JP2016041912A - Thunderbolt control system of power generating facility - Google Patents

Thunderbolt control system of power generating facility Download PDF

Info

Publication number
JP2016041912A
JP2016041912A JP2014165666A JP2014165666A JP2016041912A JP 2016041912 A JP2016041912 A JP 2016041912A JP 2014165666 A JP2014165666 A JP 2014165666A JP 2014165666 A JP2014165666 A JP 2014165666A JP 2016041912 A JP2016041912 A JP 2016041912A
Authority
JP
Japan
Prior art keywords
lightning
thunderbolt
lightning strike
measuring device
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014165666A
Other languages
Japanese (ja)
Inventor
泰三 桧垣
Taizo Higaki
泰三 桧垣
和夫 奥田
Kazuo Okuda
和夫 奥田
知和 猪木
Tomokazu Inoki
知和 猪木
啓太 相良
Keita Sagara
啓太 相良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHOTONICS KK
Original Assignee
PHOTONICS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHOTONICS KK filed Critical PHOTONICS KK
Priority to JP2014165666A priority Critical patent/JP2016041912A/en
Publication of JP2016041912A publication Critical patent/JP2016041912A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

PROBLEM TO BE SOLVED: To enable a remote and fast judgement about continuation of operation required for control of power generating facility and requirement of replacement of consumable by getting "presence" or "non-presence" of thunderbolt through a thunderbolt sensor arranged at a blade, transmitting it to a thunderbolt signal relay and a thunderbolt current measuring device through aerial transmission and optical communication and taking a scale of quantitative thunderbolt for every precision blade.SOLUTION: This invention relates to a thunderbolt control system comprising a plurality of thunderbolt sensors 1111 for detecting presence or non-presence of thunderbolt installed at a plurality of rotatable blades 31; a thunder signal relay 112 installed in a nacell 5 for transmitting a rotating function of the blades and for performing electrical or optical communication under no mechanical contact with the thunderbolt sensors; a thunderbolt current measuring device 115 having a signal from the thunderbolt relay connected, keeping a communication with the thunderbolt sensor under electrical insulation state and installed on the ground near wind power generating facilities; and a device for performing a remote and fast communication of data indicating a scale of the detected thunderbolt.SELECTED DRAWING: Figure 1

Description

本発明は、所謂、タワー型風車でなる発電設備のタワー本体の土台となる基礎付近に落雷電流計測装置を配した落雷管理システムに関するものである。   The present invention relates to a lightning strike management system in which a lightning strike current measuring device is arranged in the vicinity of a foundation serving as a base of a tower body of a power generation facility that is a so-called tower type windmill.

従来、タワー型風車の発電設備は概略、ブレード、ハブ、ナセル、タワーなどからなるが、この発電設備は自然エネルギの利用及び公害発生防止の面から急速に設置導入がされ、発展に至っている。しかし、地域によっての落雷はそのエネルギ(落雷規模)が大きく風力発電設備の大きなリスクとなっていて重大な事故も起こっている。特に前記ブレードへの落雷損傷の事例が多いい。その結果、風力発電設備の火災、部品の飛散等により安全性が損なわれ、又、これの修理、復旧の膨大な費用と時間を要し、それ故の稼働率の低下に基づく風力発電事業者の経済的損失が大きい。それ故に的確な落雷被害状況の把握と迅速な復旧の為に落雷したブレードの特定及び高精度で定量的な落雷の計測データから落雷規模を迅速に把握できる落雷管理システムが望まれる。   Conventionally, power generation equipment for tower type wind turbines is roughly composed of blades, hubs, nacelles, towers, etc., but this power generation equipment has been rapidly installed and developed from the viewpoint of the use of natural energy and the prevention of pollution. However, lightning strikes in some regions have a large energy (thunderbolt scale) and are a major risk for wind power generation facilities, causing serious accidents. In particular, there are many cases of lightning damage to the blade. As a result, the safety of the wind power generation facilities is lost due to fires, scattering of parts, etc., and the cost and time of repairs and restoration of these are required. The economic loss is large. Therefore, it is desirable to have a lightning management system that can quickly determine the scale of lightning strikes from the precise and quantitative lightning measurement data to identify the blades that have been lightened for the purpose of accurately ascertaining the lightning damage situation and quick recovery.

