JP2016042063A - Survey device - Google Patents

Survey device Download PDF

Info

Publication number
JP2016042063A
JP2016042063A JP2014166304A JP2014166304A JP2016042063A JP 2016042063 A JP2016042063 A JP 2016042063A JP 2014166304 A JP2014166304 A JP 2014166304A JP 2014166304 A JP2014166304 A JP 2014166304A JP 2016042063 A JP2016042063 A JP 2016042063A
Authority
JP
Japan
Prior art keywords
control circuit
heat insulating
dewar
vacuum heat
sensor control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014166304A
Other languages
Japanese (ja)
Other versions
JP6374265B2 (en
Inventor
波頭 経裕
Tsunehiro Namigashira
経裕 波頭
晃 塚本
Akira Tsukamoto
塚本  晃
田辺 圭一
Keiichi Tanabe
圭一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Japan Oil Gas and Metals National Corp
Original Assignee
International Superconductivity Technology Center
Japan Oil Gas and Metals National Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Japan Oil Gas and Metals National Corp filed Critical International Superconductivity Technology Center
Priority to JP2014166304A priority Critical patent/JP6374265B2/en
Publication of JP2016042063A publication Critical patent/JP2016042063A/en
Application granted granted Critical
Publication of JP6374265B2 publication Critical patent/JP6374265B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a survey device capable of operating an electronic circuit at an environmental temperature of 40°C or higher without using an element having a special specification.SOLUTION: A survey device has: a sensor 8 used at an environmental temperature of 40°C or higher; a sensor control circuit 9 including a control circuit for controlling the sensor 8 and a transmitter-receiver circuit; a vacuum insulation container 6 which is a vacuum insulation Dewar for immersing the sensor 8 into liquid nitrogen 7 and storing it, and storing the sensor control circuit 9 on a furthermore upper part than a liquid level of the liquid nitrogen 7; and a pressure-resistant envelope 1 for storing the vacuum insulation container 6.SELECTED DRAWING: Figure 1

Description

本発明は、探査装置に関するものであり、例えば、海中および坑井内において使用する耐環境性能、特に40℃を超える環境で使用する耐熱性能が要求される探査装置に関する。   The present invention relates to an exploration device, and for example, relates to an exploration device that is required to have an environmental resistance performance used in the sea and in a well, particularly a heat resistance performance used in an environment exceeding 40 ° C.

地下1000mを超える深部探査では、坑井中の水温が上昇し、地下3000mでは200℃におよぶ環境下でのセンシングが必要となる場合もある。このような環境でのセンシングを可能とするには、内蔵するセンサや電子回路を熱から守る技術が必要となる。例えば、石油増産技術のためのCO圧入のモニタリングや、シェールガスのモニタリング、熱水層の探査技術において、耐熱性が重要となる。 In deep exploration exceeding 1000m underground, the water temperature in the well rises, and at 3000m underground, sensing in an environment up to 200 ° C may be required. In order to enable sensing in such an environment, a technology for protecting the built-in sensors and electronic circuits from heat is required. For example, heat resistance is important in CO 2 injection monitoring, shale gas monitoring, and hydrothermal exploration technology for oil production technology.

従来、高温環境でセンサ及び制御回路を駆動するためには、スーパーインシュレーション(フィルムにアルミ蒸着したもの)などを用いて断熱していた。また、センサや回路部品に耐熱性能を持つものを使用した。   Conventionally, in order to drive a sensor and a control circuit in a high temperature environment, heat insulation is performed using super insulation (aluminum deposited on a film) or the like. In addition, sensors and circuit components with heat resistance were used.

しかしこの技術では資源探査の分野では対応しきれなくなっている。例えば、地下3000mに及ぶ地下探査や、熱水鉱床での探査では、到達温度が200℃にもおよぶ。   However, this technology cannot cope with the field of resource exploration. For example, in the underground exploration extending to 3000m underground and exploration in the hydrothermal deposit, the ultimate temperature reaches 200 ° C.

特技懇 no.264,p.92−p.100,2012.01Special skill No.264, p.92-p.100,2012.01

従来、本発明者等は海中および坑井内において使用する超電導量子干渉素子用耐圧容器として、CFRP(Carbon Fiber Reinforced Plastic)を用いた探査装置を用いている(例えば、特願2013−134809号参照)。   Conventionally, the present inventors have used exploration devices using CFRP (Carbon Fiber Reinforced Plastic) as a pressure vessel for a superconducting quantum interference device used in the sea and in a well (see, for example, Japanese Patent Application No. 2013-134809). .

図10は、本発明者が提案している探査装置の概略的構成図であり、CFRPを焼結した高耐圧フレーム41、先端キャップ部材42及びキャップ部材54を備えた高耐圧容器内に防振発泡ゲル43を介して真空断熱ガラスデュワ44を収容する。この真空断熱ガラスデュワ44に液体窒素45を注入し、この液体窒素45内にプローブ46の先端に取り付けたSQUID47を挿入して浸漬する。   FIG. 10 is a schematic configuration diagram of an exploration device proposed by the present inventor, in which a high-pressure vessel including a high-pressure frame 41 sintered with CFRP, a tip cap member 42, and a cap member 54 is provided with vibration isolation. A vacuum insulating glass dewar 44 is accommodated through the foamed gel 43. Liquid nitrogen 45 is injected into the vacuum heat insulating glass dewar 44, and SQUID 47 attached to the tip of the probe 46 is inserted and immersed in the liquid nitrogen 45.

一方、通信ケーブル52で接続されたFLL(Flux Locked Loop)回路50や送受信回路51を備えたSQUID制御回路49は、真空断熱ガラスデュワ44の外に配置するクライオスタット構造を用いている。この構造は十分な耐圧性能を有しており、また、SQUID制御回路等の電子回路以外の個々の部品に関しては耐熱温度250℃で構成している。   On the other hand, the SQUID control circuit 49 provided with the FLL (Flux Locked Loop) circuit 50 and the transmission / reception circuit 51 connected by the communication cable 52 uses a cryostat structure arranged outside the vacuum heat insulating glass dewar 44. This structure has a sufficient withstand voltage performance, and each component other than an electronic circuit such as a SQUID control circuit is configured at a heat resistant temperature of 250 ° C.

しかし、高耐圧容器を備えた探査装置を200℃環境に投入した場合、断熱保護されていない電子回路部は容易に100℃を超え、破損または動作不良となる。電子回路は通常の部品の保証温度が−20℃〜40℃である。そのため、通常の40℃耐熱の電子回路を、環境温度が40℃を超える環境で使用し続けた場合、電子回路の温度が40℃以上に上昇し、正常な動作が困難になる。   However, when an exploration device equipped with a high pressure resistant container is put in a 200 ° C. environment, an electronic circuit part that is not protected against heat insulation easily exceeds 100 ° C. and becomes damaged or malfunctions. The electronic circuit has a guaranteed temperature of normal parts of -20 ° C to 40 ° C. Therefore, when a normal 40 ° C. heat-resistant electronic circuit is continuously used in an environment where the environmental temperature exceeds 40 ° C., the temperature of the electronic circuit rises to 40 ° C. or more, and normal operation becomes difficult.

ここで、図11及び図12を参照して、高耐圧容器を備えた耐圧容器を200℃環境に投入した場合の温度上昇状況を説明する。図11は、本発明者が提案している探査装置の温度上昇試験の説明図であり、図10に示した高耐圧容器を用いた探査装置をヒータを備えた加熱炉55内に挿入して、ヒータの温度を200℃まで上昇させて、各部の温度上昇を測定する。   Here, with reference to FIG.11 and FIG.12, the temperature rise condition at the time of throwing the pressure vessel provided with the high pressure vessel into a 200 degreeC environment is demonstrated. FIG. 11 is an explanatory view of the temperature rise test of the exploration device proposed by the present inventor. The exploration device using the high pressure vessel shown in FIG. 10 is inserted into a heating furnace 55 equipped with a heater. Then, the heater temperature is raised to 200 ° C., and the temperature rise of each part is measured.

