JP2016040081A - Electromagnetic induction heating type mold device for molding and vulcanizing rubber packing - Google Patents

Electromagnetic induction heating type mold device for molding and vulcanizing rubber packing Download PDF

Info

Publication number
JP2016040081A
JP2016040081A JP2014164087A JP2014164087A JP2016040081A JP 2016040081 A JP2016040081 A JP 2016040081A JP 2014164087 A JP2014164087 A JP 2014164087A JP 2014164087 A JP2014164087 A JP 2014164087A JP 2016040081 A JP2016040081 A JP 2016040081A
Authority
JP
Japan
Prior art keywords
mold
molding
vulcanization
electromagnetic induction
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014164087A
Other languages
Japanese (ja)
Other versions
JP6123753B2 (en
Inventor
孝次郎 益田
Kojiro Masuda
孝次郎 益田
淳一郎 石川
Junichiro Ishikawa
淳一郎 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAGAMI SEISAKUSHO KK
Sakagami Seisakusho Ltd
Original Assignee
SAKAGAMI SEISAKUSHO KK
Sakagami Seisakusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAGAMI SEISAKUSHO KK, Sakagami Seisakusho Ltd filed Critical SAKAGAMI SEISAKUSHO KK
Priority to JP2014164087A priority Critical patent/JP6123753B2/en
Publication of JP2016040081A publication Critical patent/JP2016040081A/en
Application granted granted Critical
Publication of JP6123753B2 publication Critical patent/JP6123753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mold device for molding and vulcanizing a rubber packing by which a high-quality packing product can be produced with high productivity without causing heat deformation of a mold body or the molding and vulcanizing apparatuses while achieving energy saving.SOLUTION: A mold device for molding and vulcanizing a rubber packing is composed of: a magnetic metal layer constituting a mold body and also a mold cavity surface, and comprising a nickel alloy or an iron alloy; a mold support layer which is a nonmagnetic or feeble magnetic insulator layer disposed opposite the mold cavity surface of the magnetic metal layer and supports the mold body; and an electromagnetic induction coil disposed in the mold support layer. The device is configured so as to heat the mold body directly and transmit a molding pressure to the mold body via the mold support layer.SELECTED DRAWING: Figure 2

Description

本発明は、ゴムパッキンの成形・加硫用金型装置、特にゴムパッキンの成形・加硫用電磁誘導加熱式金型装置に関する。   The present invention relates to a mold apparatus for molding / vulcanizing rubber packing, and more particularly to an electromagnetic induction heating mold apparatus for molding / vulcanizing rubber packing.

ゴムパッキンは、所定断面形状のゴム成形体を加熱して加硫させることで製造しており、成形装置と加硫装置とを別々に用意してそれぞれの工程を分けて行うことで製造するか、あるいは、成形と加硫とを同時あるいは連続して行うことで製造されている。成形と同時あるいはそれに引き続いて同じ金型装置を使って加硫を行うことが生産性の点からみて優れている。   The rubber packing is manufactured by heating and vulcanizing a rubber molded body having a predetermined cross-sectional shape. Whether the rubber packing is prepared by separately preparing a molding apparatus and a vulcanizing apparatus and performing each process separately. Alternatively, it is produced by performing molding and vulcanization simultaneously or continuously. From the viewpoint of productivity, it is excellent to perform vulcanization using the same mold apparatus at the same time as molding or subsequently.

ところで、成形と加硫とを同じ金型で行うゴムパッキン成形用金型装置は、金型とその背面に設けた熱板とから構成され、熱板からの熱によって金型を伝熱加熱して成形・加硫を行う。しかし、加硫温度(150〜210℃)で長時間使用すると、熱板の影響を受け、金型の中央部が中高に変形し、つまり中央部の摩耗がすすみ、金型内の温度分布が変わり、金型の昇温不良や製品の品質トラブルが発生する。さらに、金型背面の熱板平行度も狂いが生じ、成形圧力の伝達の不均一による金型変形が均一に行われなくなるなどの影響が生じ、熱板の研磨加工などによる修正が必要となる。   By the way, a rubber packing molding die apparatus that performs molding and vulcanization with the same die is composed of a die and a hot plate provided on the back surface thereof, and heats the die by heat from the hot plate. Molding and vulcanization. However, if it is used for a long time at the vulcanization temperature (150 to 210 ° C.), it will be affected by the hot plate, and the middle part of the mold will be deformed to medium-high, that is, the center part will be worn away, and the temperature distribution in the mold will be This will cause defective mold temperature rise and product quality problems. Furthermore, the parallelism of the hot plate on the back side of the mold is also distorted, and the mold deformation due to non-uniformity in the transmission of molding pressure will not be performed uniformly, which requires correction by polishing the hot plate. .

さらに、従来、熱板の加熱手段は、カートリッジタイプの電熱ヒータまたは蒸気が一般的だが、それらは金型加熱の熱効率が悪く、大きな電力量と時間を必要としている。更に、金型の予熱にも時間がかかり、ゴムパッキン成形の生産性を阻害している。   Further, conventionally, the heating means of the hot plate is generally a cartridge type electric heater or steam, but they are inefficient in heating the mold and require a large amount of power and time. Furthermore, it takes time to preheat the mold, which impedes the productivity of rubber packing molding.

非特許文献1には、ゴムパッキン成形の一般的方法として用いる熱板加熱方式が開示されているが、成形・加硫に長時間使用した金型は、熱板の状態(平行度、摩耗)による影響を受けている。   Non-Patent Document 1 discloses a hot plate heating method used as a general method of rubber packing molding, but the mold used for a long time for molding and vulcanization is in the state of the hot plate (parallelism, wear). Is influenced by.

図5は、非特許文献1に記載のゴムパッキン成形用金型装置の模式図であり、上型下型を一体化して略示する金型40の上下面には熱板42が配置されており、これに組み込まれたヒータ44(破線にて略示)によって金型40への加熱温度を確保している。各熱板42は、断熱材46を介して、上方からは固定盤50、下方から可動盤52により支持されており、成形に際しては、下方よりピストン54を介して所要の成形圧が付与される。
ゴムパッキン成形のように圧縮成形の場合には、投影面に対し厚み方向の寸法の小さい板状の金型が多いので、熱板42の影響を受けやすい。例えば金型40を伝熱加熱するため、加硫温度に加熱された熱板42で金型の上型及び下型の間を加圧した場合、金型の外周部が加圧力で固定されていると金型40の熱膨張は拘束されることから、熱応力が発生し、この熱応力の影響は金型内部へ向かい、厚み方向への膨張となり、中央部の湾曲が生じるようになる。
FIG. 5 is a schematic diagram of a rubber packing molding die apparatus described in Non-Patent Document 1, in which a hot plate 42 is disposed on the upper and lower surfaces of a mold 40 which is schematically shown by integrating an upper mold and a lower mold. In addition, a heating temperature for the mold 40 is secured by a heater 44 (shown schematically by a broken line) incorporated therein. Each hot plate 42 is supported by a fixed platen 50 from above and a movable platen 52 from below via a heat insulating material 46, and at the time of molding, a required molding pressure is applied via a piston 54 from below. .
In the case of compression molding such as rubber packing molding, there are many plate-shaped molds whose dimensions in the thickness direction are small with respect to the projection surface, so that they are easily affected by the heat plate 42. For example, in order to heat transfer and heat the mold 40, when pressurizing between the upper mold and the lower mold with a hot plate 42 heated to the vulcanization temperature, the outer periphery of the mold is fixed by the applied pressure. If so, the thermal expansion of the mold 40 is constrained, so that a thermal stress is generated. The influence of the thermal stress is directed toward the inside of the mold and expands in the thickness direction, so that the central portion is curved.