例えば、特許文献1の風力発電設備は落雷管理システムを設置したものではあるが、落雷のリスクが増加している昨今、落雷したブレードの特定、及びブレード毎の定量的な高精度の落雷の計測データから落雷規模の迅速な把握ができる落雷管理システムでは無く、従ってこれらを満足する落雷管理システムの実現が要請される。   For example, although the wind power generation facility of Patent Document 1 is installed with a lightning strike management system, the risk of lightning strikes has increased recently. It is not a lightning strike management system that can quickly determine the scale of lightning strikes from data. Therefore, it is required to realize a lightning strike management system that satisfies these requirements.

そこで本発明者等は構造機能的にはブレードへの落雷に対しては単純に落雷の「有り」、「無し」のみを感知する落雷センサを配し、これを前記ブレード内部に設置するといった構造とし、加えて風車の回転部に設置する落雷センサとの通信は落雷信号中継器と無線或いは光通信等による機械的無接触通信手段とすることで通信の不通、不具合を生じる事のないように計り、且つ、高精度で定量的に計測できる落雷電流計測装置のロゴスキーコイルをタワー基部に巻き付けて配置し、落雷電流計測装置と電気的に絶縁して接続し、そして、風力発電設備近傍の地上に配置された落雷電流計測装置と落雷センサとは電気的に絶縁した状態に置くことで落雷によるサージ電流の影響を皆無とする落雷管理システムを実現したものである。   Therefore, the present inventors simply arranged a lightning strike sensor that senses only “present” or “no” of lightning strikes for the lightning strike to the blade in terms of structural function, and installed this inside the blade. In addition, communication with the lightning sensor installed in the rotating part of the windmill will not cause communication failure or malfunction by using a lightning signal repeater and mechanical non-contact communication means such as wireless or optical communication. A Rogowski coil of a lightning current measuring device that can measure and measure quantitatively with high accuracy is wound around the tower base, and is electrically insulated and connected to the lightning current measuring device. The lightning current measuring device and the lightning sensor placed on the ground are placed in an electrically insulated state to realize a lightning management system that eliminates the effects of lightning surge current.

特開2008−153010号公報JP 2008-153010 A

発明が解決しようとする問題点は落雷したブレードの特定と風力発電設備への落雷を定量的に且つ迅速に把握することによる落雷リスクの低減、電流計測装置の設置の容易性と経年管理の容易・便利性の実現、落雷センサと落雷信号中継器及び落雷電流計測機の通信は光或は無線等の光・無線通信として回転機構と機械的に無接触の通信とし、落雷によるサージ電流の影響を落雷電流計測装置が受けないように計る等々で有る。   The problems to be solved by the invention are the reduction of lightning risk by identifying the lightning blades and the lightning strikes to the wind power generation facilities quantitatively and quickly, the ease of installation of current measuring devices and the ease of aging management.・ Realization of convenience, lightning sensor, lightning signal repeater, and lightning current measuring instrument communication are optical or wireless communication such as light or wireless, and contactless mechanically with the rotating mechanism. To prevent the lightning current measuring device from receiving.

本発明は、風力発電設備の落雷管理システムであって、回転可能の複数のブレードに設置された複数の落雷有無を感知する落雷センサと、このブレードの回転機能を伝えるナセル内に設置され前記落雷センサとは機械的無接触で電気的或は光学的に通信をする落雷信号中継器と、該落雷中継器から信号が接続され且つ前記落雷センサとの通信は電気的絶縁状態にあって風力発電設備近傍の地上に設置された落雷電流計測装置と、感知された落雷規模を示すデータを遠隔に迅速に通信する装置とからなることを特徴とする落雷管理システムである。   The present invention is a lightning strike management system for wind power generation equipment, comprising a lightning strike sensor for detecting the presence or absence of a plurality of lightning strikes installed on a plurality of rotatable blades, and the lightning strike installed in a nacelle that conveys the rotation function of the blades. A lightning signal repeater that is electrically or optically communicated with a sensor without contact with a sensor, and a signal is connected from the lightning strike relay, and the communication with the lightning strike sensor is in an electrically isolated state, and wind power generation A lightning strike management system comprising a lightning current measuring device installed on the ground in the vicinity of a facility and a device for rapidly and remotely communicating data indicating the detected lightning scale.