図12は、本発明者が提案している探査装置の温度上昇試験結果の説明図であり、ヒータは約100分で設定温度の200℃に到達し、それとともに、高耐圧フレーム、即ち、外壁の温度も約200分で200℃に到達する。一方、FLL回路部は、約30分で40℃を超えてしまう。なお、液体窒素中に浸漬されたSQUID部が250分程度の間は液体窒素の沸点である−196℃近傍の温度を維持し、液体窒素の気化による減少と共に温度が上昇する。また、液体窒素の液面の近傍に配置されている断熱材部は活発に液体窒素が蒸発している場合に−40℃程度まで下がり、その後、周囲の温度上昇にあわせて徐々に温度は上昇し、200分後には50℃に達した。このことは、電子回路をガラスデュワ内に内包することで、温度上昇を抑制できることを示唆している。   FIG. 12 is an explanatory view of the temperature rise test result of the exploration device proposed by the present inventor. The heater reaches a set temperature of 200 ° C. in about 100 minutes, and at the same time, a high pressure frame, that is, an outer wall The temperature reaches 200 ° C. in about 200 minutes. On the other hand, the FLL circuit section exceeds 40 ° C. in about 30 minutes. The SQUID part immersed in liquid nitrogen maintains a temperature in the vicinity of −196 ° C., which is the boiling point of liquid nitrogen, for about 250 minutes, and the temperature rises with a decrease due to vaporization of liquid nitrogen. In addition, the heat insulating material portion arranged in the vicinity of the liquid nitrogen surface is lowered to about −40 ° C. when the liquid nitrogen is actively evaporating, and then the temperature gradually rises as the ambient temperature rises. After 200 minutes, the temperature reached 50 ° C. This suggests that the temperature rise can be suppressed by enclosing the electronic circuit in the glass dewar.

なお、特に耐熱性能を持たせた素子で電子回路を構成した場合は電子回路の動作温度が―20℃〜80℃のものもある。このような特別な仕様の素子を使うことは回路設計の自由度を阻害し、高価となる上、それでも200℃に耐え得る電子回路の製作は困難である。   In particular, when an electronic circuit is configured with an element having heat resistance, there is an electronic circuit having an operating temperature of -20 ° C to 80 ° C. The use of such specially-designed elements hinders the degree of freedom in circuit design and becomes expensive, and it is still difficult to produce an electronic circuit that can withstand 200 ° C.

したがって、特別仕様の素子を用いることなく40℃以上の環境温度で電子回路が動作可能な探査装置を実現することを目的とする。   Accordingly, it is an object of the present invention to realize an exploration device capable of operating an electronic circuit at an environmental temperature of 40 ° C. or higher without using a specially designed element.

開示する一観点からは、環境温度40℃以上で使用するセンサと、前記センサを制御する制御回路及び送受信回路を含むセンサ制御回路と、前記センサを液体窒素中に浸漬して収容するとともに、前記センサ制御回路を前記液体窒素の液面より上部に収容する真空断熱容器と、前記真空断熱容器を収容する耐圧外囲器とを有することを特徴とする探査装置が提供される。   From one aspect to be disclosed, a sensor used at an environmental temperature of 40 ° C. or higher, a sensor control circuit including a control circuit and a transmission / reception circuit for controlling the sensor, and the sensor is immersed in liquid nitrogen and accommodated, and There is provided an exploration device comprising: a vacuum heat insulating container that houses a sensor control circuit above the liquid nitrogen surface; and a pressure-resistant envelope that houses the vacuum heat insulating container.

開示の探査装置によれば、特別仕様の素子を用いることなく40℃以上の環境温度で電子回路の動作が可能になる。   According to the disclosed exploration device, an electronic circuit can be operated at an environmental temperature of 40 ° C. or higher without using a specially-designed element.

本発明の実施の形態の探査装置の説明図である。It is explanatory drawing of the search apparatus of embodiment of this invention. 本発明の実施例1の探査装置の概略的構成図である。It is a schematic block diagram of the search device of Example 1 of this invention. 本発明の実施例2の探査装置の概略的構成図である。It is a schematic block diagram of the search apparatus of Example 2 of this invention. 本発明の実施例3の探査装置の概略的構成図である。It is a schematic block diagram of the search apparatus of Example 3 of this invention. 本発明の実施例4の探査装置の概略的構成図である。It is a schematic block diagram of the search apparatus of Example 4 of this invention. 本発明の実施例5の探査装置の概略的構成図である。It is a schematic block diagram of the search apparatus of Example 5 of this invention. 本発明の実施例6の探査装置の概略的構成図である。It is a schematic block diagram of the search apparatus of Example 6 of this invention. 本発明の実施例7の探査装置の概略的構成図である。It is a schematic block diagram of the search apparatus of Example 7 of this invention. 本発明の実施例8の探査装置の概略的構成図である。It is a schematic block diagram of the search apparatus of Example 8 of this invention. 本発明者が提案している探査装置の概略的構成図である。It is a schematic block diagram of the search device which this inventor has proposed. 本発明者が提案している探査装置の温度上昇試験の説明図である。It is explanatory drawing of the temperature rise test of the exploration apparatus which this inventor has proposed. 本発明者が提案している探査装置の温度上昇試験結果の説明図である。It is explanatory drawing of the temperature rise test result of the search device which this inventor has proposed.

ここで、図1を参照して、本発明の実施の形態の探査装置を説明する。図1は、本発明の実施の形態の探査装置の説明図である。本発明の探査装置は、環境温度40℃以上で使用するセンサ8と、センサ8を制御する制御回路及び送受信回路を含むセンサ制御回路9と、液体窒素7を収容する真空断熱容器6と、真空断熱容器6を収容する耐圧外囲器1を有している。本発明においては、センサ8及びセンサ制御回路9は真空断熱容器6内に収容され、センサ8は液体窒素7中に浸漬して収容するとともに、センサ制御回路9は液体窒素7の液面より上部に収容する。なお、センサ8としては、高温超電導SQUID(量子干渉計)が典型的なものである。   Here, with reference to FIG. 1, the exploration device according to the embodiment of the present invention will be described. FIG. 1 is an explanatory diagram of a search device according to an embodiment of the present invention. The exploration device of the present invention includes a sensor 8 used at an environmental temperature of 40 ° C. or higher, a sensor control circuit 9 including a control circuit for controlling the sensor 8 and a transmission / reception circuit, a vacuum heat insulating container 6 for storing liquid nitrogen 7, and a vacuum. A pressure-resistant envelope 1 that accommodates the heat insulating container 6 is provided. In the present invention, the sensor 8 and the sensor control circuit 9 are accommodated in the vacuum heat insulating container 6, the sensor 8 is immersed and accommodated in the liquid nitrogen 7, and the sensor control circuit 9 is above the liquid surface of the liquid nitrogen 7. To house. The sensor 8 is typically a high temperature superconducting SQUID (quantum interferometer).

耐圧外囲器1は、中空円筒状フレーム2と、先端キャップ部材3と後端キャップ部材4を備えている。この中空円筒状フレーム2は、非磁性のものであれば良いが、環境耐圧が10MPaの部材、特に、CFRP焼結体で形成した中空円筒状フレームが望ましい。また、先端キャップ部材3及び後端キャップ部材4は耐熱温度が200℃以上の素材で形成することが望ましく、例えば、PEEK(ポリエーテルエーテルケトン)剤やPPS(ポリフェニルサルファイド)、RENY(結晶性エンジニアリングプラスチック:登録商標)等の耐熱性の高いプラスチックが望ましい。   The pressure envelope 1 includes a hollow cylindrical frame 2, a front end cap member 3, and a rear end cap member 4. The hollow cylindrical frame 2 may be any non-magnetic material, but is preferably a member having an environmental pressure resistance of 10 MPa, particularly a hollow cylindrical frame formed of a CFRP sintered body. Further, the front end cap member 3 and the rear end cap member 4 are preferably formed of a material having a heat resistant temperature of 200 ° C. or higher. For example, PEEK (polyether ether ketone) agent, PPS (polyphenyl sulfide), RENY (crystallinity) Highly heat-resistant plastic such as engineering plastic (registered trademark) is desirable.

真空断熱容器6としては、ステンレス製真空断熱デュワでも良いし、ガラス製真空断熱デュワでも良い。ステンレス製真空断熱デュワの場合には、設計形状の自由度が大きいとともに機械的強度は十分であるものの、断熱性が十分ではない。一方、ガラス製真空断熱デュワの場合には断熱性は十分であるもものの、設計形状の自由度が小さいとともに機械的強度が十分ではなく、100cm以上の長さのガラス製真空断熱デュワを製造することは困難である。   The vacuum heat insulating container 6 may be a stainless steel vacuum heat insulating dewar or a glass vacuum heat insulating dewar. In the case of a stainless steel vacuum heat insulation dewar, the degree of freedom of design shape is large and the mechanical strength is sufficient, but the heat insulation is not sufficient. On the other hand, in the case of a glass vacuum insulation dewar, although the heat insulation is sufficient, the degree of freedom of the design shape is small and the mechanical strength is not sufficient, and a glass vacuum insulation dewar having a length of 100 cm or more is produced. It is difficult.

