JP2016040612A - Display device - Google Patents

Display device Download PDF

Info

Publication number
JP2016040612A
JP2016040612A JP2015201946A JP2015201946A JP2016040612A JP 2016040612 A JP2016040612 A JP 2016040612A JP 2015201946 A JP2015201946 A JP 2015201946A JP 2015201946 A JP2015201946 A JP 2015201946A JP 2016040612 A JP2016040612 A JP 2016040612A
Authority
JP
Japan
Prior art keywords
refractive index
scattering member
anisotropic scattering
index region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015201946A
Other languages
Japanese (ja)
Other versions
JP6082078B2 (en
Inventor
三井 雅志
Masashi Mitsui
雅志 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Priority to JP2015201946A priority Critical patent/JP6082078B2/en
Publication of JP2016040612A publication Critical patent/JP2016040612A/en
Application granted granted Critical
Publication of JP6082078B2 publication Critical patent/JP6082078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a display device capable of reducing coloring of a rainbow color resulting from the structure of an anisotropic scattering member.SOLUTION: The display device includes a reflection type image display part including a sheet-like anisotropic scattering member. The region in the in-plane direction of the anisotropic scattering member is formed as the region where a high refractive index region formed into a columnar shape and a low refractive index region forming a peripheral region surrounding the high refractive index region are mixed. The anisotropic scattering member includes a first surface where the degree of the change of a refractive index in the vicinity of a boundary between the low refractive index region and the high refractive index region is relatively large and a second surface where the degree of the change of the refractive index in the vicinity of the boundary between the low refractive index region and the high refractive index region is relatively small.SELECTED DRAWING: Figure 2

Description

本開示は表示装置に関する。より具体的には、シート状の異方性散乱部材を使用した画像表示部を備えた表示装置に関する。   The present disclosure relates to a display device. More specifically, the present invention relates to a display device including an image display unit using a sheet-like anisotropic scattering member.

外光の反射率を制御することによって画像を表示する反射型の画像表示部が知られている。例えば、反射型の液晶表示パネルは外光を反射する反射電極などを備えており、液晶材料層によって外光の反射率を制御することによって画像を表示する。反射型の画像表示部を備えた表示装置は外光を利用して画像を表示するので、低消費電力化、薄型化、軽量化が達成でき、例えば携帯端末用として利用されている。   A reflection-type image display unit that displays an image by controlling the reflectance of external light is known. For example, a reflective liquid crystal display panel includes a reflective electrode that reflects external light, and displays an image by controlling the reflectance of external light with a liquid crystal material layer. Since a display device including a reflective image display unit displays an image using external light, low power consumption, thickness reduction, and weight reduction can be achieved. For example, the display device is used for a portable terminal.

反射型の画像表示部を備えた表示装置にあっては、画像表示部の表示領域における光の散乱特性に角度依存性を持たせることによって、所定の観察位置に対する反射率を高めてカラー表示化に伴う反射率低下による視認性低下を補うといったことや、所定の観察位置から外れた場所から画像が観察されることを防ぐといったことができる。例えば、特開2000−297110号公報(特許文献1)や特開2008−239757号公報(特許文献2)には、表示装置の視野角制御等に用いられる、屈折率の異なる領域が混在して成る異方性散乱部材が記載されている。   In a display device equipped with a reflective image display unit, the reflectance of a predetermined observation position is increased and color display is realized by making the light scattering characteristics in the display region of the image display unit have angle dependency. It is possible to compensate for the decrease in visibility due to the decrease in reflectivity associated with the image, and to prevent the image from being observed from a place outside the predetermined observation position. For example, Japanese Patent Application Laid-Open No. 2000-297110 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2008-239757 (Patent Document 2) include regions having different refractive indexes that are used for viewing angle control of a display device. An anisotropic scattering member is described.

特開2000−297110号公報JP 2000-297110 A 特開2008−239757号公報JP 2008-239757 A

上述したような構成の異方性散乱部材を用いた表示装置にあっては、異方性散乱部材の微細構造による光の干渉などに起因して、虹色の色づき等が発生して表示品位を損ねるといった場合がある。   In the display device using the anisotropic scattering member having the above-described configuration, the display quality is improved due to the occurrence of iridescent coloring or the like due to light interference caused by the fine structure of the anisotropic scattering member. May be damaged.

従って、本開示の目的は、異方性散乱部材の構造に起因する虹色の色づきを軽減することができる表示装置を提供することにある。   Accordingly, an object of the present disclosure is to provide a display device that can reduce iridescent coloring caused by the structure of the anisotropic scattering member.

上記の目的を達成するための本開示の表示装置は、シート状の異方性散乱部材を含む反射型の画像表示部を備えており、異方性散乱部材の面内方向の領域は、柱状に形成された高屈折率領域と当該高屈折率領域を取り巻く周辺領域を形成する低屈折率領域とが混在する領域として形成されており、異方性散乱部材は、低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に大きい第1面と、低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に小さい第2面とを有する表示装置である。また、上記の目的を達成するための本開示の表示装置は、シート状の異方性散乱部材を含む反射型の画像表示部を備えており、異方性散乱部材の面内方向の領域は、低屈折率領域と高屈折率領域とがルーバー状に形成されて混在する領域として形成されており、異方性散乱部材は、低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に大きい第1面と、低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に小さい第2面とを有する表示装置である。   In order to achieve the above object, a display device of the present disclosure includes a reflective image display unit including a sheet-like anisotropic scattering member, and the region in the in-plane direction of the anisotropic scattering member has a columnar shape. The high-refractive-index region formed in the region and the low-refractive-index region that forms the peripheral region surrounding the high-refractive-index region are formed as a mixed region. A first surface having a relatively large degree of refractive index change in the vicinity of the boundary with the refractive index region, and a second surface having a relatively small degree of refractive index change in the vicinity of the boundary between the low refractive index region and the high refractive index region. A display device having a surface. In addition, a display device of the present disclosure for achieving the above object includes a reflective image display unit including a sheet-like anisotropic scattering member, and an in-plane direction region of the anisotropic scattering member is The low-refractive index region and the high-refractive index region are formed as a mixed region formed in a louver shape, and the anisotropic scattering member has a refractive index near the boundary between the low-refractive index region and the high-refractive index region. The display device includes a first surface having a relatively large degree of change and a second surface having a relatively small degree of change in refractive index in the vicinity of the boundary between the low refractive index region and the high refractive index region.

本開示の表示装置にあっては、異方性散乱部材は、低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に大きい第1面と、低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に小さい第2面とを有する。これによって、微細構造による光の干渉に起因する虹色の色づきが軽減される。   In the display device of the present disclosure, the anisotropic scattering member includes the first surface having a relatively large degree of change in the refractive index in the vicinity of the boundary between the low refractive index region and the high refractive index region, and the low refractive index. The second surface has a relatively small degree of change in refractive index in the vicinity of the boundary between the region and the high refractive index region. This reduces iridescent coloring caused by light interference due to the fine structure.

図1は、第1の実施形態に係る表示装置の模式的な斜視図である。FIG. 1 is a schematic perspective view of the display device according to the first embodiment. 図2の(A)は、反射型の画像表示部の構造を説明するための模式的な斜視図である。図2の(B)は、第1の実施形態に係る異方性散乱部材の構造を説明するための模式的な断面図である。図2の(C)及び(D)は、異方性散乱部材における低屈折率領域と高屈折率領域の配置を説明するための模式的な斜視図である。FIG. 2A is a schematic perspective view for explaining the structure of a reflective image display unit. FIG. 2B is a schematic cross-sectional view for explaining the structure of the anisotropic scattering member according to the first embodiment. 2C and 2D are schematic perspective views for explaining the arrangement of the low refractive index region and the high refractive index region in the anisotropic scattering member. 図3の(A)及び(B)は、第1の実施形態に係る異方性散乱部材の製造方法を説明するための模式図である。FIGS. 3A and 3B are schematic views for explaining the method for manufacturing the anisotropic scattering member according to the first embodiment. 図4の(A)及び(B)は、異方性散乱部材における入射光と散乱光の関係を説明するための模式図である。4A and 4B are schematic views for explaining the relationship between incident light and scattered light in the anisotropic scattering member. 図5は、略平行な外光が入射する場合の表示装置と画像観察者との位置関係を説明するための模式図である。FIG. 5 is a schematic diagram for explaining the positional relationship between the display device and the image observer when substantially parallel external light is incident. 図6の(A)は、第1の実施形態に係る反射型の画像表示部の模式的な断面図である。図6の(B)は、参考例に係る反射型の画像表示部の模式的な断面図である。FIG. 6A is a schematic cross-sectional view of a reflective image display unit according to the first embodiment. FIG. 6B is a schematic cross-sectional view of a reflective image display unit according to a reference example. 図7の(A)は、第2の実施形態に係る反射型の画像表示部の模式的な断面図である。図7の(B)は、参考例に係る反射型の画像表示部の模式的な断面図である。FIG. 7A is a schematic cross-sectional view of a reflective image display unit according to the second embodiment. FIG. 7B is a schematic cross-sectional view of a reflective image display unit according to a reference example. 図8は、第3の実施形態に係る反射型の画像表示部の模式的な分解斜視図である。FIG. 8 is a schematic exploded perspective view of a reflective image display unit according to the third embodiment. 図9は、第4の実施形態に係る反射型の画像表示部の模式的な分解斜視図である。FIG. 9 is a schematic exploded perspective view of a reflective image display unit according to the fourth embodiment. 図10は、第4の実施形態に係る反射型の画像表示部の模式的な断面図である。FIG. 10 is a schematic cross-sectional view of a reflective image display unit according to the fourth embodiment.