請求項1記載の発明によれば落雷センサをブレード毎に設置しているので、定量的な落雷規模(落雷時刻、落雷電流波形、電荷量)を知ることができる、又、これに加えて落雷規模から風車の運転の可否、補修要否、レセプタ・SPD等消耗品交換等を知ることができる。更に落雷電流計測装置は地上に設置できるので多機能で高い計測精度を安価に実現できる。   According to the first aspect of the present invention, since the lightning strike sensor is installed for each blade, it is possible to know a quantitative lightning strike scale (lightning strike time, lightning current waveform, charge amount), and in addition to this, the lightning strike From the scale, it is possible to know whether the windmill can be operated, whether repair is necessary, replacement of consumables such as receptors and SPDs. Furthermore, since the lightning current measuring device can be installed on the ground, it can realize high measurement accuracy at a low cost with multiple functions.

図1は本発明の実施例1に係る落雷管理システムの概略構成図。1 is a schematic configuration diagram of a lightning strike management system according to a first embodiment of the present invention. 図2は本発明の実施例1に係るシステムブロック図。FIG. 2 is a system block diagram according to the first embodiment of the present invention.

以下に本発明の実施例に係る落雷管理システムについて図面を参照して説明する。     A lightning strike management system according to an embodiment of the present invention will be described below with reference to the drawings.

(実施例1)
先ず、本発明実施例1に係る風車発電設備は図1に示す構造で、落雷を受けるレセプタ11と引き下げ導体21とは接続されブレード31に取り付けられていて、このブレード31はこの場合3枚用意され、それぞれハブ4の円周方向に等間隔で配置取り付けられている。ハブ4の背部には同ハブ4が回転自在に取り付けられるナセル5が配置され、このナセル5はタワー6の頭部に取り付けられた構造になって設置されている。そして、ハブ4とナセル5間はブラッシ、放電ギャップで落雷電流が流れる構造にしている。
Example 1
First, the wind turbine generator according to the first embodiment of the present invention has the structure shown in FIG. 1, and the receptor 11 receiving the lightning strike and the pull-down conductor 21 are connected to each other and attached to the blade 31. In this case, three blades 31 are prepared. These are arranged and mounted at equal intervals in the circumferential direction of the hub 4. A nacelle 5 to which the hub 4 is rotatably attached is disposed on the back of the hub 4, and the nacelle 5 is installed in a structure attached to the head of the tower 6. The hub 4 and the nacelle 5 are structured to flow lightning current through brushes and discharge gaps.

前記ハブ4は発電機軸7に固定され、この発電機軸7は発電機8に機械的に結合され回転を伝達できる構造にしている。そして、ナセル5はフレーム9構造で保護される。前記落雷電流は落雷したレセプタ11から引き下げ導線21、ハブ4を経てブラシ及び放電ギャップを介してフレーム9、タワー6、接地線11に流れる。前記発電機8には電力線10が前記タワー6に沿って配置されている。11は接地線である。尚この場合前記ハブ4とナセル5とは機械的に開放された構造で、従ってハブ4の回転は発電機軸7でのみ発電機8に伝達される構造となっている。   The hub 4 is fixed to a generator shaft 7, and the generator shaft 7 is mechanically coupled to a generator 8 so that rotation can be transmitted. The nacelle 5 is protected by the frame 9 structure. The lightning current flows from the lightning receptor 11 to the frame 9, the tower 6, and the grounding wire 11 through the conductor 21 and the hub 4, the brush and the discharge gap. A power line 10 is arranged along the tower 6 in the generator 8. 11 is a ground wire. In this case, the hub 4 and the nacelle 5 are mechanically open, and therefore the rotation of the hub 4 is transmitted to the generator 8 only by the generator shaft 7.