また、断熱性を高めるために、液体窒素7の液面の上部に断熱材10を設けても良い。この断熱材10としてはスタイロフォームやメラミンフォームを用いれば良い。さらに、断熱性を高めるためには、センサ制御回路9の上方及び下方にガラス製の二重管構造の中空円筒状の真空断熱部材を設けても良い。これらのガラスには、パイレックス(登録商標)の他、石英ガラスなどを使用することができる。この場合、真空断熱容器6がガラス製真空断熱デュワの場合には、センサ制御回路9が過剰に冷却される可能性があるので、センサ制御回路9の近傍に温度制御用加熱手段を設けても良い。   Moreover, in order to improve heat insulation, you may provide the heat insulating material 10 in the upper part of the liquid level of the liquid nitrogen 7. FIG. As the heat insulating material 10, a styrofoam or a melamine foam may be used. Further, in order to enhance the heat insulation, a hollow cylindrical vacuum heat insulating member having a glass double tube structure may be provided above and below the sensor control circuit 9. In addition to Pyrex (registered trademark), quartz glass or the like can be used for these glasses. In this case, when the vacuum heat insulating container 6 is a glass vacuum heat insulating dewar, the sensor control circuit 9 may be excessively cooled. Therefore, even if a temperature control heating means is provided in the vicinity of the sensor control circuit 9. good.

また、100cm以上の長さの断熱性に優れた真空断熱用器6を形成するためには、2つの真空断熱デュワを用いた分離構造にする。例えば、液体窒素7を収容するガラス製真空断熱デュワに、このガラス製断熱デュワに長軸方向において二重管構造の中空円筒状のステンレス製真空断熱デュワを接続させても良い。この場合には、センサ制御回路9は二重管構造の中空円筒状のステンレス製真空断熱デュワ中に収容する。   Moreover, in order to form the vacuum heat insulating device 6 having a length of 100 cm or more and excellent heat insulating properties, a separation structure using two vacuum heat insulating dewars is used. For example, a hollow vacuum stainless steel vacuum dewar having a double tube structure may be connected to a glass vacuum heat insulation dewar containing liquid nitrogen 7 in the long axis direction of the glass heat insulation dewar. In this case, the sensor control circuit 9 is accommodated in a stainless steel vacuum heat insulating dewar having a hollow cylindrical shape with a double tube structure.

或いは、液体窒素7を収容するガラス製真空断熱デュワに、このガラス製断熱デュワに長軸方向に二重管構造の中空円筒状のガラス製真空断熱デュワを溶接により接続しても良い。この場合には、センサ制御回路9は、二重管構造の中空円筒状のガラス製真空断熱デュワ中に収容する。これらの分離構造の場合には、貫通真空断熱デュワの内径をガラス製真空断熱デュワの内径より大きくしても良く、貫通真空断熱デュワ内に蒸発窒素排気管や冷却用冷媒循環管を設ける場合に、配置自由度を大きくすることができる。   Alternatively, a glass vacuum heat insulation dewar having a double tube structure may be connected to the glass heat insulation dewar containing the liquid nitrogen 7 in the major axis direction by welding to the glass heat insulation dewar. In this case, the sensor control circuit 9 is accommodated in a hollow cylindrical glass vacuum heat insulating dewar having a double tube structure. In the case of these separation structures, the inside diameter of the through vacuum insulation dewar may be larger than the inside diameter of the glass vacuum insulation dewar, and when an evaporating nitrogen exhaust pipe or a cooling refrigerant circulation pipe is provided in the through vacuum insulation dewar. , The degree of freedom of arrangement can be increased.

真空断熱容器6が長くなると、液体窒素7の液面より上部に収容したセンサ制御回路9の温度が上昇しやすくなる。そこで、センサ制御回路の近傍を通過するように、液体窒素7が気化した蒸発窒素を耐圧外囲器1の外に排出するとともに、センサ制御回路9を冷却する蒸発窒素排出管を設けても良い。   When the vacuum heat insulating container 6 becomes longer, the temperature of the sensor control circuit 9 accommodated above the liquid nitrogen 7 surface is likely to rise. Therefore, an evaporated nitrogen exhaust pipe for discharging the evaporated nitrogen evaporated from the liquid nitrogen 7 to the outside of the pressure-resistant envelope 1 and cooling the sensor control circuit 9 may be provided so as to pass through the vicinity of the sensor control circuit. .

或いは、センサ制御回路9の近傍にセンサ制御回路9を冷却する冷媒を耐圧外囲器1の外から循環供給する回路冷却用冷媒循環管を設けても良い。或いは、最近は200℃の環境で動作するペルチェ効果素子が登場したので、センサ制御回路9に、ペルチェ効果素子を接触させた状態で固定して必要に応じてセンサ制御回路9を冷却しても良い。なお、センサ制御回路9の近傍が適正動作温度より低い場合には、ペルチェ効果素子に流す電流の向きを逆にして加熱するようにしても良い。   Alternatively, a circuit cooling refrigerant circulation pipe that circulates and supplies a refrigerant for cooling the sensor control circuit 9 from outside the pressure-resistant envelope 1 may be provided in the vicinity of the sensor control circuit 9. Alternatively, since a Peltier effect element that operates in an environment of 200 ° C. has recently appeared, even if the sensor control circuit 9 is fixed to the sensor control circuit 9 while being in contact with the sensor control circuit 9 and the sensor control circuit 9 is cooled as necessary, good. When the vicinity of the sensor control circuit 9 is lower than the proper operating temperature, heating may be performed with the direction of the current flowing through the Peltier effect element reversed.

このように、本発明の実施の形態においては、真空断熱容器6の内部にセンサ制御回路9を収容しているので、環境温度が40℃以上であっても、動作保証温度が−20℃〜40℃の通常の電子回路を用いたセンサ制御回路9が適正に動作する。   Thus, in the embodiment of the present invention, since the sensor control circuit 9 is accommodated in the vacuum heat insulating container 6, even when the environmental temperature is 40 ° C. or higher, the guaranteed operation temperature is −20 ° C. to The sensor control circuit 9 using a normal electronic circuit of 40 ° C. operates properly.

その結果、高温超電導SQUIDを含む地下資源探査および地中モニタリング用センサが40℃以上の高温の環境下でも駆動できる高耐圧耐熱クライオスタットを提供することができる。延いては、石油、天然ガス、EOR(石油増進回収技術)をはじめとする資源、エネルギー分野へ極めて高い技術的貢献をすることができる。   As a result, it is possible to provide a high pressure and heat resistant cryostat capable of driving an underground resource exploration and underground monitoring sensor including a high temperature superconducting SQUID even in a high temperature environment of 40 ° C. or higher. As a result, it can make an extremely high technical contribution to the resources and energy fields including oil, natural gas, and EOR (Enhanced Oil Recovery Technology).

次に、図2を参照して、本発明の実施例1の探査装置を説明する。図2は本発明の実施例1の探査装置の概略的構成図であり、CFRP焼結体からなる高耐圧フレーム11に先端キャップ部材12をネジ嵌合部及びOリング(いずれも図示は省略)を介して嵌合して高耐圧外囲器を形成する。この高耐圧外囲器内に防振発泡ゲル13を介してステンレス真空デュワ14を挿入する。このステンレス真空デュワ14内に液体窒素15を注入し、この液体窒素15中に、プローブ16の先端に取り付けられたSQUID17を浸漬する。   Next, with reference to FIG. 2, the exploration device according to the first embodiment of the present invention will be described. FIG. 2 is a schematic configuration diagram of the exploration device according to the first embodiment of the present invention, in which a tip cap member 12 is screwed into a high pressure-resistant frame 11 made of a CFRP sintered body and an O-ring (both not shown). To form a high voltage envelope. A stainless steel vacuum dewar 14 is inserted through the vibration-proof foam gel 13 into the high pressure resistant envelope. Liquid nitrogen 15 is injected into the stainless steel vacuum dewar 14, and the SQUID 17 attached to the tip of the probe 16 is immersed in the liquid nitrogen 15.

また、液体窒素15の液面の上部をスタイロフォームを用いた断熱材18で断熱し、ステンレス真空デュワ14の断熱材18より上の領域に、FLL回路20及び送受信回路21を含むSQUID制御回路19を配置して通信ケーブル22で接続する。次いで、断熱シール材23を介してキャップ部材24をネジ嵌合部及びOリング(いずれも図示は省略)を利用して嵌合する。   Further, the upper part of the liquid nitrogen 15 is thermally insulated with a heat insulating material 18 using a styrofoam, and a SQUID control circuit 19 including an FLL circuit 20 and a transmission / reception circuit 21 is provided above the heat insulating material 18 of the stainless steel vacuum dewar 14. Arrange and connect with the communication cable 22. Next, the cap member 24 is fitted through the heat insulating sealing material 23 using a screw fitting portion and an O-ring (both not shown).