以下、図面を参照して、実施形態に基づき本開示を説明する。本開示は実施形態に限定されるものではなく、実施形態における種々の数値や材料は例示である。以下の説明において、同一要素または同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は、以下の順序で行う。
1.本開示に係る表示装置、全般に関する説明
2.第1の実施形態
3.第2の実施形態
4.第3の実施形態
5.第4の実施形態(その他)
Hereinafter, the present disclosure will be described based on embodiments with reference to the drawings. The present disclosure is not limited to the embodiments, and various numerical values and materials in the embodiments are examples. In the following description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted. The description will be given in the following order.
1. 1. General description of display device according to the present disclosure First Embodiment 3 Second Embodiment 4. Third Embodiment 5 Fourth embodiment (others)

[本開示に係る表示装置、全般に関する説明]
本開示に係る表示装置において、異方性散乱部材は、画像表示部内で反射した外光が異方性散乱部材を透過する際に光が散乱するように配置されている構成とすることができる。あるいは又、異方性散乱部材は、外部から入射する外光が異方性散乱部材を透過する際に光が散乱するように配置されている構成とすることもできる。
[General Description of Display Device According to the Present Disclosure]
In the display device according to the present disclosure, the anisotropic scattering member can be configured such that light is scattered when external light reflected in the image display unit passes through the anisotropic scattering member. . Alternatively, the anisotropic scattering member may be arranged so that light is scattered when external light incident from the outside passes through the anisotropic scattering member.

異方性散乱部材は、光反応性の化合物を含む組成物などを用いて構成することができる。例えば、光重合の前後で或る程度の屈折率変化を示す組成物から成る基材に、所定の方向から紫外線などの光を照射することによって、異方性散乱部材を得ることができる。組成物を構成する材料は、ラジカル重合性やカチオン重合性の官能基を有するポリマー等といった公知の光反応性の材料から、光反応をした部分とそうでない部分とで或る程度の屈折率変化を生ずる材料を適宜選択して用いればよい。   The anisotropic scattering member can be configured using a composition containing a photoreactive compound. For example, an anisotropic scattering member can be obtained by irradiating light such as ultraviolet rays from a predetermined direction onto a substrate made of a composition that exhibits a certain change in refractive index before and after photopolymerization. The composition is made of a known photoreactive material, such as a polymer having a radical polymerizable or cationic polymerizable functional group, and a certain degree of refractive index change between the photoreactive part and the non-photoreactive part. A material that produces the above may be appropriately selected and used.

あるいは又、例えば、光反応性の化合物と光反応性のない高分子化合物とを混合した組成物から成る基材に、所定の方向から紫外線などの光を照射することによって、異方性散乱部材を得ることもできる。光反応性のない高分子化合物は、例えば、アクリル樹脂やスチレン樹脂などといった公知の材料から適宜選択して用いればよい。   Alternatively, for example, an anisotropic scattering member is obtained by irradiating a base material made of a composition obtained by mixing a photoreactive compound and a non-photoreactive polymer compound with light such as ultraviolet rays from a predetermined direction. You can also get The polymer compound having no photoreactivity may be appropriately selected from known materials such as acrylic resin and styrene resin.

上記の組成物から成る基材は、例えば、高分子材料から成るフィルム状の基体の上に、組成物を公知の塗布方法などにより塗布することで得ることができる。   The substrate made of the above composition can be obtained, for example, by coating the composition on a film-like substrate made of a polymer material by a known coating method.

上述した組成物等から成る異方性散乱部材の面内方向の領域は、低屈折率領域と高屈折率領域とが混在する領域として形成される。異方性散乱部材の厚み方向に対して低屈折率領域と高屈折率領域との境界は所定の角度を成す。場合によっては、この角度は、面内方向において連続的に変化するように構成されていてもよい。   The region in the in-plane direction of the anisotropic scattering member made of the above-described composition or the like is formed as a region in which a low refractive index region and a high refractive index region are mixed. A boundary between the low refractive index region and the high refractive index region forms a predetermined angle with respect to the thickness direction of the anisotropic scattering member. In some cases, this angle may be configured to continuously change in the in-plane direction.

定性的には、組成物から成る基材に光が照射される場合、光の照射側に近い程、組成物の光反応が進む。従って、光が照射される面は、低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に大きくなり、反対側の面は、低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に小さい面となる。   Qualitatively, when light is irradiated onto a substrate made of the composition, the photoreaction of the composition proceeds closer to the light irradiation side. Therefore, the surface irradiated with light has a relatively large change in refractive index near the boundary between the low refractive index region and the high refractive index region, and the opposite surface has a low refractive index region and a high refractive index. The surface has a relatively small degree of change in refractive index in the vicinity of the boundary with the index region.

低屈折率領域と高屈折率領域における屈折率の差は、低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に大きい面付近において、通常、0.01以上であることが好ましく、0.05以上であることがより好ましく、0.10以上であることが更に好ましい。   The difference in refractive index between the low-refractive index region and the high-refractive index region is generally 0.01% near the surface where the degree of change in refractive index near the boundary between the low-refractive index region and the high-refractive index region is relatively large. It is preferable that it is above, more preferably 0.05 or more, and still more preferably 0.10 or more.

異方性散乱部材を構成する材料や製造方法にもよるが、光反応をした部分とそうでない部分とは、例えば、後述する図2の(C)に示すようにそれぞれルーバー状の領域を形成する構成であってもよいし、あるいは又、後述する図2の(D)に示すように、柱状領域とそれを取り巻く周辺領域を形成する構成であってもよい。   Depending on the material constituting the anisotropic scattering member and the manufacturing method, the photoreactive part and the non-reactive part form, for example, louver-like regions as shown in FIG. Alternatively, as shown in FIG. 2D, which will be described later, a columnar region and a peripheral region surrounding it may be formed.

本開示に係る表示装置を構成する反射型の画像表示部として、例えば、反射型の液晶表示パネルを挙げることができる。画像表示部は、モノクロ表示であってもよいし、カラー表示であってもよい。反射型の液晶表示パネルは、外光を反射する反射電極などを備えており、液晶材料層によって外光の反射率を制御することにで画像を表示する。   Examples of the reflective image display unit constituting the display device according to the present disclosure include a reflective liquid crystal display panel. The image display unit may be a monochrome display or a color display. The reflective liquid crystal display panel includes a reflective electrode that reflects external light and the like, and displays an image by controlling the reflectance of external light with a liquid crystal material layer.

反射型の液晶表示パネルは、例えば、透明共通電極を備えた前面基板、画素電極を備えた背面基板、及び、前面基板と背面基板との間に配置された液晶材料層などから成る。画素電極自体が反射電極として構成されており光を反射する構成であってもよいし、透明画素電極と反射膜の組み合わせによって、反射膜が光を反射するといった構成であってもよい。液晶表示パネルの動作モードは、反射型の表示動作に支障がない限り特に限定するものではない。例えば、所謂VAモードやECBモードで駆動される液晶表示パネルを用いることができる。   The reflective liquid crystal display panel includes, for example, a front substrate having a transparent common electrode, a back substrate having a pixel electrode, and a liquid crystal material layer disposed between the front substrate and the back substrate. The pixel electrode itself may be configured as a reflective electrode and may reflect light, or may be configured such that the reflective film reflects light by a combination of the transparent pixel electrode and the reflective film. The operation mode of the liquid crystal display panel is not particularly limited as long as it does not hinder the reflective display operation. For example, a liquid crystal display panel driven in a so-called VA mode or ECB mode can be used.