図5において、白抜き矢印は、矢印の方向で放熱の方向を示し、また、矢印の太さによって放熱量を示しており、これからも分かるように、金型40の側面からの放熱により外周部が冷却され低温となる。熱板42の熱源となるヒータ44の位置による影響もあり、この外周部との熱膨張の差が金型変形に関与する。そのようにして、金型が変形し金型と熱板との接触が不十分となると、熱の伝導率が変わり、金型内の温度分布が変わるという悪循環となり熱板の平行度も狂わすことになる。   In FIG. 5, the white arrow indicates the direction of heat dissipation in the direction of the arrow, and also indicates the amount of heat dissipation by the thickness of the arrow. Is cooled to a low temperature. There is also an influence due to the position of the heater 44 serving as a heat source of the hot plate 42, and the difference in thermal expansion from this outer peripheral part is involved in the mold deformation. In this way, if the mold is deformed and the contact between the mold and the hot plate becomes insufficient, the thermal conductivity changes, and the temperature distribution in the mold changes, resulting in a misalignment in the parallelism of the hot plate. become.

さらに、ゴムパッキンの成形における型加硫では、金型からの伝熱によりゴムを加熱し加硫させる。しかし、ゴムは熱伝導率が低いため、昇温に時間がかかり、その結果として長い加硫時間が必要となる。   Furthermore, in mold vulcanization in the molding of rubber packing, rubber is heated and vulcanized by heat transfer from a mold. However, since rubber has a low thermal conductivity, it takes time to raise the temperature, and as a result, a long vulcanization time is required.

ところで、樹脂成型用金型の加熱手段として電磁誘導加熱を採用することは知られており、特許文献1には、樹脂成型用金型の加熱用として電磁誘導コイルをキャビティ内に一時的に配置する加熱方式が開示されている。   By the way, it is known to employ electromagnetic induction heating as a heating means for a resin molding die, and in Patent Document 1, an electromagnetic induction coil is temporarily disposed in a cavity for heating a resin molding die. A heating method is disclosed.

特許文献2には、一般的な樹脂の成型用の電磁誘導加熱式金型装置が開示されており、それによれば、電磁誘導コイルを埋設した誘導コイル保持部には直接にキャビティ面を構成する磁性金属部が接合されている。加熱手段として電磁誘導加熱を用いるという考えでは特許文献1にその趣旨は同じであるが、特許文献2では、加熱手段が金型に直接に接して組み込まれている。   Patent Document 2 discloses an electromagnetic induction heating mold apparatus for molding a general resin, and according to this, a cavity surface is directly formed in an induction coil holding portion in which an electromagnetic induction coil is embedded. The magnetic metal part is joined. The idea of using electromagnetic induction heating as the heating means is the same as in Patent Document 1, but in Patent Document 2, the heating means is incorporated in direct contact with the mold.

特許文献3は、ゴムの加硫に用いられる金型装置を開示するが、これは予め成形された生ゴムを加熱加硫するための加熱加硫用金型装置であり、生タイヤに接触するキャビティ面はアルミニウムなどの透磁率の小さい熱伝導性に優れたアルミニウム等から構成されている。   Patent Document 3 discloses a mold apparatus used for rubber vulcanization, which is a mold apparatus for heat vulcanization for heating and vulcanizing a preformed raw rubber, and a cavity that comes into contact with a green tire. The surface is made of aluminum or the like having a low magnetic permeability and excellent thermal conductivity.

「金型成形におけるトラブルと対策」ゴム協会誌、第82巻第7号(2009)“Troubles and Countermeasures in Molding”, Journal of Rubber Association, Vol. 82, No. 7 (2009) 「ゴム射出成型機における昇温検討」豊田合成技報、2001,Vo.43,No.1"Temperature examination in rubber injection molding machine" Toyoda Gosei Technical Report, 2001, Vo. 43, no. 1

特開平8−39571号公報JP-A-8-39571 特開2012−214040号公報JP 2012-2104040 A 特開2012−25126号公報JP2012-25126A

図1は、非特許文献2に開示されている、金型内充填材料温度と製品壁面部および中心部の加硫時間の関係のシミュレーション計算の結果を示すグラフである。   FIG. 1 is a graph showing the result of simulation calculation of the relationship between the filling material temperature in the mold and the vulcanization time of the product wall surface portion and the center portion, which is disclosed in Non-Patent Document 2.

図1からは、製品表面部と製品中心部とにおいて、同時に加硫が起こるようにするためには、金型はある一定温度に加熱されなければならないことが分かる。図では加速時間として示されている。しかし、加熱温度が高すぎる場合には、加熱速度も速くなるので、成形が完了しないうちに局部的に加硫が過度に進行してしまい、機械的特性の低下は免れない。   From FIG. 1 it can be seen that the mold must be heated to a certain temperature in order for vulcanization to occur simultaneously in the product surface and in the product center. In the figure, it is shown as acceleration time. However, when the heating temperature is too high, the heating rate is also increased. Therefore, the vulcanization proceeds excessively before the molding is completed, and the deterioration of the mechanical characteristics is inevitable.

すなわち、図1からは、高温のゴムを金型内に充填することができれば、ゴム昇温に要する時間が短縮でき、更に、加硫温度が高いほど加硫速度が大きいので、所要加硫時間は短くなることがわかる。しかし、加硫温度を高くするほど、金型に接触している表面部分はオーバーキュアになっても、内部はまだ加硫温度にもならず、アンダーキュアで中心部(金型表面から一番遠い部分)がポーラスになったままとなり、極端な場合には、金型内部でゴムが十分に流れ切らないことがある。得られるゴム成形製品の機械特性の低下は免れない。しかも、ゴム表面が早期加硫する、いわゆる焼けなどの不具合も懸念される。   That is, from FIG. 1, if high temperature rubber can be filled in the mold, the time required for temperature rise of the rubber can be shortened, and further, the higher the vulcanization temperature, the higher the vulcanization speed. Can be seen to be shorter. However, the higher the vulcanization temperature, the more the surface part in contact with the mold is overcured, the inside is still not at the vulcanization temperature. The far part) remains porous, and in extreme cases, the rubber may not flow sufficiently inside the mold. The deterioration of the mechanical properties of the resulting rubber molded product is inevitable. In addition, there is a concern about problems such as so-called burning, in which the rubber surface is vulcanized early.