このように、本発明の実施例1においては、ステンレス真空デュワ14の液体窒素15の液面より上部にSQUID制御回路19を収容しているので、環境温度が40℃以上に上昇しても、SQUID制御回路19の温度を通常の電子回路の動作保証温度である−20℃〜40℃に保つことができる。   Thus, in Example 1 of the present invention, since the SQUID control circuit 19 is housed above the liquid nitrogen 15 level of the stainless steel vacuum dewar 14, even if the environmental temperature rises to 40 ° C. or higher, The temperature of the SQUID control circuit 19 can be maintained at −20 ° C. to 40 ° C., which is the operation guarantee temperature of a normal electronic circuit.

また、真空断熱容器としてステンレス真空デュワを用いているので、設計形状に自由度があり、取り扱いも容易になる。一方、熱の回り込みはガラスデュワには劣るため、比較的低温環境での使用に向いている。   Further, since a stainless steel vacuum dewar is used as the vacuum heat insulating container, the design shape is flexible and handling is easy. On the other hand, since the heat wraparound is inferior to glass dewar, it is suitable for use in a relatively low temperature environment.

次に、図3を参照して、本発明の実施例2の探査装置を説明する。図3は本発明の実施例2の探査装置の概略的構成図であり、CFRP焼結体からなる高耐圧フレーム11に先端キャップ部材12をネジ嵌合部及びOリング(いずれも図示は省略)を介して嵌合して高耐圧外囲器を形成する。この高耐圧外囲器内に防振発泡ゲル13を介してステンレス真空デュワ14を挿入する。このステンレス真空デュワ14内に液体窒素15を注入し、この液体窒素15中に、プローブ16の先端に取り付けられたSQUID17を浸漬する。   Next, with reference to FIG. 3, the exploration device according to the second embodiment of the present invention will be described. FIG. 3 is a schematic configuration diagram of an exploration device according to a second embodiment of the present invention, in which a tip cap member 12 is screwed into a high pressure resistant frame 11 made of a CFRP sintered body and an O-ring (not shown). To form a high voltage envelope. A stainless steel vacuum dewar 14 is inserted through the vibration-proof foam gel 13 into the high pressure resistant envelope. Liquid nitrogen 15 is injected into the stainless steel vacuum dewar 14, and the SQUID 17 attached to the tip of the probe 16 is immersed in the liquid nitrogen 15.

また、液体窒素15の液面の上部をメラミンフォームを用いた断熱材18で断熱し、ステンレス真空デュワ14の断熱材18より上の領域に、FLL回路20及び送受信回路21を含むSQUID制御回路19を配置して通信ケーブル22で接続する。次いで、断熱シール材23を介してキャップ部材24をネジ嵌合部及びOリング(いずれも図示は省略)を利用して嵌合する。この時、SQUID制御回路19を上下から挟み込むように、ガラス製の二重管構造で中空円筒状の真空断熱部材25,26を設ける。   Further, the upper part of the liquid nitrogen 15 is thermally insulated by a heat insulating material 18 using melamine foam, and a SQUID control circuit 19 including an FLL circuit 20 and a transmission / reception circuit 21 in a region above the heat insulating material 18 of the stainless steel vacuum dewar 14. Are connected by a communication cable 22. Next, the cap member 24 is fitted through the heat insulating sealing material 23 using a screw fitting portion and an O-ring (both not shown). At this time, hollow cylindrical vacuum heat insulating members 25 and 26 having a glass double tube structure are provided so as to sandwich the SQUID control circuit 19 from above and below.

このように、本発明の実施例2においても、ステンレス真空デュワ14の液体窒素15の液面より上部にSQUID制御回路19を収容しているので、環境温度が40℃以上に上昇しても、SQUID制御回路19の温度を通常の電子回路の動作保証温度である−20℃〜40℃に保つことができる。   Thus, also in Example 2 of the present invention, since the SQUID control circuit 19 is accommodated above the liquid nitrogen 15 level of the stainless vacuum dewar 14, even if the environmental temperature rises to 40 ° C. or higher, The temperature of the SQUID control circuit 19 can be maintained at −20 ° C. to 40 ° C., which is the operation guarantee temperature of a normal electronic circuit.

また、SQUID制御回路19を上下から挟み込むように、ガラス製の二重管構造で中空円筒状の真空断熱部材25,26を設けて、SQUID制御回路19の配置領域の断熱性を向上している。その結果、環境温度が上昇しても、SQUID制御回路19の温度上昇をより効率的に抑制することができる。   In addition, the hollow cylindrical vacuum heat insulating members 25 and 26 are provided in a glass double tube structure so as to sandwich the SQUID control circuit 19 from above and below, thereby improving the heat insulating property of the arrangement area of the SQUID control circuit 19. . As a result, even if the environmental temperature rises, the temperature rise of the SQUID control circuit 19 can be more efficiently suppressed.

次に、図4を参照して、本発明の実施例3の探査装置を説明するが、この実施例3は上記の実施例2のステンレス真空デュワを真空断熱ガラスデュワに置き換えるとともに、SQUID制御回路の近傍にヒータを設けたものである。図4は本発明の実施例3の探査装置の概略的構成図であり、CFRP焼結体からなる高耐圧フレーム11に先端キャップ部材12をネジ嵌合部及びOリング(いずれも図示は省略)を介して嵌合して高耐圧外囲器を形成する。この高耐圧外囲器内に防振発泡ゲル13を介して真空断熱ガラスデュワ27を挿入する。この真空断熱ガラスデュワ27内に液体窒素15を注入し、この液体窒素15中に、プローブ16の先端に取り付けられたSQUID17を浸漬する。   Next, with reference to FIG. 4, the exploration device according to the third embodiment of the present invention will be described. In the third embodiment, the stainless steel vacuum dewar of the second embodiment is replaced with a vacuum heat insulating glass dewar, and the SQUID control circuit. A heater is provided in the vicinity. FIG. 4 is a schematic configuration diagram of an exploration device according to a third embodiment of the present invention, in which a tip cap member 12 is screwed into a high pressure resistant frame 11 made of a CFRP sintered body, and an O-ring (not shown). To form a high voltage envelope. A vacuum heat insulating glass dewar 27 is inserted into the high pressure resistant envelope through the antivibration foam gel 13. Liquid nitrogen 15 is injected into the vacuum heat insulating glass dewar 27, and the SQUID 17 attached to the tip of the probe 16 is immersed in the liquid nitrogen 15.

また、液体窒素15の液面の上部をメラミンフォームを用いた断熱材18で断熱し、真空断熱ガラスデュワ27の断熱材18より上の領域に、FLL回路20及び送受信回路21を含むSQUID制御回路19を配置して通信ケーブル22で接続する。次いで、断熱シール材23を介してキャップ部材24をネジ嵌合部及びOリング(いずれも図示は省略)を利用して嵌合する。この時、SQUID制御回路19を上下から挟み込むように、ガラス製の二重管構造で中空円筒状の真空断熱部材25,26を設けるとともに、SQUID制御回路19の近傍に温度制御用ヒータ28を配置する。   Further, the upper part of the liquid nitrogen 15 is thermally insulated with a heat insulating material 18 using melamine foam, and a SQUID control circuit 19 including an FLL circuit 20 and a transmission / reception circuit 21 in a region above the heat insulating material 18 of the vacuum heat insulating glass dewar 27. Are connected by a communication cable 22. Next, the cap member 24 is fitted through the heat insulating sealing material 23 using a screw fitting portion and an O-ring (both not shown). At this time, vacuum cylindrical heat insulating members 25 and 26 having a glass double tube structure are provided so as to sandwich the SQUID control circuit 19 from above and below, and a temperature control heater 28 is disposed in the vicinity of the SQUID control circuit 19. To do.

この実施例3においては、上述の実施例1に比べてより環境温度の高い状況で使用することを前提としているので、先端キャップ部材12としては、耐熱温度が260℃のPPS製の先端キャップ部材を用いる。また、その他の防振発泡ゲル13や断熱シール材23等としても、耐熱温度が200℃以上の素材を用いる。   Since the third embodiment is premised on use in a situation where the environmental temperature is higher than that of the first embodiment, the tip cap member 12 is a tip cap member made of PPS having a heat resistant temperature of 260 ° C. Is used. In addition, as the other anti-vibration foam gel 13 and the heat insulating seal material 23, a material having a heat resistant temperature of 200 ° C. or more is used.

このように、本発明の実施例3においても、真空断熱ガラスデュワ27の液体窒素15の液面より上部にSQUID制御回路19を収容しているので、環境温度が40℃以上に上昇しても、SQUID制御回路19の温度を通常の電子回路の動作保証温度である−20℃〜40℃に保つことができる。   Thus, also in Example 3 of the present invention, since the SQUID control circuit 19 is housed above the liquid nitrogen 15 liquid surface of the vacuum heat insulating glass dewar 27, even if the environmental temperature rises to 40 ° C. or higher, The temperature of the SQUID control circuit 19 can be maintained at −20 ° C. to 40 ° C., which is the operation guarantee temperature of a normal electronic circuit.

