JP2016039721A - Dc power distribution system - Google Patents

Dc power distribution system Download PDF

Info

Publication number
JP2016039721A
JP2016039721A JP2014162346A JP2014162346A JP2016039721A JP 2016039721 A JP2016039721 A JP 2016039721A JP 2014162346 A JP2014162346 A JP 2014162346A JP 2014162346 A JP2014162346 A JP 2014162346A JP 2016039721 A JP2016039721 A JP 2016039721A
Authority
JP
Japan
Prior art keywords
power
amount
discharge
power amount
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014162346A
Other languages
Japanese (ja)
Other versions
JP6522901B2 (en
Inventor
遠藤 哲夫
Tetsuo Endo
哲夫 遠藤
小林 信郷
Shingo Kobayashi
信郷 小林
山口 亮
Akira Yamaguchi
亮 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2014162346A priority Critical patent/JP6522901B2/en
Publication of JP2016039721A publication Critical patent/JP2016039721A/en
Application granted granted Critical
Publication of JP6522901B2 publication Critical patent/JP6522901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Fuel Cell (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DC power distribution system capable of reducing an energy conversion loss and making a component apparatus have small capacity.SOLUTION: A DC power distribution system supplies power generated by a fuel cell to a DC load (step S1, S2); compensates for a shortage with power of photovoltaic power generation (step S7); and, when a shortage remains, supplies power discharged from a power storage device while setting an amount of the discharged power so that a prediction value of an amount of reception power per predetermined time agrees with a target amount of reception power per predetermined time and DC/DC conversion efficiency is relatively high (step S12). When a shortage still remains, the DC power distribution system determines a target amount of reception power from an AC power supply system so that the prediction value of the amount of reception power per predetermined time agrees with the target amount of reception power and AC/DC conversion efficiency is relatively high, and converts reception power corresponding to the target amount of reception power to DC power to supply the DC power to a DC load (step S15).SELECTED DRAWING: Figure 2

Description

本発明は、直流配電システムに関する。   The present invention relates to a DC power distribution system.

近年、省エネルギー、省CO化への関心から、建造物に太陽光発電パネルや、風力発電機などの再生可能エネルギーによる発電システムが設置されることが多くなっている。再生可能エネルギーによる発電システムは、天候によって発電電力が変動する。このように時間変動を伴うシステムでは、発電電力を負荷に供給し、その余剰電力を蓄電池に蓄電するといった制御が行われている。また、負荷の電力が不足した場合やデマンドレスポンス対応として、ピークカット用の電力として蓄電池の電力を利用することによって、発電した電力は効率的に利用されている。 Recently, energy saving, the interest in saving CO 2 reduction, solar panels and the building, and it is increasingly the power generation system according to renewable energy such as wind power generator is installed. In a power generation system using renewable energy, generated power varies depending on the weather. As described above, in the system with time fluctuation, control is performed such that the generated power is supplied to the load and the surplus power is stored in the storage battery. In addition, when the load power is insufficient or in response to demand response, the generated power is efficiently used by using the power of the storage battery as the power for peak cut.

しかしながら、余剰電力を蓄電するためには、大きな蓄電容量が必要となるため、設置コストの増加が課題となっている。
また、最近では、燃料電池の高効率化が進んでおり、前述の再生可能エネルギーによる発電システムに加えて燃料電池が設置される建造物もある。燃料電池として発電効率が高い固体酸化物型燃料電池(SOFC)を用いた場合、発電量を一定出力とすることが一般的であるため、燃料電池はベース電力として利用される。この場合でも上記と同様に、設置コストの増加が課題となっている。
However, in order to store surplus power, a large storage capacity is required, and thus an increase in installation cost is a problem.
In recent years, fuel cells have become more efficient, and there are buildings where fuel cells are installed in addition to the above-described power generation system using renewable energy. When a solid oxide fuel cell (SOFC) with high power generation efficiency is used as a fuel cell, the power generation amount is generally set to a constant output, and therefore the fuel cell is used as base power. Even in this case, as described above, an increase in installation cost is a problem.

ところで、太陽光発電システム、燃料電池、蓄電池の出力を建造設備機器の負荷に供給する場合、まずは発電量の制御が困難で系統側への逆潮流が制限される燃料電池の発電電力が負荷に供給される。ここで、燃料電池の余剰電力は蓄電池に蓄電されるか、系統からの解列もしくは逆潮流を行う。
また、燃料電池は停止や発電量制御が困難であるため、蓄電池の容量を大きくするか、負荷の待機電力を検討し、最低限必要な負荷電力量よりも小さな容量の機器が選定されるのが一般的である。
By the way, when supplying the output of a photovoltaic power generation system, fuel cell, or storage battery to a load of a building equipment, first of all, the generated power of the fuel cell is difficult to control the amount of power generation and the reverse power flow to the system side is restricted. Supplied. Here, the surplus power of the fuel cell is stored in the storage battery, or is disconnected or reversely flowed from the system.
In addition, since it is difficult to stop or control the amount of power generated for fuel cells, increase the capacity of the storage battery or consider standby power for the load, and select a device with a capacity smaller than the minimum required load power. Is common.

燃料電池の発電電力では負荷電力を賄えない場合は、太陽光発電による電力が負荷に供給される。太陽光発電も発電する電力量を制御することができないため、太陽光発電による発電電力が余剰した場合には蓄電池に蓄電するか、解列若しくは逆潮流される。
燃料電池と太陽光発電とによる合計発電量が負荷電力以下の場合には、負荷には蓄電池からの放電および系統からの電力が給電される。ここで、系統電力のピークを抑制するような蓄電池からの放電制御が可能になれば、契約電力を下げることができるため、ランニングコストを低減することが可能になる。
When the generated power of the fuel cell cannot cover the load power, the power generated by solar power is supplied to the load. Since the amount of electric power generated by solar power generation cannot be controlled, when surplus power is generated by solar power generation, it is stored in a storage battery, or disconnected or reversely flowed.
When the total amount of power generated by the fuel cell and solar power generation is equal to or less than the load power, the load is supplied with the discharge from the storage battery and the power from the system. Here, if the discharge control from the storage battery capable of suppressing the peak of the system power becomes possible, the contract power can be lowered, so that the running cost can be reduced.

しかしながら、太陽光発電による発電電力の変動を抑制し、ピークカットを抑制する蓄電池制御を可能にするには、大容量のインバータ装置(AC/DC変換器 kW)を付加する必要がある。インバータ装置は、定格よりも大幅に低い電力量のエネルギー変換では、効率が低下する傾向があるため、蓄電池からの電力供給はせっかく発電した電力を損失するというデメリットを伴う。また、蓄電池容量(kWh)も大きくなり、蓄電池の設置場所の確保も課題となる。   However, it is necessary to add a large-capacity inverter device (AC / DC converter kW) in order to control storage battery control that suppresses fluctuations in power generated by solar power generation and suppresses peak cuts. Inverter devices tend to be less efficient in energy conversion with an amount of power that is significantly lower than the rating, so the power supply from the storage battery has the demerit of losing the generated power. In addition, the storage battery capacity (kWh) is increased, and securing the installation location of the storage battery is also an issue.

ところで、燃料電池、太陽光発電、蓄電池は、いずれも直流(DC)の電力を発電若しくは蓄電するシステムである。一方、建物の設備機器としての、LED照明器具、コンピュータ、サーバ等は直流動作を行う。しかし、燃料電池、太陽光発電、蓄電池などにより直流動作を行う場合、一般的には、発電・蓄電電力は直流(DC)から交流(AC)に変換し、交流電力として建物内を配電し、交流電力として設備機器に給電する。そして、設備機器で、交流電力を直流電力に変換して動作する。   By the way, a fuel cell, photovoltaic power generation, and a storage battery are all systems that generate or store direct current (DC) power. On the other hand, LED lighting fixtures, computers, servers, and the like as building equipment devices perform direct current operation. However, when direct current operation is performed by a fuel cell, solar power generation, storage battery, etc., in general, the generated / stored power is converted from direct current (DC) to alternating current (AC) and distributed inside the building as alternating current power, Power is supplied to equipment as AC power. And it operates by converting AC power into DC power in equipment.

そのため、直流から交流(DC/AC変換)あるいは交流から直流(AC/DC変換)に変換する際にエネルギー変換ロスが発生する。
その対応として、DC/AC変換器あるいはAC/DC変換器の変換効率の低下を抑制するようにした直流配電システムが提案されている。
例えばAC/DC変換器として、定格出力電力よりも低い所定値において、変換効率が最大となる特性を有するAC/DC変換器を用い、重負荷の場合には他の分散電源と分担して給電することによって、軽負荷および重負荷に関係なく、AC/DC変換器の変換効率の低下を抑制するようにした直流配電システムが提案されている(例えば、特許文献1参照)。
Therefore, an energy conversion loss occurs when converting from direct current to alternating current (DC / AC conversion) or from alternating current to direct current (AC / DC conversion).
As a countermeasure, a DC power distribution system that suppresses a decrease in conversion efficiency of a DC / AC converter or an AC / DC converter has been proposed.
For example, as an AC / DC converter, an AC / DC converter having a characteristic that maximizes the conversion efficiency at a predetermined value lower than the rated output power is used. In the case of a heavy load, power is shared with other distributed power sources. Thus, there has been proposed a DC power distribution system that suppresses a decrease in conversion efficiency of an AC / DC converter regardless of light load and heavy load (see, for example, Patent Document 1).

特開2009−153301号公報JP 2009-153301 A

しかしながら、上述の直流配電システムにおいては、軽負荷時などに蓄電池(二次電池)からの放電電力が要求される場合には、蓄電池の定格出力電力よりも低い電力を放電する可能性がある。このように蓄電池の定格出力電力よりも低い電力を放電する場合、蓄電池の蓄電電力を昇圧、あるいは降圧して負荷への電力供給を行うDC/DC(直流/直流)変換器の変換効率が低下する可能性がある。
そこで、この発明は、上記従来の未解決の課題に着目してなされたものであり、エネルギーの変換ロスを低減し、かつ構成機器の小容量化を図ることの可能な直流配電システムを提供することを目的としている。
However, in the above-described DC power distribution system, when discharge power from the storage battery (secondary battery) is required at a light load or the like, there is a possibility that power lower than the rated output power of the storage battery is discharged. When discharging power lower than the rated output power of the storage battery in this way, the conversion efficiency of the DC / DC (direct current / direct current) converter that increases or decreases the stored power of the storage battery to supply power to the load is reduced. there's a possibility that.
Therefore, the present invention has been made paying attention to the above-mentioned conventional unsolved problems, and provides a DC distribution system capable of reducing energy conversion loss and reducing the capacity of components. The purpose is that.