上述した各種の好ましい構成を含む本開示の表示装置において、画像表示部は、前面基板、背面基板、及び、前面基板と背面基板との間に配置されている液晶材料層を含む反射型の液晶表示パネルから成り、異方性散乱部材は、前面基板側に配置されている構成とすることができる。   In the display device according to the present disclosure including the various preferable configurations described above, the image display unit includes a front substrate, a rear substrate, and a reflective liquid crystal including a liquid crystal material layer disposed between the front substrate and the rear substrate. It consists of a display panel, and the anisotropic scattering member can be set as the structure arrange | positioned at the front substrate side.

上述した各種の好ましい構成を含む本開示の表示装置において、異方性散乱部材は、散乱特性の異なる複数の散乱部材が複数積層されて成る構成とすることができる。   In the display device of the present disclosure including the various preferable configurations described above, the anisotropic scattering member may be configured by stacking a plurality of scattering members having different scattering characteristics.

反射型と透過型の両方の特性を有する半透過型の画像表示部として、例えば、画素内に反射型の表示領域と透過型の表示領域の両方を有する半透過型の液晶表示パネルが周知である。場合によっては、このような半透過型の画像表示部であってもよい。即ち、「反射型の画像表示部」には「半透過型の画像表示部」も含まれる。   As a transflective image display section having both reflective and transmissive characteristics, for example, a transflective liquid crystal display panel having both a reflective display area and a transmissive display area in a pixel is well known. is there. In some cases, such a transflective image display unit may be used. That is, the “reflective image display unit” includes a “semi-transmissive image display unit”.

画像表示部の形状は特に限定するものではなく、横長の矩形状であってもよいし縦長の矩形状であってもよい。画像表示部の画素(ピクセル)の数M×Nを(M,N)で表記したとき、例えば横長の矩形状の場合には(M,N)の値として、(640,480)、(800,600)、(1024,768)等の画像表示用解像度の幾つかを例示することができ、縦長の矩形状の場合には相互に値を入れ替えた解像度を例示することができるが、これらの値に限定するものではない。   The shape of the image display unit is not particularly limited, and may be a horizontally long rectangular shape or a vertically long rectangular shape. When the number M × N of the pixels (pixels) in the image display unit is expressed by (M, N), for example, in the case of a horizontally long rectangle, (640, 480), (800 , 600), (1024, 768), and the like. In the case of a vertically long rectangular shape, resolutions in which values are interchanged can be exemplified. It is not limited to values.

画像表示部を駆動する駆動回路は、種々の回路から構成することができる。これらは周知の回路素子などを用いて構成することができる。   A drive circuit for driving the image display unit can be composed of various circuits. These can be configured using well-known circuit elements.

本明細書に示す各種の条件は、厳密に成立する場合の他、実質的に成立する場合にも満たされる。設計上あるいは製造上生ずる種々のばらつきの存在は許容される。   The various conditions shown in this specification are satisfied not only when they are strictly established but also when they are substantially satisfied. The presence of various variations in design or manufacturing is allowed.

[第1の実施形態]
第1の実施形態は、本開示に係る表示装置に関する。
[First Embodiment]
The first embodiment relates to a display device according to the present disclosure.

図1は、第1の実施形態に係る表示装置の模式的な斜視図である。   FIG. 1 is a schematic perspective view of the display device according to the first embodiment.

図1に示すように、表示装置100は、画素12が配列された表示領域11を有する反射型の画像表示部1を備えている。画像表示部1は、反射型の液晶表示パネルから成り、筐体40内に組み込まれている。画像表示部1は、図示せぬ駆動回路などにより駆動される。尚、図1においては、筐体40の一部を切り欠いて示した。表示領域11には、例えば太陽光などの外光が入射する。説明の都合上、表示領域11はX−Y平面と平行であり、画像を観察する側が+Z方向であるとする。   As shown in FIG. 1, the display device 100 includes a reflective image display unit 1 having a display area 11 in which pixels 12 are arranged. The image display unit 1 is formed of a reflective liquid crystal display panel and is incorporated in the housing 40. The image display unit 1 is driven by a drive circuit (not shown). In FIG. 1, a part of the housing 40 is cut away. For example, external light such as sunlight enters the display area 11. For convenience of explanation, it is assumed that the display area 11 is parallel to the XY plane and the side on which the image is observed is the + Z direction.

図2の(A)は、反射型の画像表示部の構造を説明するための模式的な斜視図である。図2の(B)は、第1の実施形態に係る異方性散乱部材の構造を説明するための模式的な断面図である。図2の(C)及び(D)は、異方性散乱部材における低屈折率領域と高屈折率領域の配置を説明するための模式的な斜視図である。   FIG. 2A is a schematic perspective view for explaining the structure of a reflective image display unit. FIG. 2B is a schematic cross-sectional view for explaining the structure of the anisotropic scattering member according to the first embodiment. 2C and 2D are schematic perspective views for explaining the arrangement of the low refractive index region and the high refractive index region in the anisotropic scattering member.

図2の(A)に示す画像表示部1は、シート状の異方性散乱部材20を含む反射型の画像表示部である。より具体的には、画像表示部1は、前面基板、背面基板、及び、前面基板と背面基板14との間に配置されている液晶材料層を含む、反射型の液晶表示パネルから成る。図2の(A)に示す符号10は、後述する図6の(A)に示す前面基板18、背面基板14、及び、前面基板18と背面基板14との間に配置されている液晶材料層17を含む液晶表示パネルの部分を示す。異方性散乱部材20は、前面基板18側に配置されている。図2の(A)に示す符号30は、図6の(A)に示す1/4波長板31、1/2波長板32、及び、偏光板33を含む液晶表示パネルの部分を示す。   An image display unit 1 shown in FIG. 2A is a reflective image display unit including a sheet-like anisotropic scattering member 20. More specifically, the image display unit 1 includes a reflective liquid crystal display panel that includes a front substrate, a rear substrate, and a liquid crystal material layer disposed between the front substrate and the rear substrate 14. Reference numeral 10 shown in FIG. 2A denotes a front substrate 18, a rear substrate 14, and a liquid crystal material layer disposed between the front substrate 18 and the rear substrate 14 shown in FIG. 17 shows a portion of the liquid crystal display panel including 17. The anisotropic scattering member 20 is disposed on the front substrate 18 side. 2 indicates a portion of the liquid crystal display panel including the quarter-wave plate 31, the half-wave plate 32, and the polarizing plate 33 illustrated in FIG.

図2に示すように、画像表示部1は矩形状であり、辺を参照番号13A,13B,13C,13Dで表す。辺13Cは手前側の辺であり、辺13Aは辺13Cに対向する辺である。例えば、辺13A,13Cは約12[cm]、辺13B,13Dは約16[cm]といった値であるが、これは例示に過ぎない。   As shown in FIG. 2, the image display unit 1 has a rectangular shape, and sides are represented by reference numbers 13A, 13B, 13C, and 13D. The side 13C is a front side, and the side 13A is a side facing the side 13C. For example, the sides 13A and 13C have values of about 12 [cm] and the sides 13B and 13D have values of about 16 [cm], but this is merely an example.

異方性散乱部材20は、例えばその厚さが0.02〜0.5[mm]程度のシート状(フィルム状)である。図2の(B)に示すように、異方性散乱部材20の面内方向の領域は、低屈折率領域21と高屈折率領域22とが例えばミクロンオーダーで混在する領域として形成されている。尚、図示の都合上、図2等においては、異方性散乱部材20の下地となる透明なフィルム等の表示を省略した。   The anisotropic scattering member 20 has a sheet shape (film shape) with a thickness of about 0.02 to 0.5 [mm], for example. As shown in FIG. 2B, the region in the in-plane direction of the anisotropic scattering member 20 is formed as a region in which the low refractive index region 21 and the high refractive index region 22 are mixed, for example, in the micron order. . For convenience of illustration, in FIG. 2 and the like, the display of a transparent film or the like serving as a base of the anisotropic scattering member 20 is omitted.

後述する図6の(A)等を参照して後で詳しく説明するが、異方性散乱部材20は、低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に大きい面側から外光が入射して低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に小さい面側から光が出射する際に光が散乱するように配置されている。第1の実施形態では、異方性散乱部材20は、画像表示部1内で反射した外光が異方性散乱部材20を透過する際に光が散乱するように配置されている。   As will be described in detail later with reference to FIG. 6A and the like to be described later, the anisotropic scattering member 20 has a degree of change in the refractive index in the vicinity of the boundary between the low refractive index region 21 and the high refractive index region 22. When external light is incident from the side of the surface where the refractive index is relatively large and light is emitted from the side of the surface where the degree of change in the refractive index near the boundary between the low refractive index region 21 and the high refractive index region 22 is relatively small. It arrange | positions so that light may be scattered. In the first embodiment, the anisotropic scattering member 20 is arranged so that light is scattered when external light reflected in the image display unit 1 passes through the anisotropic scattering member 20.