次に図1、図2を参照して本発明落雷管理システムにつき説明するに、前記ブレード31、32、33には落雷センサ1111、1112、1113が機械的に取り付けられていてこの落雷センサ1111、1112、1113で正確に検出された落雷信号は落雷の「有り」、「無し」信号、機械的無接触状態(光・無線信号)として落雷信号中継器112を経てタワー6の基礎付近に設置した落雷電流計測装置115に送られる。 落雷信号中継器112と落雷電流計測装置115は
電気的に絶縁し通信を行う。
Next, a lightning strike management system of the present invention will be described with reference to FIG. 1 and FIG. 2. Lightning strike sensors 1111, 1112, and 1113 are mechanically attached to the blades 31, 32, and 33. The lightning signals detected accurately at 1112 and 1113 were installed near the foundation of the tower 6 via the lightning signal repeater 112 as lightning “present” and “non-existent” signals and mechanical contactless state (light / radio signal). It is sent to the lightning current measuring device 115. The lightning strike signal repeater 112 and the lightning strike current measuring device 115 are electrically insulated and communicate.

この送信によって落雷電流計測装置115で計測されたデータと同期して前記ブレード31,32,33の落雷ブレードを特定し、定量的な落雷規模(落雷時刻、落雷電流波形、電荷量)を計測することができる。又、この落雷規模より、風力発電設備の運転継続、或はレセプタ、SPD等の消耗品の要否等を知ることができる。これらの落雷規模は通信装置により遠隔地と通信できる。113は光ケーブルで落雷信号中継器112から落雷電流計測装置115に落雷信号を送る光ケーブル、114はロゴスキーコイルである。   By this transmission, the lightning blades of the blades 31, 32, and 33 are identified in synchronization with the data measured by the lightning current measuring device 115, and a quantitative lightning scale (lightning strike time, lightning current waveform, charge amount) is measured. be able to. Further, it is possible to know the continuation of the operation of the wind power generation facility or the necessity of consumables such as a receptor and SPD from the lightning strike scale. These lightning strikes can be communicated with remote locations using a communication device. An optical cable 113 is an optical cable for sending a lightning strike signal from the lightning strike signal repeater 112 to the lightning strike current measuring device 115, and 114 is a Rogowski coil.

図2は全体システムをブロックで示したもので、各ブレード31、32、33に配置した落雷センサ1111、1112、1113からの落雷の「有り」、「無し」信号は光通信によってナセル5内の落雷信号中継器112に送られる。この場合点線で示したものは落雷センサ1111、1112、1113からの落雷信号を表している。   FIG. 2 shows the entire system as a block. Lightning strike “11”, “1112”, and “1131” signals from lightning sensors 1111, 1112, and 1113 arranged in the blades 31, 32, and 33 are transmitted in the nacelle 5 by optical communication. It is sent to the lightning strike signal repeater 112. In this case, the dotted line represents lightning signals from the lightning sensors 1111, 1112, and 1113.

前記落雷信号中継器112に入力した落雷信号はタワー6内の光ケーブル113を通って前記ロゴスキーコイル114に接続した落雷電流計測装置115に送られる。落雷電流計測装置115は公衆回線(携帯電話網)や構内LANに接続し、これ等に接続された運転制御所等の遠隔地に落雷規模を通信することによって風力発電設備への落雷規模を把握し、保守管理が可能な通信ポートを設ける。   The lightning strike signal input to the lightning strike repeater 112 is sent to the lightning strike current measuring device 115 connected to the Rogowski coil 114 through the optical cable 113 in the tower 6. The lightning current measuring device 115 is connected to a public line (cell phone network) or a local area LAN and communicates the lightning intensity to a remote location such as an operation control station connected to the public line (cell phone network), thereby grasping the lightning intensity to the wind power generation facility. A communication port that can be maintained is provided.