本発明の一態様によれば、直流給電負荷の需要電力量と、直流発電装置が供給可能な直流電力量との差分から、所定時間当たりの、交流電源系統から受電する必要のある受電電力量が予測され、予測された必要受電電力量が、目標受電電力量設定部で設定された目標受電電力量と一致し、かつ蓄電装置に対応して駆動される直流/直流変換器の負荷率が予め設定した閾値以上となり得る放電電力量であり、且つ直流給電負荷の需要電力量と直流発電装置により供給される直流電力量との差分を補うための放電電力量である目標放電電力量を設定する放電電力量設定部を備える、直流配電システムが提供される。
なお、ここでいう、直流発電装置とは、水素と酸素とを反応させて継続的に電力を取り出すことのできる燃料電池と、太陽光発電、或いは風力発電、水力発電など自然エネルギーを利用して電力を取り出す自然エネルギー発電システム等とを含む。
According to one aspect of the present invention, the amount of received power that needs to be received from the AC power supply system per predetermined time is determined from the difference between the amount of demand power of the DC power supply load and the amount of DC power that can be supplied by the DC power generation device. The required received power amount that is predicted and predicted matches the target received power amount set by the target received power amount setting unit, and the load factor of the DC / DC converter that is driven corresponding to the power storage device is determined in advance. Discharge that sets a target discharge power amount that is a discharge power amount that can be equal to or greater than a set threshold and that compensates for the difference between the demand power amount of the DC power supply load and the DC power amount supplied by the DC power generator. A DC power distribution system including an electric energy setting unit is provided.
Note that the DC power generation device here refers to a fuel cell that can continuously extract electric power by reacting hydrogen and oxygen, and using natural energy such as solar power generation, wind power generation, or hydroelectric power generation. Including a natural energy power generation system for extracting electric power.

本発明の一態様によれば、DC/DC変換器やAC/DC変換器におけるエネルギーの変換ロスを低減することができるとともに、構成機器の小容量化を図ることができる。   According to one embodiment of the present invention, energy conversion loss in a DC / DC converter and an AC / DC converter can be reduced, and the capacity of constituent devices can be reduced.

本発明を適用した直流配電システムの一例を示す構成図である。It is a lineblock diagram showing an example of a direct-current power distribution system to which the present invention is applied. 直流配電システムにおける演算処理の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the arithmetic processing in a DC power distribution system. 放電電力量演算処理の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of discharge electric energy calculation processing. 放電電力量の設定方法の一例を示す説明図である。It is explanatory drawing which shows an example of the setting method of discharge electric energy. DC/DC変換器の負荷率と効率との関係を示す特性図の一例である。It is an example of the characteristic view which shows the relationship between the load factor and efficiency of a DC / DC converter. AC/DC変換器の負荷率と効率との関係を示す特性図の一例である。It is an example of the characteristic view which shows the relationship between the load factor and efficiency of an AC / DC converter.

以下、図面を参照して本発明の実施形態を説明する。
図1は、本発明の直流配電システム1の一例を示す、概略構成図である。
図1に示す直流配電システム1は、直流電力を給電する直流発電装置としての燃料電池2および太陽光発電システム3と、照明器具(LED等)やOA機器等の、直流電力が給電される直流負荷4と、複数の蓄電池システム5と、を備える。燃料電池2および太陽光発電システム3と、直流負荷4と、蓄電池システム5とは、これら各部毎に設けられたDC/DC(直流/直流)変換器6を介して直流配電網10に接続されている。なお、ここでは直流発電装置として、燃料電池や太陽光発電システムを適用した場合について説明するが、これに限るものではなく、例えば風力発電や水力発電などの自然エネルギーを利用した発電システムであっても適用することができる。特に、燃料電池のように天候など自然に左右されることなく継続的に電力を得ることのできる発電装置と、自然エネルギーを利用した発電システムとの両方を直流発電装置として備えたシステムに好適である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an example of a DC power distribution system 1 of the present invention.
A DC power distribution system 1 shown in FIG. 1 includes a fuel cell 2 and a solar power generation system 3 as DC power generators that supply DC power, and DC power supplied with DC power, such as lighting fixtures (LEDs, etc.) and OA equipment. A load 4 and a plurality of storage battery systems 5 are provided. The fuel cell 2 and the photovoltaic power generation system 3, the direct current load 4, and the storage battery system 5 are connected to the direct current distribution network 10 through a DC / DC (direct current / direct current) converter 6 provided for each part. ing. Here, a case where a fuel cell or a solar power generation system is applied as a DC power generation device will be described, but the present invention is not limited to this, and is a power generation system using natural energy such as wind power generation or hydroelectric power generation. Can also be applied. In particular, it is suitable for a system including both a power generation device that can continuously obtain power without being influenced by nature such as the weather and a power generation system that uses natural energy as a DC power generation device, such as a fuel cell. is there.

商用電源が供給される交流電源系統12には交流電力が給電される一般負荷8が接続される。また、交流電源系統12から分岐した分岐路12aと直流配電網10との間には、AC/DC変換器7cが複数接続される。
交流電源系統12には、燃料電池発電用PCS(Power Conditioning System)に含まれるAC/DC(交流/直流)変換器7aおよび太陽光発電用PCSに含まれるAC/DC変換器7bが接続され、燃料電池2は、DC/DC変換器6(6a)およびAC/DC変換器7aを介して交流電源系統12との間で電力授受を行い、太陽光発電システム3は、DC/DC変換器6(6b)およびAC/DC変換器7bを介して交流電源系統12との間で電力授受を行う。
A general load 8 to which AC power is supplied is connected to an AC power supply system 12 to which commercial power is supplied. A plurality of AC / DC converters 7 c are connected between the branch path 12 a branched from the AC power supply system 12 and the DC distribution network 10.
The AC power supply system 12 is connected to an AC / DC (AC / DC) converter 7a included in a fuel cell power generation PCS (Power Conditioning System) and an AC / DC converter 7b included in a solar power generation PCS. The fuel cell 2 exchanges power with the AC power supply system 12 via the DC / DC converter 6 (6a) and the AC / DC converter 7a, and the solar power generation system 3 includes the DC / DC converter 6 (6b) and the AC power supply system 12 is exchanged with the AC / DC converter 7b.

蓄電池システム5は、蓄電装置5aと、蓄電装置5aの充放電制御を行う制御部5bとを備える。蓄電装置5aは、建物に設置する場合に比較的大規模(大容量、大出力)となる定置型蓄電池システムではなく、比較的低容量、低出力の蓄電装置が適用され、このように比較的低容量の1または複数の蓄電池システム5が分散して配置される。蓄電池システム5は、蓄電池システム5と蓄電池システム5毎に対応付けられたDC/DC変換器6cおよびAC/DC変換器7cとを1セットとして、1又は複数のセットが、並列に接続されるようになっている。   The storage battery system 5 includes a power storage device 5a and a control unit 5b that performs charge / discharge control of the power storage device 5a. The power storage device 5a is not a stationary storage battery system having a relatively large scale (large capacity, large output) when installed in a building, but a relatively low capacity, low output power storage device is applied. One or a plurality of storage battery systems 5 having a low capacity are arranged in a distributed manner. The storage battery system 5 is configured such that one or a plurality of sets are connected in parallel with the storage battery system 5 and the DC / DC converter 6c and the AC / DC converter 7c associated with each storage battery system 5 as one set. It has become.

蓄電池システム5および蓄電池システム5毎に対応づけられたDC/DC変換器6cは、充放電制御装置13により制御される。
燃料電池2には、燃料電池による発電電力を検出する電力センサm1が設けられ、同様に、太陽光発電システム3には太陽光発電による発電電力を検出する電力センサm2が設けられている。また、蓄電池システム5のそれぞれには、蓄電装置5aの充放電可能容量を検出するための充放電可能容量検出センサm3が設けられている。さらに、直流負荷4、また、一般負荷8のそれぞれには、需要電力を検出する電力センサm4が設けられている。
The storage battery system 5 and the DC / DC converter 6 c associated with each storage battery system 5 are controlled by the charge / discharge control device 13.
The fuel cell 2 is provided with a power sensor m1 for detecting the power generated by the fuel cell. Similarly, the solar power generation system 3 is provided with a power sensor m2 for detecting the power generated by solar power generation. Each of the storage battery systems 5 is provided with a chargeable / dischargeable capacity detection sensor m3 for detecting the chargeable / dischargeable capacity of the power storage device 5a. Further, each of the DC load 4 and the general load 8 is provided with a power sensor m4 for detecting demand power.

充放電制御装置13は、蓄電池システム5に設けられた充放電可能容量検出センサm3の検出信号を定期的に読み込み配電制御装置14に送信するとともに、配電制御装置14から放電電力量の指令値を入力する。また、蓄電池システム5毎に対応付けられたDC/DC変換器6cそれぞれに対して負荷率の閾値を設定し、設定した負荷率の閾値と、放電電力量の指令値と、現時点における各蓄電池システム5の充放電可能容量などをもとに、負荷率が閾値以上となるように、放電させる蓄電池システム5および放電電力量を決定し、決定した放電電力量を配電制御装置14に送信する。また、配電制御装置14からの蓄電電力量の指令値や、DC/DC変換器6cの負荷率の閾値をもとに、充電する蓄電池システム5を決定し、決定した蓄電池システム5に対応するDC/DC変換器6cを制御して、指定された蓄電電力量の指令値相当の充電を行う。また、放電電力量あるいは充電電力量の指令値相当の充放電を行うに当たり、負荷率の閾値を満足する負荷率で充放電を行うことができない場合には配電制御装置14に対して充放電不可である旨を通知する。   The charge / discharge control device 13 periodically reads the detection signal of the chargeable / dischargeable capacity detection sensor m3 provided in the storage battery system 5 and transmits the detection signal to the power distribution control device 14, and receives a command value of the discharge power amount from the power distribution control device 14. input. Also, a load factor threshold value is set for each DC / DC converter 6c associated with each storage battery system 5, the set load factor threshold value, a command value for the amount of discharge power, and each storage battery system at the present time. Based on the chargeable / dischargeable capacity of 5 and the like, the storage battery system 5 to be discharged and the amount of discharged power are determined so that the load factor is equal to or greater than the threshold, and the determined amount of discharged power is transmitted to the distribution control device 14. Further, the storage battery system 5 to be charged is determined based on the command value of the stored power amount from the power distribution control device 14 and the load factor threshold value of the DC / DC converter 6c, and the DC corresponding to the determined storage battery system 5 is determined. / DC converter 6c is controlled to perform charging corresponding to the command value of the specified stored electric energy. In addition, when charging / discharging at the load factor that satisfies the threshold value of the load factor cannot be performed for charging / discharging corresponding to the command value of the discharging electric energy or the charging electric energy, charging / discharging to the distribution control device 14 is impossible. Notify that.