異方性散乱部材20は、光反応性の化合物を含む組成物などを用いて構成されている。異方性散乱部材20は、例えば、図2の(C)に示すように、低屈折率領域21と高屈折率領域22がルーバー状に形成されている構成であってもよいし、図2の(D)に示すように、低屈折率領域21と高屈折率領域22とが、柱状領域とそれを取り巻く周辺領域を形成する構成であってもよい。図2の(D)では、例えば光反応をした組成物の部分が柱状領域状に高屈折率化する場合の例を示した。   The anisotropic scattering member 20 is configured using a composition containing a photoreactive compound. The anisotropic scattering member 20 may have a configuration in which a low refractive index region 21 and a high refractive index region 22 are formed in a louver shape, for example, as shown in FIG. As shown in (D), the low refractive index region 21 and the high refractive index region 22 may be configured to form a columnar region and a peripheral region surrounding it. FIG. 2D shows an example in which, for example, a portion of the composition that has undergone photoreaction has a high refractive index in the form of a columnar region.

図2の(C)では、各低屈折率領域21の厚み方向の幅や、各高屈折率領域22の厚み方向の幅が一定であるように表したが、これは例示に過ぎない。同様に、図2の(D)においても、各柱状領域の形状が同一であるように表したが、これも例示に過ぎない。   In FIG. 2C, the width in the thickness direction of each low refractive index region 21 and the width in the thickness direction of each high refractive index region 22 are shown to be constant, but this is merely an example. Similarly, in FIG. 2D, the shape of each columnar region is shown to be the same, but this is only an example.

図2(B)乃至(D)に示すように、異方性散乱部材20の内部において、低屈折率領域21及び高屈折率領域22は、異方性散乱部材20の厚み方向(Z方向)に対して低屈折率領域21と高屈折率領域22との境界が角度θを成すように、斜め方向に形成されている。角度θは、異方性散乱部材20の仕様等に応じて適宜好適な値に設定される。場合によっては、角度θが0度といった構成であってもよい。   As shown in FIGS. 2B to 2D, in the anisotropic scattering member 20, the low refractive index region 21 and the high refractive index region 22 are in the thickness direction (Z direction) of the anisotropic scattering member 20. In contrast, the boundary between the low refractive index region 21 and the high refractive index region 22 is formed in an oblique direction so as to form an angle θ. The angle θ is appropriately set to a suitable value according to the specifications of the anisotropic scattering member 20 and the like. In some cases, the angle θ may be 0 degrees.

後述する図4に示すように、異方性散乱部材20の散乱中心軸S(それを中心として、入射する光の異方性散乱特性が略対称性となる軸をいう。換言すれば、最も散乱する光の入射方向に延びる軸である。)は、表示装置100の観察面の法線方向(Z軸方向)に対して斜めに傾斜しているが、定性的には、その軸方向は低屈折率領域21と高屈折率領域22の延在方向に概ね倣う方向にあると考えられる。更に、この場合、散乱中心軸SをX−Y平面上に投影した方位は、図2の(C)に示す場合には、ルーバー状の領域が延びる方向に直交する方向、図2の(D)に示す場合には、柱状領域をX−Y平面に投影したときにその影が延びる方向にあると考えられる。   As will be described later with reference to FIG. 4, the scattering center axis S of the anisotropic scattering member 20 (the axis on which the anisotropic scattering characteristics of incident light are substantially symmetrical is the center. Is an axis extending in the incident direction of the scattered light.) Is inclined obliquely with respect to the normal direction (Z-axis direction) of the observation surface of the display device 100, but qualitatively, the axial direction is It is considered to be in a direction generally following the extending direction of the low refractive index region 21 and the high refractive index region 22. Further, in this case, the direction in which the scattering center axis S is projected on the XY plane is the direction orthogonal to the direction in which the louver-like region extends, as shown in FIG. ) Is considered to be in the direction in which the shadow extends when the columnar region is projected onto the XY plane.

説明の都合上、ここでは、低屈折率領域21と高屈折率領域22とは図2の(C)に示すようにルーバー状に形成されており、それらルーバー状の領域が延びる方向はX方向に平行であるとする。また、高屈折率領域22は基材が光反応を生じた領域であるとして説明するが、これは例示にすぎない。基材が光反応を生じた領域が低屈折率領域21となる構成であってもよい。   For convenience of explanation, here, the low refractive index region 21 and the high refractive index region 22 are formed in a louver shape as shown in FIG. 2C, and the direction in which these louver shaped regions extend is the X direction. Is parallel to Moreover, although the high refractive index area | region 22 is demonstrated as a area | region where the base material produced the photoreaction, this is only an illustration. A configuration in which the region in which the base material undergoes a photoreaction becomes the low refractive index region 21 may be employed.

図3の(A)及び(B)を参照して、異方性散乱部材20の製造方法について説明する
。図3の(A)に示すように、異方性散乱部材20は、例えば、PETフィルム等の基体
の上に光反応性の組成物を塗布した基材20’に対して、開口61を有するマスク60を
介して、光照射装置50から斜めに光を照射することによって製造することができる。尚
、場合によっては、マスク60を省略して光を照射してもよい。基材20’の面のうち、
光照射装置50からの光が照射される側の面をA面と表し、反対側の面をB面と表す。
A method for manufacturing the anisotropic scattering member 20 will be described with reference to FIGS. As shown in FIG. 3A, the anisotropic scattering member 20 has an opening 61 with respect to a base material 20 ′ obtained by applying a photoreactive composition on a base such as a PET film, for example. It can be manufactured by irradiating light obliquely from the light irradiation device 50 through the mask 60. In some cases, the mask 60 may be omitted and light may be irradiated. Of the surfaces of the substrate 20 ′,
The surface on the side irradiated with light from the light irradiation device 50 is represented as A surface, and the opposite surface is represented as B surface.

光の回折や組成物による光吸収などの影響により、定性的には、光の照射側に近い領域ほど組成物の光反応が進む。従って、図3の(B)に示すように、光が照射されるA面は、低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に大きい面となり、反対側のB面は、低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に小さい面となる。   Due to the effects of light diffraction and light absorption by the composition, qualitatively, the photoreaction of the composition proceeds in a region closer to the light irradiation side. Therefore, as shown in FIG. 3B, the surface A irradiated with light has a relatively large degree of refractive index change in the vicinity of the boundary between the low refractive index region 21 and the high refractive index region 22. Thus, the opposite B surface is a surface in which the degree of change in refractive index in the vicinity of the boundary between the low refractive index region 21 and the high refractive index region 22 is relatively small.

ここで、外光が異方性散乱部材20のA面側から入射する場合とB面側から入射する場合との差について、図4の(A)及び(B)を参照して説明する。   Here, the difference between the case where the external light is incident from the A surface side of the anisotropic scattering member 20 and the case where the external light is incident from the B surface side will be described with reference to FIGS.

図4の(A)及び(B)に示すように、異方性散乱部材20において、低屈折率領域21と高屈折率領域22との境界が延びる方向に概ね倣う方向から光が入射した場合、光は散乱して出射する。一方、低屈折率領域21と高屈折率領域22との境界が延びる方向と略直交する方向から光が入射した場合、光はそのまま透過する。   As shown in FIGS. 4A and 4B, in the anisotropic scattering member 20, light is incident from a direction generally following the direction in which the boundary between the low refractive index region 21 and the high refractive index region 22 extends. The light is scattered and emitted. On the other hand, when light enters from a direction substantially orthogonal to the direction in which the boundary between the low refractive index region 21 and the high refractive index region 22 extends, the light is transmitted as it is.

図4の(A)に示すように、B面側から光が入射してA面側から出射する際に散乱する場合、低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に大きい面から出射することになり、微細構造による光の干渉に起因する虹色の色づきが目立ち易い。   As shown in FIG. 4A, when light is incident from the B surface side and scattered when exiting from the A surface side, the refractive index in the vicinity of the boundary between the low refractive index region 21 and the high refractive index region 22 The light is emitted from a surface having a relatively large degree of change, and iridescent coloring caused by light interference due to the fine structure is easily noticeable.

これに対し、図4の(B)に示すように、A面側から光が入射してB面側から出射する際に散乱する場合、低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に小さい面から出射することになり、微細構造による光の干渉に起因する虹色の色づきが軽減される。   On the other hand, as shown in FIG. 4B, when light is incident from the A surface side and scattered when exiting from the B surface side, the boundary between the low refractive index region 21 and the high refractive index region 22 The light is emitted from a surface where the degree of change in refractive index in the vicinity is relatively small, and iridescent coloring caused by light interference due to the fine structure is reduced.