以上のことより、加硫時間を短縮するための対策は、(1)加硫速度が大きく、最適加硫状態と過加硫時のときの物性の差が少ない平坦加硫系ゴムを使用する、(2)中心部の加硫が早いゴムを使用する、(3)ゴムをスコーチ(初期加硫)しない程度の温度に金型を予熱する、などが一般的に考えられる。   Based on the above, measures to shorten the vulcanization time are as follows: (1) Use a flat vulcanized rubber that has a high vulcanization speed and a small difference in physical properties between the optimal vulcanized state and the overvulcanized state. (2) It is generally considered to use rubber having a fast vulcanization at the center, and (3) to preheat the mold to a temperature that does not scorch the rubber (initial vulcanization).

このように従来技術には、ゴムパッキンの製造において成形と加硫とを同じ金型で行う際に電磁誘導加熱を行うという開示はない。特許文献1,2に示す樹脂成形用の単なる加熱手段として誘導加熱方式を採用する場合でも、いかに生産効率を高めるかとの観点からの考察がされていないのが現状であった。   Thus, the prior art does not disclose that electromagnetic induction heating is performed when molding and vulcanization are performed in the same mold in the production of rubber packing. Even when the induction heating method is employed as a mere heating means for resin molding shown in Patent Documents 1 and 2, no consideration has been given from the viewpoint of how to increase production efficiency.

まして、成形・加硫という2段階の製造段階において加熱手段として電磁誘導加熱手段を用いた場合の生産性改善の構成は全く知られていなかった。   Moreover, there has been no known configuration for improving productivity when electromagnetic induction heating means is used as heating means in the two manufacturing stages of molding and vulcanization.

前述の特許文献3においても、加硫のための加熱手段として電磁誘導加熱方式を採用しているが、これは自動車用タイヤという非常に大型で断面厚さが部位により大きく異なるゴム製品を加硫する装置であるため、加圧蒸気を併用するとともに、タイヤと接触するモールド部分をアルミニウム、銅などの透磁率の小さい熱伝導率に優れた材料から構成している。   In the above-mentioned Patent Document 3, an electromagnetic induction heating method is adopted as a heating means for vulcanization, but this is a vulcanization of a rubber product such as an automobile tire that has a very large cross-sectional thickness and varies greatly depending on the part. Therefore, the pressurized steam is used in combination, and the mold portion that comes into contact with the tire is made of a material having low thermal conductivity such as aluminum or copper and having excellent thermal conductivity.

本発明は、上記課題を解決しようとするものであり、金型本体や金型装置の熱変形をなくし、省エネを図るとともに、高品質の製品を高い生産性でもって製造できるゴムパッキン成形用電磁用誘導加熱式金型装置を提供することを目的とすることである。   The present invention is intended to solve the above-described problems, and eliminates heat deformation of the mold body and the mold apparatus, thereby saving energy, and capable of manufacturing a high-quality product with high productivity. An object of the present invention is to provide an induction heating mold apparatus for use.

ここに、本発明によれば、金型の変形防止は金型本体を発熱体とすることでキャビティ面を均一にかつ速やかに加熱できることで解決することができ、一方、金型装置全体の変形防止は発熱体を構成する金型と誘導コイルユニットを絶縁体層で区画するとともに、該絶縁体層で誘導コイルユニットを断熱することで解決することができる。   Here, according to the present invention, the deformation prevention of the mold can be solved by heating the cavity surface uniformly and quickly by using the mold body as a heating element, while the deformation of the entire mold apparatus is achieved. Prevention can be solved by partitioning the mold and the induction coil unit constituting the heating element with an insulator layer and thermally insulating the induction coil unit with the insulator layer.

ゴムパッキンの製造という観点からは、省エネ及び高生産性は、電磁誘導加熱手段を用いることで、短時間の加熱で成形温度が確保でき、かつ短時間での加硫が可能となること、そして、金型本体が発熱体を構成するようにすることで、しかも、電磁誘導加熱を用いることから、金型全体が短時間で均一に加熱されるため、投入ゴムの成形時の流れが十分に確保でき、さらに短時間の加硫で済むため、品質劣化がすくない。   From the viewpoint of manufacturing rubber packing, energy saving and high productivity can be achieved by using electromagnetic induction heating means, ensuring a molding temperature with short heating, and enabling vulcanization in a short time. Since the mold body constitutes a heating element, and because electromagnetic induction heating is used, the entire mold is heated uniformly in a short time, so that the flow during molding of the input rubber is sufficient. Since it can be secured and only a short vulcanization time is required, quality degradation is not significant.

金型本体は、ゴムパッキンの場合、上下型の厚さはそれぞれ高々数10mm程度であり、通常は、そのほとんどが30mm以下である。また、電磁誘導加熱のときには電磁波の周波数を変えることによって、いわゆる加熱深さを変えることができる。そのため、本発明によれば、ゴムパッキン成形用金型のように平面状に展開する金型であっても、その全体の急速かつ均一加熱を効率的に行うことができる。   In the case of rubber packing, the upper and lower molds each have a thickness of several tens of millimeters at most, and most of them are usually 30 mm or less. Further, in the case of electromagnetic induction heating, the so-called heating depth can be changed by changing the frequency of electromagnetic waves. Therefore, according to the present invention, even when the mold is developed flat like a rubber packing molding mold, the whole can be rapidly and uniformly heated efficiently.

さらに本発明によれば、絶縁体層でもって金型本体を支持し、そして誘導加熱ヒータユニット、つまり誘導コイルユニットの遮熱保護を行うことができ、絶縁体を介在させてプレス圧力をプレス機から金型に伝えることで、電磁誘導発熱体を構成する金型と誘導加熱ヒータユニットとを完全に熱的にもまた機械的にも隔離でき、金型本体ばかりでなく成形装置全体の熱変形・機械的変形を大幅に防止できる。   Furthermore, according to the present invention, the mold body can be supported by the insulator layer, and the heat-insulating protection of the induction heater unit, that is, the induction coil unit, can be performed. By transmitting from the mold to the mold, the mold that constitutes the electromagnetic induction heating element and the induction heater unit can be completely thermally and mechanically isolated.・ Mechanical deformation can be largely prevented.

本発明では、誘導コイルによる電磁誘導を金型本体に効率的に実現するためには、絶縁体は非磁性材または弱磁性体から構成する。   In the present invention, in order to efficiently realize electromagnetic induction by the induction coil in the mold body, the insulator is made of a nonmagnetic material or a weak magnetic material.