ここで、負荷率とは、DC/DC変換器6或いはAC/DC変換器7などの電力変換器の容量と送電する電力量との比(送電する電力量/電力変換器の容量)で表される値である。DC/DC変換器6cの負荷率は、「送電する電力量/(DC/DC変換器6cの容量)」で表される。
DC/DC変換器6およびAC/DC変換器7はそれぞれ図示しない制御部を有しており、燃料電池2、太陽光発電システム3、これら燃料電池2、太陽光発電システム3および直流負荷4に対応するDC/DC変換器6や、AC/DC変換器7、また充放電制御装置13を、配電制御装置14により制御することによって、直流負荷4への給電および蓄電装置5aへの充放電などが行われる。すなわち配電制御装置14は、各種センサの検出信号をもとに、燃料電池2、太陽光発電システム3、充放電制御装置13、DC/DC変換器6およびAC/DC変換器7を制御し、燃料電池2や太陽光発電システム3による発電電力を直流負荷4に給電し、不足分を蓄電装置5aから給電するとともに、交流電源系統12から給電される交流電力を直流電力に変換して直流負荷4に給電し、余剰分は蓄電装置5aに蓄電する。また、配電制御装置14は、直流負荷4および一般負荷(交流)8の需要電力量、燃料電池2および太陽光発電システム3による発電電力量、蓄電装置5aの充放電可能容量などに基づき、現時点から所定時間T(例えば30分後)経過後までの間に必要な、所定時間T当たりに、交流電源系統12から受電する電力量(以後、受電電力量という。)を予測するとともに、現時点から所定時間T経過後までの間の所定時間T当たりの、交流電源系統12からの受電電力量の目標値(以後、目標受電電力量ともいう。)を設定し、単位時間当たりの実際の受電電力量が目標受電電力量と一致し、且つ、DC/DC変換器6やAC/DC変換器7といった電力変換器の変換効率が予め設定した閾値以上となるように、蓄電装置5aの充放電量や交流電源系統12から受電する受電電力量の制御等を行う。
Here, the load factor is represented by a ratio between the capacity of a power converter such as the DC / DC converter 6 or the AC / DC converter 7 and the amount of transmitted power (the amount of transmitted power / the capacity of the power converter). Is the value to be The load factor of the DC / DC converter 6c is represented by “amount of power to be transmitted / (capacity of the DC / DC converter 6c)”.
Each of the DC / DC converter 6 and the AC / DC converter 7 has a control unit (not shown), and the fuel cell 2, the solar power generation system 3, the fuel cell 2, the solar power generation system 3, and the DC load 4 The corresponding DC / DC converter 6, AC / DC converter 7, and charge / discharge control device 13 are controlled by the power distribution control device 14, thereby supplying power to the DC load 4 and charging / discharging the power storage device 5 a. Is done. That is, the power distribution control device 14 controls the fuel cell 2, the photovoltaic power generation system 3, the charge / discharge control device 13, the DC / DC converter 6 and the AC / DC converter 7 based on detection signals of various sensors. The power generated by the fuel cell 2 and the solar power generation system 3 is supplied to the DC load 4, and the shortage is supplied from the power storage device 5a, and the AC power supplied from the AC power supply system 12 is converted to DC power to generate a DC load. 4 is fed, and the surplus is stored in the power storage device 5a. Further, the power distribution control device 14 is based on the demand power amount of the DC load 4 and the general load (AC) 8, the power generation amount by the fuel cell 2 and the solar power generation system 3, the chargeable / dischargeable capacity of the power storage device 5a, etc. The amount of power received from the AC power supply system 12 (hereinafter referred to as “received power amount”) per predetermined time T required after the elapse of a predetermined time T (for example, 30 minutes later) and from the present time A target value of the amount of received power from the AC power supply system 12 (hereinafter also referred to as target received power amount) per predetermined time T until the predetermined time T elapses is set, and actual received power per unit time is set. Charge / discharge amount of power storage device 5a so that the power amount matches the target received power amount and the conversion efficiency of the power converter such as DC / DC converter 6 or AC / DC converter 7 is equal to or higher than a preset threshold value. Or exchange Performing control of the received power amount to receive power from the power supply system 12.

次に、直流配電システム1における処理手順の一例を、図2に示すフローチャートを用いて説明する。
直流配電システム1では、図2に示す演算処理を予め設定した所定周期で実行する。
配電制御装置14は、起動されると各種センサの検出信号を読み込む(ステップS1)。蓄電池システム5に設けられた充放電可能容量検出センサm3については、その検出信号を充放電制御装置13が読み込み、配電制御装置14は、充放電可能容量検出センサm3の検出信号を充放電制御装置13から受信する。
Next, an example of a processing procedure in the DC power distribution system 1 will be described using the flowchart shown in FIG.
In the DC power distribution system 1, the arithmetic processing shown in FIG. 2 is executed at a predetermined cycle set in advance.
When activated, the power distribution control device 14 reads detection signals from various sensors (step S1). For the chargeable / dischargeable capacity detection sensor m3 provided in the storage battery system 5, the charge / discharge control device 13 reads the detection signal, and the power distribution control device 14 reads the detection signal of the chargeable / dischargeable capacity detection sensor m3. 13 is received.

次いで、配電制御装置14は、燃料電池2の発電出力を、直流で直流負荷4に給電する(ステップS2)。すなわち、燃料電池2に対応付けられたDC/DC変換器6a、直流負荷4に対応付けられたDC/DC変換器6を制御し、燃料電池2による発電電力のうち直流負荷4の需要電力相当を、直流配電網10を介して直流負荷4に給電する。
直流負荷4の消費電力、すなわち需要電力が、燃料電池2による発電電力よりも小さい場合(ステップS3)、つまり、燃料電池2による発電電力に余剰分が生じる場合にはステップS4に移行し、蓄電装置5aにより蓄電可能であるかを判断する。すなわち、充放電制御装置13に対して余剰電力量を通知し、充放電制御装置13では、蓄電装置5aの充電可能容量や、DC/DC変換器6cの負荷率の閾値等に基づいて、燃料電池2による発電電力の余剰分を蓄電可能な蓄電装置5aがあるかどうかを判断する。そして、判断結果を配電制御装置14に通知する。
Next, the power distribution control device 14 feeds the power generation output of the fuel cell 2 to the DC load 4 with a direct current (step S2). That is, the DC / DC converter 6a associated with the fuel cell 2 and the DC / DC converter 6 associated with the direct current load 4 are controlled, and the electric power generated by the fuel cell 2 corresponds to the demand power of the direct current load 4. Is supplied to the DC load 4 via the DC distribution network 10.
When the power consumption of the DC load 4, that is, the demand power is smaller than the power generated by the fuel cell 2 (step S 3), that is, when there is a surplus in the power generated by the fuel cell 2, the process proceeds to step S 4, It is determined whether or not power can be stored by the device 5a. That is, the surplus power amount is notified to the charge / discharge control device 13, and the charge / discharge control device 13 determines the fuel based on the chargeable capacity of the power storage device 5a, the load factor threshold of the DC / DC converter 6c, and the like. It is determined whether there is a power storage device 5a capable of storing the surplus power generated by the battery 2. Then, the determination result is notified to the power distribution control device 14.

配電制御装置14は、燃料電池2による発電電力の余剰分を蓄電装置5aに蓄電可能であるならば、充放電制御装置13に対して蓄電電力量の指令値を送信する。
充放電制御装置13は、指定された蓄電電力量の指令値相当の電力を、蓄電可能として判断した蓄電池システム5に充電する。すなわち、蓄電可能として判断した蓄電池システム5、およびこの蓄電池システム5に対応付けられたDC/DC変換器6cを制御し、燃料電池2の発電電力のうち余剰分を、直流配電網10およびDC/DC変換器6cを介して蓄電池システム5に充電する(ステップS5)。
If the surplus power generated by the fuel cell 2 can be stored in the power storage device 5a, the power distribution control device 14 transmits a command value for the stored power amount to the charge / discharge control device 13.
The charge / discharge control device 13 charges the storage battery system 5 determined to be capable of storing power corresponding to the command value of the specified stored power amount. That is, the storage battery system 5 determined to be capable of storing power and the DC / DC converter 6c associated with the storage battery system 5 are controlled, and the surplus portion of the generated power of the fuel cell 2 is transferred to the DC distribution network 10 and the DC / DC The storage battery system 5 is charged via the DC converter 6c (step S5).

一方、いずれの蓄電装置5aも満充電状態である場合、或いは、負荷率を満足する蓄電装置5aが存在しない等の理由で、燃料電池2の発電電力の余剰分を蓄電装置5aに蓄電することができない場合には、ステップS6に移行し、配電制御装置14は、燃料電池2に対応付けられたDC/DC変換器6aおよびAC/DC変換器7aを制御し、交流電源系統12への逆潮流を行う。或いは、燃料電池2を解列するようにしてもよい。   On the other hand, when any power storage device 5a is fully charged or there is no power storage device 5a that satisfies the load factor, the surplus power generated by the fuel cell 2 is stored in the power storage device 5a. If not, the process proceeds to step S6, where the power distribution control device 14 controls the DC / DC converter 6a and the AC / DC converter 7a associated with the fuel cell 2 and reverses the power to the AC power supply system 12. Tidal current. Alternatively, the fuel cell 2 may be disconnected.

