。   As is clear from the results shown in Table 2, the ferrite carrier core materials shown in Examples 1 to 6 have an average compressive strength and a compressive strength variation coefficient in desired ranges.

これに対して、比較例1及び2のフェライトキャリア芯材は、平均圧縮強度が劣る。比較例3のフェライトキャリア芯材は、平均圧縮強度は所望の範囲にあるものの、圧縮強度変動係数は大きい値を示す。   In contrast, the ferrite carrier core materials of Comparative Examples 1 and 2 are inferior in average compressive strength. Although the ferrite carrier core material of Comparative Example 3 has an average compressive strength in a desired range, the compressive strength variation coefficient shows a large value.

また、表2に示されるように、実施例1〜5に示したフェライトキャリアは、平均粒径、飽和磁化、キャリア強度、帯電量変化率及び見掛け密度のいずれも所望の範囲にある。   Further, as shown in Table 2, the ferrite carriers shown in Examples 1 to 5 have all of the average particle diameter, saturation magnetization, carrier strength, charge amount change rate, and apparent density in a desired range.

これに対して、比較例1〜3は、実施例1〜6に比べていずれもキャリア強度が高い値を示し、帯電量変化率が低い値を示す。   On the other hand, Comparative Examples 1 to 3 all show values with higher carrier strength and values with a lower charge amount change rate than Examples 1 to 6.

本発明に係る電子写真現像剤用樹脂充填型フェライトキャリア芯材に樹脂を充填したフェライトキャリアは、樹脂充填型フェライトキャリアであるため、低比重で軽量化が図れるため、耐久性に優れ長寿命化が達成でき、しかも磁性粉分散型キャリアに比して高強度であり、かつ熱や衝撃による割れ、変形、溶融がない。また、高いキャリア強度を有することから耐久性が一層向上し、かつ耐刷時において安定した帯電特性を有する。   The ferrite carrier in which the resin-filled ferrite carrier core material for an electrophotographic developer according to the present invention is filled with a resin is a resin-filled ferrite carrier, so it can be reduced in weight with a low specific gravity, so it has excellent durability and long life. In addition, the strength is higher than that of a magnetic powder-dispersed carrier, and there is no cracking, deformation, or melting due to heat or impact. Further, since it has a high carrier strength, the durability is further improved and it has a stable charging characteristic at the time of printing.

従って、本発明に係る電子写真現像剤用樹脂充填型フェライトキャリア芯材及びフェライトキャリアは、高画質の要求されるフルカラー機並びに画像維持の信頼性及び耐久性の要求される高速機等の分野に広く使用可能である。   Therefore, the resin-filled ferrite carrier core material and ferrite carrier for electrophotographic developer according to the present invention are used in the fields of full-color machines that require high image quality and high-speed machines that require image maintenance reliability and durability. Widely usable.

Claims (6)

樹脂充填後のキャリアの強度が3%以下である電子写真現像剤用樹脂充填型フェライトキャリアの製造に用いる電子写真現像剤用樹脂充填型フェライトキャリア芯材であって、 平均圧縮強度が100mN以上、圧縮強度の変動係数が50%以下の多孔質フェライト粒子であることを特徴とする電子写真現像剤用樹脂充填型フェライトキャリア芯材。   A resin-filled ferrite carrier core material for an electrophotographic developer used for producing a resin-filled ferrite carrier for an electrophotographic developer having a carrier strength of 3% or less after resin filling, wherein the average compressive strength is 100 mN or more, A resin-filled ferrite carrier core material for an electrophotographic developer, wherein the ferrite ferrite core material is a porous ferrite particle having a coefficient of variation in compressive strength of 50% or less. 細孔容積が0.04〜0.10ml/g、ピーク細孔径が0.3〜1.5μm、細孔径分布において下記式で表される細孔径のばらつきdvが1.5以下である請求項1に記載の多孔質フェライト粒子からなることを特徴とする電子写真現像剤用樹脂充填型フェライトキャリア芯材。
Figure 2016042198
The pore volume is 0.04 to 0.10 ml / g, the peak pore diameter is 0.3 to 1.5 μm, and the pore diameter distribution dv of the pore diameter represented by the following formula is 1.5 or less. A resin-filled ferrite carrier core material for an electrophotographic developer, comprising the porous ferrite particles according to 1.
Figure 2016042198
請求項1又は2に記載のフェライトキャリア芯材の空隙にキャリア芯材100重量部に対して3〜20重量部の樹脂が充填され、更にその表面が樹脂で被覆されていることを特徴とする電子写真現像剤用樹脂充填型フェライトキャリア。 The gap of the ferrite carrier core material according to claim 1 or 2 is filled with 3 to 20 parts by weight of resin with respect to 100 parts by weight of the carrier core material, and the surface thereof is further covered with resin. Resin-filled ferrite carrier for electrophotographic developers. 体積平均粒径が20〜50μm、飽和磁化が30〜80Am/kg、見掛け密度が1.0〜2.2g/cmである請求項3に記載の電子写真現像剤用樹脂充填型フェライトキャリア。 The resin-filled ferrite carrier for an electrophotographic developer according to claim 3 , having a volume average particle size of 20 to 50 µm, a saturation magnetization of 30 to 80 Am 2 / kg, and an apparent density of 1.0 to 2.2 g / cm 3. . 請求項4に記載の樹脂充填型フェライトキャリアとトナーとからなる電子写真現像剤。 An electrophotographic developer comprising the resin-filled ferrite carrier according to claim 4 and a toner. 補給用現像剤として用いられる請求項5に記載の電子写真現像剤。 6. The electrophotographic developer according to claim 5, which is used as a replenishing developer.
JP2015228926A 2015-11-24 2015-11-24 Resin-filled ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using ferrite carrier Pending JP2016042198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015228926A JP2016042198A (en) 2015-11-24 2015-11-24 Resin-filled ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using ferrite carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015228926A JP2016042198A (en) 2015-11-24 2015-11-24 Resin-filled ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using ferrite carrier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013058778A Division JP6089333B2 (en) 2013-03-21 2013-03-21 Resin-filled ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier

Publications (1)

Publication Number Publication Date
JP2016042198A true JP2016042198A (en) 2016-03-31

Family

ID=55591955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015228926A Pending JP2016042198A (en) 2015-11-24 2015-11-24 Resin-filled ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using ferrite carrier

Country Status (1)

Country Link
JP (1) JP2016042198A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271663A (en) * 2006-03-30 2007-10-18 Powdertech Co Ltd Ferrite carrier for electrophotographic developer, method for manufacturing the same and electrophotographic developer
JP2008310104A (en) * 2007-06-15 2008-12-25 Canon Inc Two-component developer
JP2009175666A (en) * 2007-12-26 2009-08-06 Powdertech Co Ltd Resin-filled carrier for electrophotographic developer and electrophotographic developer using resin-filled carrier
JP2012058344A (en) * 2010-09-06 2012-03-22 Powdertech Co Ltd Resin-filled ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271663A (en) * 2006-03-30 2007-10-18 Powdertech Co Ltd Ferrite carrier for electrophotographic developer, method for manufacturing the same and electrophotographic developer
JP2008310104A (en) * 2007-06-15 2008-12-25 Canon Inc Two-component developer
JP2009175666A (en) * 2007-12-26 2009-08-06 Powdertech Co Ltd Resin-filled carrier for electrophotographic developer and electrophotographic developer using resin-filled carrier
JP2012058344A (en) * 2010-09-06 2012-03-22 Powdertech Co Ltd Resin-filled ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier

Similar Documents

Publication Publication Date Title
JP5550105B2 (en) Resin-filled ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
JP6089333B2 (en) Resin-filled ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
JP5464639B2 (en) Resin-filled carrier for electrophotographic developer and electrophotographic developer using the resin-filled carrier
JP4001606B2 (en) Resin-filled carrier and electrophotographic developer using the carrier
JP4001609B2 (en) Carrier for electrophotographic developer and electrophotographic developer using the carrier
JP5464640B2 (en) Resin-filled carrier for electrophotographic developer and electrophotographic developer using the resin-filled carrier
JP5488890B2 (en) Porous ferrite core material for electrophotographic developer, resin-filled ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2009258595A (en) Resin-filled carrier for electrophotographic developer and electrophotographic developer using the resin-filled carrier
JP5629958B2 (en) Resin-filled ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2014197040A5 (en)
JP2010055014A (en) Resin-filled carrier for electrophotographic developer and electrophotographic developer using the resin-filled carrier
JP5550104B2 (en) Resin-filled ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer using the ferrite carrier
JP2013145300A5 (en)
US8431311B2 (en) Resin-filled carrier for electrophotographic developer, and electrophotographic developer using the resin-filled carrier
US9557682B2 (en) Resin-coated carrier for electrophotographic developer and electrophotographic developer using the resin-coated carrier
JP2016224237A (en) Ferrite carrier of resin filled type for electrophotographic developer and electrophotographic developer using the ferrite carrier of resin filled type
JP6465292B2 (en) Ferrite carrier core material for electrophotographic developer and method for producing the same
JP5348587B2 (en) Resin-filled carrier for electrophotographic developer and electrophotographic developer using the resin-filled carrier
JP5842300B2 (en) Resin-filled ferrite carrier for electrophotographic developer and electrophotographic developer using the ferrite carrier
JP2012208446A (en) Ferrite carrier core material for electrophotographic developer, ferrite carrier, and electrophotographic developer
JP2012215624A (en) Resin-filled ferrite carrier for electrophotographic developer and electrophotographic developer using the resin-filled ferrite carrier
JP2016042198A (en) Resin-filled ferrite carrier core material for electrophotographic developer and ferrite carrier, and electrophotographic developer using ferrite carrier
JP2016189024A (en) Resin-coated carrier for electrophotographic developer, and electrophotographic developer using electrophotographic developer
JP2015175996A (en) Resin-coated ferrite carrier for electrophotographic developer, and electrophotographic developer using resin-coated ferrite carrier

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20160310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606