図5は、略平行な外光が入射する場合の表示装置と画像観察者との位置関係を説明するための模式図である。具体的には、外光の入射方向と画像表示部1の法線方向とが角度αを成すようにした状態で、表示領域11から距離LZ離れた場所で画像観察者が画像を観察する場合の状態を示している。   FIG. 5 is a schematic diagram for explaining the positional relationship between the display device and the image observer when substantially parallel external light is incident. Specifically, when the image observer observes the image at a distance LZ from the display area 11 in a state where the incident direction of the external light and the normal direction of the image display unit 1 form an angle α. Shows the state.

このときの画像表示部1における光の挙動について、図6の(A)を参照して説明する。   The behavior of light in the image display unit 1 at this time will be described with reference to FIG.

例えばガラス材料から成る背面基板14の上には、アクリル樹脂等の高分子材料から成る平坦化膜15が形成されており、その上に、アルミニウム等の金属材料から成る反射電極(画素電極)16が形成されている。反射電極16は、その表面が鏡面状に形成され、各画素12に対応して設けられている。信号線と反射電極16との電気的な接続を制御するために、各画素12に対応してTFT等の素子が接続されている。尚、図3においてはTFTや信号線などの種々の配線の図示を省略した。   For example, a planarizing film 15 made of a polymer material such as an acrylic resin is formed on a back substrate 14 made of a glass material, and a reflective electrode (pixel electrode) 16 made of a metal material such as aluminum is formed thereon. Is formed. The reflective electrode 16 has a mirror-like surface and is provided corresponding to each pixel 12. In order to control the electrical connection between the signal line and the reflective electrode 16, an element such as a TFT is connected to each pixel 12. In FIG. 3, illustration of various wirings such as TFTs and signal lines is omitted.

例えばガラス材料から成る前面基板18には、ITO等の透明導電性材料から成る図示せぬ共通電極が設けられている。カラー表示の場合には、画素12は副画素の組から成り、各副画素に対応してカラーフィルター等が設けられる。尚、図示の都合上、図6等にあっては、共通電極などの表示を省略した。   For example, the front substrate 18 made of a glass material is provided with a common electrode (not shown) made of a transparent conductive material such as ITO. In the case of color display, the pixel 12 is composed of a set of subpixels, and a color filter or the like is provided for each subpixel. For convenience of illustration, the display of the common electrode and the like is omitted in FIG.

前面基板18と背面基板14との間には、液晶材料層17が配置されている。符号17Aは、液晶材料層17を構成する液晶分子を模式的に示す。液晶材料層17は、図示せぬスペーサ等によって、所定の条件において、光が往復すると液晶材料層17が1/2波長板として作用するような厚さに設置されている。   A liquid crystal material layer 17 is disposed between the front substrate 18 and the back substrate 14. Reference numeral 17 </ b> A schematically represents liquid crystal molecules constituting the liquid crystal material layer 17. The liquid crystal material layer 17 is provided by a spacer (not shown) in such a thickness that the liquid crystal material layer 17 acts as a half-wave plate when light reciprocates under predetermined conditions.

前面基板18の液晶材料層17側とは反対側の面には、異方性散乱部材20が配置されており、更に、その上に、1/4波長板31、1/2波長板32、及び、偏光板33が配置されている。   An anisotropic scattering member 20 is disposed on the surface of the front substrate 18 opposite to the liquid crystal material layer 17 side. Further, a quarter wavelength plate 31, a half wavelength plate 32, And the polarizing plate 33 is arrange | positioned.

外部から入射する外光は、偏光板33によって所定の方向の直線偏光となった後に、1/2波長板32と1/4波長板31を透過して円偏光となる。1/2波長板32と1/4波長板31の組み合わせは、広帯域の1/4波長板として作用する。円偏光となった外光は、低屈折率領域21と高屈折率領域22との境界が延びる方向と略直交する方向から入射するので、そのまま異方性散乱部材20を透過した後、液晶材料層17を透過して反射電極16によって反射する。反射した外光は、液晶材料層17を透過して、異方性散乱部材20のA面側から入射しB面側から出射する。低屈折率領域21と高屈折率領域22との境界が延びる方向に概ね倣う方向から光が入射するので光は散乱するが、低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に小さい面から出射するので、微細構造による光の干渉に起因する虹色の色づきが軽減される。その後、散乱した光は、1/4波長板31及び1/2波長板32を透過して偏光板33に達し、外部に向けて出射する。反射電極16などに印加する電圧を制御して、液晶材料層17における液晶分子17Aの配向状態を制御することによって、反射電極16によって反射した外光が偏光板33を透過する量を制御することができる。   External light incident from the outside is converted into linearly polarized light in a predetermined direction by the polarizing plate 33, and then passes through the half-wave plate 32 and the quarter-wave plate 31 to become circularly polarized light. The combination of the half-wave plate 32 and the quarter-wave plate 31 acts as a broadband quarter-wave plate. Since the external light that has become circularly polarized light is incident from a direction substantially orthogonal to the direction in which the boundary between the low refractive index region 21 and the high refractive index region 22 extends, the liquid crystal material is transmitted through the anisotropic scattering member 20 as it is. The light passes through the layer 17 and is reflected by the reflective electrode 16. The reflected external light is transmitted through the liquid crystal material layer 17, enters from the A surface side of the anisotropic scattering member 20, and exits from the B surface side. Since light is incident from a direction that generally follows the direction in which the boundary between the low refractive index region 21 and the high refractive index region 22 extends, the light is scattered, but refraction near the boundary between the low refractive index region 21 and the high refractive index region 22 is performed. Since the light is emitted from a surface having a relatively small rate change, iridescent coloring caused by light interference due to the fine structure is reduced. Thereafter, the scattered light passes through the quarter-wave plate 31 and the half-wave plate 32, reaches the polarizing plate 33, and is emitted toward the outside. By controlling the voltage applied to the reflective electrode 16 and the like to control the alignment state of the liquid crystal molecules 17A in the liquid crystal material layer 17, the amount of external light reflected by the reflective electrode 16 is transmitted through the polarizing plate 33. Can do.

これに対し、異方性散乱部材20のA面側とB面側とを入れ替えた場合の光の挙動について説明する。異方性散乱部材20のA面側とB面側とを入れ替えた参考例の画像表示部1’における光の挙動を図6の(B)を参照して説明する。   On the other hand, the behavior of light when the A surface side and the B surface side of the anisotropic scattering member 20 are interchanged will be described. The behavior of light in the image display unit 1 ′ of the reference example in which the A surface side and the B surface side of the anisotropic scattering member 20 are exchanged will be described with reference to FIG.

この場合、反射電極16によって反射した外光が液晶材料層17を透過するまでの挙動は、上述した挙動と同一である。反射した外光は、液晶材料層17を透過して異方性散乱部材20のB面側から入射しA面側から出射する。低屈折率領域21と高屈折率領域22との境界が延びる方向に概ね倣う方向から光が入射するので光は散乱するが、低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に大きい面から出射するので、微細構造による光の干渉に起因する虹色の色づきが目立ち易い。   In this case, the behavior until the external light reflected by the reflective electrode 16 passes through the liquid crystal material layer 17 is the same as the behavior described above. The reflected external light passes through the liquid crystal material layer 17, enters from the B surface side of the anisotropic scattering member 20, and exits from the A surface side. Since light is incident from a direction that generally follows the direction in which the boundary between the low refractive index region 21 and the high refractive index region 22 extends, the light is scattered, but refraction near the boundary between the low refractive index region 21 and the high refractive index region 22 is performed. Since the light is emitted from a surface having a relatively large rate change, the rainbow color due to light interference due to the fine structure is easily noticeable.

このように、第1の実施形態において、異方性散乱部材は、低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に大きい面側から外光が入射して低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に小さい面側から光が出射する際に光が散乱するように配置されている。より具体的には、異方性散乱部材は、画像表示部内で反射した外光が異方性散乱部材を透過して外部に向かう際に光を散乱させるように配置されている。低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に小さい面から出射する際に散乱するので、微細構造による光の干渉に起因する虹色の色づきが軽減される。   Thus, in the first embodiment, external light is incident on the anisotropic scattering member from the side of the surface where the degree of change in refractive index is relatively large near the boundary between the low refractive index region and the high refractive index region. Thus, the light is scattered when the light is emitted from the surface side where the degree of change in the refractive index in the vicinity of the boundary between the low refractive index region and the high refractive index region is relatively small. More specifically, the anisotropic scattering member is arranged to scatter light when the external light reflected in the image display unit passes through the anisotropic scattering member and travels outside. Since it scatters when it exits from a surface where the degree of change in the refractive index in the vicinity of the boundary between the low refractive index region 21 and the high refractive index region 22 is relatively small, the iridescent coloring caused by light interference due to the fine structure Is reduced.