一方、ステップS3で、直流負荷4の消費電力が燃料電池2の発電電力よりも大きい場合、つまり、直流負荷4への給電量が不足している場合にはステップS7に移行し、太陽光発電システム3による発電電力のうちの、直流負荷4の需要電力のうち燃料電池2の発電電力で賄いきれなかった電力相当を、直流で直流負荷4に給電する。すなわち、配電制御装置14は、直流負荷4に対応付けられたDC/DC変換器6を制御して、太陽光発電システム3による発電電力を、直流配電網10を介して直流負荷4に給電する。   On the other hand, when the power consumption of the DC load 4 is larger than the generated power of the fuel cell 2 in step S3, that is, when the amount of power supplied to the DC load 4 is insufficient, the process proceeds to step S7, where solar power generation is performed. Of the power generated by the system 3, the power equivalent to the power demanded by the DC load 4 that cannot be covered by the power generated by the fuel cell 2 is supplied to the DC load 4 by DC. That is, the power distribution control device 14 controls the DC / DC converter 6 associated with the DC load 4 and supplies the generated power from the solar power generation system 3 to the DC load 4 through the DC power distribution network 10. .

そして、直流負荷4の需要電力と燃料電池2による発電電力との差、すなわち直流負荷4の需要電力のうち燃料電池2により賄いきれなかった不足分が、太陽光発電システム3による発電電力よりも大きい場合、つまり太陽光発電システム3による発電電力に余剰分が生じる場合には(ステップS8)、ステップS9に移行し、配電制御装置14は、余剰分を、蓄電装置5aで蓄電可能であるかを判断する。すなわち前述のステップS4の処理と同様に、充放電制御装置13に対して、太陽光発電システム3による発電電力の余剰電力量を通知して、この余剰電力量相当を蓄電可能な蓄電装置5aが存在するか否かの判断結果を取得する。余剰分を蓄電装置5aに蓄電可能であるならば、配電制御装置14は、充放電制御装置13に対して蓄電電力量の指令値を送信する。   The difference between the demand power of the DC load 4 and the power generated by the fuel cell 2, that is, the shortage of the demand power of the DC load 4 that could not be covered by the fuel cell 2 is greater than the power generated by the solar power generation system 3. If it is larger, that is, if surplus occurs in the power generated by the solar power generation system 3 (step S8), the process proceeds to step S9, and the power distribution control device 14 can store the surplus in the power storage device 5a. Judging. That is, similarly to the process of step S4 described above, the charge / discharge control device 13 is notified of the surplus power amount of the power generated by the solar power generation system 3, and the power storage device 5a capable of storing the surplus power amount is stored. Get the judgment result of whether or not it exists. If the surplus can be stored in the power storage device 5 a, the power distribution control device 14 transmits a command value for the stored power amount to the charge / discharge control device 13.

充放電制御装置13は、指定された蓄電電力量の指令値相当の電力を、蓄電可能として判断した蓄電池システム5に充電する。すなわち、蓄電可能と判断した蓄電池システム5およびこれに対応するDC/DC変換器6cを制御し、太陽光発電システム3による発電電力うち余剰分を、直流配電網10およびDC/DC変換器6cを介して蓄電池システム5に充電する(ステップS10)。   The charge / discharge control device 13 charges the storage battery system 5 determined to be capable of storing power corresponding to the command value of the specified stored power amount. That is, the storage battery system 5 determined to be capable of storing power and the DC / DC converter 6c corresponding thereto are controlled, and surplus power generated by the solar power generation system 3 is transferred to the DC power distribution network 10 and the DC / DC converter 6c. The storage battery system 5 is charged via (step S10).

一方、太陽光発電システム3による発電電力の余剰分を蓄電装置5aに蓄電可能でない場合には、ステップS11に移行し、配電制御装置14は、太陽光発電システム3に対応するAC/DC変換器7bを介して、交流電源系統12に逆潮流させる。或いは、太陽光発電システム3を解列するようにしてもよい。
また、ステップS8の処理で、直流負荷4の需要電力と燃料電池2による発電電力との差、つまり需要電力のうちの、燃料電池2の発電電力による不足分(P1)が、太陽光発電システム3による発電電力以下である場合、すなわち、直流負荷4の需要電力を、燃料電池2および太陽光発電システム3による発電電力で賄いきれない場合にはステップS12に移行する。
On the other hand, when the surplus power generated by the solar power generation system 3 cannot be stored in the power storage device 5a, the process proceeds to step S11, and the power distribution control device 14 determines the AC / DC converter corresponding to the solar power generation system 3. A reverse power flow is made to the AC power supply system 12 via 7b. Alternatively, the photovoltaic power generation system 3 may be disconnected.
Also, in the process of step S8, the difference between the demand power of the DC load 4 and the power generated by the fuel cell 2, that is, the shortage (P1) of the demand power due to the power generated by the fuel cell 2 is the solar power generation system. If it is less than or equal to the power generated by 3, that is, if the power demand of the DC load 4 cannot be covered by the power generated by the fuel cell 2 and the solar power generation system 3, the process proceeds to step S12.

このステップS12では、配電制御装置14は、放電電力量演算処理を実行して、直流負荷4および一般負荷(交流)8の需要電力、燃料電池2および太陽光発電システム3による発電電力、蓄電装置5aの充放電可能容量などに基づき、現時点から所定時間T(例えば30分)後までの、所定時間T当たりに必要な、交流電源系統12からの受電電力量を予測するとともに、現時点から所定時間T後までの所定時間T当たりの、交流電源系統12からの受電電力量の目標値である目標受電電力量を設定する。そして、これらに基づき放電電力量の指令値を演算し、演算した放電電力量の指令値を充放電制御装置13に通知する。また、配電制御装置14は、放電電力量の指令値を、単位時間毎(例えば1分毎)に演算して充放電制御装置13に通知する。   In this step S12, the power distribution control device 14 executes discharge electric energy calculation processing, demand power of the DC load 4 and the general load (AC) 8, power generated by the fuel cell 2 and the solar power generation system 3, and power storage device Based on the chargeable / dischargeable capacity of 5a and the like, the amount of power received from the AC power supply system 12 required for a predetermined time T from the current time until a predetermined time T (for example, 30 minutes) is predicted and the predetermined time from the current time A target received power amount that is a target value of the received power amount from the AC power supply system 12 per predetermined time T until T is set. And based on these, the command value of discharge electric energy is calculated, and the calculated command value of discharge power is notified to the charge / discharge control device 13. In addition, the power distribution control device 14 calculates a command value for the discharge power amount every unit time (for example, every minute) and notifies the charge / discharge control device 13 of the command value.

図3は、ステップS12で実行される放電電力量演算処理の処理手順の一例を示すフローチャートである。
配電制御装置14は、まず、現時点から所定時間T経過後までの間の所定時間T当たりの、交流電源系統12から受電する必要のある受電電力量を予測する(ステップS21)。この予測は具体的には、次の手順で行う。まず、交流電源系統12を介して給電すべき交流負荷である一般負荷8および直流負荷4の消費電力と、燃料電池2による発電電力と、太陽光発電システム3による発電電力とを単位時間(例えば1分)毎に計測し、集計および分析等を行う。この分析等を行う処理は、図2に示す演算処理と並行して行われる。集計および分析としては、具体的には、図1に示す直流負荷4を初め、図1に記載されていない照明、コンセント、空調、換気、給排水ポンプ、制御用電力、動力機械などの、交流電源系統12から給電を受ける各種負荷毎に設置した電力センサの測定値を単位時間(例えば1分)単位で読込み、時間軸上の電力量データとして集計する。この際の電力量データの傾きを求め、所定時間(例えば30分)後に必要となる電力量を予測する。ただし、測定値は変動する要因を持つため(たとえば、エレベータ動力などはエレベータが動作した時間における測定値は大きくなり、停止している時間は測定値が小さい。このような動作状態によって測定値は大きく変動する)、単位時間(1分)単位で測定値を集計し、所定時間T(30分)後の予測値を補正する。太陽光発電システム3の発電量は日射によって変化するため、測定値は変動する要因を持つ。そのため、単位時間(1分)単位で測定値を集計し、所定時間(30分)後の予測値を補正する。一方、燃料電池2は一定の発電量を供給するが、同様の集計と予測を行う。
FIG. 3 is a flowchart showing an example of the processing procedure of the discharge power amount calculation process executed in step S12.
First, the power distribution control device 14 predicts the amount of received power that needs to be received from the AC power supply system 12 per predetermined time T from the present time until the elapse of the predetermined time T (step S21). Specifically, this prediction is performed by the following procedure. First, the power consumption of the general load 8 and the DC load 4, which are AC loads to be fed via the AC power supply system 12, the power generated by the fuel cell 2, and the power generated by the solar power generation system 3 are unit time (for example, Measure every 1 minute) and perform aggregation and analysis. The processing for performing this analysis and the like is performed in parallel with the arithmetic processing shown in FIG. Specifically, the AC power sources such as the DC load 4 shown in FIG. 1 and the lighting, outlet, air conditioning, ventilation, water supply / drainage pump, control power, power machine, etc. not shown in FIG. The measured value of the power sensor installed for each load supplied from the system 12 is read in units of unit time (for example, 1 minute) and tabulated as power amount data on the time axis. The inclination of the electric energy data at this time is obtained, and the electric energy required after a predetermined time (for example, 30 minutes) is predicted. However, since the measured value has a factor that fluctuates (for example, for elevator power, the measured value at the time when the elevator is operating is large, and the measured value is small at the time when the elevator is stopped. The measured values are aggregated in unit time (1 minute) units, and the predicted value after a predetermined time T (30 minutes) is corrected. Since the power generation amount of the solar power generation system 3 changes due to solar radiation, the measured value has a factor that fluctuates. Therefore, the measured values are totaled in units of unit time (1 minute), and the predicted value after a predetermined time (30 minutes) is corrected. On the other hand, the fuel cell 2 supplies a certain amount of power generation, but performs similar tabulation and prediction.

そして、一般負荷8および直流負荷4の需要電力の総和と、燃料電池2および太陽光発電システム3による発電電力の総和との差分を単位時間ごとに演算し、この差分値を所定時間Tの間積分することにより積分電力量を求め、この積分電力量と分析処理での分析結果と、等に基づき、蓄電池及び交流電源系統12から受電する必要のある受電電力量を予測する。   Then, the difference between the sum of the demand power of the general load 8 and the DC load 4 and the sum of the power generated by the fuel cell 2 and the solar power generation system 3 is calculated every unit time, and this difference value is calculated for a predetermined time T. The integrated power amount is obtained by integration, and the received power amount that needs to be received from the storage battery and the AC power supply system 12 is predicted based on the integrated power amount and the analysis result in the analysis process.