すなわち、本発明は、金型本体を構成するとともに、金型キャビティ面を構成する、ニッケル合金または鉄合金からなる磁気金属層と、該磁気金属層の前記金型キャビティ面の反対側に配置された非磁性材または弱磁性の絶縁体層であって、前記金型本体を支持する金型支持層と、該金型支持層内に埋設された電磁誘導コイルとから構成され、前記金型支持層を介して成形圧を金型本体に伝えることを特徴とする、ゴムパッキン成形・加硫用電磁誘導加熱式金型装置である。   That is, the present invention constitutes a mold body and a magnetic metal layer made of nickel alloy or iron alloy constituting a mold cavity surface, and is disposed on the opposite side of the mold cavity surface of the magnetic metal layer. A non-magnetic material or a weak magnetic insulator layer, the mold support layer configured to support the mold body, and an electromagnetic induction coil embedded in the mold support layer. An electromagnetic induction heating mold apparatus for rubber packing molding and vulcanization, wherein molding pressure is transmitted to a mold body through a layer.

本発明によれば、ゴムパッキンの製造の場合、磁気金属層である金型本体のみを直接に電磁誘導加熱することで、金型昇温時間・加硫時間の短縮や電力消費の低減が可能となり、トータル的な生産性向上と省エネを実現できる。更に、熱伝導の低い絶縁体層内に誘導コイルユニットを設置することで、金型や成形機の熱変形を低減し、安定成形による歩留まりの向上を達成できる。   According to the present invention, in the case of manufacturing rubber packing, only the mold body, which is a magnetic metal layer, is directly heated by electromagnetic induction, so that it is possible to shorten the mold heating time, vulcanization time and power consumption. Thus, total productivity improvement and energy saving can be realized. Furthermore, by installing the induction coil unit in the insulator layer having low heat conduction, it is possible to reduce the thermal deformation of the mold and the molding machine, and to improve the yield by stable molding.

図1は、金型内充填材料である中実ゴム製品の中心部の温度と表面部の温度との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the temperature of the central portion and the temperature of the surface portion of a solid rubber product that is a filling material in a mold. 図2は、本発明にかかるゴムパッキン成形・加硫用金型装置の模式的断面図である。FIG. 2 is a schematic cross-sectional view of a rubber packing molding / vulcanizing mold apparatus according to the present invention. 図3は、本発明にかかる金型装置の別の態様を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing another aspect of the mold apparatus according to the present invention. 図4は、本発明にかかる金型装置を用いてステップ方式による加硫を行うときの加熱時間と加熱温度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the heating time and the heating temperature when performing vulcanization by the step method using the mold apparatus according to the present invention. 図5は、従来の成形・加硫用金型装置の模式的説明図である。FIG. 5 is a schematic explanatory view of a conventional molding / vulcanizing mold apparatus.

本発明を実施するための形態を、図面を参照しながら説明する。   DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described with reference to the drawings.

図2は、本発明にかかるゴムパッキン成形・加硫用電磁誘導加熱式金型装置(本明細書では単に成形・加硫装置ということもある)の構成例を示す模式的説明図である。   FIG. 2 is a schematic explanatory view showing a configuration example of an electromagnetic induction heating mold apparatus for rubber packing molding / vulcanization (sometimes simply referred to as a molding / vulcanizing apparatus in the present specification) according to the present invention.

本発明にかかる成形・加硫装置1は、金型本体2を構成するとともに、金型キャビティ面3を構成する、ニッケル合金または鉄合金からなる磁気金属層4と、該磁気金属層4の前記金型キャビティ面3の反対側に配置された非磁性材または弱磁性の絶縁体層5であって、前記金型本体を支持する金型支持層6と、該金型支持層内に配置された電磁誘導コイル7とから成る。   A molding / vulcanizing apparatus 1 according to the present invention comprises a mold body 2 and a magnetic metal layer 4 made of a nickel alloy or an iron alloy constituting a mold cavity surface 3, and the magnetic metal layer 4. A non-magnetic material or weak magnetic insulator layer 5 disposed on the opposite side of the mold cavity surface 3, and a mold support layer 6 that supports the mold body, and is disposed in the mold support layer. And an electromagnetic induction coil 7.

すなわち、固定側と可動側のそれぞれに設けられた金型本体2,2は、それぞれ固定側と可動側に設けられた絶縁体層5,5とによって支持されている。これらの絶縁体層は一種の筐体を構成しており、その内側に、誘導コイルカバー8によって保護された誘導コイル7,7が配置されている。誘導コイル7,7は絶縁体層内に埋設されてもよいが、図示例では、誘導加熱コイルユニットとして筐体内に取り外し自在に設けられているので、保守点検は容易である。   That is, the mold bodies 2 and 2 provided on the fixed side and the movable side are supported by the insulator layers 5 and 5 provided on the fixed side and the movable side, respectively. These insulator layers constitute a kind of casing, and the induction coils 7 and 7 protected by the induction coil cover 8 are arranged inside thereof. Although the induction coils 7 and 7 may be embedded in the insulator layer, in the illustrated example, the induction heating coil unit is detachably provided in the housing, so that maintenance and inspection are easy.

このようにして配置された金型本体と絶縁体層とは、可動側と固定側それぞれにおいて取付板10,10を介して固定側プラテン11、可動側プラテン12にそれぞれ支持され、可動側では図示しないピストンによって押圧され、成形・加硫が行われる。   The mold body and the insulator layer thus arranged are respectively supported by the fixed platen 11 and the movable platen 12 via the mounting plates 10 on the movable side and the fixed side, respectively. It is pressed by a piston that does not perform molding and vulcanization.

ここに、本発明にかかるゴムパッキン成形・加硫用電磁誘導加熱式金型装置によれば、 金型キャビティ面を構成する金型本体と、前記金型キャビティ面の反対側に配置されて前記金型本体を支持する金型支持体と、該金型支持層内に配置された電磁誘導コイルとから構成することで、前記金型支持体を介して成形圧を金型本体に伝えることができ、そのため、金型装置全体の構成が簡単になり、操作が容易となる。特に、ゴムパッキンのような形状の製品の成形には、製品全体への均一かつ急速加熱が行えるという点から有利である。   Here, according to the electromagnetic induction heating mold apparatus for rubber packing molding and vulcanization according to the present invention, the mold body constituting the mold cavity surface and the mold cavity surface are arranged on the opposite side of the mold cavity surface and By forming a mold support that supports the mold body and an electromagnetic induction coil disposed in the mold support layer, the molding pressure can be transmitted to the mold body via the mold support. Therefore, the configuration of the entire mold apparatus is simplified and the operation becomes easy. In particular, the molding of a product having a shape like a rubber packing is advantageous in that uniform and rapid heating can be performed on the entire product.