但し、断熱性が良好であるため、SQUID制御回路19の配置領域の温度が電子回路の適正動作温度より下がりすぎる虞がある。その場合には、温度制御用ヒータ28により加熱して、SQUID制御回路19を訂正動作温度の範囲に保つことができる。   However, since the heat insulation is good, there is a possibility that the temperature of the arrangement area of the SQUID control circuit 19 is too lower than the proper operating temperature of the electronic circuit. In that case, the SQUID control circuit 19 can be kept within the range of the correction operation temperature by being heated by the temperature control heater 28.

次に、図5を参照して、本発明の実施例4の探査装置を説明するが、真空断熱容器を2段階の分離構造にしたものである。図5は本発明の実施例4の探査装置の概略的構成図であり、CFRP焼結体からなる高耐圧フレーム11に先端キャップ部材12をネジ嵌合部及びOリング(いずれも図示は省略)を介して嵌合して高耐圧外囲器を形成する。この高耐圧外囲器内に防振発泡ゲル13を介して真空断熱ガラスデュワ29を挿入するとともに、二重管構造の貫通真空断熱ステンレスデュワ30を真空断熱ガラスデュワ29の上部に接合する。この真空断熱ガラスデュワ29内に液体窒素15を注入し、この液体窒素15中に、プローブ16の先端に取り付けられたSQUID17を浸漬する。   Next, with reference to FIG. 5, the exploration device according to the fourth embodiment of the present invention will be described. The vacuum heat insulating container has a two-stage separation structure. FIG. 5 is a schematic configuration diagram of an exploration device according to a fourth embodiment of the present invention. A tip cap member 12 is screwed into a high pressure resistant frame 11 made of a CFRP sintered body and an O-ring (both not shown). To form a high voltage envelope. A vacuum heat insulating glass dewar 29 is inserted into the high pressure resistant envelope through the antivibration foam gel 13, and a through vacuum heat insulating stainless steel dewar 30 having a double tube structure is joined to the upper portion of the vacuum heat insulating glass dewar 29. Liquid nitrogen 15 is injected into the vacuum heat insulating glass dewar 29, and the SQUID 17 attached to the tip of the probe 16 is immersed in the liquid nitrogen 15.

また、液体窒素15の液面の上部をメラミンフォームを用いた断熱材18で断熱し、貫通真空断熱ステンレスデュワ30内に、FLL回路20及び送受信回路21を含むSQUID制御回路19を配置して通信ケーブル22で接続する。次いで、断熱シール材23を介してキャップ部材24をネジ嵌合部及びOリング(いずれも図示は省略)を利用して嵌合する。   Further, the upper part of the liquid nitrogen 15 is thermally insulated with a heat insulating material 18 using melamine foam, and a SQUID control circuit 19 including an FLL circuit 20 and a transmission / reception circuit 21 is arranged in a through vacuum heat insulating stainless steel dewar 30 for communication. Connect with cable 22. Next, the cap member 24 is fitted through the heat insulating sealing material 23 using a screw fitting portion and an O-ring (both not shown).

この実施例4においても、上述の実施例1に比べてより環境温度の高い状況で使用することを前提としているので、先端キャップ部材12としては、耐熱温度が260℃のPPS製の先端キャップ部材を用いる。また、その他の防振発泡ゲル13や断熱シール材23等としても、耐熱温度が200℃以上の素材を用いる。   Since the fourth embodiment is also premised on use in a situation where the environmental temperature is higher than that of the first embodiment, the tip cap member 12 is made of a PPS tip cap member having a heat resistant temperature of 260 ° C. Is used. In addition, as the other anti-vibration foam gel 13 and the heat insulating seal material 23, a material having a heat resistant temperature of 200 ° C. or more is used.

真空断熱ガラスデュワは端部のみで内側のガラスと外側のガラスを結合した構造であるため、長さ方向に大型になると強度的に弱くなる。例えば外径55mm、内径40mmのガラスデュワでは、長さ1mが限界である。しかし、本発明の実施例4においては、貫通真空断熱ステンレスデュワ30を用いて分離構造にしているので、1m以上の長い真空断熱容器を作成することができる。   Since the vacuum heat insulating glass dewar has a structure in which the inner glass and the outer glass are combined only at the end portion, the strength becomes weaker when the size becomes larger in the length direction. For example, in a glass dewar having an outer diameter of 55 mm and an inner diameter of 40 mm, a length of 1 m is the limit. However, in Example 4 of this invention, since it is set as the isolation | separation structure using the penetration vacuum heat insulation stainless steel dewar 30, the long vacuum heat insulation container of 1 m or more can be created.

また、分離構造にしているので、メンテナンスが容易になる。また、SQUID制御回路19の配置部とプローブ16の配置部の断熱容器の径を変えることも容易になり、クライオスタットの設計自由度が広がる。なお、その他の作用効果は上記の実施例1と同様である。   In addition, the separation structure makes maintenance easy. In addition, it becomes easy to change the diameter of the heat insulating container between the arrangement part of the SQUID control circuit 19 and the arrangement part of the probe 16, and the design freedom of the cryostat is expanded. Other functions and effects are the same as those of the first embodiment.

次に、図6を参照して、本発明の実施例5の探査装置を説明するが、真空断熱容器をガラス製の2段階の分離構造にしたものである。図6は本発明の実施例5の探査装置の概略的構成図であり、CFRP焼結体からなる高耐圧フレーム11に先端キャップ部材12をネジ嵌合部及びOリング(いずれも図示は省略)を介して嵌合して高耐圧外囲器を形成する。この高耐圧外囲器内に防振発泡ゲル13を介して真空断熱ガラスデュワ29と貫通真空断熱ガラスデュワ31を溶接部32で溶接して一体化した真空断熱容器を挿入する。この真空断熱ガラスデュワ29内に液体窒素15を注入し、この液体窒素15中に、プローブ16の先端に取り付けられたSQUID17を浸漬する。   Next, with reference to FIG. 6, the exploration device according to the fifth embodiment of the present invention will be described. The vacuum heat insulating container has a two-stage separation structure made of glass. FIG. 6 is a schematic configuration diagram of an exploration device according to a fifth embodiment of the present invention, in which a tip cap member 12 is screwed into a high pressure frame 11 made of a CFRP sintered body and a screw fitting portion and an O-ring (both not shown). To form a high voltage envelope. A vacuum heat insulating container in which a vacuum heat insulating glass dewar 29 and a through vacuum heat insulating glass dewar 31 are welded and integrated with each other through a vibration isolating foam gel 13 is inserted into the high pressure resistant envelope. Liquid nitrogen 15 is injected into the vacuum heat insulating glass dewar 29, and the SQUID 17 attached to the tip of the probe 16 is immersed in the liquid nitrogen 15.

また、液体窒素15の液面の上部をメラミンフォームを用いた断熱材18で断熱し、貫通真空断熱ガラスデュワ31内に、FLL回路20及び送受信回路21を含むSQUID制御回路19を配置して通信ケーブル22で接続する。次いで、断熱シール材23を介してキャップ部材24をネジ嵌合部及びOリング(いずれも図示は省略)を利用して嵌合する。   Further, the upper surface of the liquid nitrogen 15 is insulated with a heat insulating material 18 using melamine foam, and a SQUID control circuit 19 including an FLL circuit 20 and a transmission / reception circuit 21 is arranged in a through-vacuum heat insulating glass dewar 31 to provide a communication cable. 22 is connected. Next, the cap member 24 is fitted through the heat insulating sealing material 23 using a screw fitting portion and an O-ring (both not shown).

この実施例5においても、上述の実施例1に比べてより環境温度の高い状況で使用することを前提としているので、先端キャップ部材12としては、耐熱温度が260℃のPPS製の先端キャップ部材を用いる。また、その他の防振発泡ゲル13や断熱シール材23等としても、耐熱温度が200℃以上の素材を用いる。   Since the fifth embodiment is also premised on use in a situation where the environmental temperature is higher than that of the first embodiment, the tip cap member 12 is made of a PPS tip cap member having a heat resistant temperature of 260 ° C. Is used. In addition, as the other anti-vibration foam gel 13 and the heat insulating seal material 23, a material having a heat resistant temperature of 200 ° C. or more is used.

また、真空断熱容器を真空断熱ガラスデュワ29と貫通真空断熱ガラスデュワ31とを溶接して形成しているので、1m以上の長さの真空断熱容器を実現することができる。また、上段部を貫通真空断熱ガラスデュワで形成しているので、上記の実施例4に比べてSQUID制御回路19の配置部の断熱性をより向上することができる。   Further, since the vacuum heat insulating container is formed by welding the vacuum heat insulating glass dewar 29 and the through vacuum heat insulating glass dewar 31, a vacuum heat insulating container having a length of 1 m or more can be realized. Moreover, since the upper stage part is formed with the penetration vacuum heat insulation glass dewar, the heat insulation of the arrangement | positioning part of the SQUID control circuit 19 can be improved more compared with said Example 4. FIG.