なお、この所定時間T当たりの受電電力量の予測は、単位時間毎に行い、計測した負荷の需要電力の総和や燃料電池2や太陽光発電システム3による発電電力の変動に応じて、単位時間毎に受電電力量の予測値を補正するようになっている。
続いて、ステップS22に移行し、現時点から所定時間T経過後までの、所定時間T当たりに、交流電源系統12から受電(買電)する電力量の目標値、すなわち目標受電電力量を設定する。
The amount of received power per predetermined time T is predicted every unit time, and the unit time depends on the total demand power of the measured load and the fluctuations in the power generated by the fuel cell 2 or the solar power generation system 3. The predicted value of the received power amount is corrected every time.
Subsequently, the process proceeds to step S22, and the target value of the amount of power received (purchased) from the AC power supply system 12 is set per predetermined time T from the present time until the predetermined time T has elapsed, that is, the target received power amount is set. .

次いで、ステップS23に移行し、蓄電装置5aの放電電力量を設定する。すなわち、ステップS21で求めた所定時間T当たりの受電電力量の予測値からステップS22で求めた目標受電電力量を減算して差分を求め、この差分に基づき、蓄電装置5aの放電電力量を設定する。具体的には、受電電力量の予測値と目標受電電力量との差分と、各蓄電装置5aにおける放電可能容量と、蓄電池システム5に対応付けられたDC/DC変換器6cやAC/DC変換器7cの負荷率の閾値と、等をもとに、所定時間T当たりの実際の受電電力量が目標受電電力量と一致し、且つ、DC/DC変換器6cやAC/DC変換器7cの負荷率が、その閾値以上となるように、蓄電装置5aの放電電力量と、交流電源系統12からの受電電力量との配分を考慮して、蓄電装置5aの放電電力量を設定する。   Next, the process proceeds to step S23, and the discharge power amount of the power storage device 5a is set. That is, a difference is obtained by subtracting the target received power amount obtained in step S22 from the predicted value of the received power amount per predetermined time T obtained in step S21, and the discharge power amount of the power storage device 5a is set based on this difference. To do. Specifically, the difference between the predicted value of the received power amount and the target received power amount, the dischargeable capacity in each power storage device 5a, the DC / DC converter 6c associated with the storage battery system 5, and AC / DC conversion The actual received power amount per predetermined time T matches the target received power amount based on the threshold of the load factor of the device 7c, etc., and the DC / DC converter 6c and the AC / DC converter 7c The discharge power amount of the power storage device 5a is set in consideration of the distribution of the discharge power amount of the power storage device 5a and the received power amount from the AC power supply system 12 so that the load factor becomes equal to or greater than the threshold value.

図4は、放電電力量の設定方法の一例を示す説明図である。
図4において、横軸は経過時間、縦軸は電力量kWhである。また、図4において、特性線Kは、実績(直流負荷4の消費電力−直流発電装置による発電電力)を表す。ΔWは、所定時間T(例えば30分)が経過するまでの間の、所定時間T当たりの受電電力量の予測値と目標受電電力量との差を表す。
特性線Kが第1の傾きで変化する区間t1では、特性線k1で表される所定時間T当たりの受電電力量の予測値は、特性線k2で表される所定時間T当たりの目標受電電力量を上回る。
FIG. 4 is an explanatory diagram illustrating an example of a method for setting the discharge power amount.
In FIG. 4, the horizontal axis represents the elapsed time, and the vertical axis represents the electric energy kWh. Moreover, in FIG. 4, the characteristic line K represents the results (power consumption of the DC load 4−power generated by the DC power generator). ΔW represents the difference between the predicted value of the received power amount per predetermined time T and the target received power amount until a predetermined time T (for example, 30 minutes) elapses.
In the section t1 in which the characteristic line K changes with the first slope, the predicted value of the received power amount per predetermined time T represented by the characteristic line k1 is the target received power per predetermined time T represented by the characteristic line k2. Beyond competence.

そのため、区間t1では、このままでは所定時間T当たりの実際の受電電力量を、所定時間T当たりの目標受電電力量以下とすることができないと予測され、また、区間t1では特性線Kの傾きが比較的大きく、直流負荷4の消費電力のうち燃料電池2や太陽光発電システム3による発電電力により賄いきれない不足分が比較的大きいと予測されることから、交流電源系統12からの受電だけでなく蓄電装置5aからの放電も行うことにより、交流電源系統12からの受電を抑える。また、その際、所定時間当たりの受電電力量の予測値が目標受電電力量と一致するように、且つ、DC/DC変換器6やAC/DC変換器7の負荷率の閾値を満足するように、交流電源系統12からの受電電力量と蓄電装置5aからの放電電力量とを設定することにより、エネルギー変換ロスの低減を図り、エネルギー変換ロスの少ない配分で、交流電源系統12からの受電と蓄電装置5aからの放電とを行う。   Therefore, in the section t1, it is predicted that the actual received power amount per predetermined time T cannot be made equal to or less than the target received power amount per predetermined time T in this state, and in the section t1, the slope of the characteristic line K is It is predicted that the power consumption of the DC load 4 is relatively large and the shortage that cannot be covered by the power generated by the fuel cell 2 or the solar power generation system 3 is relatively large. In addition, the power from the AC power supply system 12 is suppressed by discharging the power storage device 5a. At that time, the predicted value of the received power amount per predetermined time is matched with the target received power amount, and the threshold of the load factor of the DC / DC converter 6 or the AC / DC converter 7 is satisfied. In addition, by setting the amount of electric power received from the AC power supply system 12 and the amount of electric power discharged from the power storage device 5a, the energy conversion loss can be reduced, and the power received from the AC power supply system 12 can be distributed with less energy conversion loss. And discharging from the power storage device 5a.

この状態から区間t2に示すように、特性線Kが第1の傾きよりも小さい第2の傾きで変化する状態となり、特性線k3で表される所定時間T当たりの受電電力量の予測値が所定時間T当たりの目標受電電力量(k2)以下となると、所定時間当たりの受電電力量の予測値が目標受電電力量と一致するように、且つDC/DC変換器6やAC/DC変換器7の負荷率の閾値を満足するように、交流電源系統12からの受電電力量と蓄電装置5aからの放電電力量とを設定することにより、交流電源系統12からの受電が停止され、蓄電装置5aの放電が行われる。つまり、特性線Kの傾きが比較的小さく、直流負荷4の消費電力のうち燃料電池2や太陽光発電システム3による発電電力により賄いきれない不足分が比較的少ないときには、交流電源系統12から受電するよりも蓄電装置5aから放電させる方が効率がよい。したがって、このような場合には、交流電源系統12からの受電は停止し、蓄電装置5aの放電により、直流負荷4の消費電力の不足分を賄う。   From this state, as shown in a section t2, the characteristic line K changes with a second inclination smaller than the first inclination, and the predicted value of the received power amount per predetermined time T represented by the characteristic line k3 is When the target received power amount per predetermined time T (k2) or less, the predicted value of the received power amount per predetermined time matches the target received power amount, and the DC / DC converter 6 or the AC / DC converter. 7, the power reception from the AC power supply system 12 is stopped by setting the amount of power received from the AC power supply system 12 and the amount of discharge power from the power storage device 5 a so as to satisfy the load factor threshold of 7. 5a is discharged. In other words, when the slope of the characteristic line K is relatively small and the shortage that cannot be covered by the power generated by the fuel cell 2 or the photovoltaic power generation system 3 is relatively small in the power consumption of the DC load 4, power is received from the AC power supply system 12. It is more efficient to discharge from the power storage device 5a than to do so. Therefore, in such a case, the power reception from the AC power supply system 12 is stopped, and the shortage of the power consumption of the DC load 4 is covered by the discharge of the power storage device 5a.

この状態から区間t3に示すように、特性線Kが第2の傾きよりも大きい第3の傾きで変化する状態となるが、所定時間T当たりの受電電力量の予測値が、所定時間T当たりの目標受電電力量以下である状態となると、所定時間当たりの受電電力量の予測値が目標受電電力量と一致するように、且つDC/DC変換器6やAC/DC変換器7の負荷率の閾値を満足するように、交流電源系統12からの受電電力量と蓄電装置5aからの放電電力量とを設定することにより、蓄電装置5aの放電が停止され、交流電源系統12からの受電が行われる。つまり、特性線Kの傾きが比較的大きく、直流負荷4の消費電力のうち燃料電池2や太陽光発電システム3による発電電力により賄いきれない不足分が比較的大きいときには、蓄電装置5aからの放電だけでは不足し、蓄電装置5aの放電と交流電源系統12からの受電とを両方行うよりも交流電源系統12のみからの受電する方が、DC/DC変換器6やAC/DC変換器7の負荷率を考慮すると効率がよい。したがって、このような場合には、蓄電装置5aの放電は停止し交流電源系統12からの受電により、直流負荷4の消費電力の不足分を賄う。   From this state, as shown in the section t3, the characteristic line K changes with a third slope larger than the second slope, but the predicted value of the received power per predetermined time T is When the state is equal to or less than the target received power amount, the predicted value of the received power amount per predetermined time matches the target received power amount, and the load factor of the DC / DC converter 6 or AC / DC converter 7 By setting the amount of electric power received from the AC power supply system 12 and the amount of electric power discharged from the power storage device 5a so as to satisfy the threshold, the discharge of the power storage device 5a is stopped and the power reception from the AC power supply system 12 is stopped. Done. That is, when the slope of the characteristic line K is relatively large and the shortage that cannot be covered by the power generated by the fuel cell 2 or the photovoltaic power generation system 3 among the power consumption of the DC load 4 is relatively large, the discharge from the power storage device 5a. The DC / DC converter 6 and the AC / DC converter 7 receive power only from the AC power supply system 12 rather than performing both discharge of the power storage device 5a and power reception from the AC power supply system 12. Considering the load factor, efficiency is good. Therefore, in such a case, the discharging of the power storage device 5a is stopped, and the shortage of power consumption of the DC load 4 is covered by receiving power from the AC power supply system 12.

そして、この状態から区間t4に示すように、特性線Kの傾きが区間t1と同等程度の傾きになったときには、前述のように、所定時間当たりの受電電力量の予測値が目標受電電力量と一致するように、且つDC/DC変換器6やAC/DC変換器7の負荷率の閾値を満足するように蓄電装置5aによる放電と交流電源系統12からの受電との配分を決定し、蓄電装置5aによる放電と交流電源系統12からの受電とにより、DC/DC変換器6やAC/DC変換器7のエネルギー変換ロスを低減しつつ、直流負荷4の消費電力の不足分を賄う。   From this state, as shown in a section t4, when the slope of the characteristic line K becomes the same as that of the section t1, as described above, the predicted value of the received power amount per predetermined time is the target received power amount. And the distribution of the discharge by the power storage device 5a and the reception of power from the AC power supply system 12 so as to satisfy the load factor threshold of the DC / DC converter 6 or the AC / DC converter 7, The shortage of power consumption of the DC load 4 is covered while the energy conversion loss of the DC / DC converter 6 and the AC / DC converter 7 is reduced by the discharge by the power storage device 5a and the power reception from the AC power supply system 12.

図5は、DC/DC変換器6の負荷率とエネルギー変換効率との関係の一例を示したものである。図6は、AC/DC変換器7の負荷率とエネルギー変換効率との関係の一例を示したものである。図5および図6において横軸は負荷率、縦軸はエネルギー変換効率である。
蓄電池システム5から直流負荷4へ直流配電を行う場合、DC/DC変換器6cを介して給電されるため、エネルギー変換による損失が生じる。この損失は、DC/DC変換器6cの容量と送電する電力量との比(送電する電力量/(DC/DC変換器6cの容量))で表される負荷率によって変動する。
FIG. 5 shows an example of the relationship between the load factor of the DC / DC converter 6 and the energy conversion efficiency. FIG. 6 shows an example of the relationship between the load factor of the AC / DC converter 7 and the energy conversion efficiency. 5 and 6, the horizontal axis represents the load factor, and the vertical axis represents the energy conversion efficiency.
When direct-current distribution is performed from the storage battery system 5 to the direct-current load 4, power is supplied via the DC / DC converter 6c, so that loss due to energy conversion occurs. This loss varies depending on the load factor represented by the ratio of the capacity of the DC / DC converter 6c and the amount of transmitted power (the amount of transmitted power / (the capacity of the DC / DC converter 6c)).

図5に示すように、DC/DC変換器6におけるエネルギー変換効率は、負荷率が10%程度のときに、95%以上となっている。したがって、負荷率が10%以上となる範囲でDC/DC変換器6を動作させることによって、エネルギー損失を低減させることができることがわかる。つまり、DC/DC変換器6の負荷率の閾値を10%に設定すれば、95%以上の変換効率でDC/DC変換器6を動作させることができる。   As shown in FIG. 5, the energy conversion efficiency in the DC / DC converter 6 is 95% or more when the load factor is about 10%. Therefore, it can be seen that energy loss can be reduced by operating the DC / DC converter 6 within a range where the load factor is 10% or more. That is, if the load factor threshold of the DC / DC converter 6 is set to 10%, the DC / DC converter 6 can be operated with a conversion efficiency of 95% or more.

同様に、図6に示すように、AC/DC変換器7におけるエネルギー変換効率は、負荷率が60%程度のときに、90%以上となっている。したがって、負荷率が90%以上となる範囲でAC/DC変換器7を動作させることによって、エネルギー損失を低減させることができることがわかる。つまり、AC/DC変換器7の負荷率の閾値を60%に設定すれば、90%以上の変換効率でAC/DC変換器7を動作させることができる。   Similarly, as shown in FIG. 6, the energy conversion efficiency in the AC / DC converter 7 is 90% or more when the load factor is about 60%. Therefore, it can be seen that energy loss can be reduced by operating the AC / DC converter 7 within a range where the load factor is 90% or more. That is, if the load factor threshold of the AC / DC converter 7 is set to 60%, the AC / DC converter 7 can be operated with a conversion efficiency of 90% or more.

例えば、交流電源系統にDC/DC定格10kWの発電機3台接続されたシステムにおいて、直流負荷に21kWの電力供給を行う場合には、DC/DC変換器の負荷率の閾値を10%に設定すると、発電機からは20kWが供給され、残りの1kWは交流電源系統から給電される。なお、発電電力の余剰分は、蓄電装置への充電等に利用される。
交流電源系統からの給電は、AC/DC変換器を用いて行われる。このAC/DC変換器として、定置型蓄電池のAC/DC変換器を用い、その定格容量を50kWとした場合、前述の不足分1kWを供給する場合の負荷率は2%程度となり、非効率である。
For example, in a system in which three generators with a DC / DC rating of 10 kW are connected to an AC power supply system, when supplying 21 kW of power to a DC load, the threshold of the load factor of the DC / DC converter is set to 10%. Then, 20 kW is supplied from the generator, and the remaining 1 kW is supplied from the AC power supply system. The surplus generated power is used for charging the power storage device.
Power supply from the AC power supply system is performed using an AC / DC converter. If this AC / DC converter is an AC / DC converter of a stationary storage battery and its rated capacity is 50 kW, the load factor in the case of supplying the aforementioned 1 kW is about 2%, which is inefficient. is there.

図1に示す直流配電システム1では、燃料電池2や太陽光発電システム3用のPCSに含まれるAC/DC変換器7a、7bやDC/DC変換器6a、6bよりも、蓄電池システム5用のAC/DC変換器7cやDC/DC変換器6cを低容量とし、低容量のAC/DC変換器7c、AC/DC変換器7cと同程度の容量のDC/DC変換器6cを用い、さらに、蓄電装置5aおよび制御部5bを備えた蓄電池システム5と、DC/DC変換器6と、AC/DC変換器7とを、1セットとして並列に接続している。   In the DC power distribution system 1 shown in FIG. 1, the storage battery system 5 is used more than the AC / DC converters 7 a and 7 b and the DC / DC converters 6 a and 6 b included in the PCS for the fuel cell 2 and the solar power generation system 3. The AC / DC converter 7c and the DC / DC converter 6c have a low capacity, and the low-capacity AC / DC converter 7c and the DC / DC converter 6c having the same capacity as the AC / DC converter 7c are used. The storage battery system 5 including the power storage device 5a and the control unit 5b, the DC / DC converter 6, and the AC / DC converter 7 are connected in parallel as one set.

AC/DC変換器7cの定格容量が2kWとすると、図6に示すように、1kWでは負荷率が50%であり、変換効率は85%程度となる。
そこで、直流配電システム1では、2kWを交流電源系統12から受電し、そのうち、1kWを直流配電網10に接続された直流負荷4に給電し、余剰する1kWは蓄電装置5aに充電する。蓄電装置5aに対応するDC/DC変換器6cは比較的低容量であるため、高い変換効率で充電することができ、すなわち変換ロスは比較的小さくてすむ。
Assuming that the rated capacity of the AC / DC converter 7c is 2 kW, as shown in FIG. 6, at 1 kW, the load factor is 50%, and the conversion efficiency is about 85%.
Therefore, in the DC power distribution system 1, 2 kW is received from the AC power supply system 12, and 1 kW is supplied to the DC load 4 connected to the DC power distribution network 10, and the surplus 1 kW is charged to the power storage device 5a. Since the DC / DC converter 6c corresponding to the power storage device 5a has a relatively low capacity, it can be charged with high conversion efficiency, that is, the conversion loss can be relatively small.

図2に戻って、ステップS12で、配電制御装置14が放電電力量を設定し、放電電力量の指令値を充放電制御装置13に通知すると、充放電制御装置13は、通知された放電電力量の指令値、各蓄電池システム5の放電可能容量、また、DC/DC変換器6cの負荷率の閾値などに基づいて放電可能な蓄電池システム5を決定するとともに、この蓄電池システム5により放電可能な電力量(以後、放電可能電力量ともいう。)を配電制御装置14に送信する。また、充放電制御装置13は、蓄電可能として決定した蓄電池システム5、およびこれに対応するDC/DC変換器6cを制御して放電可能電力量相当の放電を行い、配電制御装置14は、直流負荷4およびこれに対応するDC/DC変換器6を制御する。これにより、蓄電池システム5の放電電力は直流配電網10を介して直流負荷4に送電される(ステップS13)。   Returning to FIG. 2, when the distribution control device 14 sets the discharge power amount and notifies the charge / discharge control device 13 of the command value of the discharge power amount in step S <b> 12, the charge / discharge control device 13 receives the notified discharge power. The storage battery system 5 that can be discharged is determined based on the command value of the amount, the dischargeable capacity of each storage battery system 5, the threshold value of the load factor of the DC / DC converter 6 c, and the like. The power amount (hereinafter also referred to as “dischargeable power amount”) is transmitted to the power distribution control device 14. In addition, the charge / discharge control device 13 controls the storage battery system 5 determined to be capable of storing electricity and the corresponding DC / DC converter 6c to perform discharge corresponding to the amount of electric power that can be discharged. The load 4 and the corresponding DC / DC converter 6 are controlled. Thereby, the discharge power of the storage battery system 5 is transmitted to the DC load 4 via the DC distribution network 10 (step S13).

そして、配電制御装置14は、直流負荷4の需要電力を、燃料電池2および太陽光発電システム3による発電電力と、蓄電装置5aによる放電電力とにより賄えるかを判断し(ステップS14)、賄えるときには処理を終了する。
一方、燃料電池2および太陽光発電システム3による発電電力と、蓄電装置5aによる放電電力とを用いても直流負荷4の需要電力を賄いきれないときにはステップS15に移行し、ステップS12の処理で予測した、所定時間T当たりの交流電源系統12からの受電電力量と、所定時間T当たりの目標受電電力量と、AC/DC変換器7の負荷率の閾値と、蓄電池システム5における放電可能容量と、等に基づき、交流電源系統12からの給電電力を単位時間(例えば1分)ごとに決定する。そして、配電制御装置14は、決定した給電電力相当の、交流電源系統12による供給電力をAC/DC変換器7により直流電力に変換させ、直流負荷4の需要電力の不足分を、直流配電網10を介して直流負荷4に給電する。
Then, the power distribution control device 14 determines whether the power demand of the DC load 4 can be covered by the power generated by the fuel cell 2 and the solar power generation system 3 and the discharged power by the power storage device 5a (step S14). The process ends.
On the other hand, when the generated power from the fuel cell 2 and the solar power generation system 3 and the discharged power from the power storage device 5a cannot be used to cover the demand power of the DC load 4, the process proceeds to step S15 and is predicted by the process in step S12. The received power amount from the AC power supply system 12 per predetermined time T, the target received power amount per predetermined time T, the threshold of the load factor of the AC / DC converter 7, and the dischargeable capacity in the storage battery system 5 Based on the above, the power supplied from the AC power supply system 12 is determined every unit time (for example, 1 minute). Then, the power distribution control device 14 converts the power supplied by the AC power supply system 12 corresponding to the determined power supply power into DC power by the AC / DC converter 7 and reduces the shortage of demand power of the DC load 4 to the DC distribution network. Power is supplied to the DC load 4 via 10.