[第2の実施形態]
第1の実施形態も、本開示に係る表示装置に関する。
[Second Embodiment]
The first embodiment also relates to a display device according to the present disclosure.

第2の実施形態では、外部から入射する外光が異方性散乱部材を透過する際に光を散乱させるように配置されている点が、第1の実施形態に対し相違する。   The second embodiment is different from the first embodiment in that the external light incident from the outside is arranged to scatter light when passing through the anisotropic scattering member.

第2の実施形態に係る表示装置200は、第1の実施形態に対して異方性散乱部材の配置が相違する他は、同一の構成である。第2の実施形態に係る表示装置200の模式的な斜視図は、図1に示す画像表示部1を画像表示部2と読み替え、表示装置100を表示装置200と読み替えればよいので省略する。また、第2の実施形態に用いられる画像表示部2の構造を説明するための模式的な斜視図は、図2の(A)における異方性散乱部材20の配置を適宜変更して読み替え、画像表示部1を画像表示部2と読み替えればよいので省略する。   The display device 200 according to the second embodiment has the same configuration as the first embodiment except that the arrangement of the anisotropic scattering member is different. The schematic perspective view of the display device 200 according to the second embodiment is omitted because the image display unit 1 shown in FIG. 1 may be read as the image display unit 2 and the display device 100 may be read as the display device 200. Further, the schematic perspective view for explaining the structure of the image display unit 2 used in the second embodiment is read by appropriately changing the arrangement of the anisotropic scattering member 20 in FIG. Since the image display unit 1 may be read as the image display unit 2, the description is omitted.

第2の実施形態においても、異方性散乱部材20は、低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に大きい面側から外光が入射して低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に小さい面側から光が出射する際に光が散乱するように配置されている。第2の実施形態では、外部から入射する外光が異方性散乱部材を透過する際に光が散乱するように配置されている。   Also in the second embodiment, the anisotropic scattering member 20 receives external light from the surface side where the degree of change in the refractive index near the boundary between the low refractive index region 21 and the high refractive index region 22 is relatively large. Thus, the light is scattered when the light is emitted from the surface side where the degree of change in the refractive index in the vicinity of the boundary between the low refractive index region 21 and the high refractive index region 22 is relatively small. In 2nd Embodiment, it arrange | positions so that light may be scattered when the external light which injects from the outside permeate | transmits an anisotropic scattering member.

第1の実施形態において説明したと同様に、外光の入射方向と画像表示部2の法線方向とが角度αを成すようにした状態での画像表示部2における光の挙動について、図7の(A)を参照して説明する。   As described in the first embodiment, the behavior of light in the image display unit 2 in a state where the incident direction of external light and the normal direction of the image display unit 2 form an angle α will be described with reference to FIG. This will be described with reference to (A).

図7の(A)に示すように、外部から入射する外光は、偏光板33、1/2波長板32及び1/4波長板31を透過した後、異方性散乱部材20に入射する。第1の実施形態とは異なり、異方性散乱部材20は、低屈折率領域21と高屈折率領域22との境界が延びる方向が入射する光に概ね倣うように配置されている。外光は、A面側から入射しB面側から出射する際に散乱する。低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に小さい面から出射する際に散乱するので、微細構造による光の干渉に起因する虹色の色づきが軽減される。散乱した光は液晶材料層を透過して反射電極で反射し、液晶材料層17を透過して、異方性散乱部材20のB面側から入射しA面側から出射する。低屈折率領域21と高屈折率領域22との境界が延びる方向に略直交する方向から光が入射するので光はそのまま透過し、1/4波長板31及び1/2波長板32を透過して偏光板33に達し、外部に向けて出射する。   As shown in FIG. 7A, external light incident from the outside passes through the polarizing plate 33, the half-wave plate 32, and the quarter-wave plate 31, and then enters the anisotropic scattering member 20. . Unlike the first embodiment, the anisotropic scattering member 20 is arranged so that the direction in which the boundary between the low refractive index region 21 and the high refractive index region 22 extends generally follows incident light. External light is scattered when entering from the A surface side and exiting from the B surface side. Since it scatters when it exits from a surface where the degree of change in the refractive index in the vicinity of the boundary between the low refractive index region 21 and the high refractive index region 22 is relatively small, the iridescent coloring caused by light interference due to the fine structure Is reduced. The scattered light passes through the liquid crystal material layer, is reflected by the reflective electrode, passes through the liquid crystal material layer 17, enters from the B surface side of the anisotropic scattering member 20, and exits from the A surface side. Since light is incident from a direction substantially orthogonal to the direction in which the boundary between the low refractive index region 21 and the high refractive index region 22 extends, the light is transmitted as it is, and is transmitted through the quarter wavelength plate 31 and the half wavelength plate 32. Then, the light reaches the polarizing plate 33 and is emitted toward the outside.

これに対し、異方性散乱部材20のA面側とB面側とを入れ替えた場合の光の挙動について説明する。異方性散乱部材20のA面側とB面側とを入れ替えた参考例の画像表示部2’における光の挙動を図7の(B)を参照して説明する。   On the other hand, the behavior of light when the A surface side and the B surface side of the anisotropic scattering member 20 are interchanged will be described. The behavior of light in the image display unit 2 ′ of the reference example in which the A surface side and the B surface side of the anisotropic scattering member 20 are switched will be described with reference to FIG.

この場合、外部から入射する外光は、低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に大きい面から出射する際に散乱するので、微細構造による光の干渉に起因する虹色の色づきが目立ち易い。散乱した光が反射電極で反射して外部に向かうまでの挙動は、上述したと同様である。   In this case, the external light incident from the outside is scattered when exiting from a surface where the degree of change in the refractive index near the boundary between the low refractive index region 21 and the high refractive index region 22 is relatively large. The iridescent coloring due to the interference of light due to is easily noticeable. The behavior until the scattered light is reflected by the reflective electrode and travels outward is the same as described above.

このように、第2の実施形態においては、外部から入射する外光が異方性散乱部材を透過する際に光が散乱するように配置されている。低屈折率領域21と高屈折率領域22との境界付近における屈折率の変化の程度が相対的に小さい面から出射する際に散乱するので、微細構造による光の干渉に起因する虹色の色づきが軽減される。   Thus, in 2nd Embodiment, it arrange | positions so that light may be scattered when the external light which injects from the outside permeate | transmits an anisotropic scattering member. Since it scatters when it exits from a surface where the degree of change in the refractive index in the vicinity of the boundary between the low refractive index region 21 and the high refractive index region 22 is relatively small, the iridescent coloring caused by light interference due to the fine structure Is reduced.

[第3の実施形態]
第3の実施形態も、本開示に係る表示装置に関する。
[Third Embodiment]
The third embodiment also relates to a display device according to the present disclosure.

第3の実施形態は、第1の実施形態に対し、異方性散乱部材は散乱特性の異なる複数の散乱部材が複数積層されて構成されている点が相違する。   The third embodiment is different from the first embodiment in that the anisotropic scattering member is configured by stacking a plurality of scattering members having different scattering characteristics.

第3の実施形態に係る表示装置300は、第1の実施形態に対して異方性散乱部材の構造が相違する他は、同一の構成である。第3の実施形態に係る表示装置300の模式的な斜視図は、図1に示す画像表示部1を画像表示部3と読み替え、表示装置100を表示装置300と読み替えればよいので省略する。また、第3の実施形態に用いられる画像表示部3の構造を説明するための模式的な斜視図は、図2の(A)における異方性散乱部材20を適宜変更して読み替え、画像表示部1を画像表示部3と読み替えればよいので省略する。   The display device 300 according to the third embodiment has the same configuration as that of the first embodiment except that the structure of the anisotropic scattering member is different. The schematic perspective view of the display device 300 according to the third embodiment is omitted because the image display unit 1 shown in FIG. 1 may be read as the image display unit 3 and the display device 100 may be read as the display device 300. Further, the schematic perspective view for explaining the structure of the image display unit 3 used in the third embodiment is read by appropriately changing the anisotropic scattering member 20 in FIG. Since the part 1 should just be read as the image display part 3, it abbreviate | omits.

図8は、第3の実施形態に係る反射型の画像表示部の模式的な分解斜視図である。   FIG. 8 is a schematic exploded perspective view of a reflective image display unit according to the third embodiment.

図8に示すように、画像表示部3にあっては、散乱部材20Aと散乱部材20Bとが積層されている。散乱部材20Aの構成や配置は、第1の実施形態において説明した異方性散乱部材20の構成や配置と同様である。   As shown in FIG. 8, in the image display unit 3, the scattering member 20A and the scattering member 20B are stacked. The configuration and arrangement of the scattering member 20A are the same as the configuration and arrangement of the anisotropic scattering member 20 described in the first embodiment.

散乱部材20Bの構成も、第1の実施形態において説明した異方性散乱部材20と同様である。但し、画像表示部3にあっては、ルーバー構造が傾斜する方向が、散乱部材20Aにおいてルーバー構造が傾斜する方向に対して直交するように配置されている。   The configuration of the scattering member 20B is the same as that of the anisotropic scattering member 20 described in the first embodiment. However, in the image display unit 3, the direction in which the louver structure is inclined is arranged so as to be orthogonal to the direction in which the louver structure is inclined in the scattering member 20A.

散乱部材20Aと散乱部材20Bとは、それぞれ拡散中心軸の方向が相違し、また、光が拡散する領域の形状も異なる。従って、散乱特性の異なる複数の散乱部材が複数積層されて、異方性散乱部材320が構成されている。   The scattering member 20 </ b> A and the scattering member 20 </ b> B are different in the direction of the diffusion center axis, and the shapes of the regions where light is diffused are also different. Therefore, a plurality of scattering members having different scattering characteristics are stacked to form the anisotropic scattering member 320.

このように、散乱特性の異なる複数の散乱部材を積層することによって、光の拡散範囲を調整することができる。   Thus, the light diffusion range can be adjusted by stacking a plurality of scattering members having different scattering characteristics.

例えば、散乱部材20Aにおいて光が拡散する領域がY軸を長軸とする楕円状であれば、散乱部材20Bにおいて光が拡散する領域はX軸を長軸とする楕円状となる。従って、散乱部材20A,20Bを重ねた場合には、光が拡散する領域は略方円状となるので、視線が上下左右方向に或る程度の幅で動いたとしても良好な画像を観察することができる。   For example, if the region where light diffuses in the scattering member 20A is elliptical with the Y axis as the long axis, the region where light diffuses in the scattering member 20B becomes elliptical with the X axis as the long axis. Therefore, when the scattering members 20A and 20B are overlapped, the light diffusing region is substantially a circle, so that a good image is observed even if the line of sight moves in a certain width in the vertical and horizontal directions. be able to.

[第4の実施形態]
第4の実施形態も、本開示に係る表示装置に関する。
[Fourth Embodiment]
The fourth embodiment also relates to a display device according to the present disclosure.

第4の実施形態も、第1の実施形態に対し、異方性散乱部材は散乱特性の異なる複数の散乱部材が複数積層されて構成されている点が相違する。   The fourth embodiment is different from the first embodiment in that the anisotropic scattering member is configured by stacking a plurality of scattering members having different scattering characteristics.

第4の実施形態に係る表示装置400は、第1の実施形態に対して異方性散乱部材の構造が相違する他は、同一の構成である。第4の実施形態に係る表示装置400の模式的な斜視図は、図1に示す画像表示部1を画像表示部4と読み替え、表示装置100を表示装置400と読み替えればよいので省略する。また、第4の実施形態に用いられる画像表示部4の構造を説明するための模式的な斜視図は、図2の(A)における異方性散乱部材20を適宜変更して読み替え、画像表示部1を画像表示部4と読み替えればよいので省略する。   The display device 400 according to the fourth embodiment has the same configuration as that of the first embodiment except that the structure of the anisotropic scattering member is different. The schematic perspective view of the display device 400 according to the fourth embodiment is omitted because the image display unit 1 shown in FIG. 1 may be read as the image display unit 4 and the display device 100 may be read as the display device 400. Further, the schematic perspective view for explaining the structure of the image display unit 4 used in the fourth embodiment is read by appropriately changing the anisotropic scattering member 20 in FIG. Since the part 1 should just be read as the image display part 4, it abbreviate | omits.

図9は、第4の実施形態に係る反射型の画像表示部の模式的な分解斜視図である。   FIG. 9 is a schematic exploded perspective view of a reflective image display unit according to the fourth embodiment.

図9に示すように、画像表示部4にあっては、散乱部材20Aと散乱部材20Cとが積層されている。散乱部材20Aの構成や配置は、第1の実施形態において説明した異方性散乱部材20の構成や配置と同様である。   As shown in FIG. 9, in the image display unit 4, the scattering member 20A and the scattering member 20C are stacked. The configuration and arrangement of the scattering member 20A are the same as the configuration and arrangement of the anisotropic scattering member 20 described in the first embodiment.

散乱部材20Cの構成は、図2の(B)に示す角度θの値が相違する他は、第1の実施形態において説明した異方性散乱部材20と同様である。画像表示部4にあっては、ルーバー構造が傾斜する方向が、散乱部材20Aにおいてルーバー構造が傾斜する方向と倣うように配置されている。   The configuration of the scattering member 20C is the same as that of the anisotropic scattering member 20 described in the first embodiment except that the value of the angle θ shown in FIG. In the image display unit 4, the direction in which the louver structure is inclined is arranged so as to follow the direction in which the louver structure is inclined in the scattering member 20A.

図10は、第4の実施形態に係る反射型の画像表示部の模式的な断面図である。   FIG. 10 is a schematic cross-sectional view of a reflective image display unit according to the fourth embodiment.

散乱部材20Aと散乱部材20Cとは、それぞれ拡散中心軸の方向が相違し、また、光が拡散する領域の形状も異なる。従って、散乱特性の異なる複数の散乱部材が複数積層されて、異方性散乱部材420が構成されている。このように、散乱特性の異なる複数の散乱部材を積層することによって、光の拡散範囲を調整することができる。   The scattering member 20A and the scattering member 20C are different in the direction of the diffusion center axis, and the shape of the region where the light is diffused is also different. Therefore, a plurality of scattering members having different scattering characteristics are stacked to constitute the anisotropic scattering member 420. Thus, the light diffusion range can be adjusted by stacking a plurality of scattering members having different scattering characteristics.

以上、この発明の実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。   As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, The various deformation | transformation based on the technical idea of this invention is possible.

例えば、上述した各実施形態にあっては、異方性散乱部材を、前面基板18と1/4波長板31との間に配置したが、これは例示に過ぎない。異方性散乱部材を配置する場所は、表示装置の設計や仕様に応じて適宜決定すればよい。   For example, in each of the above-described embodiments, the anisotropic scattering member is disposed between the front substrate 18 and the quarter wavelength plate 31, but this is merely an example. The location where the anisotropic scattering member is disposed may be determined as appropriate according to the design and specifications of the display device.

なお、本開示の技術は以下のような構成も取ることができる。
(1)シート状の異方性散乱部材を含む反射型の画像表示部を備えており、
異方性散乱部材の面内方向の領域は、低屈折率領域と高屈折率領域とが混在する領域として形成されており、
異方性散乱部材は、低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に大きい面側から外光が入射して低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に小さい面側から光が出射する際に光が散乱するように配置されている表示装置。
(2)異方性散乱部材は、画像表示部内で反射した外光が異方性散乱部材を透過する際に光が散乱するように配置されている上記(1)に記載の表示装置。
(3)異方性散乱部材は、外部から入射する外光が異方性散乱部材を透過する際に光が散乱するように配置されている上記(1)に記載の表示装置。
(4)画像表示部は、前面基板、背面基板、及び、前面基板と背面基板との間に配置されている液晶材料層を含む反射型の液晶表示パネルから成り、
異方性散乱部材は、前面基板側に配置されている上記(1)乃至(3)のいずれかに記載の表示装置。
(5)異方性散乱部材は、散乱特性の異なる複数の散乱部材が複数積層されて成る上記(1)乃至(4)のいずれかに記載の表示装置。
In addition, the technique of this indication can also take the following structures.
(1) A reflection type image display unit including a sheet-like anisotropic scattering member is provided,
The region in the in-plane direction of the anisotropic scattering member is formed as a region in which a low refractive index region and a high refractive index region are mixed,
An anisotropic scattering member has a low refractive index region and a high refractive index region when external light is incident from the surface side where the degree of change in refractive index is relatively large near the boundary between the low refractive index region and the high refractive index region. The display device is arranged so that light is scattered when light is emitted from the surface side where the degree of change in the refractive index in the vicinity of the boundary is relatively small.
(2) The display device according to (1), wherein the anisotropic scattering member is arranged such that light is scattered when external light reflected in the image display unit passes through the anisotropic scattering member.
(3) The display device according to (1), wherein the anisotropic scattering member is disposed so that light is scattered when external light incident from outside passes through the anisotropic scattering member.
(4) The image display unit includes a front substrate, a rear substrate, and a reflective liquid crystal display panel including a liquid crystal material layer disposed between the front substrate and the rear substrate.
The display device according to any one of (1) to (3), wherein the anisotropic scattering member is disposed on the front substrate side.
(5) The display device according to any one of (1) to (4), wherein the anisotropic scattering member is formed by stacking a plurality of scattering members having different scattering characteristics.

1,1’,2,2’,3,4・・・反射型の画像表示部、10・・・前面基板、背面基板、及び、前面基板と背面基板との間に配置されている液晶材料層を含む液晶表示パネルの部分、11・・・表示領域、12・・・画素、13A,13B,13C,13D・・・辺、14・・・背面基板、15・・・平坦化膜、16・・・反射電極、17・・・液晶材料層、17A・・・液晶分子、18・・・前面基板、20,320,420・・・異方性散乱部材、20A,20B,20C・・・散乱部材(異方性散乱部材)、20’・・・基材、21・・・低屈折率領域、22・・・高屈折率領域、30・・・1/4波長板、1/2波長板、及び、偏光板を含む液晶表示パネルの部分、31・・・1/4波長板、32・・・1/2波長板、33・・・偏光板、40・・・筐体、50・・・光照射装置、60・・・マスク、61・・・開口、100,200,300,400・・・表示装置 DESCRIPTION OF SYMBOLS 1,1 ', 2,2', 3,4: Reflection type image display part, 10 ... Front substrate, rear substrate, and liquid crystal material arranged between front substrate and rear substrate Part of liquid crystal display panel including layers, 11... Display area, 12... Pixel, 13 A, 13 B, 13 C, 13 D... Side, 14. ... reflective electrode, 17 ... liquid crystal material layer, 17A ... liquid crystal molecule, 18 ... front substrate, 20, 320, 420 ... anisotropic scattering member, 20A, 20B, 20C ... Scattering member (anisotropic scattering member), 20 '... base material, 21 ... low refractive index region, 22 ... high refractive index region, 30 ... 1/4 wavelength plate, 1/2 wavelength Part of liquid crystal display panel including plate and polarizing plate, 31... Quarter wave plate, 32... 1/2 wave plate, 33. Light plate, 40 ... housing, 50 ... light irradiation device, 60 ... mask, 61 ... opening, 100, 200, 300, 400 ... display device

Claims (7)

シート状の異方性散乱部材を含む反射型の画像表示部を備えており、
異方性散乱部材の面内方向の領域は、柱状に形成された高屈折率領域と当該高屈折率領域を取り巻く周辺領域を形成する低屈折率領域とが混在する領域として形成されており、
異方性散乱部材は、
低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に大きい第1面と、
低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に小さい第2面とを有する表示装置。
A reflection type image display unit including a sheet-like anisotropic scattering member;
The region in the in-plane direction of the anisotropic scattering member is formed as a region in which a high refractive index region formed in a columnar shape and a low refractive index region forming a peripheral region surrounding the high refractive index region are mixed,
The anisotropic scattering member is
A first surface having a relatively large degree of change in refractive index in the vicinity of the boundary between the low refractive index region and the high refractive index region;
A display device having a second surface having a relatively small degree of change in refractive index in the vicinity of a boundary between a low refractive index region and a high refractive index region.
シート状の異方性散乱部材を含む反射型の画像表示部を備えており、
異方性散乱部材の面内方向の領域は、低屈折率領域と高屈折率領域とがルーバー状に形成されて混在する領域として形成されており、
異方性散乱部材は、
低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に大きい第1面と、
低屈折率領域と高屈折率領域との境界付近における屈折率の変化の程度が相対的に小さい第2面とを有する表示装置。
A reflection type image display unit including a sheet-like anisotropic scattering member;
The region in the in-plane direction of the anisotropic scattering member is formed as a region in which a low refractive index region and a high refractive index region are formed and mixed in a louver shape,
The anisotropic scattering member is
A first surface having a relatively large degree of change in refractive index in the vicinity of the boundary between the low refractive index region and the high refractive index region;
A display device having a second surface having a relatively small degree of change in refractive index in the vicinity of a boundary between a low refractive index region and a high refractive index region.
異方性散乱部材は、厚み方向に対する低屈折率領域と高屈折率領域との境界が成す角度が異なる2つの異方性散乱部材が積層されて成る請求項1又は2に記載の表示装置。   The display device according to claim 1, wherein the anisotropic scattering member is formed by stacking two anisotropic scattering members having different angles formed by a boundary between the low refractive index region and the high refractive index region with respect to the thickness direction. 異方性散乱部材は、画像表示部内で反射した外光が異方性散乱部材を透過する際に光が散乱するように配置されている請求項1又は2に記載の表示装置。   The display device according to claim 1, wherein the anisotropic scattering member is arranged so that light is scattered when external light reflected in the image display unit passes through the anisotropic scattering member. 異方性散乱部材は、外部から入射する外光が異方性散乱部材を透過する際に光が散乱するように配置されている請求項1又は2に記載の表示装置。   The display device according to claim 1, wherein the anisotropic scattering member is arranged such that light is scattered when external light incident from the outside passes through the anisotropic scattering member. 画像表示部は、前面基板、背面基板、及び、前面基板と背面基板との間に配置されている液晶材料層を含む反射型の液晶表示パネルから成り、
異方性散乱部材は、前面基板側に配置されている請求項1又は2に記載の表示装置。
The image display unit includes a front substrate, a rear substrate, and a reflective liquid crystal display panel including a liquid crystal material layer disposed between the front substrate and the rear substrate.
The display device according to claim 1, wherein the anisotropic scattering member is disposed on the front substrate side.
異方性散乱部材は、散乱特性の異なる複数の異方性散乱部材が積層されて成る請求項1又は2に記載の表示装置。   The display device according to claim 1, wherein the anisotropic scattering member is formed by stacking a plurality of anisotropic scattering members having different scattering characteristics.
JP2015201946A 2015-10-13 2015-10-13 Display device Active JP6082078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015201946A JP6082078B2 (en) 2015-10-13 2015-10-13 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015201946A JP6082078B2 (en) 2015-10-13 2015-10-13 Display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012049152A Division JP5826676B2 (en) 2012-03-06 2012-03-06 Display device

Publications (2)

Publication Number Publication Date
JP2016040612A true JP2016040612A (en) 2016-03-24
JP6082078B2 JP6082078B2 (en) 2017-02-15

Family

ID=55540945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015201946A Active JP6082078B2 (en) 2015-10-13 2015-10-13 Display device

Country Status (1)

Country Link
JP (1) JP6082078B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297110A (en) * 1999-04-15 2000-10-24 Toppan Printing Co Ltd Composition for anisotropic light scattering film
JP2002189105A (en) * 2000-12-21 2002-07-05 Toppan Printing Co Ltd Off-axis anisotropic light scattering film and display device using the same
JP2003114311A (en) * 2001-10-03 2003-04-18 Toppan Printing Co Ltd Light scattering body and display device which uses the same
JP2005326824A (en) * 2004-04-09 2005-11-24 Seiko Instruments Inc Screen and image projection system using same
JP2011186002A (en) * 2010-03-04 2011-09-22 Seiko Epson Corp Electrooptical device and electronic equipment
JP2012141591A (en) * 2010-12-15 2012-07-26 Lintec Corp Composition for anisotropic light-diffusing film and anisotropic light-diffusing film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297110A (en) * 1999-04-15 2000-10-24 Toppan Printing Co Ltd Composition for anisotropic light scattering film
JP2002189105A (en) * 2000-12-21 2002-07-05 Toppan Printing Co Ltd Off-axis anisotropic light scattering film and display device using the same
JP2003114311A (en) * 2001-10-03 2003-04-18 Toppan Printing Co Ltd Light scattering body and display device which uses the same
JP2005326824A (en) * 2004-04-09 2005-11-24 Seiko Instruments Inc Screen and image projection system using same
JP2011186002A (en) * 2010-03-04 2011-09-22 Seiko Epson Corp Electrooptical device and electronic equipment
JP2012141591A (en) * 2010-12-15 2012-07-26 Lintec Corp Composition for anisotropic light-diffusing film and anisotropic light-diffusing film

Also Published As

Publication number Publication date
JP6082078B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP5826676B2 (en) Display device
JP2014137467A (en) Display device
KR101970019B1 (en) Display device and anisotropic scatterer
US10302986B2 (en) Display device
US20120280953A1 (en) Display device
KR20160088397A (en) Liquid-crystal display for heads-up display, and heads-up display
JP6239978B2 (en) Liquid crystal display
KR20030031401A (en) Substrate for reflective type liquid crystal display device and reflective type liquid crystal display device using the same
US20230367149A1 (en) Optical element and method for producing same
JP5836847B2 (en) Liquid crystal display
JP6082078B2 (en) Display device
JP5770127B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170119

R150 Certificate of patent or registration of utility model

Ref document number: 6082078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250