図示態様では、固定側プラテン11と可動側プラテン12との間には、上下の絶縁体層5、5を介して金型2,2が支持されているが、絶縁体層5,5はその反対側においてプラテン11,12によってそれぞれ支持されていることから、金型成形に要する圧力は、プラテン11,12から絶縁体層5,5を介して金型2,2にそれぞれ伝えられるため、金型装置の構造が簡単になる。各絶縁体層5,5の内側には、電磁誘導コイル7,7が取外し自在に収容されており、それらに挟まれるように設けられている金型本体を速やかに加硫温度に加熱する作用を発揮する。   In the illustrated embodiment, the molds 2 and 2 are supported between the fixed platen 11 and the movable platen 12 via the upper and lower insulator layers 5 and 5. Since the opposite sides are supported by the platens 11 and 12, respectively, the pressure required for molding the mold is transmitted from the platens 11 and 12 to the molds 2 and 2 through the insulator layers 5 and 5, respectively. The structure of the mold device is simplified. Inside the insulator layers 5 and 5, electromagnetic induction coils 7 and 7 are detachably accommodated, and the mold body provided so as to be sandwiched between them is quickly heated to the vulcanization temperature. Demonstrate.

図示例にあって、ゴムパッキンは円形断面のリング状をしているが、断面形状は矩形であっても、また全体が平板状であってもよい。ゴムパッキン成形・加硫用金型の共通する形状的特徴として、平面方向に対して厚みが非常に小さいことが挙げられるが、電磁誘導加熱の特徴として境界面としての金型表面、特にキャビティ面が全体的に均一にかつ急速に伝熱拡散加熱されるため、成型品であるゴムパッキンの全体が急速かつ均一に加熱され、加硫の温度管理も精密かつ正確に行うことができる。この点、厚みの大きい、あるいは局所的に厚みの変化が見られる一般に成型品と比較して、本発明が対象とするゴムパッキンでは電磁誘導加熱の特徴を十分に生かすことができる。   In the illustrated example, the rubber packing has a ring shape with a circular cross section, but the cross sectional shape may be a rectangle or may be a flat plate as a whole. A common shape characteristic of rubber packing molding and vulcanization molds is that the thickness is very small in the plane direction, but as a characteristic of electromagnetic induction heating, the mold surface as a boundary surface, especially the cavity surface Therefore, the entire rubber packing, which is a molded product, is heated rapidly and uniformly, and the temperature control of vulcanization can be precisely and accurately performed. In this respect, the rubber packing targeted by the present invention can make full use of the characteristics of electromagnetic induction heating, as compared with a molded product that is thick or has a thickness change locally.

特に、本願発明の場合には、好ましくは、上記絶縁体層が誘導加熱ユニットを収容する筐体を構成するボックス状部材から構成されているため、安定した加熱、遮熱が可能となる。   In particular, in the case of the present invention, preferably, the insulator layer is composed of a box-shaped member that constitutes a casing that accommodates the induction heating unit, so that stable heating and heat insulation are possible.

金型本体を構成する材料は、磁気金属、つまり磁性金属であって、金型キャビティ面を構成できれば特に制限はないが、好ましくは、ニッケル合金、鉄合金から選択される。ニッケル合金としては、パーマロイ、Ni基超耐熱合金等が例示され、鉄合金としては、一般構造用圧延鋼、機械構造用炭素鋼、構造用合金鋼、炭素工具鋼、軸受け鋼、ステンレス鋼等が例示される。   The material constituting the mold body is a magnetic metal, that is, a magnetic metal, and is not particularly limited as long as the mold cavity surface can be formed, but is preferably selected from a nickel alloy and an iron alloy. Examples of nickel alloys include permalloy and Ni-base super heat-resistant alloys. Examples of iron alloys include general structural rolled steel, mechanical structural carbon steel, structural alloy steel, carbon tool steel, bearing steel, and stainless steel. Illustrated.

絶縁体層は、非磁性材または弱磁性の絶縁体から構成され、かかる絶縁体としては、ファインセラミック材のようなセラミック材、フッ素樹脂(PTTE樹脂)、フェノール樹脂あるいはエポキシ樹脂のようなスーパープラスチックエンジニアリング材、ガラス材より選択され、かかる絶縁体層は、金型本体とは、機械的もしくは冶金的に接合されている。この絶縁体層には、高温時の圧縮に対する剛性が高いことが求められ、セラミックス製が好ましい。具体的には、酸化物系、炭化物系、窒化物系の各種セラッミックス材料が例示される。   The insulator layer is composed of a non-magnetic material or a weak magnetic insulator. Examples of the insulator include a ceramic material such as a fine ceramic material, a super plastic such as a fluororesin (PTTE resin), a phenol resin, and an epoxy resin. The insulating material layer is selected from an engineering material and a glass material, and the insulator layer is mechanically or metallurgically bonded to the mold body. This insulator layer is required to have high rigidity against compression at high temperatures, and is preferably made of ceramics. Specifically, various ceramic materials such as oxide, carbide and nitride are exemplified.

本発明にかかるゴムパッキン成形加硫装置は、これらの2種以上の複合層から成り、磁気金属層表面に製品が成形される。   The rubber packing molding and vulcanizing apparatus according to the present invention comprises these two or more composite layers, and a product is molded on the surface of the magnetic metal layer.

なお、磁気金属層と絶縁体層との冶金的接合方法には、爆発圧着や拡散接合、ロー付け等を用いればよい。   Note that explosive pressure bonding, diffusion bonding, brazing, or the like may be used as a metallurgical bonding method between the magnetic metal layer and the insulator layer.

本発明によれば、電磁誘導加熱用ヒータを金型内の絶縁体層内に設置し、誘導加熱ユニットとして独立構造を持つように構成してもよく、そのような態様では、金型基材層、つまり金型本体のみを交換することで異なる品種型への転用も容易に可能となる。その場合には、金型基材層と絶縁体層との結合は、離脱可能なようにボルト締結等適宜機械的手段で行えばよい。   According to the present invention, a heater for electromagnetic induction heating may be installed in an insulator layer in a mold, and may be configured to have an independent structure as an induction heating unit. By exchanging only the layer, that is, the mold body, it is possible to easily convert to a different product type. In that case, the mold base layer and the insulator layer may be bonded to each other by appropriate mechanical means such as bolt fastening so as to be detachable.

このように、本発明によれば、絶縁体層に熱伝導率の低い材料を選定することで、加熱される磁気金属層への熱影響を受けにくくなる。   Thus, according to the present invention, by selecting a material having low thermal conductivity for the insulator layer, it is difficult to be affected by heat on the heated magnetic metal layer.

図3は、本発明の更なる態様を示すもので、図2に示す金型本体と、金型支持層と、それに設けられる電磁誘導コイルとからなる金型装置を一つのユニットとして扱い、そのユニットを複数個、一枚のボックス板14のそれぞれ所定位置、例示すれば、碁盤目状、千鳥状、もしくは同心円状、に設置したものである。図示例は、そのように配置される一つのユニットの構造例を模式的に示す。図2と同一部材は同一符号で示す。   FIG. 3 shows a further aspect of the present invention. The mold apparatus comprising the mold body, the mold support layer, and the electromagnetic induction coil provided on the mold body shown in FIG. 2 is treated as one unit. A plurality of units are installed at predetermined positions on one box plate 14, for example, a grid shape, a staggered shape, or a concentric shape. The example of illustration shows typically the example of a structure of one unit arranged in that way. The same members as those in FIG. 2 are denoted by the same reference numerals.