次に落雷がブレード31にあった場合、前記落雷センサ1111が落雷を検知し、これを光・無線通信で落雷信号中継器112(真直ぐ点線で示す)に落雷を検知したブレード番号をおくる。落雷信号中継器112は落雷ブレードに関する信号を光信号に変換しこれをサージ電流に影響されない光ケーブル113を通じて落雷電流計測装置115に送る。この落雷電流計測装置115に接続したロゴスキーコイル114でタワーに流れる落雷電流を計測し落雷センサ1111からの信号と同期して落雷計測装置115に落雷電流波形と落雷時刻が記録される。前記落雷計測装置115に設けた通信ポートにより、遠隔地に落雷規模を通信することが可能となる。   Next, when there is a lightning strike on the blade 31, the lightning strike sensor 1111 detects the lightning strike, and puts the blade number that detected the lightning strike on the lightning strike signal repeater 112 (indicated by a straight dotted line) by optical / wireless communication. The lightning strike signal repeater 112 converts a signal related to the lightning strike blade into an optical signal and sends it to the lightning strike current measuring device 115 through the optical cable 113 which is not affected by the surge current. The lightning current flowing in the tower is measured by the Rogowski coil 114 connected to the lightning current measuring device 115, and the lightning current waveform and the lightning time are recorded in the lightning measuring device 115 in synchronization with the signal from the lightning sensor 1111. The communication port provided in the lightning strike measuring device 115 makes it possible to communicate the lightning strike scale to a remote location.

又、この場合落雷電流の流れる順はレセプタ11→引き下げ導体21(ブレード沿面、落雷センサで落雷ブレードを検知)→ハブ4(ブラッシ、ギャップで電流を流す)→ナセル5→タワー6(ロゴスキーコイル114で落雷電流を計測)→接地線11となる。   In this case, the lightning current flows in the order of the receptor 11 → the pull-down conductor 21 (the lightning blade is detected by the lightning sensor along the blade surface) → the hub 4 (the current flows through the brush and the gap) → the nacelle 5 → the tower 6 (the Rogowski coil). The lightning current is measured at 114) → the ground line 11.

本実施例は落雷センサ、落雷信号中継器は電池駆動の独立電源とし、通信は電気的に絶縁された機械的無接触な光通信とする。この為サージによる機器の損傷、或は計測不能状況を一掃した構成としたので計測データは信頼できるものである。更に落雷計測装置は通信ポートを設けることにより遠隔地通信ができるものである。   In this embodiment, a lightning strike sensor, a lightning strike signal repeater are battery-powered independent power supplies, and communication is electrically insulated and mechanical contactless optical communication. For this reason, the measurement data is reliable because it is configured to wipe out the damage of the device due to the surge or the situation where measurement is impossible. Further, the lightning strike measuring device can perform remote communication by providing a communication port.

本発明は、既述したしたような通信系統の他、電話ライン系統や電力系統の電力ケーブル等のライン等にも広範に応用可能である。   The present invention can be widely applied to lines such as a telephone line system and a power cable of a power system in addition to the communication system as described above.

11、12、13 レセプタ
21、22、23 引き下げ導体
31、32、33 ブレード
4 ハブ
5 ナセル
6 タワー
7 発電機軸
8 発電機
9 フレーム
10 電力線
11 接地線
1111、1112、1113 落雷センサ
112 落雷信号中継器
113 光ケーブル
114 ロゴスキーコイル
115 落雷電流計測装置
11, 12, 13 Receptor 21, 22, 23 Pull-down conductor 31, 32, 33 Blade 4 Hub 5 Nacelle 6 Tower 7 Generator shaft 8 Generator 9 Frame 10 Power line 11 Ground line 1111, 1112, 1113 Lightning sensor 112 Lightning signal repeater 113 Optical cable 114 Rogowski coil 115 Lightning current measuring device

Claims (1)

風力発電設備の落雷管理システムであって、回転可能の複数のブレードに設置された複数の落雷有無を感知する落雷センサと、このブレードの回転機能を伝えるナセル内に設置され前記落雷センサとは機械的無接触で電気的或は光学的に通信をする落雷信号中継器と、該落雷中継器から信号が接続され且つ前記落雷センサとの通信は電気的絶縁状態にあって風力発電設備近傍の地上に設置された落雷電流計測装置と、感知された落雷規模を示すデータを遠隔に迅速に通信する装置とからなることを特徴とする落雷管理システム。   A lightning strike management system for wind power generation facilities, which is a lightning sensor for detecting the presence or absence of a plurality of lightning strikes installed on a plurality of rotatable blades, and a lightning strike sensor installed in a nacelle that transmits the rotation function of the blades. A lightning signal repeater that communicates electrically or optically without electrical contact, and a signal connected from the lightning strike relay, and communication with the lightning strike sensor is in an electrically insulated state and is near the wind power generation facility A lightning current management system comprising: a lightning current measuring device installed in a facility, and a device for quickly and remotely communicating data indicating the detected lightning intensity.
JP2014165666A 2014-08-18 2014-08-18 Thunderbolt control system of power generating facility Pending JP2016041912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014165666A JP2016041912A (en) 2014-08-18 2014-08-18 Thunderbolt control system of power generating facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014165666A JP2016041912A (en) 2014-08-18 2014-08-18 Thunderbolt control system of power generating facility

Publications (1)

Publication Number Publication Date
JP2016041912A true JP2016041912A (en) 2016-03-31

Family

ID=55591782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014165666A Pending JP2016041912A (en) 2014-08-18 2014-08-18 Thunderbolt control system of power generating facility

Country Status (1)

Country Link
JP (1) JP2016041912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879986B1 (en) * 2017-02-10 2018-07-18 엠에이치아이 베스타스 오프쇼어 윈드 에이/에스 Wind turbine power generation facility and method of operating the same
CN110346636A (en) * 2019-07-18 2019-10-18 广东电网有限责任公司 A kind of direct lightning strike protection effect evaluation method that overhead transmission line arrester is set every basigamy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153010A (en) * 2006-12-15 2008-07-03 Toko Electric Corp Blade-thunderstroke monitoring device and thunderstroke monitoring system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153010A (en) * 2006-12-15 2008-07-03 Toko Electric Corp Blade-thunderstroke monitoring device and thunderstroke monitoring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879986B1 (en) * 2017-02-10 2018-07-18 엠에이치아이 베스타스 오프쇼어 윈드 에이/에스 Wind turbine power generation facility and method of operating the same
CN110346636A (en) * 2019-07-18 2019-10-18 广东电网有限责任公司 A kind of direct lightning strike protection effect evaluation method that overhead transmission line arrester is set every basigamy
CN110346636B (en) * 2019-07-18 2021-08-13 广东电网有限责任公司 Direct lightning protection effect evaluation method for overhead line arrester spacer configuration

Similar Documents

Publication Publication Date Title
JP5535886B2 (en) Lightning strike detection device, wind turbine rotor and wind power generator equipped with the same
EP2533056B1 (en) System for detecting lightning strikes on wind turbine rotor blades
JP5846806B2 (en) Measuring system for windmill blade down conductors
JP5971673B2 (en) Device for detecting breakage of lightning conductor for windmill blade
US20130336786A1 (en) Automatic Inspection of a Lightning Protection System on a Wind Turbine
JP6778366B2 (en) Double down conductor system, lightning strike determination system using double down conductor system, and wind power generator
US20140093373A1 (en) System and method for detecting lightning strikes on a wind turbine
AU2013327204B2 (en) Method for monitoring a plurality of electrical energy lines in a cable harness
CN101960687A (en) Method for detection of charge originating from lightning
EP2102671A2 (en) Fault prediction in electric transmission networks
JP2010043936A (en) Lightning detection system for blade
JP6628395B2 (en) External lightning protection systems, wind turbine blades and wind turbines
JP2016041912A (en) Thunderbolt control system of power generating facility
CN102736650A (en) Online temperature monitoring early-warning system for high-voltage electric power equipment
ITUD20090177A1 (en) SELF-POWERED MEASUREMENT TRANSFORMER
JP2008025993A (en) Lightning detection device for blade
JP6709551B2 (en) Abnormal lightning strike determination system and method of attaching abnormal lightning strike determination system to wind power generation facility
CN105071337B (en) Self feed back Intelligent electric leakage protects control device and its control method
CN206756101U (en) A kind of laser monitoring system of the fault displacement of breaker body
CN206489246U (en) A kind of cable insulation situation on-line monitoring device
CN104360238A (en) Lightning stroke detection method of electric transmission line
JP6851053B2 (en) Double down conductor systems, sanity assessment systems for double down conductor systems, and wind turbines
JP2019039411A (en) Windmill having soundness detection system of down conductor
CN202748439U (en) 220kV long distance line based fault traveling wave distance measuring system
KR102530642B1 (en) Overhead Transmission Line Communication System using Distributed Acoustic Sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180717