次に、図7を参照して、本発明の実施例6の探査装置を説明するが、実施例6は上記の実施例5に蒸発窒素排出管を設けたもので、その他の構造は上記の実施例5と同様である。図7は本発明の実施例6の探査装置の概略的構成図であり、CFRP焼結体からなる高耐圧フレーム11に先端キャップ部材12をネジ嵌合部及びOリング(いずれも図示は省略)を介して嵌合して高耐圧外囲器を形成する。この高耐圧外囲器内に防振発泡ゲル13を介して真空断熱ガラスデュワ29と貫通真空断熱ガラスデュワ31を溶接部32で溶接して一体化した真空断熱容器を挿入する。この真空断熱ガラスデュワ29内に液体窒素15を注入し、この液体窒素15中に、プローブ16の先端に取り付けられたSQUID17を浸漬する。   Next, with reference to FIG. 7, the exploration device according to the sixth embodiment of the present invention will be described. The sixth embodiment is the above-described fifth embodiment provided with an evaporative nitrogen exhaust pipe, and the other structures are the same as those described above. The same as in the fifth embodiment. FIG. 7 is a schematic configuration diagram of an exploration device according to a sixth embodiment of the present invention, in which a tip cap member 12 is screwed into a high pressure-resistant frame 11 made of a CFRP sintered body and a screw fitting portion and an O-ring (both not shown). To form a high voltage envelope. A vacuum heat insulating container in which a vacuum heat insulating glass dewar 29 and a through vacuum heat insulating glass dewar 31 are welded and integrated with each other through a vibration isolating foam gel 13 is inserted into the high pressure resistant envelope. Liquid nitrogen 15 is injected into the vacuum heat insulating glass dewar 29, and the SQUID 17 attached to the tip of the probe 16 is immersed in the liquid nitrogen 15.

また、液体窒素15の液面の上部をメラミンフォームを用いた断熱材18で断熱し、貫通真空断熱ガラスデュワ31内に、FLL回路20及び送受信回路21を含むSQUID制御回路19を配置して通信ケーブル22で接続する。次いで、断熱シール材23を介してキャップ部材24をネジ嵌合部及びOリング(いずれも図示は省略)を利用して嵌合する。   Further, the upper surface of the liquid nitrogen 15 is insulated with a heat insulating material 18 using melamine foam, and a SQUID control circuit 19 including an FLL circuit 20 and a transmission / reception circuit 21 is arranged in a through-vacuum heat insulating glass dewar 31 to provide a communication cable. 22 is connected. Next, the cap member 24 is fitted through the heat insulating sealing material 23 using a screw fitting portion and an O-ring (both not shown).

この実施例6においては、液体窒素15が蒸発して低温窒素を高耐圧容器外に排出するための蒸発窒素排出管33をSQUID制御回路19の配置部においてコイル状に巻回した形状にする。蒸発した低温窒素は蒸発窒素排出管33を通過する途中でSQUID制御回路19を適正動作温度に効率的に冷却することができる。なお、蒸発窒素排出管33の形状は、コイル状に巻回した形状でも、蛇行した形状でも良い。   In the sixth embodiment, the evaporated nitrogen exhaust pipe 33 for evaporating the liquid nitrogen 15 and discharging low temperature nitrogen out of the high pressure vessel is formed in a coiled shape at the arrangement portion of the SQUID control circuit 19. The evaporated low temperature nitrogen can efficiently cool the SQUID control circuit 19 to an appropriate operating temperature while passing through the evaporated nitrogen discharge pipe 33. The shape of the evaporated nitrogen discharge pipe 33 may be a coiled shape or a meandering shape.

高温環境でシステムを長時間運用させるためには、断熱とともに廃熱も重要である。SQUIDの場合は否応無しに液体窒素を内包しているが、センサそのものが低温への冷却を必要としない場合でも、液体窒素をあえて内包させ、廃熱に利用することが可能である。SQUIDの場合のように、自然蒸発の窒素を利用する場合の他、温度制御のために液体窒素内にヒータを入れ、強制的に蒸発させて冷却を行うことも可能である。   In order to operate the system in a high temperature environment for a long time, waste heat is also important as well as heat insulation. In the case of SQUID, liquid nitrogen is inevitably included, but even when the sensor itself does not require cooling to a low temperature, liquid nitrogen can be included and used for waste heat. As in the case of SQUID, in addition to the case of using naturally evaporated nitrogen, it is also possible to cool by cooling by forcibly evaporating a heater in liquid nitrogen for temperature control.

蒸発窒素排出管33には銅、アルミ、真鍮など、熱伝導に優れた非磁性金属、またはカーボンチューブなどを用いることができる。さらに、配管を巡らす方法の他、回路に対してノズル構造を設け、効率的に冷却を促すようにしても良い。   The evaporative nitrogen discharge pipe 33 can be made of a nonmagnetic metal having excellent heat conduction, such as copper, aluminum, or brass, or a carbon tube. Further, in addition to the method of circulating the piping, a nozzle structure may be provided for the circuit so as to promote efficient cooling.

次に、図8を参照して、本発明の実施例7の探査装置を説明するが、実施例7は上記の実施例5に外部から冷媒を提供する回路冷却用冷媒循環管を設けたもので、その他の構造は上記の実施例5と同様である。図8は本発明の実施例7の探査装置の概略的構成図であり、CFRP焼結体からなる高耐圧フレーム11に先端キャップ部材12をネジ嵌合部及びOリング(いずれも図示は省略)を介して嵌合して高耐圧外囲器を形成する。この高耐圧外囲器内に防振発泡ゲル13を介して真空断熱ガラスデュワ29と貫通真空断熱ガラスデュワ31を溶接部32で溶接して一体化した真空断熱容器を挿入する。この真空断熱ガラスデュワ29内に液体窒素15を注入し、この液体窒素15中に、プローブ16の先端に取り付けられたSQUID17を浸漬する。   Next, with reference to FIG. 8, the exploration device according to the seventh embodiment of the present invention will be described. In the seventh embodiment, a circuit circulation refrigerant circulation pipe for supplying a refrigerant from the outside is provided in the fifth embodiment. The other structure is the same as that of the fifth embodiment. FIG. 8 is a schematic configuration diagram of an exploration device according to a seventh embodiment of the present invention, in which a tip cap member 12 is screwed into a high pressure resistant frame 11 made of a CFRP sintered body and an O-ring (both not shown). To form a high voltage envelope. A vacuum heat insulating container in which a vacuum heat insulating glass dewar 29 and a through vacuum heat insulating glass dewar 31 are welded and integrated with each other through a vibration isolating foam gel 13 is inserted into the high pressure resistant envelope. Liquid nitrogen 15 is injected into the vacuum heat insulating glass dewar 29, and the SQUID 17 attached to the tip of the probe 16 is immersed in the liquid nitrogen 15.

また、液体窒素15の液面の上部をメラミンフォームを用いた断熱材18で断熱し、貫通真空断熱ガラスデュワ31内に、FLL回路20及び送受信回路21を含むSQUID制御回路19を配置して通信ケーブル22で接続する。次いで、断熱シール材23を介してキャップ部材24をネジ嵌合部及びOリング(いずれも図示は省略)を利用して嵌合する。   Further, the upper surface of the liquid nitrogen 15 is insulated with a heat insulating material 18 using melamine foam, and a SQUID control circuit 19 including an FLL circuit 20 and a transmission / reception circuit 21 is arranged in a through-vacuum heat insulating glass dewar 31 to provide a communication cable. 22 is connected. Next, the cap member 24 is fitted through the heat insulating sealing material 23 using a screw fitting portion and an O-ring (both not shown).

この実施例7においては、外部から冷媒を循環供給する回路冷却用冷媒循環管34をSQUID制御回路19の配置部においてコイル状に巻回した形状にする。この回路冷却用冷媒循環管34内に冷媒として純水を循環させることによって、SQUID制御回路19を適正動作温度に効率的に冷却することができる。なお、回路冷却用冷媒循環管34の形状は、コイル状に巻回した形状でも、蛇行した形状でも良い。   In the seventh embodiment, the circuit-cooling refrigerant circulation pipe 34 that circulates and supplies refrigerant from the outside is formed in a coiled shape at the arrangement portion of the SQUID control circuit 19. By circulating pure water as a refrigerant in the circuit cooling refrigerant circulation pipe 34, the SQUID control circuit 19 can be efficiently cooled to an appropriate operating temperature. The shape of the circuit cooling refrigerant circulation pipe 34 may be a coiled shape or a meandering shape.