そして、交流電源系統12からの供給電力を変換した直流電力のうち、直流負荷4に給電されない余剰分が生じるときには(ステップS16)、配電制御装置14は、充放電制御装置13に対して蓄電電力量の指令値を送信し、充放電制御装置13は、指定された蓄電電力量の指令値相当の電力を、蓄電池システム5に充電する(ステップS17)。一方、余剰分が生じないときには処理を終了する。   When the surplus power that is not supplied to the DC load 4 is generated in the DC power converted from the power supplied from the AC power supply system 12 (step S16), the power distribution control device 14 stores the stored power with respect to the charge / discharge control device 13. The amount command value is transmitted, and the charge / discharge control device 13 charges the storage battery system 5 with power corresponding to the designated command value of the stored power amount (step S17). On the other hand, when no surplus occurs, the process is terminated.

以上の処理を繰り返し行うことにより、直流負荷4の需要電力のうち、燃料電池2や太陽光発電システム3による発電電力により賄いきれない不足分が、蓄電装置5aによる放電や交流電源系統12からの受電により補われて、直流負荷4に対して需要電力相当の電力供給が行われる。
ここで、蓄電装置5aから直流負荷4に対して直流配電を行う場合、DC/DC変換器6cを介して給電されるため、DC/DC変換器6cにおいてエネルギー変換による損失が生じ、この損失は負荷率によって変動する。配電制御装置14では、放電電力量を設定する際に、DC/DC変換器6cの負荷率がその閾値以上となるように設定しており、DC/DC変換器6cでのエネルギー変換による損失が多くならないように設定している。そのため、DC/DC変換器6cが動作することによるエネルギー損失を低減することができる。
By repeating the above process, the shortage of the demand power of the DC load 4 that cannot be covered by the power generated by the fuel cell 2 or the solar power generation system 3 is discharged from the power storage device 5a or from the AC power supply system 12. Complemented by power reception, power corresponding to demand power is supplied to the DC load 4.
Here, when direct-current power distribution is performed from the power storage device 5a to the direct-current load 4, power is supplied via the DC / DC converter 6c. Therefore, a loss due to energy conversion occurs in the DC / DC converter 6c. It varies depending on the load factor. In the power distribution control device 14, when setting the amount of discharge power, the load factor of the DC / DC converter 6 c is set to be equal to or higher than the threshold, and the loss due to energy conversion in the DC / DC converter 6 c is reduced. It is set not to increase. Therefore, energy loss due to the operation of the DC / DC converter 6c can be reduced.

また、本実施形態では、低容量の蓄電池システム5を複数分散して配置しているため、従来のように大規模な定置型蓄電システムを設置する必要はなく、AC/DC変換器の容量、蓄電装置の容量ともに、低容量の蓄電池システムで実現することができる。そして、低容量の蓄電池システムを用いる場合、直流負荷4の需要電力の大きさによって、複数の蓄電池システムを必要とすることになり、大規模な定置型蓄電システムを用いる場合に比較して、エネルギー変換に伴い駆動するDC/DC変換器6cの数が増加することになる。DC/DC変換器6cの数の増加に比例してDC/DC変換器6cでのエネルギー損失の全体量が増加することになるが、前述のように、個々のDC/DC変換器6cでのエネルギー損失を低減しているため、低容量の蓄電池システムを複数用いることで、動作させるDC/DC変換器6cの数が増えたとしても、DC/DC変換器6cでのエネルギー変換によるエネルギー損失の全体量を低減することができる。   In the present embodiment, since a plurality of low-capacity storage battery systems 5 are arranged in a distributed manner, there is no need to install a large-scale stationary power storage system as in the prior art, and the capacity of the AC / DC converter, Both the capacity of the power storage device can be realized by a low-capacity storage battery system. When a low-capacity storage battery system is used, a plurality of storage battery systems are required depending on the magnitude of power demand of the DC load 4, and the energy is lower than when a large-scale stationary storage system is used. The number of DC / DC converters 6c to be driven increases with the conversion. Although the total amount of energy loss in the DC / DC converter 6c increases in proportion to the increase in the number of DC / DC converters 6c, as described above, in each DC / DC converter 6c, Since energy loss is reduced, even if the number of DC / DC converters 6c to be operated is increased by using a plurality of low-capacity storage battery systems, energy loss due to energy conversion in the DC / DC converter 6c is reduced. The total amount can be reduced.

そして、このように低容量の蓄電池システムを分散配置するようにした蓄電池システムは、一般家庭用およびオフィスのOA機器用の非常用蓄電池などに既に普及しているため、汎用性が高く、低コストで実現することができる。
本実施形態では、このような安価なシステムを統合管理し、所定時間T(例えば30分)単位で発電や消費動向の計測・管理・予測を行い、また、単位時間(例えば1分)単位で蓄電池システム5を制御し、エネルギー変換の回数が少なく、エネルギー変換効率の高い直流配電網への給電や充電を行うことで、ピークカットを実現し、省エネルギーを実現することができる。
The storage battery system in which low-capacity storage battery systems are distributed in this manner is already widely used for emergency storage batteries for general household and office OA equipment, and is therefore highly versatile and low in cost. Can be realized.
In this embodiment, such an inexpensive system is integratedly managed, and power generation and consumption trends are measured, managed, and predicted in units of a predetermined time T (for example, 30 minutes), and in units of units (for example, 1 minute). By controlling the storage battery system 5 and performing power supply and charging to a DC power distribution network with a small number of energy conversions and high energy conversion efficiency, peak cut can be realized and energy saving can be realized.

また、交流電源系統12から受電する電力量として予測される受電電力量が、交流電源系統12から買電する電力量の目標値、すなわち目標受電電力量と一致するように制御を行っているため、例えば目標受電電力量を、年間の受電電力量の目標値に応じて設定することによって、年間の受電電力量を目標値(以下)に抑えることができ、すなわち、経費削減等につなげることができる。   In addition, control is performed so that the received power amount predicted as the amount of power received from the AC power supply system 12 matches the target value of the power amount purchased from the AC power supply system 12, that is, the target received power amount. For example, by setting the target received power amount according to the target value of the annual received power amount, the annual received power amount can be suppressed to the target value (below), that is, it can lead to cost reduction, etc. it can.

また、AC/DC変換器7よりもエネルギー変換効率のよい、DC/DC変換器6を用い、電圧階級が等しい直流配電網による電力供給と充電とを行うことで、高効率な電力供給網を実現することができる。
また、交流電源系統12から交流電力を受電し直流配電網10に電力供給する際に必要なAC/DC変換器7cのエネルギー変換効率を最大化するために、比較的変換効率の高い負荷率で交流電力を受電し、高効率な直流配電網10内で消費と充電とを行うことで省エネルギーを実現することができる。
In addition, by using the DC / DC converter 6 having higher energy conversion efficiency than the AC / DC converter 7 and performing power supply and charging by a DC distribution network having the same voltage class, a highly efficient power supply network can be obtained. Can be realized.
Further, in order to maximize the energy conversion efficiency of the AC / DC converter 7c required when receiving AC power from the AC power supply system 12 and supplying power to the DC power distribution network 10, the load factor is relatively high in conversion efficiency. Energy saving can be realized by receiving AC power and consuming and charging in the highly efficient DC power distribution network 10.

また、蓄電池システム5を分散配置しているため、小さなサイズの蓄電装置5aによりシステム化することができる。例えば、市販されている1kW/2.45kWhの蓄電装置5aであれば、300×500×高さ700(mm)程度である。ここに、制御部5bとしての制御用コントローラPLCを取り付ければよい。したがって、蓄電池システム5は、各戸や各ブースに設置可能なサイズとなり、従来に比較して、蓄電池設置スペースの省スペース化を図ることができる。   Moreover, since the storage battery system 5 is distributedly arranged, the system can be systemized by a small-sized power storage device 5a. For example, in the case of a commercially available power storage device 5a of 1 kW / 2.45 kWh, it is approximately 300 × 500 × height 700 (mm). Here, a control controller PLC as the control unit 5b may be attached. Therefore, the storage battery system 5 has a size that can be installed in each door or booth, and the storage battery installation space can be saved as compared with the conventional battery system.

なお、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。
さらに、本発明の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画され得る。
It should be noted that the scope of the present invention is not limited to the illustrated and described exemplary embodiments, but includes all embodiments that provide the same effects as those intended by the present invention.
Furthermore, the scope of the invention is not limited to the combinations of features of the invention defined by the claims, but may be defined by any desired combination of particular features among all the disclosed features.

なお、上記実施形態において、燃料電池2および太陽光発電システム3が直流発電装置に対応し、各種センサm1〜m4が電力量検出部に対応し、図3のステップS21の処理が受電電力量予測部に対応し、ステップS22の処理が目標受電電力量設定部に対応し、ステップS23の処理が放電電力量設定部に対応している。
また、図2のステップS15の処理が受電電力量設定部に対応している。
In the above embodiment, the fuel cell 2 and the solar power generation system 3 correspond to the DC power generation device, the various sensors m1 to m4 correspond to the power amount detection unit, and the process of step S21 in FIG. The process of step S22 corresponds to the target received power amount setting unit, and the process of step S23 corresponds to the discharge power amount setting unit.
Further, the process of step S15 in FIG. 2 corresponds to the received power amount setting unit.

1 直流配電システム
2 燃料電池
3 太陽光発電システム
4 直流負荷
5 蓄電池システム
6、6a〜6c DC/DC変換器
7、7a〜7c AC/DC変換器
10 直流配電網
12 交流電源系統
DESCRIPTION OF SYMBOLS 1 DC distribution system 2 Fuel cell 3 Solar power generation system 4 DC load 5 Storage battery system 6, 6a-6c DC / DC converter 7, 7a-7c AC / DC converter 10 DC distribution network 12 AC power supply system

Claims (3)

直流電力を発電する直流発電装置と、
蓄電装置と、
交流電源系統と直流配電網との間に接続される交流/直流変換器と、
前記直流発電装置、前記蓄電装置および直流給電負荷のそれぞれと前記直流配電網との間に接続される直流/直流変換器と、
前記直流給電負荷の需要電力量と、前記蓄電装置の充放電可能電力量と、前記直流発電装置が供給可能な直流電力量と、をそれぞれ検出する電力量検出部と、
前記蓄電装置の充放電制御を行う充放電制御装置と、
前記電力量検出部の検出結果に基づき、前記直流給電負荷への配電制御を行う配電制御装置と、を備え、
前記配電制御装置は、
前記直流給電負荷の需要電力量と前記直流発電装置が供給可能な直流電力量との差分から、所定時間当たりの、前記交流電源系統から受電する必要のある受電電力量を予測する受電電力量予測部と、
前記所定時間当たりの、前記交流電源系統から受電する受電電力量の目標値を設定する目標受電電力量設定部と、
前記需要電力量と前記直流発電装置により供給される直流電力量との差分を補うための、前記蓄電装置から放電させる目標放電電力量を設定する放電電力量設定部と、
を有し、
前記放電電力量設定部は、
前記受電電力量予測部で予測した必要受電電力量が前記目標受電電力量設定部で設定した目標受電電力量と一致し、かつ前記蓄電装置に対応して駆動される前記直流/直流変換器の負荷率が予め設定した閾値以上となり得る放電電力量を前記目標放電電力量として設定し、
前記充放電制御装置は、前記蓄電装置の放電電力量が、前記目標放電電力量となるように前記放電制御を行うことを特徴とする直流配電システム。
A DC power generator for generating DC power;
A power storage device;
An AC / DC converter connected between the AC power supply system and the DC distribution network;
A DC / DC converter connected between each of the DC power generation device, the power storage device and a DC power supply load and the DC distribution network;
A power amount detection unit that detects a demand power amount of the DC power supply load, a chargeable / dischargeable power amount of the power storage device, and a DC power amount that can be supplied by the DC power generation device;
A charge / discharge control device for charge / discharge control of the power storage device;
A power distribution control device that performs power distribution control to the DC power supply load based on the detection result of the power amount detection unit,
The power distribution control device
A received power amount prediction unit that predicts a received power amount that needs to be received from the AC power supply system per predetermined time from a difference between a demand power amount of the DC power supply load and a DC power amount that can be supplied by the DC power generator. When,
A target received power amount setting unit for setting a target value of the received power amount received from the AC power supply system per the predetermined time;
A discharge power amount setting unit for setting a target discharge power amount to be discharged from the power storage device to compensate for the difference between the demand power amount and the DC power amount supplied by the DC power generation device;
Have
The discharge power amount setting unit includes:
The required received power amount predicted by the received power amount prediction unit matches the target received power amount set by the target received power amount setting unit, and the DC / DC converter driven corresponding to the power storage device A discharge power amount at which a load factor can be equal to or higher than a preset threshold is set as the target discharge power amount,
The DC power distribution system, wherein the charge / discharge control device performs the discharge control so that a discharge power amount of the power storage device becomes the target discharge power amount.
前記配電制御装置は、
前記直流発電装置が供給可能な直流電力量と前記蓄電装置の放電電力量との和と、前記直流給電負荷の需要電力量との差分相当の受電電力量でありかつ、前記交流/直流変換器の負荷率が予め設定した閾値以上となり得る受電電力量を受電電力量指令値として設定する受電電力量設定部を有し、
前記交流電源系統からの受電電力量が前記受電電力量指令値と一致するように、前記交流/直流変換器を制御することを特徴とする請求項1記載の直流配電システム。
The power distribution control device
A received power amount corresponding to a difference between a sum of a DC power amount that can be supplied by the DC power generation device and a discharge power amount of the power storage device, and a demand power amount of the DC power supply load, and the AC / DC converter A received power amount setting unit that sets a received power amount that can be equal to or higher than a preset threshold value as a received power command value;
2. The DC power distribution system according to claim 1, wherein the AC / DC converter is controlled such that the amount of received power from the AC power supply system matches the received power amount command value.
前記蓄電装置を複数備え、
前記放電電力量設定部は、
前記複数の蓄電装置のうち、1又は複数の蓄電装置の放電電力量の和が前記目標放電電力量となり、且つ、前記1又は複数の蓄電装置に対応して駆動される前記直流/直流変換器の負荷率が予め設定した閾値以上となり得る前記1又は複数の蓄電装置を選定するとともに、当該蓄電装置それぞれの放電電力量の目標値を設定し、
前記充放電制御装置は、前記選定した1又は複数の蓄電装置の放電電力量が当該蓄電装置に設定された前記放電電力量の目標値となるように充放電制御を行うことを特徴とする請求項1又は請求項2記載の直流配電システム。
A plurality of the power storage devices are provided,
The discharge power amount setting unit includes:
The DC / DC converter driven corresponding to the one or the plurality of power storage devices, wherein the sum of the discharge power amounts of one or the plurality of power storage devices among the plurality of power storage devices becomes the target discharge power amount Selecting the one or more power storage devices that can be equal to or higher than a preset threshold value, and setting a target value for the amount of discharge power of each power storage device,
The charge / discharge control device performs charge / discharge control so that a discharge power amount of the selected one or more power storage devices becomes a target value of the discharge power amount set in the power storage device. Item 5. The DC power distribution system according to item 1 or 2.
JP2014162346A 2014-08-08 2014-08-08 DC distribution system Active JP6522901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014162346A JP6522901B2 (en) 2014-08-08 2014-08-08 DC distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014162346A JP6522901B2 (en) 2014-08-08 2014-08-08 DC distribution system

Publications (2)

Publication Number Publication Date
JP2016039721A true JP2016039721A (en) 2016-03-22
JP6522901B2 JP6522901B2 (en) 2019-05-29

Family

ID=55530415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014162346A Active JP6522901B2 (en) 2014-08-08 2014-08-08 DC distribution system

Country Status (1)

Country Link
JP (1) JP6522901B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029051A (en) * 2017-07-25 2019-02-21 東京瓦斯株式会社 Fuel cell system, control device, and program
JPWO2017183337A1 (en) * 2016-04-22 2019-02-28 住友電気工業株式会社 Demand monitoring apparatus, demand monitoring system, demand monitoring method, and demand monitoring program
WO2020161765A1 (en) * 2019-02-04 2020-08-13 Tdk株式会社 Direct-current power supply system
JP2020165929A (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Measurement system, measurement method, and program
JP2021090258A (en) * 2019-12-03 2021-06-10 株式会社豊田自動織機 Electric power system and power supply device
JP7349965B2 (en) 2020-07-22 2023-09-25 三菱電機株式会社 Storage battery control device, storage battery system and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276660A (en) * 1992-03-24 1993-10-22 Tokyo Gas Co Ltd Dc power supply
JPH1155856A (en) * 1997-08-05 1999-02-26 Hakko Denki Kk Electric power system operation system and terminal equipment for consumer used in the system
JP2012095523A (en) * 2010-10-01 2012-05-17 Shimizu Corp Operation management device, operation management method and operation management program
JP2014075878A (en) * 2012-10-03 2014-04-24 Sharp Corp Power conditioner and power supply system
JP2014124065A (en) * 2012-12-21 2014-07-03 Fuji Electric Co Ltd Power demand prediction device and program
JP2014128062A (en) * 2012-12-25 2014-07-07 Taisei Corp Dc power distribution system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05276660A (en) * 1992-03-24 1993-10-22 Tokyo Gas Co Ltd Dc power supply
JPH1155856A (en) * 1997-08-05 1999-02-26 Hakko Denki Kk Electric power system operation system and terminal equipment for consumer used in the system
JP2012095523A (en) * 2010-10-01 2012-05-17 Shimizu Corp Operation management device, operation management method and operation management program
JP2014075878A (en) * 2012-10-03 2014-04-24 Sharp Corp Power conditioner and power supply system
JP2014124065A (en) * 2012-12-21 2014-07-03 Fuji Electric Co Ltd Power demand prediction device and program
JP2014128062A (en) * 2012-12-25 2014-07-07 Taisei Corp Dc power distribution system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017183337A1 (en) * 2016-04-22 2019-02-28 住友電気工業株式会社 Demand monitoring apparatus, demand monitoring system, demand monitoring method, and demand monitoring program
JP2019029051A (en) * 2017-07-25 2019-02-21 東京瓦斯株式会社 Fuel cell system, control device, and program
WO2020161765A1 (en) * 2019-02-04 2020-08-13 Tdk株式会社 Direct-current power supply system
JPWO2020161765A1 (en) * 2019-02-04 2021-12-02 Tdk株式会社 DC power supply system
JP7207437B2 (en) 2019-02-04 2023-01-18 Tdk株式会社 DC power supply system
JP2020165929A (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Measurement system, measurement method, and program
WO2020202716A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Measurement system, measurement method, and program
JP2021090258A (en) * 2019-12-03 2021-06-10 株式会社豊田自動織機 Electric power system and power supply device
JP7276103B2 (en) 2019-12-03 2023-05-18 株式会社豊田自動織機 Power system and power supply
JP7349965B2 (en) 2020-07-22 2023-09-25 三菱電機株式会社 Storage battery control device, storage battery system and program

Also Published As

Publication number Publication date
JP6522901B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
EP3206276B1 (en) Energy storage system and management method thereof
JP6028499B2 (en) Power supply
US9099893B2 (en) Power control device for a power grid, comprising a control unit for controlling an energy flow between the power generation unit, the energy storage unit, the consumer unit and/or the power grid
JP2016039721A (en) Dc power distribution system
US8263276B1 (en) Startup power control in a fuel cell system
US20130241495A1 (en) Energy storage system and method of controlling the same
WO2011114422A1 (en) Power supply system, power supply method, program, recording medium, and power supply controller
US20120217800A1 (en) Solar power systems optimized for use in communications networks
US9853536B2 (en) Methods, systems, and computer readable media for managing the distribution of power from a photovoltaic source in a multiple-floor building
KR102046045B1 (en) Renewable energy storage system and operating method thereof
US20160126741A1 (en) Storage battery equipment
JP2015192566A (en) Power system and dc power transmission method
US10749346B2 (en) Power management system
KR20150011301A (en) Power control device for ship
JP5897501B2 (en) Power supply system
JP2015039262A (en) Distributed power supply facility system
JP2017051083A (en) Power generation system, power generation method and program
JP2015220889A (en) Power supply system
JPWO2015111144A1 (en) Power supply system and energy management system used therefor
JP5373528B2 (en) Power distribution equipment
KR20150085227A (en) The control device and method for Energy Storage System
KR102222560B1 (en) An energy storage system
KR101587488B1 (en) High efficiency battery charge/discharge system and method in grid-tied system
JP2017135888A (en) Power conversion system
JP2016116428A (en) Autonomous operation system for distributed power source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6522901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150