上下のボックス板14を接続する部材16は、ガイドピンである。
本発明によれば、絶縁体層を用いることで、さらに取付板およびボックス板としてアルミニウム合金、チタン合金を使用すれば、金型装置全体の重量を低減できるとともに、同時に絶縁体による遮熱効果により、成形プレス温度の低温化を図ることができ、プレス精度維持が継続的に図られる。
The member 16 that connects the upper and lower box plates 14 is a guide pin.
According to the present invention, by using an insulator layer, if an aluminum alloy or a titanium alloy is further used as a mounting plate and a box plate, the weight of the entire mold apparatus can be reduced, and at the same time, due to the heat shielding effect by the insulator. The molding press temperature can be lowered, and the press accuracy can be continuously maintained.

ここに、電磁誘導加熱方式による加熱自体は、すでに述べた特許文献1,2にも記載されているように、特に制限はないが、望ましくは、ヒータユニットとして、用いることで、脱着自在にすれば、保守点検が容易になるとともに、前述の絶縁体層による断熱保護もより効果的に発揮することができる。   Here, the heating itself by the electromagnetic induction heating method is not particularly limited as described in Patent Documents 1 and 2 described above, but desirably, it can be freely attached and detached by using it as a heater unit. Thus, maintenance and inspection can be facilitated, and the thermal insulation protection by the above-described insulator layer can be more effectively exhibited.

電磁誘導加熱方式による加熱の特徴として、急速加熱、さらには加熱深さの調整が周波数を選択することで容易に行うことができ、しかも、加熱開始および加熱停止を瞬時に切り換えることができるため、ゴムパッキンの成形加硫、特に後述するようなステップ加硫には、特にその効果が発揮できる。   As a feature of heating by the electromagnetic induction heating method, rapid heating and further adjustment of the heating depth can be easily performed by selecting the frequency, and furthermore, heating start and heating stop can be switched instantaneously, The effect can be exerted particularly in the molding vulcanization of the rubber packing, particularly in the step vulcanization as described later.

次に、本発明にかかる電磁誘導加熱方式による金型装置は、以下に説明するようなステップ方式による成形・加硫を行うのに特に適する。本明細書では「ステップ加硫方式によるゴムパッキンの成形・加硫」という。   Next, the mold apparatus by the electromagnetic induction heating method according to the present invention is particularly suitable for performing molding and vulcanization by the step method as described below. In this specification, it is referred to as “molding and vulcanization of rubber packing by the step vulcanization method”.

すなわち、本発明は、別の面からいえば、金型本体(以下、単に「金型」ということもある)を電磁誘導加熱方式により初期加熱する段階、金型充填材料であるゴムを金型内に投入し、同時に金型を電磁誘導加熱により予め決められた成形温度に加熱して成形する段階、この段階で投入ゴムは初期の加硫が開始され、次いで、成形が終了したときに同じく電磁誘導加熱により更に温度を上げる段階、予め決められた温度に到達してから、その温度を維持して型内にあって加硫を完了させる段階、および成形・加硫製品を金型から取り出す段階からなるゴムパッキンの成形・加硫方法である。   That is, in another aspect, the present invention includes a step of initially heating a mold body (hereinafter sometimes simply referred to as “mold”) by electromagnetic induction heating method, and a rubber as a mold filling material is molded into a mold. At the same time, the mold is heated to a predetermined molding temperature by electromagnetic induction heating and molded. At this stage, the initial rubber is started, and then when the molding is finished, Steps to further increase the temperature by electromagnetic induction heating, steps to reach a predetermined temperature, maintain the temperature and complete vulcanization in the mold, and take out the molded / vulcanized product from the mold This is a method of molding and vulcanizing rubber packing consisting of stages.

金型の初期加熱および成形段階での加熱を電磁誘導方式で行うことで、速やかな加熱が可能となり、しかも、加硫を完了させるための加熱時間を予想外にも大幅に低減できるのであって、ゴムパッキンの生産効率の大幅な改善がもたらされる。   By performing the initial heating of the mold and heating at the molding stage by electromagnetic induction, it is possible to quickly heat, and the heating time for completing the vulcanization can be significantly reduced unexpectedly. The production efficiency of rubber packing is greatly improved.

本発明にかかる成形・加硫装置を使用したステップ加硫方式によるゴムパッキンの成形・加硫は、図4に概略示す温度・時間の関係で行われるが、さらにこれについて具体的に説明すると、次の通りである。   Molding and vulcanization of the rubber packing by the step vulcanization method using the molding and vulcanizing apparatus according to the present invention is performed in the relationship of temperature and time schematically shown in FIG. It is as follows.

(i)一段目加熱
金型を初期加熱する段階であり、予め金型を電磁誘導加熱により高速昇温させる。図4において、「加熱時間」として示される段階である。金型加熱に要する時間を大幅に短縮することができ、作業効率そして省エネを実現できる。
(I) First stage heating In this stage, the mold is initially heated, and the mold is preliminarily heated at high speed by electromagnetic induction heating. In FIG. 4, this is the stage indicated as “heating time”. The time required for mold heating can be greatly shortened, and work efficiency and energy saving can be realized.

(ii)一段目型加硫
上記所定温度に加熱された金型にゴムを投入し成形・加硫させる。図4に示すグラフ上の前記「加熱時間」に続く短いフラットな段階である。この段階で成形がほぼ完了し加硫が開始する。
(Ii) First-stage mold vulcanization The rubber is put into the mold heated to the above-mentioned predetermined temperature and molded and vulcanized. FIG. 5 is a short flat stage following the “heating time” on the graph shown in FIG. 4. At this stage, molding is almost completed and vulcanization starts.

金型にゴムを投入し成形する段階(スコーチタイム)では、焼けなどの不具合が発生しない加硫条件(温度と時間)を設定する。具体的には、好ましくはゴム製品の中心部と表面部とが同時に、つまり時間差なく成形・加硫が行われる温度と時間を設定する。   At the stage (scorch time) in which rubber is poured into the mold, the vulcanization conditions (temperature and time) are set so as not to cause defects such as burning. Specifically, the temperature and time at which molding and vulcanization are preferably performed at the same time, that is, without time difference, are preferably set at the center and the surface of the rubber product.

後述する実施例では一段目加熱の加熱温度を160℃、一段目型加硫の加硫時間を10秒とした。   In the examples described later, the heating temperature for the first stage heating was set to 160 ° C., and the vulcanization time for the first stage type vulcanization was set to 10 seconds.

(iii)二段目加熱
さらに加硫を完了させるために、電磁誘導加熱により高速に金型温度を高める。図4に示すグラフの上で、「加硫時間」とある段階のうちの、前記のフラットの段階に続く昇温段階である。
後述の実施例では、昇温時間は20秒であった。
(Iii) Second stage heating Further, in order to complete vulcanization, the mold temperature is increased at high speed by electromagnetic induction heating. On the graph shown in FIG. 4, the “vulcanization time” is a temperature raising stage following the flat stage in a certain stage.
In the examples described later, the temperature raising time was 20 seconds.

(iv)二段目型加硫
ゴム製品の特性を満足させるための加硫条件を設定する。
後述の実施例では、このときの加硫温度を200℃、加硫時間を2分とした。図4における前述の二段目加熱に続く、グラフ上でフラットな段階である。
(Iv) Second-stage vulcanization The vulcanization conditions for satisfying the characteristics of the rubber product are set.
In the examples described later, the vulcanization temperature at this time was 200 ° C., and the vulcanization time was 2 minutes. It is a flat stage on the graph following the above-mentioned second stage heating in FIG.

本発明にかかるステップ成形・加硫方式によるゴムパッキンの成形・加硫では、一段目、二段目と加熱と加硫とを分けて行うため、特に二段目の昇温時間および加硫時間を、それぞれ、予想よりも顕著に短くすることが可能となった。   In the rubber molding by the step molding / vulcanization method according to the present invention, the first stage, the second stage, and the heating and vulcanization are performed separately. Can be made significantly shorter than expected.

このような加硫条件で成形・加硫されたゴムパッキン製品は、シール性能を満足した。
従来の伝熱加熱では、昇温時間が長くなり、焼けや機械特性不足が発生する。しかし、電磁誘導加熱を用いることで、加硫温度を2段階に制御するができ(ステップ加硫)、加硫時間の短縮が実現できる。
The rubber packing product molded and vulcanized under such vulcanization conditions satisfied the sealing performance.
In conventional heat transfer heating, the temperature rise time becomes long, and burning and insufficient mechanical properties occur. However, by using electromagnetic induction heating, the vulcanization temperature can be controlled in two steps (step vulcanization), and the vulcanization time can be shortened.

次に、実施例によって本発明の作用をさらに具体的に説明する。   Next, the operation of the present invention will be described more specifically with reference to examples.

実施例
本例では、図2に示す構造を備えたゴムパッキン成形・加硫用金型装置を用い、図4にしたがって、下記条件での電磁誘導加熱によるステップ加硫方式によるゴムパッキンの成形・加硫を行った。
Example In this example, a rubber packing molding / vulcanizing mold apparatus having the structure shown in FIG. 2 was used, and according to FIG. 4, the rubber packing was molded / stepped by electromagnetic induction heating under the following conditions. Vulcanization was performed.

(i)一段目加熱
初期金型加熱温度を160℃とした。
(I) First stage heating The initial mold heating temperature was set to 160 ° C.

(ii)一段目型加硫
昇温後、ゴムを金型内に投入し成形を行い、同時に加硫時間を10秒 に設定した。
(Ii) First-stage vulcanization After the temperature rise, the rubber was put into a mold for molding, and at the same time, the vulcanization time was set to 10 seconds.

(iii)二段目加熱
その後、加硫温度を200℃に昇温させる。昇温時間は約20秒であった。
(Iii) Second stage heating Thereafter, the vulcanization temperature is raised to 200 ° C. The temperature raising time was about 20 seconds.

(iii)二段目型加硫
昇温後、加硫時間を2分に設定した。
(Iii) Second-stage vulcanization After the temperature increase, the vulcanization time was set to 2 minutes.

以上の加硫条件による加硫時間の合計は2分30秒であった。図5に示す装置を使用する従来技術にあっては、加硫時間は8分であったから、本発明によれば、5分30秒という大幅な短縮が図られることが分かる。本発明にかかる成形加硫装置を使用することにより生産性の大幅な改善が実現できる。   The total vulcanization time under the above vulcanization conditions was 2 minutes 30 seconds. In the prior art using the apparatus shown in FIG. 5, since the vulcanization time was 8 minutes, it can be seen that according to the present invention, a significant reduction of 5 minutes 30 seconds can be achieved. A significant improvement in productivity can be realized by using the molding vulcanizing apparatus according to the present invention.

このような加硫条件で成形されたゴム製品は、(i)圧縮永久ひずみ、(ii)硬度、(iii)引張強度、(iv)伸び、などのシール性能の改善に必要な機械的特性を満足することから、そのシール性能は満足するものであった。   Rubber products molded under such vulcanization conditions have mechanical properties necessary for improving sealing performance such as (i) compression set, (ii) hardness, (iii) tensile strength, (iv) elongation, etc. Satisfied, the sealing performance was satisfactory.

一方、このようなステップ加硫を図5に示す装置を使って電熱加熱方式で行うと、次の不具合が生じる。
(1)160℃から200℃への昇温時間が長くかかり、加硫時間短縮ができない。
(2)高温での加硫時間が長くなり、焼けや機械的特性不足が発生する。
On the other hand, when such step vulcanization is performed by the electrothermal heating method using the apparatus shown in FIG.
(1) It takes a long time to raise the temperature from 160 ° C. to 200 ° C., and the vulcanization time cannot be shortened.
(2) The vulcanization time at a high temperature becomes longer, resulting in burning and insufficient mechanical properties.

本発明では、加硫温度を2段階に制御し、その加熱を誘導加熱で行うために、加硫時間の短縮を図っても、機械特性の低下は何ら生じない。   In the present invention, since the vulcanization temperature is controlled in two stages and the heating is performed by induction heating, even if the vulcanization time is shortened, no deterioration in mechanical properties occurs.

1 ゴムパッキン成形・加硫用電磁誘導加熱式金型装置
2 金型本体
3 金型キャビティ面
4 磁気金属層
5 絶縁体層
6 金型支持層
7 誘導コイル
10 取付板
11 固定側プラテン
12 可動側プラテン
DESCRIPTION OF SYMBOLS 1 Electromagnetic induction heating type die apparatus for rubber packing molding and vulcanization 2 Mold body 3 Mold cavity surface 4 Magnetic metal layer 5 Insulator layer 6 Mold support layer 7 Induction coil 10 Mounting plate 11 Fixed platen 12 Movable side Platen

Claims (3)

金型キャビティ面を構成する金型本体と、前記金型キャビティ面の反対側に配置されて前記金型本体を支持する金型支持体と、該金型支持層内に配置された電磁誘導コイルとから構成され、前記金型本体をニッケル合金または鉄合金からなる磁気金属層から構成し、前記金型支持体を非磁性材または弱磁性の絶縁体層から構成し、前記金型本体を直接加熱するとともに、前記金型支持体を介して成形圧を金型本体に伝えることを特徴とする、ゴムパッキン成形・加硫用電磁誘導加熱式金型装置。   A mold body constituting a mold cavity surface, a mold support disposed on the opposite side of the mold cavity surface to support the mold body, and an electromagnetic induction coil disposed in the mold support layer The mold body is composed of a magnetic metal layer made of nickel alloy or iron alloy, the mold support is composed of a nonmagnetic material or a weak magnetic insulator layer, and the mold body is directly An electromagnetic induction heating mold apparatus for rubber packing molding and vulcanization characterized by heating and transmitting a molding pressure to the mold body through the mold support. 前記磁気金属層が、一般構造用圧延鋼、機械構造用炭素鋼、構造用合金鋼、炭素工具鋼、軸受け鋼、ステンレス鋼から選ばれる1種である、請求項1記載のゴムパッキン成形・加硫用電磁誘導加熱式金型装置。   2. The rubber packing molding / heating of claim 1, wherein the magnetic metal layer is one selected from general structural rolled steel, mechanical structural carbon steel, structural alloy steel, carbon tool steel, bearing steel, and stainless steel. Electromagnetic induction heating mold equipment for sulfur. 前記絶縁体層が、スーパエンジニアンリングプラスチック材、セラミック材、およびガラス材から選ばれた1種から構成される、請求項1または2記載のゴムパッキン成形・加硫用電磁誘導加熱式金型装置。
The electromagnetic induction heating mold for rubber packing molding and vulcanization according to claim 1 or 2, wherein the insulator layer is composed of one kind selected from a super engineering plastic material, a ceramic material, and a glass material. apparatus.
JP2014164087A 2014-08-12 2014-08-12 Electromagnetic induction heating mold equipment for molding and vulcanization of rubber packing Active JP6123753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014164087A JP6123753B2 (en) 2014-08-12 2014-08-12 Electromagnetic induction heating mold equipment for molding and vulcanization of rubber packing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014164087A JP6123753B2 (en) 2014-08-12 2014-08-12 Electromagnetic induction heating mold equipment for molding and vulcanization of rubber packing

Publications (2)

Publication Number Publication Date
JP2016040081A true JP2016040081A (en) 2016-03-24
JP6123753B2 JP6123753B2 (en) 2017-05-10

Family

ID=55540656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014164087A Active JP6123753B2 (en) 2014-08-12 2014-08-12 Electromagnetic induction heating mold equipment for molding and vulcanization of rubber packing

Country Status (1)

Country Link
JP (1) JP6123753B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107662330A (en) * 2017-11-20 2018-02-06 广东工业大学 Molding device and method for surface in the macromolecule magnetic material of micro-nano structure
CN108088867A (en) * 2017-12-01 2018-05-29 广东工业大学 A kind of test device and method of surface micro-structure shape-memory properties
CN110370514A (en) * 2019-06-28 2019-10-25 宁波大学 A kind of hot plate of vulcanizer based on electromagnetic heating
CN110900902A (en) * 2019-12-09 2020-03-24 宋顺升 Cold and hot integrative rubber and plastic steady type machine
CN112153768A (en) * 2020-10-12 2020-12-29 哈尔滨理工大学 Electromagnetic induction heating method for thermosetting molding of carbon fiber reinforced composite material
JP2021035688A (en) * 2019-08-30 2021-03-04 ダイハツ工業株式会社 Metal plate thickening method
KR102230278B1 (en) * 2020-05-18 2021-03-19 아라정밀 주식회사 Vulcanizing Mold For Magnetic Particle Orientation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267517A (en) * 1995-03-30 1996-10-15 Molten Corp Mold structure
JP2013226810A (en) * 2012-03-29 2013-11-07 Mitsubishi Chemicals Corp Resin molding manufacturing method using electromagnetic induction heating type mold apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267517A (en) * 1995-03-30 1996-10-15 Molten Corp Mold structure
JP2013226810A (en) * 2012-03-29 2013-11-07 Mitsubishi Chemicals Corp Resin molding manufacturing method using electromagnetic induction heating type mold apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107662330A (en) * 2017-11-20 2018-02-06 广东工业大学 Molding device and method for surface in the macromolecule magnetic material of micro-nano structure
CN108088867A (en) * 2017-12-01 2018-05-29 广东工业大学 A kind of test device and method of surface micro-structure shape-memory properties
CN108088867B (en) * 2017-12-01 2021-01-26 广东工业大学 Method for testing shape memory performance of surface microstructure
CN110370514A (en) * 2019-06-28 2019-10-25 宁波大学 A kind of hot plate of vulcanizer based on electromagnetic heating
JP2021035688A (en) * 2019-08-30 2021-03-04 ダイハツ工業株式会社 Metal plate thickening method
CN110900902A (en) * 2019-12-09 2020-03-24 宋顺升 Cold and hot integrative rubber and plastic steady type machine
CN110900902B (en) * 2019-12-09 2022-04-15 宋顺升 Cold and hot integrative rubber and plastic steady type machine
KR102230278B1 (en) * 2020-05-18 2021-03-19 아라정밀 주식회사 Vulcanizing Mold For Magnetic Particle Orientation
CN112153768A (en) * 2020-10-12 2020-12-29 哈尔滨理工大学 Electromagnetic induction heating method for thermosetting molding of carbon fiber reinforced composite material
CN112153768B (en) * 2020-10-12 2022-09-09 哈尔滨理工大学 Electromagnetic induction heating method for thermosetting molding of carbon fiber reinforced composite material

Also Published As

Publication number Publication date
JP6123753B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6123753B2 (en) Electromagnetic induction heating mold equipment for molding and vulcanization of rubber packing
JP4819858B2 (en) Thermoforming press
JP5967834B2 (en) Resin molding die, method for manufacturing the resin molding die, and method for manufacturing a resin molded product
CN106660103B (en) Molding machine, molding machine component replacing options and molding machine with replace unit
EP2679368B1 (en) Tire vulcanizer
EP1946903B1 (en) Injection molding apparatus
TWI607848B (en) High temperature hot press molding machine
JP2011031285A (en) Heating structure of die
JP2016002577A (en) Molding device
WO2017212907A1 (en) Injection compression molding mold and injection compression molding method
JP2009255468A (en) Two-color molding die and two-color molding method
JP5143694B2 (en) Mold apparatus and method for producing molded body using the same
US11285675B2 (en) Processing apparatus for elongated structure and manufacturing method for elongated structure
KR101228437B1 (en) Device molding press with which cooling part having thermoelectric and heating part having Positive Temperature Coefficient
CN104190903A (en) Method of integrally forming non-metal part and metal part
JP6432750B2 (en) Fiber reinforced composite material molding equipment
JP5725906B2 (en) Tire vulcanizer
JP2010159182A (en) Apparatus and method for manufacturing optical element
JP2009202348A (en) Molding equipment
JP6762732B2 (en) Multi-axis current sintering equipment
JP4759362B2 (en) Optical element manufacturing apparatus and manufacturing method
JP7212872B1 (en) Method for manufacturing molding die parts
KR101105111B1 (en) Apparatus for adjusting level of mold and method thereof
JPS63177927A (en) Forming device for superplastic material
Jirásko et al. Static numerical analysis of a hydraulic curing press

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R150 Certificate of patent or registration of utility model

Ref document number: 6123753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250