回路冷却用冷媒循環管34には銅、アルミ、真鍮など、熱伝導に優れた非磁性金属、またはカーボンチューブなどを用いることができる。また、冷媒としては、純水の他に、錆止め材を添加した純水等を用いても良い。   The circuit cooling refrigerant circulation pipe 34 may be made of a nonmagnetic metal, such as copper, aluminum, brass or the like, which has excellent heat conduction, or a carbon tube. Moreover, as a refrigerant | coolant, you may use the pure water etc. which added the rust preventive material other than a pure water.

液体窒素に対する断熱性能を向上させれば、それだけ蒸発窒素は少なくなり、回路の冷却を行うために十分な窒素を確保できない場合も生じる。しかし、本発明の実施例7においては、回路冷却用冷媒循環管34を設けて地上からの冷媒を送り込んで循環させているので、構造的には複雑になるが、最も長時間耐熱性を保証することができる。   If the heat insulation performance with respect to liquid nitrogen is improved, the amount of evaporated nitrogen decreases accordingly, and there may be a case where sufficient nitrogen cannot be secured for cooling the circuit. However, in the seventh embodiment of the present invention, since the circuit cooling refrigerant circulation pipe 34 is provided and the refrigerant from the ground is sent and circulated, the structure is complicated, but the heat resistance is guaranteed for the longest time. can do.

次に、図9を参照して、本発明の実施例8の探査装置を説明するが、実施例8は上記の実施例5におけるSQUID制御回路にペルチェ効果素子を固着したもので、その他の構造は上記の実施例5と同様である。図9は本発明の実施例8の探査装置の概略的構成図であり、CFRP焼結体からなる高耐圧フレーム11に先端キャップ部材12をネジ嵌合部及びOリング(いずれも図示は省略)を介して嵌合して高耐圧外囲器を形成する。この高耐圧外囲器内に防振発泡ゲル13を介して真空断熱ガラスデュワ29と貫通真空断熱ガラスデュワ31を溶接部32で溶接して一体化した真空断熱容器を挿入する。この真空断熱ガラスデュワ29内に液体窒素15を注入し、この液体窒素15中に、プローブ16の先端に取り付けられたSQUID17を浸漬する。   Next, with reference to FIG. 9, a description will be given of an exploration device according to an eighth embodiment of the present invention. In the eighth embodiment, the PQUIER effect element is fixed to the SQUID control circuit in the fifth embodiment, and the other structures are described. Is the same as in Example 5 above. FIG. 9 is a schematic configuration diagram of an exploration device according to an eighth embodiment of the present invention. A tip cap member 12 is screwed to a high pressure resistant frame 11 made of a CFRP sintered body and an O-ring (both not shown). To form a high voltage envelope. A vacuum heat insulating container in which a vacuum heat insulating glass dewar 29 and a through vacuum heat insulating glass dewar 31 are welded and integrated with each other through a vibration isolating foam gel 13 is inserted into the high pressure resistant envelope. Liquid nitrogen 15 is injected into the vacuum heat insulating glass dewar 29, and the SQUID 17 attached to the tip of the probe 16 is immersed in the liquid nitrogen 15.

また、液体窒素15の液面の上部をメラミンフォームを用いた断熱材18で断熱し、貫通真空断熱ガラスデュワ31内に、FLL回路20及び送受信回路21を含むSQUID制御回路19を配置して通信ケーブル22で接続する。次いで、断熱シール材23を介してキャップ部材24をネジ嵌合部及びOリング(いずれも図示は省略)を利用して嵌合する。   Further, the upper surface of the liquid nitrogen 15 is insulated with a heat insulating material 18 using melamine foam, and a SQUID control circuit 19 including an FLL circuit 20 and a transmission / reception circuit 21 is arranged in a through-vacuum heat insulating glass dewar 31 to provide a communication cable. 22 is connected. Next, the cap member 24 is fitted through the heat insulating sealing material 23 using a screw fitting portion and an O-ring (both not shown).

この実施例8においては、FLL回路20及び送受信回路21にペルチェ効果素子35,36を固着してFLL回路20及び送受信回路21を適宜冷却する。近年、200℃以上の環境温度下でも動作可能なペルチェ効果素子が登場しているので、このような高温動作可能なペルチェ効果素子を用いることで、200℃以上の環境温度下においても、SQUID制御回路19を適正動作温度に保持することができる。その結果、長時間耐熱性を保証することができる。   In the eighth embodiment, the Peltier effect elements 35 and 36 are fixed to the FLL circuit 20 and the transmission / reception circuit 21, and the FLL circuit 20 and the transmission / reception circuit 21 are appropriately cooled. In recent years, Peltier effect elements that can operate even at an environmental temperature of 200 ° C. or higher have appeared. By using such a Peltier effect element that can operate at a high temperature, SQUID control can be performed even at an environmental temperature of 200 ° C. or higher. The circuit 19 can be maintained at an appropriate operating temperature. As a result, long-term heat resistance can be guaranteed.

1 耐圧外囲器
2 中空円筒状フレーム
3 先端キャップ部材
4 後端キャップ部材
5 防振材
6 真空断熱容器
7 基体窒素
8 センサ
9 センサ制御回路
10 断熱材
11,41 高耐圧フレーム
12,42 先端キャップ部材
13,43 防振発泡ゲル
14 ステンレス真空デュワ
15,45 液体窒素
16,46 プローブ
17,47 SQUID
18,48 断熱材
19,49 SQUID制御回路
20,50 FLL回路
21,51 送受信回路
22,52 通信ケーブル
23,53 断熱シール材
24,54 キャップ部材
25,26 真空断熱部材
27,29,44 真空断熱ガラスデュワ
28 温度制御用ヒータ
30 貫通真空断熱ステンレスデュワ
31 貫通真空断熱ガラスデュワ
32 溶接部
33 蒸発窒素排出管
34 回路冷却用冷媒循環管
35,36 ペルチェ効果素子
55 加熱炉
DESCRIPTION OF SYMBOLS 1 Pressure-resistant envelope 2 Hollow cylindrical frame 3 End cap member 4 Rear end cap member 5 Anti-vibration material 6 Vacuum heat insulating container 7 Base nitrogen 8 Sensor 9 Sensor control circuit 10 Heat insulating material 11, 41 High pressure frame 12, 42 Front end cap Members 13, 43 Anti-vibration foam gel 14 Stainless steel vacuum dewar 15, 45 Liquid nitrogen 16, 46 Probe 17, 47 SQUID
18, 48 Heat insulation material 19, 49 SQUID control circuit 20, 50 FLL circuit 21, 51 Transmission / reception circuit 22, 52 Communication cable 23, 53 Heat insulation seal material 24, 54 Cap member 25, 26 Vacuum heat insulation member 27, 29, 44 Vacuum heat insulation Glass dewar 28 Temperature control heater 30 Through-vacuum heat insulation stainless steel dewar 31 Through-vacuum heat insulation glass dewar 32 Welding portion 33 Evaporative nitrogen discharge pipe 34 Circuit cooling refrigerant circulation pipe 35, 36 Peltier effect element 55 Heating furnace

Claims (12)

環境温度40℃以上で使用するセンサと、
前記センサを制御する制御回路及び送受信回路を含むセンサ制御回路と、
前記センサを液体窒素中に浸漬して収容するとともに、前記センサ制御回路を前記液体窒素の液面より上部に収容する真空断熱容器と、
前記真空断熱容器を収容する耐圧外囲器と
を有することを特徴とする探査装置。
A sensor for use at an ambient temperature of 40 ° C or higher;
A sensor control circuit including a control circuit for controlling the sensor and a transmission / reception circuit;
The sensor is immersed in liquid nitrogen and housed, and the sensor control circuit is housed above the liquid nitrogen liquid surface, and a vacuum insulation container,
An exploration device comprising a pressure-resistant envelope that accommodates the vacuum heat insulating container.
前記真空断熱容器が、ステンレス製真空断熱デュワであることを特徴とする請求項1に記載の探査装置。   The exploration device according to claim 1, wherein the vacuum heat insulating container is a stainless steel vacuum heat insulating dewar. 前記真空断熱容器が、ガラス製真空断熱デュワであることを特徴とする請求項1に記載の探査装置。   The exploration device according to claim 1, wherein the vacuum heat insulating container is a glass vacuum heat insulating dewar. 前記センサ制御回路の上方及び下方に二重管構造で中空円筒状の真空断熱部材を備えていることを特徴とする請求項2または請求項3に記載の探査装置。   The exploration device according to claim 2 or 3, further comprising a vacuum insulation member having a hollow cylindrical shape with a double tube structure above and below the sensor control circuit. 前記真空断熱容器が、ガラス製真空断熱デュワであり、前記センサ制御回路の近傍に温度制御用加熱手段を備えていることを特徴とする請求項4に記載の探査装置。   5. The exploration apparatus according to claim 4, wherein the vacuum heat insulating container is a glass vacuum heat insulating dewar, and is provided with heating means for temperature control in the vicinity of the sensor control circuit. 前記真空断熱容器がガラス製真空断熱デュワと、前記ガラス製断熱デュワに長軸方向において接続する二重管構造で中空円筒状のステンレス製真空断熱デュワからなり、
前記センサ制御回路が前記二重管構造で中空円筒状のステンレス製真空断熱デュワ中に収容されることを特徴とする請求項1に記載の探査装置。
The vacuum insulation container comprises a glass vacuum insulation dewar, and a hollow cylindrical stainless steel vacuum insulation dewar with a double tube structure connected to the glass insulation dewar in the long axis direction,
The exploration device according to claim 1, wherein the sensor control circuit is housed in a hollow cylindrical stainless steel vacuum heat insulation dewar having the double tube structure.
前記真空断熱容器がガラス製真空断熱デュワと、前記ガラス製断熱デュワに長軸方向において溶接部により接続する二重管構造の中空円筒状のガラス製真空断熱デュワからなり、
前記センサ制御回路が前記二重管構造で中空円筒状のガラス製真空断熱デュワ中に収容されることを特徴とする請求項1に記載の探査装置。
The vacuum heat insulation container comprises a glass vacuum heat insulation dewar, and a glass tube heat insulation dewar having a hollow cylindrical shape having a double tube structure connected to the glass heat insulation dewar by a welded portion in the longitudinal direction.
The exploration device according to claim 1, wherein the sensor control circuit is housed in a hollow cylindrical glass vacuum heat insulating dewar having the double tube structure.
前記センサ制御回路の近傍を通過し、前記液体窒素が気化した蒸発窒素を前記耐圧外囲器の外に排出するとともに、前記センサ制御回路を冷却する蒸発窒素排出管を有することを特徴とする請求項7に記載の探査装置。   An evaporative nitrogen exhaust pipe that passes through the vicinity of the sensor control circuit and exhausts the evaporated nitrogen vaporized by the liquid nitrogen out of the pressure-resistant envelope and cools the sensor control circuit. Item 8. The exploration device according to Item 7. 前記センサ制御回路の近傍に配置され、前記センサ制御回路を冷却する冷媒を前記耐圧外囲器の外から循環供給する回路冷却用冷媒循環管を有することを特徴とする請求項7に記載の探査装置。   8. The exploration according to claim 7, further comprising a circuit cooling refrigerant circulation pipe which is arranged in the vicinity of the sensor control circuit and circulates a refrigerant for cooling the sensor control circuit from outside the pressure-resistant envelope. apparatus. 前記センサ制御回路に、ペルチェ効果素子を接触させた状態で固定したことを特徴とする請求項7に記載の探査装置。   The exploration device according to claim 7, wherein a Peltier effect element is fixed in contact with the sensor control circuit. 前記センサが、高温超電導量子干渉計であることを特徴とする請求項1乃至請求項10のいずれか1項に記載の探査装置。   The exploration device according to any one of claims 1 to 10, wherein the sensor is a high-temperature superconducting quantum interferometer. 前記耐圧外囲器の環境耐圧が、10MPa以上であることを特徴とする請求項1乃至請求項11のいずれか1項に記載の探査装置。   The exploration device according to any one of claims 1 to 11, wherein an environmental pressure resistance of the pressure envelope is 10 MPa or more.
JP2014166304A 2014-08-19 2014-08-19 Exploration equipment Expired - Fee Related JP6374265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014166304A JP6374265B2 (en) 2014-08-19 2014-08-19 Exploration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014166304A JP6374265B2 (en) 2014-08-19 2014-08-19 Exploration equipment

Publications (2)

Publication Number Publication Date
JP2016042063A true JP2016042063A (en) 2016-03-31
JP6374265B2 JP6374265B2 (en) 2018-08-15

Family

ID=55591876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014166304A Expired - Fee Related JP6374265B2 (en) 2014-08-19 2014-08-19 Exploration equipment

Country Status (1)

Country Link
JP (1) JP6374265B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018019004A (en) * 2016-07-29 2018-02-01 富士通株式会社 Glass Dewar for Liquid Nitrogen and Magnetic Detector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340405A (en) * 1980-10-29 1982-07-20 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for maintaining low temperatures about an object at a remote location
US4349781A (en) * 1980-01-07 1982-09-14 The Regents Of The University Of California Superconducting gradiometer-magnetometer array for magnetotelluric logging
US4437064A (en) * 1981-05-22 1984-03-13 The United States Of America As Represented By The United States Department Of Energy Apparatus for detecting a magnetic anomaly contiguous to remote location by squid gradiometer and magnetometer systems
JPS61159183A (en) * 1984-05-15 1986-07-18 コンパニ− フランセ−ズ デ ペトロ−ル Magnetic prospecting device for well pit
JPH0436480U (en) * 1990-07-24 1992-03-26
JPH08292270A (en) * 1995-04-24 1996-11-05 Kawasaki Chishitsu Kk Heat-resistant and pressure-resistant in-well radar
JP2008145119A (en) * 2006-12-06 2008-06-26 Hitachi High-Technologies Corp Magnetic field measurement device
JP2009079932A (en) * 2007-09-25 2009-04-16 Japan Oil Gas & Metals National Corp Electromagnetic search device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349781A (en) * 1980-01-07 1982-09-14 The Regents Of The University Of California Superconducting gradiometer-magnetometer array for magnetotelluric logging
US4340405A (en) * 1980-10-29 1982-07-20 The United States Of America As Represented By The United States Department Of Energy Apparatus and method for maintaining low temperatures about an object at a remote location
US4437064A (en) * 1981-05-22 1984-03-13 The United States Of America As Represented By The United States Department Of Energy Apparatus for detecting a magnetic anomaly contiguous to remote location by squid gradiometer and magnetometer systems
JPS61159183A (en) * 1984-05-15 1986-07-18 コンパニ− フランセ−ズ デ ペトロ−ル Magnetic prospecting device for well pit
JPH0436480U (en) * 1990-07-24 1992-03-26
JPH08292270A (en) * 1995-04-24 1996-11-05 Kawasaki Chishitsu Kk Heat-resistant and pressure-resistant in-well radar
JP2008145119A (en) * 2006-12-06 2008-06-26 Hitachi High-Technologies Corp Magnetic field measurement device
JP2009079932A (en) * 2007-09-25 2009-04-16 Japan Oil Gas & Metals National Corp Electromagnetic search device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
北村 善洋 他: "2段トランスを用いた電磁ノイズによるSQUID特性劣化の抑制", 2010年秋季第71回応用物理学会学術講演会講演予稿集, vol. 11-101ページ, JPN6018023365, 30 August 2010 (2010-08-30), ISSN: 0003822366 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018019004A (en) * 2016-07-29 2018-02-01 富士通株式会社 Glass Dewar for Liquid Nitrogen and Magnetic Detector

Also Published As

Publication number Publication date
JP6374265B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP4854396B2 (en) Cryostat structure with low-temperature refrigerator
US8525023B2 (en) Cooled current leads for cooled equipment
KR102053387B1 (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
CN100555823C (en) The superconducting motor device that has superconduction winding and cooling by thermal siphon
US20170284725A1 (en) Cryostat with a first and a second helium tank, which are separated from one another in a liquid-tight manner at least in a lower part
WO2014208443A1 (en) Highly pressure-resistant cooling container for sensor and underground probing device
CN107110928A (en) System and method for cooling down MR imaging apparatus
US11573279B2 (en) Displacer in magnetic resonance imaging system
JP6374265B2 (en) Exploration equipment
JP6588264B2 (en) Cryogenic refrigerant supply system
JP2007271254A (en) Cooling apparatus
JPH11248326A (en) Chiller
JP6164409B2 (en) NMR system
KR101868673B1 (en) Device for cooling CO2 inside CO2 temporary storage tank of carbon dioxide capture and storage
JP5481681B2 (en) Superconducting electromagnet
CN213483505U (en) Refrigerant cooling system for superconducting magnet
KR101349281B1 (en) Liquefied gas carrier
JP6313564B2 (en) Cryogenic fluid transfer pipe
Nakagawa et al. Dilution refrigerator for nuclear refrigeration and cryogenic thermometry studies
JP2002208511A (en) Refrigerator cooling superconducting magnet unit
Ihas Cryogenic Refrigeration and Liquid Hydrogen Storage
US20160071638A1 (en) Superconducting magnet device including a cryogenic cooling bath and cooling pipes
Thomas Medical imaging: why helium prevails
Huang et al. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC
KR20230061839A (en) Gas storage tank for ship

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180719

R150 Certificate of patent or registration of utility model

Ref document number: 6374265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees