JP2016039482A - Iq mismatch correction method and transmission/reception device - Google Patents

Iq mismatch correction method and transmission/reception device Download PDF

Info

Publication number
JP2016039482A
JP2016039482A JP2014161517A JP2014161517A JP2016039482A JP 2016039482 A JP2016039482 A JP 2016039482A JP 2014161517 A JP2014161517 A JP 2014161517A JP 2014161517 A JP2014161517 A JP 2014161517A JP 2016039482 A JP2016039482 A JP 2016039482A
Authority
JP
Japan
Prior art keywords
signal
transmission
monitor
reception
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014161517A
Other languages
Japanese (ja)
Other versions
JP6408291B2 (en
Inventor
佐藤 裕樹
Hiroki Sato
裕樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
New Japan Radio Co Ltd
Japan Radio Co Ltd
Ueda Japan Radio Co Ltd
Original Assignee
Nisshinbo Holdings Inc
New Japan Radio Co Ltd
Japan Radio Co Ltd
Ueda Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Holdings Inc, New Japan Radio Co Ltd, Japan Radio Co Ltd, Ueda Japan Radio Co Ltd filed Critical Nisshinbo Holdings Inc
Priority to JP2014161517A priority Critical patent/JP6408291B2/en
Publication of JP2016039482A publication Critical patent/JP2016039482A/en
Application granted granted Critical
Publication of JP6408291B2 publication Critical patent/JP6408291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transceivers (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a selection from being restricted in combining a baseband circuit to an RF front circuit.SOLUTION: A monitor RF signal of IQ mismatch is generated within the RF front circuit and by performing frequency conversion and delay processing on the monitor RF signal, a transmission monitor I signal and a transmission monitor Q signal are generated. A transmission-side phase error of the transmission monitor I signal and the transmission monitor Q signal is detected. On the basis of a phase difference between a signal that is obtained by adding the transmission monitor I signal and the transmission monitor Q signal, and the transmission monitor I signal or the transmission monitor Q signal, a transmission-side amplitude error of the transmission monitor I signal and the transmission monitor Q signal is detected. A phase shift amount of a phase shifter in a transmission circuit is controlled on the basis of the transmission-side phase error, and a phase difference between a transmission I local signal and a transmission Q local signal is corrected. A gain of an amplifier in the transmission circuit is controlled on the basis of the transmission-side amplitude error, and a gain difference between the transmission monitor I signal and the transmission monitor Q signal is corrected.SELECTED DRAWING: Figure 1

Description

本発明は、IQミスマッチ補正方法およびIQミスマッチ補正が可能な送受信装置に関する。   The present invention relates to an IQ mismatch correction method and a transmission / reception apparatus capable of IQ mismatch correction.

送受信装置では、低消費電力、低コスト等の観点から、ダイレクトコンバージョン方式が採用されている。ダイレクトコンバージョン方式は、送信側ではベースバンド信号を1回の周波数変換でRF信号に変換し、受信側ではその逆変換を行うものであり、スーパーヘテロダイン方式のような中間周波数信号を持たないホモダイン方式である。このため、スーパーヘテロダイン方式で必要となるRF信号やローカル周波数信号を除去するためのフィルタを必要とせず、低消費電流化および低コスト化を実現できる利点がある。   In the transmission / reception apparatus, the direct conversion method is adopted from the viewpoint of low power consumption, low cost, and the like. The direct conversion method converts the baseband signal into an RF signal by one frequency conversion on the transmitting side, and performs the inverse conversion on the receiving side, and is a homodyne method that does not have an intermediate frequency signal like the superheterodyne method. It is. This eliminates the need for a filter for removing the RF signal and local frequency signal required for the superheterodyne method, and has the advantage of realizing low current consumption and low cost.

ダイレクトコンバージョン方式では、イメージ混信の影響を避けるために、直交検波回路を使用することで、送信装置では直交関係にある送信Iチャネルベースバンド信号(以下、送信I信号と呼ぶ)と送信Qチャネルベースバンド信号(以下、送信Q信号と呼ぶ)を直交関係にある送信Iチャネルローカル周波数信号(以下、送信Iローカル信号と呼ぶ)と送信Qチャネルローカル周波数信号(以下、送信Qローカル信号と呼ぶ)によって2つの送信RF信号に周波数変換し、それらを加算し1つの送信RF信号としてアンテナから送出している。   In the direct conversion method, in order to avoid the influence of image interference, a quadrature detection circuit is used so that the transmission apparatus has a transmission I channel baseband signal (hereinafter referred to as a transmission I signal) and a transmission Q channel base that are orthogonal to each other. A band signal (hereinafter referred to as a transmission Q signal) is defined by a transmission I channel local frequency signal (hereinafter referred to as a transmission I local signal) and a transmission Q channel local frequency signal (hereinafter referred to as a transmission Q local signal) in an orthogonal relationship. The frequency is converted into two transmission RF signals, added, and transmitted from the antenna as one transmission RF signal.

また、受信装置ではアンテナに入力した受信RF信号を直交関係にある受信Iチャネルローカル周波数信号(以下、受信Iローカル信号と呼ぶ)と受信Qチャネルローカル周波数信号(以下、受信Qローカル信号と呼ぶ)で復調して、直交関係にある受信Iチャネルベースバンド信号(以下、受信I信号と呼ぶ)と受信Qチャネルベースバンド信号(以下、受信Q信号と呼ぶ)に変換している。受信装置では、このような受信I信号と受信Q信号がディジタル復調されることで、本来のデータが取り出される。   Also, in the receiving apparatus, the received RF signal input to the antenna is orthogonally related to a received I channel local frequency signal (hereinafter referred to as a received I local signal) and a received Q channel local frequency signal (hereinafter referred to as a received Q local signal). Is converted into a reception I channel baseband signal (hereinafter referred to as a reception I signal) and a reception Q channel baseband signal (hereinafter referred to as a reception Q signal) that are orthogonal to each other. In the receiving apparatus, the original data is extracted by digitally demodulating the received I signal and the received Q signal.

しかしながら、ダイレクトコンバージョン方式は、I信号とQ信号に直交性が崩れた誤差が存在すると、希望波の側波にイメージ信号が発生してしまい、復調に必要なSNR(Signal to Noise Ratio)を満足することができず、通信品質が大きく劣化する。そのため、ダイレクトコンバージョン方式では、IQミスマッチ補正が必須となっている。   However, in the direct conversion method, if there is an error in the orthogonality between the I signal and the Q signal, an image signal is generated in the side wave of the desired signal, which satisfies the SNR (Signal to Noise Ratio) required for demodulation. Communication quality is greatly deteriorated. Therefore, IQ mismatch correction is indispensable in the direct conversion method.

図8はQPSK変調の例におけるEVM(Error Vector Magnetude)の概念図である。I信号とQ信号に位相誤差あるいは振幅誤差があると、シンボルは正規のref点から外れた例えばdem点に移動する。このときの前記したEMVとSNRは、式(1)、(2)で計算できる。

Figure 2016039482
Figure 2016039482
FIG. 8 is a conceptual diagram of EVM (Error Vector Magnetude) in an example of QPSK modulation. If there is a phase error or an amplitude error in the I signal and the Q signal, the symbol moves to, for example, a dem point that is out of the normal ref point. The EMV and SNR described above can be calculated by equations (1) and (2).
Figure 2016039482
Figure 2016039482

また、変調方式に対する必要最小限のSNRは、シャノンの定理によって求めることができる。各変調方式における結果を図9に示した。変調方式が分かれば送信装置はEVM値を満足し、受信装置はSNR値を満足するように、回路を設計しなければならない。   In addition, the minimum necessary SNR for the modulation scheme can be obtained by Shannon's theorem. The results for each modulation method are shown in FIG. If the modulation scheme is known, the circuit must be designed so that the transmitting apparatus satisfies the EVM value and the receiving apparatus satisfies the SNR value.

また、I信号とQ信号に誤差がある場合は、RF信号とベースバンド信号にイメージ信号のスペクトルが発生し、SNRをさらに悪化させてしまう。たとえば、16QAM変調による通信を行うときに必要なSRR(Spurious Rejection Ratio)は−33dBc以上が必要であり、所望のSRRを得るには、利得誤差を0.2dB以内に、位相誤差を2deg以内に設計する必要がある。回路次第ではあるが、約10mVのDCオフセットがあると、IQミスマッチが所望値を満足することができなくなるため、ダイレクトコンバージョン方式の送受信装置において、IQミスマッチ補正は必須である(非特許文献1)。   If there is an error between the I signal and the Q signal, the spectrum of the image signal is generated in the RF signal and the baseband signal, and the SNR is further deteriorated. For example, an SRR (Spurious Rejection Ratio) required for communication by 16QAM modulation needs to be −33 dBc or more, and in order to obtain a desired SRR, a gain error is within 0.2 dB and a phase error is within 2 deg. Need to design. Depending on the circuit, if there is a DC offset of about 10 mV, the IQ mismatch cannot satisfy the desired value, so that the IQ mismatch correction is essential in the direct conversion type transmission / reception device (Non-patent Document 1). .

そこで従来では、例えば図10に示すように、ベースバンド回路200のディジタルベースバンド回路210において、IQ信号発振回路213でモニタI信号とモニタQ信号を生成してRFフロント回路100に入力させ、そのRFフロント回路100から出力する受信モニタI信号と受信モニタQ信号の誤差をFFT回路211や演算回路212で処理して補正信号を生成する。そして、この補正信号をRFフロント回路100の送信回路111や受信回路112の増幅器や移相器に入力し、そこにおいてI信号とQ信号が直交関係を保持するように、I信号とQ信号の位相や振幅を補正していた。   Therefore, conventionally, for example, as shown in FIG. 10, in the digital baseband circuit 210 of the baseband circuit 200, the IQ signal oscillation circuit 213 generates the monitor I signal and the monitor Q signal and inputs them to the RF front circuit 100. An error between the reception monitor I signal and the reception monitor Q signal output from the RF front circuit 100 is processed by the FFT circuit 211 and the arithmetic circuit 212 to generate a correction signal. Then, this correction signal is input to the transmitter circuit 111 of the RF front circuit 100, the amplifier of the reception circuit 112, and the phase shifter. The phase and amplitude were corrected.

Supisa Lerstaveesin,and Bang-Sup Song "A Complex Image Rejection Circuit With Sign Detection Only",IEEE Journal of Solid-state Circuits, Vol.41, No.12, December 2006Supisa Lerstaveesin, and Bang-Sup Song "A Complex Image Rejection Circuit With Sign Detection Only", IEEE Journal of Solid-state Circuits, Vol.41, No.12, December 2006

しかしながら、この方式はベースバンド回路200で生成した補正信号によってRFフロント回路100でIQミスマッチ補正を行うものであり、RFフロント回路100とベースバンド回路200が対の関係にある必要がある。このため、汎用性の観点から、RFフロント回路100に対するベースバンド回路200の組み合わせの選択肢が著しく阻害されるという問題がある。   However, in this method, IQ mismatch correction is performed by the RF front circuit 100 using the correction signal generated by the baseband circuit 200, and the RF front circuit 100 and the baseband circuit 200 must be in a paired relationship. For this reason, from the viewpoint of versatility, there is a problem that options for combining the baseband circuit 200 with the RF front circuit 100 are significantly hindered.

本発明の目的は、IQミスマッチの補正信号をRFフロント回路の側のみで生成できるようにして、RFフロント回路に対するベースバンド回路の組み合わせの選択に制約が生じないようにしたIQミスマッチ補正方法および送受信装置を提供することである。   An object of the present invention is to generate an IQ mismatch correction signal only on the RF front circuit side so that the selection of a combination of baseband circuits with respect to the RF front circuit is not limited, and transmission / reception is performed. Is to provide a device.

上記目的を達成するために、請求項1にかかる発明は、互いに直交関係にある送信I信号と送信Q信号を入力し、送信Iローカル信号と送信Qローカル信号とにより直交変調した後に加算し、送信RF信号として送信する送信回路を備えた送受信装置のIQミスマッチ補正方法において、内部で発生したモニタI信号とモニタQ信号を前記送信回路に入力し直交変調した後に加算してモニタRF信号を生成し、該モニタRF信号をベースバンド信号の周波数に周波数変換して送信モニタI信号と送信モニタQ信号の一方の信号を生成するとともに、該生成した前記一方の信号を遅延処理して前記送信モニタI信号と前記送信モニタ信号Qの他方を生成し、前記送信モニタI信号と前記送信モニタQ信号との送信側位相誤差を検出し、前記送信モニタI信号と前記送信モニタQ信号を加算した信号と前記送信モニタI信号又は前記送信モニタQ信号との位相差に基づき、前記送信モニタI信号と前記送信モニタQ信号の送信側振幅誤差を検出し、前記送信側位相誤差に基づき前記送信回路の移相器の移相量を制御して前記送信Iローカル信号と前記送信Qローカル信号の位相差を補正し、前記送信側振幅誤差に基づき前記送信回路の増幅器を制御して前記送信I信号と前記送信Q信号の利得差を補正する、ことを特徴とする。   In order to achieve the above object, the invention according to claim 1 inputs a transmission I signal and a transmission Q signal that are orthogonal to each other, performs quadrature modulation with the transmission I local signal and the transmission Q local signal, and adds them. In the IQ mismatch correction method of a transmission / reception apparatus including a transmission circuit that transmits as a transmission RF signal, a monitor RF signal is generated by inputting the internally generated monitor I signal and the monitor Q signal to the transmission circuit, performing quadrature modulation, and adding them Then, the monitor RF signal is frequency-converted to the frequency of the baseband signal to generate one of the transmission monitor I signal and the transmission monitor Q signal, and the generated one of the signals is subjected to delay processing to generate the transmission monitor. The other of the I signal and the transmission monitor signal Q is generated, and a transmission side phase error between the transmission monitor I signal and the transmission monitor Q signal is detected, and the transmission Based on the phase difference between the signal obtained by adding the Nita I signal and the transmission monitor Q signal and the transmission monitor I signal or the transmission monitor Q signal, a transmission-side amplitude error between the transmission monitor I signal and the transmission monitor Q signal is detected. And controlling the phase shift amount of the phase shifter of the transmission circuit based on the transmission side phase error to correct the phase difference between the transmission I local signal and the transmission Q local signal, and based on the transmission side amplitude error A gain difference between the transmission I signal and the transmission Q signal is corrected by controlling an amplifier of a transmission circuit.

請求項2にかかる発明は、IQミスマッチが補正された請求項1に記載の送信回路と、該送信回路から受信した受信RF信号を受信Iローカル信号と受信Qローカル信号とにより直交復調して受信I信号と受信Q信号に分離する受信回路と、を備えた送受信装置のIQミスマッチ補正方法において、前記モニタI信号と前記モニタQ信号をIQミスマッチが補正されている前記送信回路に入力して前記送信回路から前記送信RF信号を出力し、前記送信RF信号を前記受信回路により受信し、前記受信Iローカル信号と前記受信Qローカル信号とにより直交復調して受信モニタI信号と受信モニタQ信号を生成し、前記受信モニタI信号と前記受信モニタQ信号との受信側位相誤差を検出し、前記受信モニタI信号と前記受信モニタQ信号を加算した信号と前記受信モニタI信号又は前記受信モニタQ信号との位相差に基づき、前記受信モニタI信号と前記受信モニタQ信号の受信側振幅誤差を検出し、前記受信側位相誤差に基づき前記受信回路の移相器の移相量を制御して前記受信Iローカル信号と前記受信Qローカル信号の位相差を補正し、前記受信側振幅誤差に基づき前記受信回路の増幅器の利得を制御して前記受信I信号と前記受信Q信号の利得差を補正する、ことを特徴とする。   According to a second aspect of the present invention, the transmission circuit according to the first aspect, in which the IQ mismatch is corrected, and the received RF signal received from the transmission circuit are orthogonally demodulated by the received I local signal and the received Q local signal. In the IQ mismatch correction method of a transmission / reception apparatus comprising a receiving circuit that separates an I signal and a received Q signal, the monitor I signal and the monitor Q signal are input to the transmitting circuit in which an IQ mismatch is corrected, and The transmission RF signal is output from the transmission circuit, the transmission RF signal is received by the reception circuit, and the reception monitor I signal and the reception monitor Q signal are orthogonally demodulated by the reception I local signal and the reception Q local signal. And generating a reception-side phase error between the reception monitor I signal and the reception monitor Q signal, and generating the reception monitor I signal and the reception monitor Q signal. Based on the phase difference between the calculated signal and the reception monitor I signal or the reception monitor Q signal, a reception side amplitude error between the reception monitor I signal and the reception monitor Q signal is detected, and based on the reception side phase error, The phase shift amount of the phase shifter of the receiving circuit is controlled to correct the phase difference between the received I local signal and the received Q local signal, and the gain of the amplifier of the receiving circuit is controlled based on the receiving side amplitude error. A gain difference between the received I signal and the received Q signal is corrected.

請求項3にかかる発明は、互いに直交関係にある送信I信号と送信Q信号を入力し、送信Iローカル信号と送信Qローカル信号とにより直交変調した後に加算し、送信RF信号として送信する送信回路を備えた送受信装置において、モニタI信号とモニタQ信号を生成するモニタ信号発振回路と、前記モニタ信号発振回路から出力した前記モニタI信号と前記モニタQ信号が前記送信回路に入力して直交変調された後に加算されたモニタRF信号を入力し周波数変換して、送信モニタI信号と送信モニタQ信号の一方の信号を生成する周波数変換回路と、該周波数変換回路から出力する前記一方の信号を遅延して前記送信モニタI信号と前記送信モニタQ信号の他方を生成する遅延回路と、前記送信モニタI信号と前記送信モニタQ信号との位相差を検出して送信側第1位相誤差信号を生成するとともに、前記送信モニタI信号と前記送信モニタQ信号を加算した信号と前記送信モニタI信号又は前記送信モニタQ信号との位相差を検出して送信側第2位相誤差信号を生成する位相検出回路と、該位相検出回路で得られた前記送信側第1位相誤差信号に基づき前記送信回路の移相器の移相量を制御して前記送信Iローカル信号と前記送信Qローカル信号の位相差を補正し、前記位相検出回路で得られた前記送信側第2位相誤差信号に基づき前記送信I信号と前記送信Q信号の送信側振幅誤差信号を求め、該送信側振幅誤差信号に基づき前記送信回路の増幅器の利得を制御して前記送信I信号と前記送信Q信号の利得を補正する補正制御回路と、を備えることを特徴とする。   According to a third aspect of the present invention, there is provided a transmission circuit for inputting a transmission I signal and a transmission Q signal which are orthogonal to each other, performing quadrature modulation with the transmission I local signal and the transmission Q local signal, adding them, and transmitting as a transmission RF signal A monitor signal oscillation circuit for generating a monitor I signal and a monitor Q signal, and the monitor I signal and the monitor Q signal output from the monitor signal oscillation circuit are input to the transmission circuit to perform orthogonal modulation And then frequency-converting the added monitor RF signal to generate one of the transmission monitor I signal and the transmission monitor Q signal, and the one signal output from the frequency conversion circuit A delay circuit that delays to generate the other of the transmission monitor I signal and the transmission monitor Q signal; and the transmission monitor I signal and the transmission monitor Q signal. A phase difference is detected to generate a transmission-side first phase error signal, and a phase difference between a signal obtained by adding the transmission monitor I signal and the transmission monitor Q signal and the transmission monitor I signal or the transmission monitor Q signal is detected. A phase detection circuit for generating a transmission-side second phase error signal, and a phase shift amount of the phase shifter of the transmission circuit is controlled based on the transmission-side first phase error signal obtained by the phase detection circuit. A phase difference between the transmission I local signal and the transmission Q local signal is corrected, and a transmission side amplitude error between the transmission I signal and the transmission Q signal is obtained based on the transmission side second phase error signal obtained by the phase detection circuit. And a correction control circuit that obtains a signal and controls the gain of the amplifier of the transmission circuit based on the transmission-side amplitude error signal to correct the gain of the transmission I signal and the transmission Q signal.

請求項4にかかる発明は、IQミスマッチが補正された請求項3に記載の送信回路と、受信回路と、を備えた送受信装置において、前記受信回路は、前記送信回路から出力するIQミスマッチが補正されたモニタRF信号を入力して、受信Iローカル信号と受信Qローカル信号とにより直交復調して、受信モニタI信号と受信モニタQ信号を生成し、前記位相検出回路は、さらに、前記受信モニタI信号と前記受信モニタQ信号との位相差を検出して受信側第1位相誤差信号を生成するとともに、前記受信モニタI信号と前記受信モニタQ信号を加算した信号と前記受信モニタI信号又は前記受信モニタQ信号との位相差を検出して受信側第2位相誤差信号を生成し、前記補正制御回路は、さらに、前記位相検出回路で得られた前記受信側第1位相誤差信号に基づき前記受信回路の移相器の移相量を制御して前記受信Iローカル信号と前記受信Qローカル信号の位相差を補正し、前記位相検出回路で得られた前記受信側第2位相誤差信号に基づき前記受信I信号と前記受信Q信号の受信側振幅誤差信号を求め、該受信側振幅誤差信号に基づき前記受信回路の増幅器の利得を制御して前記受信I信号と前記受信Q信号の利得を補正する、ことを特徴とする。   According to a fourth aspect of the present invention, in the transmission / reception apparatus including the transmission circuit according to claim 3 and the reception circuit corrected for IQ mismatch, the reception circuit corrects the IQ mismatch output from the transmission circuit. The received monitor RF signal is input and quadrature demodulated with the received I local signal and the received Q local signal to generate a received monitor I signal and a received monitor Q signal, and the phase detection circuit further includes the received monitor Detecting a phase difference between the I signal and the reception monitor Q signal to generate a reception-side first phase error signal, and adding the reception monitor I signal and the reception monitor Q signal to the reception monitor I signal or A phase difference from the reception monitor Q signal is detected to generate a reception-side second phase error signal, and the correction control circuit further includes the reception-side first phase error signal obtained by the phase detection circuit. Based on the phase error signal, the phase shift amount of the phase shifter of the reception circuit is controlled to correct the phase difference between the reception I local signal and the reception Q local signal, and the reception side obtained by the phase detection circuit is corrected. A reception-side amplitude error signal of the reception I signal and the reception Q signal is obtained based on a two-phase error signal, and a gain of an amplifier of the reception circuit is controlled based on the reception-side amplitude error signal, so that the reception I signal and the reception signal are received. The gain of the Q signal is corrected.

請求項5にかかる発明は、請求項3に記載の送受信装置において、前記補正制御回路は、前記送信側第2位相誤差と前記送信側振幅誤差との関係を示す第1テーブルを備えることを特徴とする。   According to a fifth aspect of the present invention, in the transmission / reception device according to the third aspect, the correction control circuit includes a first table indicating a relationship between the transmission-side second phase error and the transmission-side amplitude error. And

請求項6にかかる発明は、請求項4に記載の送受信装置において、前記補正制御回路は、前記送信側第2位相誤差と前記送信側振幅誤差との関係を示す第1テーブルと、前記受信側第2位相誤差と前記受信側振幅誤差との関係を示す第2テーブルとを備えることを特徴とする。   According to a sixth aspect of the present invention, in the transmission / reception device according to the fourth aspect, the correction control circuit includes a first table indicating a relationship between the transmission-side second phase error and the transmission-side amplitude error, and the reception side. And a second table showing a relationship between the second phase error and the reception-side amplitude error.

請求項7にかかる発明は、請求項3に記載の送受信装置において、前記位相検出回路は、第1タイミングで前記送信モニタI信号と前記送信モニタQ信号を加算する加算器と、第2タイミングで前記送信モニタI信号と前記送信モニタQ信号を乗算して前記送信側第1位相誤差信号を生成し、前記第1タイミングで前記加算器の出力と前記送信モニタI信号又は前記送信モニタQ信号とを乗算して前記送信側第2位相差信号を生成する直交検波回路と、を備えることを特徴とする。   According to a seventh aspect of the present invention, in the transmission / reception device according to the third aspect, the phase detection circuit includes an adder that adds the transmission monitor I signal and the transmission monitor Q signal at a first timing, and a second timing. The transmission monitor I signal and the transmission monitor Q signal are multiplied to generate the transmission-side first phase error signal, and at the first timing, the output of the adder and the transmission monitor I signal or the transmission monitor Q signal And a quadrature detection circuit for generating the transmission-side second phase difference signal.

請求項8にかかる発明は、請求項4に記載の送受信装置において、前記位相検出回路の前記加算器は、さらに、第3タイミングで前記受信モニタI信号と前記受信モニタQ信号を加算し、前記位相検出回路の前記直交検波回路は、さらに、第4タイミングで前記受信モニタI信号と前記受信モニタQ信号を乗算して前記受信側第1位相誤差信号を生成し、前記第3タイミングで前記加算器の出力と前記受信モニタI信号又は前記受信モニタQ信号とを乗算して前記受信側第2位相差信号を生成する、ことを特徴とする。   The invention according to claim 8 is the transmitter / receiver according to claim 4, wherein the adder of the phase detection circuit further adds the reception monitor I signal and the reception monitor Q signal at a third timing, The quadrature detection circuit of the phase detection circuit further multiplies the reception monitor I signal and the reception monitor Q signal at a fourth timing to generate the reception-side first phase error signal, and the addition at the third timing. And the reception monitor I signal or the reception monitor Q signal is multiplied to generate the reception-side second phase difference signal.

本発明によれば、ベースバンド回路と無関係に送信回路や受信回路のIQミスマッチを補正することができるので、送信回路や受信回路を備えたRFフロント回路に対するベースバンド回路の組み合わせの選択肢が多くなる利点がある。また、I信号とQ信号の振幅誤差をI信号とQ信号の加算信号とI信号又はQ信号との位相比較に基づき得ることができるので、振幅誤差検出のための特別な回路を必要としない利点がある。   According to the present invention, the IQ mismatch of the transmission circuit and the reception circuit can be corrected regardless of the baseband circuit, so that the options for combining the baseband circuit with the RF front circuit including the transmission circuit and the reception circuit are increased. There are advantages. In addition, since the amplitude error between the I signal and the Q signal can be obtained based on the phase comparison between the I signal and the Q signal and the I signal or the Q signal, no special circuit for detecting the amplitude error is required. There are advantages.

本発明の実施例の送受信装置のブロック図である。It is a block diagram of the transmission / reception apparatus of the Example of this invention. 図1の送受信装置の位相検出回路の直交検波回路と加算回路の回路図である。FIG. 2 is a circuit diagram of a quadrature detection circuit and an addition circuit of the phase detection circuit of the transmission / reception apparatus of FIG. 図1の送受信装置の位相検出回路の直交検波回路と加算回路の回路図である。FIG. 2 is a circuit diagram of a quadrature detection circuit and an addition circuit of the phase detection circuit of the transmission / reception apparatus of FIG. 1. 図1の送受信装置のモニタ信号発振回路の回路図である。FIG. 2 is a circuit diagram of a monitor signal oscillation circuit of the transmission / reception device of FIG. 1. 図1の送受信装置の送信回路のIQミスマッチの補正のフローチャートである。It is a flowchart of correction | amendment of IQ mismatch of the transmission circuit of the transmission / reception apparatus of FIG. 図1の送受信装置の受信回路のIQミスマッチの補正のフローチャートである。It is a flowchart of correction | amendment of IQ mismatch of the receiving circuit of the transmission / reception apparatus of FIG. 2つの信号の振幅誤差検出の説明図である。It is explanatory drawing of the amplitude error detection of two signals. QPSKの信号配置図である。It is a signal arrangement | positioning figure of QPSK. 変調方式と受信側SNRおよび送信側EVMの関係を示す図である。It is a figure which shows the relationship between a modulation system, reception side SNR, and transmission side EVM. 従来の送受信装置のブロック図である。It is a block diagram of the conventional transmission / reception apparatus.

<IQミスマッチ検出の原理>
本発明では、IQミスマッチ検出における位相誤差検出と、振幅誤差検出のための位相誤差検出を、1つのギルバートセル型の直交検波回路により行う。この直交検波回路は、位相差にのみ感度を有するため、振幅誤差の検出時には、I信号とQ信号を加算することで振幅差を位相差に変換して、I信号基準(又はQ信号基準)の位相差から振幅誤差を検出する。そして、得られた位相誤差によって位相補正信号を生成し、得られた振幅誤差によって振幅補正信号を生成し、それらの補正信号によって、送信回路の位相と利得、受信回路の位相と利得を個々に補正する。
<Principle of IQ mismatch detection>
In the present invention, phase error detection in IQ mismatch detection and phase error detection for amplitude error detection are performed by one Gilbert cell type quadrature detection circuit. Since this quadrature detection circuit has sensitivity only to the phase difference, when an amplitude error is detected, the amplitude difference is converted into a phase difference by adding the I signal and the Q signal, and the I signal reference (or Q signal reference) An amplitude error is detected from the phase difference. Then, a phase correction signal is generated based on the obtained phase error, an amplitude correction signal is generated based on the obtained amplitude error, and the phase and gain of the transmission circuit and the phase and gain of the reception circuit are individually determined by these correction signals. to correct.

I信号とQ信号に位相誤差φeが存在するとき、それを検出するには、

Figure 2016039482
として、直交検波回路で両者を乗算することで
Figure 2016039482
で得られる。 To detect the phase error φe in the I and Q signals,
Figure 2016039482
By multiplying both by the quadrature detection circuit
Figure 2016039482
It is obtained by.

よって、式(4)の位相誤差の信号をローパスフィルタを通して不要な2倍波成分(2ωt)を除去すれば、位相誤差φeに応じた直流成分(cosφe/2)を得ることができるので、その直流成分を位相補正信号として使用する。   Therefore, if an unnecessary second harmonic component (2ωt) is removed from the phase error signal of Equation (4) through a low-pass filter, a DC component (cos φe / 2) corresponding to the phase error φe can be obtained. A DC component is used as a phase correction signal.

一方、振幅誤差については、I信号とQ信号を加算し、その加算信号とI信号(又はQ信号)を位相比較することで位相差を検出し、この位相差に基づき振幅誤差を検出することができる。   On the other hand, for the amplitude error, the I signal and the Q signal are added, the phase difference is detected by comparing the phase of the added signal and the I signal (or Q signal), and the amplitude error is detected based on the phase difference. Can do.

ここで、I信号の振幅をAとし、Q信号の振幅をBとし、位相差がないとすると、

Figure 2016039482
となるので、I信号とQ信号を加算すると、
Figure 2016039482
が得られる。 Here, if the amplitude of the I signal is A, the amplitude of the Q signal is B, and there is no phase difference,
Figure 2016039482
Therefore, when I signal and Q signal are added,
Figure 2016039482
Is obtained.

このようにして得られた加算信号を、たとえばI信号を基準として、位相誤差検出で用いた直交検波回路を流用して位相比較する。そして、この得られた位相差から振幅差(=A/B)を取得することができる。   For example, the quadrature detection circuit used in the phase error detection is used for phase comparison with the addition signal obtained in this way, using the I signal as a reference. Then, the amplitude difference (= A / B) can be acquired from the obtained phase difference.

例えば、単純化のために、振幅をB=0.5Aとし、ωt=θとして、その加算信号Asinθ+Bcosθを波形で示すと、横軸を位相、縦軸を振幅とすると、図7(a)に示す通りとなる。このとき、大きさ(振幅相当)が零のゼロクロス点では、Asinθの波形に対して、加算信号Asinθ+Bcosθの波形は、26.56degだけ遅れている。   For example, for simplification, when the amplitude is B = 0.5A, ωt = θ, and the addition signal Asinθ + Bcosθ is shown as a waveform, when the horizontal axis is the phase and the vertical axis is the amplitude, FIG. As shown. At this time, at the zero cross point where the magnitude (corresponding to the amplitude) is zero, the waveform of the addition signal Asin θ + Bcos θ is delayed by 26.56 degrees with respect to the waveform of Asin θ.

また、振幅をB=Aとして、その加算信号Asinθ+Bcosθを波形で示すと、図7(b)に示す通りとなる。このとき、ゼロクロス点では、Asinθの波形に対して、加算信号Asinθ+Bcosθの波形は、45degだけ遅れている。   Further, when the amplitude is B = A and the addition signal Asinθ + Bcosθ is shown in a waveform, it is as shown in FIG. 7B. At this time, at the zero cross point, the waveform of the addition signal Asinθ + Bcosθ is delayed by 45 degrees with respect to the waveform of Asinθ.

そこで、振幅AとBの比率を異ならせて、ゼロクロス点にけるAsinθに対する加算信号Asinθ+Bcosθの位相差を求めると、振幅AとBの比率に対する位相差は、図7(c)に示すような特性を示す。よって、この図7(c)に示す特性を予めテーブルに作成しておき、あるいは図7(c)の特性曲線を示す式を求めておけば、直交検波回路で検出した位相差に基づいて、振幅差(B/A)を求めることができる。よって、振幅Aを予め設定しておけば、振幅Bを求めることができる。   Therefore, when the ratio of the amplitudes A and B is made different to obtain the phase difference of the addition signal Asinθ + Bcosθ with respect to Asinθ at the zero crossing point, the phase difference with respect to the ratio of the amplitudes A and B has a characteristic as shown in FIG. Indicates. Therefore, if the characteristics shown in FIG. 7 (c) are created in a table in advance, or if an expression indicating the characteristic curve of FIG. 7 (c) is obtained, based on the phase difference detected by the quadrature detection circuit, The amplitude difference (B / A) can be obtained. Therefore, if the amplitude A is set in advance, the amplitude B can be obtained.

このように、振幅誤差を位相誤差に基づいて検出することができるため、位相誤差検出と振幅誤差検出用位相誤差検出に共通の直交検波回路を使用することができ、振幅誤差を検出する特別の回路が不要となる。また、振幅誤差検出用位相誤差検出では2つの信号を波形のゼロクロス点で比較するので、その2つの入力信号の波形に周波数ドリフトや歪があったとしても、位相差検出の精度に大きな影響を受けない。このため、後記するモニタI信号やモニタQ信号への要求精度を緩和することができる。   As described above, since the amplitude error can be detected based on the phase error, a common quadrature detection circuit can be used for the phase error detection and the phase error detection for amplitude error detection. A circuit becomes unnecessary. In addition, since phase error detection for amplitude error detection compares two signals at the zero cross point of the waveform, even if there is a frequency drift or distortion in the waveform of the two input signals, the accuracy of phase difference detection is greatly affected. I do not receive it. For this reason, the required accuracy for the monitor I signal and the monitor Q signal described later can be relaxed.

<実施例>
図1に本発明の実施例の送受信装置のRFフロント回路100を示す。図1において、110は変復調回路であり、送信回路111、受信回路112、送信信号の包絡線を検出してベースバンド信号に周波数変換を行うエンベロープ検波回路(周波数変換回路)113、単相信号から差動信号を生成する単相/差動変換回路114、単相/差動変換回路114の出力信号をπ/2だけ遅延させる遅延回路115、および送信回路111の送信信号を受信回路112に直接入力させるためのスイッチSW0を備える。
<Example>
FIG. 1 shows an RF front circuit 100 of a transceiver apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 110 denotes a modulation / demodulation circuit, which includes a transmission circuit 111, a reception circuit 112, an envelope detection circuit (frequency conversion circuit) 113 that detects an envelope of a transmission signal and converts the frequency into a baseband signal, and a single-phase signal. A single-phase / differential conversion circuit 114 that generates a differential signal, a delay circuit 115 that delays an output signal of the single-phase / differential conversion circuit 114 by π / 2, and a transmission signal of the transmission circuit 111 directly to the reception circuit 112 A switch SW0 for inputting is provided.

送信回路111は、ベースバンド回路(図示せず)から入力する送信I信号の差動信号I,Iを増幅する増幅器AMP1と、ベースバンド回路(図示せず)から入力する送信Q信号の差動信号Q,Qを増幅する増幅器AMP2と、ローカル発振器OSC1で発振した送信Iローカル信号によって送信I信号を変調するミキサ回路MIX1と、ローカル発振器OSC1で発振した送信Iローカル信号を移相器PS1によってπ/2だけ移相した送信Qローカル信号によって送信Q信号を変調するミキサ回路MIX2と、ミキサ回路MIX1,MIX2から出力する送信RF信号の加算信号を放出するアンテナANT1と、を備える。 The transmission circuit 111 includes an amplifier AMP1 that amplifies differential signals I + and I of a transmission I signal input from a baseband circuit (not shown), and a transmission Q signal input from a baseband circuit (not shown). The amplifier AMP2 that amplifies the differential signals Q + and Q , the mixer circuit MIX1 that modulates the transmission I signal by the transmission I local signal oscillated by the local oscillator OSC1, and the phase of the transmission I local signal oscillated by the local oscillator OSC1 A mixer circuit MIX2 that modulates the transmission Q signal by a transmission Q local signal phase-shifted by π / 2 by the device PS1, and an antenna ANT1 that emits an addition signal of the transmission RF signal output from the mixer circuits MIX1 and MIX2.

受信回路112は、アンテナANT2から入力した受信RF信号を増幅する増幅器AMP3,AMP4と、増幅器AMP3の出力信号をローカル発振器OSC2で発振した受信Iローカル信号によって復調して受信I信号の差動信号I,Iを取り出すミキサ回路MIX3と、増幅器AMP4の出力信号をローカル発振器OSC2で発振した受信Iローカル信号を移相器PS1によってπ/2だけ移相した受信Qローカル信号によって復調して受信Q信号の差動信号Q,Qを取り出すミキサ回路MIX4と、を備える。 The reception circuit 112 demodulates the output signal of the amplifier AMP3 and AMP4 that amplifies the reception RF signal input from the antenna ANT2 and the output signal of the amplifier AMP3 by the reception I local signal oscillated by the local oscillator OSC2. +, I - and mixer circuit MIX3 taking out, received and demodulated by the receiving Q local signal phase-shifted by [pi / 2 the received I local signal oscillated by the local oscillator OSC2 output signal by the phase shifter PS1 of the amplifier AMP4 Q And a mixer circuit MIX4 for extracting differential signals Q + and Q − of the signal.

120は位相検出回路であり、直交検波回路121、I信号とQ信号を加算する加算器122a,122bを備える加算回路122、直交検波回路121の出力信号(位相差信号)から高周波成分を除去するローパスフィルタ123、直交検波回路121を位相差検出用と振幅差検出用の一方に切り替える切換制御回路124を備える。前記した加算器122aはI信号の内のI信号とQ信号の内のQ信号を加算し、加算器122bは、I信号の内のI信号とQ信号の内のQ信号を加算する。 A phase detection circuit 120 removes high-frequency components from the quadrature detection circuit 121, the addition circuit 122 including adders 122a and 122b that add the I signal and the Q signal, and the output signal (phase difference signal) of the quadrature detection circuit 121. A switching control circuit 124 that switches the low-pass filter 123 and the quadrature detection circuit 121 to one for phase difference detection and one for amplitude difference detection is provided. Wherein the adder 122a adds the Q + signal of the I + signal and Q signal of the I signal, the adder 122b is, I of the I signal - the signal - Q of the signal and the Q signal to add.

130は補正制御回路であり、ローパスフィルタ123の出力信号を取り込んで、送信回路111用の位相補正信号と振幅補正信号を生成するとともに、受信回路112用の位相補正信号と振幅補正信号を生成する。詳しくは、直交検波回路121からローパスフィルタ123を経由して位相誤差を示す位相差信号が到来するときは、これを位相補正信号として、送信回路111の移相器PS1又は受信回路112の移相器PS2に出力し、それらの移相量を調整させる。また、直交検波回路121からローパスフィルタ123を経由して振幅誤差を示す位相差信号が到来するときは、その信号に対応して振幅誤差信号を生成し、これを振幅補正信号として、送信回路111のQ信号側の増幅器AMP2又は受信回路112のQ信号側の増幅器AMP4に出力し、それらの利得を調整させる。この補正制御回路130では、ローパスフィルタ123で高周波信号を除去した低速信号を扱うので、ここでディジタル処理する場合に、低速のA/D変換器を使用することができる。   Reference numeral 130 denotes a correction control circuit which takes in the output signal of the low-pass filter 123 and generates a phase correction signal and an amplitude correction signal for the transmission circuit 111 and also generates a phase correction signal and an amplitude correction signal for the reception circuit 112. . Specifically, when a phase difference signal indicating a phase error arrives from the quadrature detection circuit 121 via the low-pass filter 123, this is used as a phase correction signal to shift the phase shifter PS1 of the transmission circuit 111 or the phase shift of the reception circuit 112. Output to the PS2 and adjust the amount of phase shift. When a phase difference signal indicating an amplitude error arrives from the quadrature detection circuit 121 via the low-pass filter 123, an amplitude error signal is generated corresponding to the signal, and this is used as an amplitude correction signal to transmit the transmission circuit 111. To the amplifier AMP2 on the Q signal side or the amplifier AMP4 on the Q signal side of the receiving circuit 112 to adjust the gains thereof. In this correction control circuit 130, a low-speed signal from which a high-frequency signal has been removed by the low-pass filter 123 is handled. Therefore, when performing digital processing here, a low-speed A / D converter can be used.

140はモニタI信号とモニタQ信号を差動信号I,I、Q,Qの形で生成するモニタ信号発振回路であり、同相で縦続接続された3個の演算増幅器OP1〜OP3と、入力側がその演算増幅器OP3の出力側に逆相で縦続接続され、出力側が同相で演算増幅器OP1の入力側に縦続接続された演算増幅器OP4とで構成される。そして、演算増幅器OP2の出力側からモニタI信号の差動信号I,Iが取り出され、演算増幅器OP4の出力側からモニタQ信号の差動信号Q,Qが取り出される。 Reference numeral 140 denotes a monitor signal oscillation circuit that generates a monitor I signal and a monitor Q signal in the form of differential signals I + , I , Q + , Q , and three operational amplifiers OP1 to OP3 connected in cascade in the same phase. And an operational amplifier OP4 in which the input side is cascaded in the opposite phase to the output side of the operational amplifier OP3 and the output side is cascaded in the same phase to the input side of the operational amplifier OP1. Then, differential signals I + and I − of the monitor I signal are extracted from the output side of the operational amplifier OP2, and differential signals Q + and Q − of the monitor Q signal are extracted from the output side of the operational amplifier OP4.

150は第1のスイッチ回路であり、4個のスイッチSW1〜SW4からなる。スイッチSW1は、受信回路112から出力するQ信号と単相/差動変換回路114から出力するQ信号の一方を選択する。スイッチSW2は、受信回路112から出力するQ信号と単相/差動変換回路114から出力するQ信号の一方を選択する。スイッチSW3は、受信回路112から出力するI信号と遅延回路140から出力するI信号の一方を選択する。スイッチSW4は、受信回路112から出力するI信号と単相/差動変換回路114から出力するI信号の一方を選択する。 A first switch circuit 150 includes four switches SW1 to SW4. The switch SW1 selects one of the Q + signal output from the reception circuit 112 and the Q + signal output from the single-phase / differential conversion circuit 114. The switch SW2 selects one of the Q - signal output from the receiving circuit 112 and the Q - signal output from the single-phase / differential conversion circuit 114. The switch SW3 selects one of the I signal output from the receiving circuit 112 and the I signal output from the delay circuit 140. The switch SW4 selects one of the I + signal output from the receiving circuit 112 and the I + signal output from the single-phase / differential conversion circuit 114.

160は第2のスイッチ回路であり、4個のスイッチSW5〜SW8からなる。スイッチSW5,SW6は、モニタI信号の差動信号I,Iを送信回路111の入力側の送信I信号の差動信号ラインに接続する。スイッチSW7,SW8は、モニタQ信号の差動信号Q,Qを送信回路111の入力側の送信Q信号の差動信号ラインに接続する。 A second switch circuit 160 includes four switches SW5 to SW8. The switches SW5 and SW6 connect the differential signals I + and I of the monitor I signal to the differential signal line of the transmission I signal on the input side of the transmission circuit 111. The switches SW7 and SW8 connect the differential signals Q + and Q of the monitor Q signal to the differential signal line of the transmission Q signal on the input side of the transmission circuit 111.

図2に直交検波回路121と加算回路122のの具体例を示す。直交検波回路121は、ギルバートセル回路121aと、出力回路121bと、電流/電圧変換回路121cとで構成されている。   FIG. 2 shows a specific example of the quadrature detection circuit 121 and the addition circuit 122. The quadrature detection circuit 121 includes a Gilbert cell circuit 121a, an output circuit 121b, and a current / voltage conversion circuit 121c.

ギルバートセル回路121aは、NMOSトランジスタMN1〜MN8、PMOSトランジスタMP1,MP2、および電流源I1、I2で構成されている。トランジスタMN1,MN2はソースがトランジスタMN5,MN7のドレインに共通接続され、トランジスタMN3,MN4はソースがトランジスタMN6,MN8のドレインに共通接続されている。トランジスタMN5,MN6のソースは電流源I1に接続され、トランジスタMN7,MN8のソースは電流源I2に共通接続されている。トランジスタMP1のゲートとドレインはトランジスタMN1,MN3のドレインに共通接続され、トランジスタMP2のゲートとドレインはトランジスタMN2,MN4のドレインに共通接続されている。   The Gilbert cell circuit 121a includes NMOS transistors MN1 to MN8, PMOS transistors MP1 and MP2, and current sources I1 and I2. The sources of the transistors MN1 and MN2 are commonly connected to the drains of the transistors MN5 and MN7, and the sources of the transistors MN3 and MN4 are commonly connected to the drains of the transistors MN6 and MN8. The sources of the transistors MN5 and MN6 are connected to the current source I1, and the sources of the transistors MN7 and MN8 are commonly connected to the current source I2. The gate and drain of the transistor MP1 are commonly connected to the drains of the transistors MN1 and MN3, and the gate and drain of the transistor MP2 are commonly connected to the drains of the transistors MN2 and MN4.

そして、トランジスタMN1,MN4のゲートにはI信号の正転信号Iが入力し、トランジスタMN2,MN3のゲートにはI信号の反転信号Iが入力する。また、トランジスタMN5のゲートにはQ信号の正転信号Qが入力し、トランジスタMN5のゲートにはQ信号の反転信号Qが入力する。さらに、トランジスタMN7のゲートにはI信号の反転信号IとQ信号の反転信号Qを加算器122aで加算した信号が入力し、トランジスタMN8のゲートにはI信号の正転信号IとQ信号の正転信号Qを加算器121aで加算した信号が入力する。 Then, the gate of the transistor MN1, MN4 is normal signal I + inputs of the I signal, to the gate of the transistor MN2, MN3 are inverted signal I of the I signal - to the input. The gate of transistor MN5 forward signal Q + is input Q signal, to the gate of transistor MN5 inverted signal Q of the Q signal - to the input. Further, the gate of the transistor MN7 is inverted signal I of the I signal - inverted signal Q and Q signals - entered signal obtained by adding by the adder 122a, the gate of the transistor MN8 is a normal signal I + of the I signal A signal obtained by adding the normal rotation signal Q + of the Q signal by the adder 121a is input.

このギルバートセル回路121では、位相誤差検出時には、切換制御回路124によって電流源I1が動作し、電流源I2が不動作となる。これにより、トランジスタMN5,MN6が動作し、トランジスタMN7,MN8がオフとなる。そして、I信号とQ信号の乗算、すなわち前記した式(4)の演算が行われ、その演算結果が出力回路121bに出力される。   In the Gilbert cell circuit 121, when the phase error is detected, the current source I1 is operated by the switching control circuit 124, and the current source I2 is not operated. Thereby, the transistors MN5 and MN6 operate and the transistors MN7 and MN8 are turned off. Then, multiplication of the I signal and the Q signal, that is, the calculation of the above-described equation (4) is performed, and the calculation result is output to the output circuit 121b.

一方、振幅誤差検出時には、切換制御回路124によって電流源I1が不動作となり、電流源I2が動作する。これにより、トランジスタMN5,MN6がオフし、トランジスタMN7,MN8が動作することになる。そして、前記した式(6)で表されるI信号とQ信号の加算信号と基準のI信号との乗算が行われ、両者の位相差を示す信号が得られ、その演算結果が出力回路121bに出力される。   On the other hand, when the amplitude error is detected, the current source I1 is deactivated by the switching control circuit 124, and the current source I2 is activated. As a result, the transistors MN5 and MN6 are turned off, and the transistors MN7 and MN8 operate. Then, the sum signal of the I signal and the Q signal represented by the above equation (6) and the reference I signal are multiplied to obtain a signal indicating the phase difference between the two, and the calculation result is the output circuit 121b. Is output.

このように、共通のギルバートセル回路121において、I信号とQ信号についての位相誤差検出と振幅誤差検出用位相誤差検出が行われるので、相対オフセットをなくすことができ、それら誤差検出を高精度で実現することができる。   Thus, in the common Gilbert cell circuit 121, the phase error detection and the amplitude error detection phase error detection for the I signal and the Q signal are performed, so that the relative offset can be eliminated and the error detection can be performed with high accuracy. Can be realized.

出力回路121bは、ギルバートセル回路121aのトランジスタMP1のドレイン電圧によってゲートが制御されるPMOSトランジスタMP3と、トランジスタMP2のドレイン電圧によってゲートが制御されるPMOSトランジスタMP4と、NMOSトランジスタMN9,MN10からなるカレントミラー回路とにより構成される。そして、ギルバートセル回路121aのトランジスタMP1のドレイン電圧とトランジスタMP2のドレイン電圧の差分に相当する電流を出力する。   The output circuit 121b includes a PMOS transistor MP3 whose gate is controlled by the drain voltage of the transistor MP1 of the Gilbert cell circuit 121a, a PMOS transistor MP4 whose gate is controlled by the drain voltage of the transistor MP2, and NMOS transistors MN9 and MN10. And a mirror circuit. Then, a current corresponding to the difference between the drain voltage of the transistor MP1 and the drain voltage of the transistor MP2 of the Gilbert cell circuit 121a is output.

電流/電圧変換回路121cは、オペアンプOP5と、そのオペアンプOP5の正転入力端子に基準電圧を与える電圧源E1と、そのオペアンプOP5の反転入力端子と出力端子との間に接続された帰還抵抗R1と帰還キャパシタC1とで構成され、入力する電流信号を電圧信号に変換してローパスフィルタ123に出力する。   The current / voltage conversion circuit 121c includes an operational amplifier OP5, a voltage source E1 that applies a reference voltage to the normal input terminal of the operational amplifier OP5, and a feedback resistor R1 connected between the inverting input terminal and the output terminal of the operational amplifier OP5. And a feedback capacitor C1, and converts the input current signal into a voltage signal and outputs it to the low-pass filter 123.

図3に図2で説明した直交検波回路121と加算回路122の変形例を示す。加算回路122では、加算器122bを抵抗R2,R3で構成し、加算器122aを抵抗R4,R5で構成している。また、ギルバートセル回路121aでは、負荷としてのトランジスタMP1,MP2を抵抗R6,R7に置き換えている。また、出力回路121bは、抵抗R8とカレントミラー回路を構成するPMOSトランジスタMP5,MP6,MP7と、コモンモードフィードバック回路121b1からなる回路で構成している。コモンモードフィードバック回路121b1は、抵抗R9,R10とNMOSトランジスタMN11,MN12とオペアンプOP6で構成され、電流/電圧変換回路121cの電源E1の電圧をオペアンプOP6の正転入力端子に印加することにより、この出力回路121bの出力端子P1の電圧を電源E1の電圧に対応する電圧に保持して、そこにDCオフセットが生じることを防止している。図2で説明した出力回路121bでは、出力端子P1にDCオフセットが生じるが、ここでは、これを回避している。電流/電圧変換回路121cでは、抵抗R11を追加している。   FIG. 3 shows a modification of the quadrature detection circuit 121 and the addition circuit 122 described in FIG. In the adder circuit 122, the adder 122b includes resistors R2 and R3, and the adder 122a includes resistors R4 and R5. In the Gilbert cell circuit 121a, the transistors MP1 and MP2 as loads are replaced with resistors R6 and R7. The output circuit 121b is configured by a circuit including a resistor R8, PMOS transistors MP5, MP6, and MP7 constituting a current mirror circuit, and a common mode feedback circuit 121b1. The common mode feedback circuit 121b1 includes resistors R9 and R10, NMOS transistors MN11 and MN12, and an operational amplifier OP6. By applying the voltage of the power source E1 of the current / voltage conversion circuit 121c to the normal input terminal of the operational amplifier OP6, the common mode feedback circuit 121b1 The voltage of the output terminal P1 of the output circuit 121b is held at a voltage corresponding to the voltage of the power supply E1, and a DC offset is prevented from occurring there. In the output circuit 121b described in FIG. 2, a DC offset is generated at the output terminal P1, but this is avoided here. In the current / voltage conversion circuit 121c, a resistor R11 is added.

図4にモニタ信号発振回路140の具体例を示す。オペアンプOP1〜OP4はすべて同一回路、同一レイアウト構成であるので、オペアンプOP1を代表して説明する。このオペアンプOP1は、NMOSトランジスタMN21〜MN24、PMOSトランジスタMP21,MP22、抵抗R21〜R26、キャパシタC21,C22、電流源I21〜I23から構成されている。トランジスタMN21,MN22、抵抗R21,R22、電流源I21は差動回路を構成する。また、トランジスタMP21,MN23、抵抗R23,R24、キャパシタC21は正転出力側の負荷回路を構成し、トランジスタMP22,MN24、抵抗R25,R26、キャパシタC22は反転出力側の負荷回路を構成する。   FIG. 4 shows a specific example of the monitor signal oscillation circuit 140. Since the operational amplifiers OP1 to OP4 all have the same circuit and the same layout configuration, the operational amplifier OP1 will be described as a representative. The operational amplifier OP1 includes NMOS transistors MN21 to MN24, PMOS transistors MP21 and MP22, resistors R21 to R26, capacitors C21 and C22, and current sources I21 to I23. Transistors MN21 and MN22, resistors R21 and R22, and current source I21 form a differential circuit. The transistors MP21 and MN23, resistors R23 and R24, and the capacitor C21 constitute a load circuit on the normal output side, and the transistors MP22 and MN24, resistors R25 and R26, and the capacitor C22 constitute a load circuit on the inverted output side.

このモニタ信号発振回路140では、オペアンプOP1〜OP4をすべて同一回路、同一レイアウト構成にすることで、高精度な4相信号(I=0、I=2π、Q=π、Q=3π/4)を取り出すことができる。そして、抵抗R23〜R26、キャパシタC21,C22の定数をパラメータとして調整可能にすることで、4相信号の利得、電圧振幅、高調波の設定の自由度を高めることができる。 In this monitor signal oscillation circuit 140, all the operational amplifiers OP1 to OP4 have the same circuit and the same layout configuration, so that a highly accurate four-phase signal (I + = 0, I = 2π, Q + = π, Q = 3π / 4) can be taken out. And by making the constants of the resistors R23 to R26 and the capacitors C21 and C22 adjustable, it is possible to increase the degree of freedom in setting the gain, voltage amplitude, and harmonics of the four-phase signal.

<送信回路のIQミスマッチ補正>
次に、本発明のIQミスマッチ補正回路における補正動作を説明する。図5は送信回路のIQミスマッチ補正動作を示すフローチャートである。まず、図1の回路におけるスイッチSW0をオフにし(ステップS1)、スイッチSW1,SW2が単相/差動変換回路114から出力するQ信号Q,Qを選択し、スイッチSW3,SW4が遅延回路115から出力するI信号I,Iを選択する側に切り替える。また、スイッチSW5〜SW8をオンにすることで、モニタ信号発振回路140によって発生させた送信モニタI信号I,Iと送信モニタQ信号Q,Qを、送信回路111に入力させる。
<Transmission circuit IQ mismatch correction>
Next, the correction operation in the IQ mismatch correction circuit of the present invention will be described. FIG. 5 is a flowchart showing the IQ mismatch correction operation of the transmission circuit. First, the switch SW0 in the circuit of FIG. 1 is turned off (step S1), the switches SW1 and SW2 select the Q signals Q + and Q output from the single-phase / differential conversion circuit 114, and the switches SW3 and SW4 are delayed. The I signals I + and I output from the circuit 115 are switched to the selection side. Further, by turning on the switches SW5 to SW8, the transmission monitor I signals I + and I and the transmission monitor Q signals Q + and Q generated by the monitor signal oscillation circuit 140 are input to the transmission circuit 111.

これにより、モニタ信号発振回路140で生成されたモニタI信号I,IとモニタQ信号Q,Qが変復調回路110の送信回路111に入力し、直交変調されて送信RF信号となり、包絡線検波部113でRF信号からベースバンド信号に周波数変換され、単相/差動変換部114で差動の送信モニタI信号I,Iとなり、スイッチSW1,SW2によって位相検出回路120に入力する。また、単相/差動変換部114から出力する送信モニタI信号I,Iは、遅延回路115においてπ/2だけ遅延されることで送信モニタQ信号Q,Qとなり、スイッチSW3,SW4によって位相検出回路120に入力する(ステップS2)。 As a result, the monitor I signals I + and I and the monitor Q signals Q + and Q generated by the monitor signal oscillation circuit 140 are input to the transmission circuit 111 of the modulation / demodulation circuit 110, and are orthogonally modulated to become a transmission RF signal. The envelope detection unit 113 converts the frequency from the RF signal to the baseband signal, and the single-phase / differential conversion unit 114 becomes the differential transmission monitor I signals I + and I . The switches SW1 and SW2 switch the phase detection circuit 120 to the phase detection circuit 120. input. The transmission monitor I signals I + and I output from the single-phase / differential converter 114 are delayed by π / 2 in the delay circuit 115 to become transmission monitor Q signals Q + and Q , and the switch SW3 , SW4 to the phase detection circuit 120 (step S2).

このとき、位相検出回路120では、切替制御回路124によって直交検波回路121の電流源I1が動作しており、送信回路111の影響を受けた送信モニタI信号と送信モニタQ信号の位相差の検出が行われ(ステップS3)、その送信モニタQ信号の位相誤差分を示す信号がローパスフィルタ123から補正制御回路130に出力する。   At this time, in the phase detection circuit 120, the current source I1 of the quadrature detection circuit 121 is operated by the switching control circuit 124, and the phase difference between the transmission monitor I signal and the transmission monitor Q signal affected by the transmission circuit 111 is detected. (Step S3), and a signal indicating the phase error of the transmission monitor Q signal is output from the low-pass filter 123 to the correction control circuit 130.

補正制御回路130では、この送信モニタQ信号の位相誤差分を示す信号を取り込んで、その値が設定範囲内(許容範囲内)にあるか否かを判定する(ステップS4)。設定範囲内にないときは、次にその送信モニタQ信号の位相が設定範囲から遅れているか進んでいるかを比較判定する(ステップS5)。そして、送信モニタQ信号が遅れている場合はその位相が進むように、送信回路111の移相器PS1の移相量を1段だけ進める(ステップS6)。また、送信モニタQ信号が進んでいる場合はその位相が遅れるように、送信回路111の移相器PS1の移相量を1段だけ遅らせる(ステップS7)。   The correction control circuit 130 takes in a signal indicating the phase error of the transmission monitor Q signal and determines whether or not the value is within the set range (allowable range) (step S4). If it is not within the set range, it is then compared to determine whether the phase of the transmission monitor Q signal is delayed or advanced from the set range (step S5). Then, when the transmission monitor Q signal is delayed, the phase shift amount of the phase shifter PS1 of the transmission circuit 111 is advanced by one stage so that the phase is advanced (step S6). If the transmission monitor Q signal is advanced, the phase shift amount of the phase shifter PS1 of the transmission circuit 111 is delayed by one stage so that the phase is delayed (step S7).

この後、再度、送信モニタI信号と送信モニタQ信号を取り込んで(ステップS2)、送信モニタQ信号の位相誤差成分が設定範囲内にないときは、ステップS3〜S7で同様な動作が繰り返される。   Thereafter, the transmission monitor I signal and the transmission monitor Q signal are taken again (step S2), and when the phase error component of the transmission monitor Q signal is not within the set range, the same operation is repeated in steps S3 to S7. .

ステップS4の判定において、送信モニタQ信号の位相誤差が設定範囲内にあると判定されたときは、振幅検出(ステップS8)に移行する。このときは、位相検出回路120において、切替制御回路124によって直交検波回路121の電流源I2が動作するよう切り替えられる。これにより、送信モニタI信号と送信モニタQ信号を加算した信号と送信モニタI信号との位相差の検出が行われ、その位相差を示す信号がローパスフィルタ123から補正制御回路130に出力する。   If it is determined in step S4 that the phase error of the transmission monitor Q signal is within the set range, the process proceeds to amplitude detection (step S8). At this time, in the phase detection circuit 120, the switching control circuit 124 switches so that the current source I2 of the quadrature detection circuit 121 operates. Thereby, the phase difference between the signal obtained by adding the transmission monitor I signal and the transmission monitor Q signal and the transmission monitor I signal is detected, and a signal indicating the phase difference is output from the low-pass filter 123 to the correction control circuit 130.

このとき、補正制御回路130では、この位相差を示す信号を取り込んで、前記した手法(図7)によって送信モニタI信号と送信モニタQ信号の振幅誤差成分を生成する。そして、その振幅誤差成分の値(図7のB/Aに相当)が設定範囲内(許容範囲内)にあるか否かを判定する(ステップS9)。設定範囲内にないときは、次にその送信モニタQ信号の振幅が送信モニタI信号の振幅に対して設定範囲より大きいか小さいかを比較判定する(ステップS10)。そして、送信モニタQ信号の振幅が小さい場合はその振幅が大きくなるように、送信回路111の増幅器AMP2の利得を1段だけ高くする方向に調整する(ステップS11)。逆に、送信モニタQ信号の振幅が大きい場合はその振幅が小さくなるように、その増幅器AMP2の利得を1段だけ低くする方向に調整する(ステップS12)。   At this time, the correction control circuit 130 takes in a signal indicating this phase difference and generates amplitude error components of the transmission monitor I signal and the transmission monitor Q signal by the above-described method (FIG. 7). Then, it is determined whether or not the value of the amplitude error component (corresponding to B / A in FIG. 7) is within the setting range (within the allowable range) (step S9). If it is not within the set range, then it is compared and determined whether the amplitude of the transmission monitor Q signal is larger or smaller than the set range with respect to the amplitude of the transmission monitor I signal (step S10). When the amplitude of the transmission monitor Q signal is small, the gain of the amplifier AMP2 of the transmission circuit 111 is adjusted to be increased by one stage so that the amplitude is increased (step S11). On the contrary, when the amplitude of the transmission monitor Q signal is large, the gain of the amplifier AMP2 is adjusted to be lowered by one stage so that the amplitude becomes small (step S12).

この後、再度、送信モニタI信号と送信モニタQ信号を取り込んで(ステップS13)、振幅誤差成分が設定範囲内にないときは、ステップS9〜S13で同様な動作が繰り返される。   Thereafter, the transmission monitor I signal and the transmission monitor Q signal are taken again (step S13), and when the amplitude error component is not within the set range, the same operation is repeated in steps S9 to S13.

ステップS9の判定において、振幅誤差成分が設定範囲内にあると判定されたときは、ステップS14、S15に移行し、ステップS15の判定において位相差が設定範囲内にないと判定されれば、ステップS5に戻り、設定範囲内にあると判定されれば、送信回路111の移相器PS1の移相調整と増幅器AMP2の利得調整を終える。これにより、送信回路111のIQミスマッチ補正が完了する。   If it is determined in step S9 that the amplitude error component is within the set range, the process proceeds to steps S14 and S15. If it is determined in step S15 that the phase difference is not within the set range, step S14 is performed. Returning to S5, if determined to be within the set range, the phase shift adjustment of the phase shifter PS1 and the gain adjustment of the amplifier AMP2 of the transmission circuit 111 are finished. Thereby, the IQ mismatch correction of the transmission circuit 111 is completed.

<受信回路のIQミスマッチ補正>
図6は受信回路112のIQミスマッチ補正動作を示すフローチャートである。このときは、送信回路111のミスマッチ補正は完了しているものとする。つまり、送信回路111にはIQミスマッチはないものとする。
<Receiving circuit IQ mismatch correction>
FIG. 6 is a flowchart showing the IQ mismatch correction operation of the receiving circuit 112. At this time, it is assumed that the mismatch correction of the transmission circuit 111 has been completed. That is, it is assumed that the transmission circuit 111 has no IQ mismatch.

ここでは、図1の回路におけるスイッチSW0をオンにする(ステップS21)。また、スイッチSW1,SW2が受信回路112から出力する受信モニタQ信号Q,Qを選択し、スイッチSW3,SW4が受信回路112から出力する受信モニタI信号I,Iを選択する側に切り替えられる。また、スイッチSW5〜SW8をオンにすることで、モニタ信号発振回路140によって発生させたモニタI信号I,IとモニタQ信号Q,Qを、送信回路111に入力させる。 Here, the switch SW0 in the circuit of FIG. 1 is turned on (step S21). Further, the switches SW1 and SW2 select the reception monitor Q signals Q + and Q output from the reception circuit 112, and the switches SW3 and SW4 select the reception monitor I signals I + and I output from the reception circuit 112. Can be switched to. Further, by turning on the switches SW5 to SW8, the monitor I signals I + and I and the monitor Q signals Q + and Q generated by the monitor signal oscillation circuit 140 are input to the transmission circuit 111.

これにより、モニタ信号発振回路140で生成されたモニタI信号I,IとモニタQ信号Q,Qが変復調回路110のIQミスマッチが補正済の送信回路111に入力し、直交変調されて送信RF信号となり、スイッチSW0を経由して受信回路112に受信RF信号として入力し、直交復調されて受信モニタI信号I,Iと受信モニタQ信号Q,Qとなり、スイッチSW1〜W4によって位相検出回路120に入力する(ステップS22)。 As a result, the monitor I signals I + , I and the monitor Q signals Q + , Q generated by the monitor signal oscillation circuit 140 are input to the transmission circuit 111 in which the IQ mismatch of the modulation / demodulation circuit 110 is corrected and quadrature modulated. The received RF signal is input to the receiving circuit 112 via the switch SW0 as a received RF signal, and is orthogonally demodulated to receive monitor I signals I + , I and receive monitor Q signals Q + , Q , and the switch SW1 Are input to the phase detection circuit 120 through .about.W4 (step S22).

このとき、位相検出回路120では、切替制御回路124によって直交検波回路121の電流源I1が動作しており、受信モニタI信号と受信モニタQ信号の位相差の検出が行われ(ステップS23)、その受信モニタQ信号の位相誤差分を示す信号がローパスフィルタ123から補正制御回路130に出力する。   At this time, in the phase detection circuit 120, the switching control circuit 124 operates the current source I1 of the quadrature detection circuit 121, and the phase difference between the reception monitor I signal and the reception monitor Q signal is detected (step S23). A signal indicating the phase error of the reception monitor Q signal is output from the low-pass filter 123 to the correction control circuit 130.

補正制御回路130では、この受信モニタQ信号の位相誤差分を示す信号を取り込んで、その値が設定範囲内(許容範囲内)にあるか否かを判定する(ステップS24)。設定範囲内にないときは、次にその受信モニタQ信号の位相が設定範囲から遅れているか進んでいるかを比較判定する(ステップS25)。そして、受信モニタQ信号が遅れている場合はその位相が進むように、受信回路112の移相器PS2の移相量を1段だけ進める(ステップS26)。また、受信モニタQ信号が進んでいる場合はその位相が遅れるように、受信回路112の移相器PS3の移相量を1段だけ遅らせる(ステップS27)。   The correction control circuit 130 takes in a signal indicating the phase error of the reception monitor Q signal and determines whether or not the value is within the set range (within the allowable range) (step S24). If it is not within the set range, it is then compared to determine whether the phase of the reception monitor Q signal is delayed or advanced from the set range (step S25). Then, when the reception monitor Q signal is delayed, the phase shift amount of the phase shifter PS2 of the reception circuit 112 is advanced by one stage so that the phase is advanced (step S26). If the reception monitor Q signal is advanced, the phase shift amount of the phase shifter PS3 of the reception circuit 112 is delayed by one stage so that the phase is delayed (step S27).

この後、再度、受信モニタI信号と受信モニタQ信号を取り込んで(ステップS22)、受信モニタQ信号の位相誤差成分が設定範囲内にないときは、ステップS23〜S27で同様な動作が繰り返される。   Thereafter, the reception monitor I signal and the reception monitor Q signal are taken again (step S22), and when the phase error component of the reception monitor Q signal is not within the set range, the same operation is repeated in steps S23 to S27. .

ステップS24の判定において、受信モニタQ信号の位相誤差が設定範囲内にあるときは、振幅検出(ステップS28)に移行する。このときは、位相検出回路120で、切替制御回路124によって直交検波回路121の電流源I2が動作するよう切り替えられる。これにより、受信モニタI信号と受信モニタQ信号を加算した信号と受信モニタI信号との位相差の検出が行われ、その位相差を示す信号がローパスフィルタ123から補正制御回路130に出力する。   If it is determined in step S24 that the phase error of the reception monitor Q signal is within the set range, the process proceeds to amplitude detection (step S28). At this time, in the phase detection circuit 120, the switching control circuit 124 switches so that the current source I2 of the quadrature detection circuit 121 operates. Thereby, the phase difference between the signal obtained by adding the reception monitor I signal and the reception monitor Q signal and the reception monitor I signal is detected, and a signal indicating the phase difference is output from the low-pass filter 123 to the correction control circuit 130.

このとき、補正制御回路130では、この位相差を示す信号を取り込んで、前記した手法(図7)によって受信モニタI信号と受信モニタQ信号の振幅誤差成分を生成する。そして、その振幅誤差成分の値(図7のB/Aに相当)が設定範囲内(許容範囲内)にあるか否かを判定する(ステップS29)。設定範囲内にないときは、次にその受信モニタQ信号の振幅が受信モニタI信号の振幅に対して設定範囲より大きいか小さいかを比較判定する(ステップS30)。そして、受信モニタQ信号の振幅が小さい場合はその振幅が大きくなるように、受信回路112の増幅器AMP3の利得を1段だけ高くする方向に調整する(ステップS31)。逆に、受信モニタQ信号の振幅が大きい場合はその振幅が小さくなるように、その増幅器AMP4の利得を1段だけ低くする方向に調整する(ステップS32)。   At this time, the correction control circuit 130 takes in a signal indicating this phase difference and generates amplitude error components of the reception monitor I signal and the reception monitor Q signal by the above-described method (FIG. 7). Then, it is determined whether or not the value of the amplitude error component (corresponding to B / A in FIG. 7) is within the setting range (within the allowable range) (step S29). If it is not within the set range, then it is determined whether the amplitude of the reception monitor Q signal is larger or smaller than the set range with respect to the amplitude of the reception monitor I signal (step S30). Then, when the amplitude of the reception monitor Q signal is small, the gain of the amplifier AMP3 of the reception circuit 112 is adjusted to be increased by one stage so that the amplitude becomes large (step S31). On the contrary, when the amplitude of the reception monitor Q signal is large, the gain of the amplifier AMP4 is adjusted to be lowered by one stage so that the amplitude becomes small (step S32).

この後、再度、受信モニタI信号と受信モニタQ信号を取り込んで(ステップS33)、振幅誤差成分が設定範囲内にないときは、ステップS29〜S33で同様な動作が繰り返される。   Thereafter, the reception monitor I signal and the reception monitor Q signal are taken again (step S33), and when the amplitude error component is not within the set range, the same operation is repeated in steps S29 to S33.

ステップS29の判定において、振幅誤差成分が設定範囲内にあると判定されたときは、ステップS34、S35に移行し、ステップS35の判定において位相差が設定範囲内にないと判定されれば、ステップS25に戻り、設定範囲内にあると判定されれば、受信回路112の移相器PS2の移相調整と増幅器AMP4の利得調整を終える。これにより、受信回路112のIQミスマッチ補正が完了する。   If it is determined in step S29 that the amplitude error component is within the set range, the process proceeds to steps S34 and S35. If it is determined in step S35 that the phase difference is not within the set range, step S34 is performed. Returning to S25, if determined to be within the set range, the phase shift adjustment of the phase shifter PS2 and the gain adjustment of the amplifier AMP4 of the reception circuit 112 are finished. Thereby, the IQ mismatch correction of the receiving circuit 112 is completed.

なお、以上説明した実施例では、包絡線検波部(周波数変換回路)113で受信RF信号から送信モニタI信号を取り出すようにしたが、送信モニタI信号に代えて送信モニタQ信号を取り出すようにしてもよい。このときは、遅延回路115から送信I信号が取り出されることになる。よって、スイッチSW1とSW3を入れ替え、スイッチSW2とSW4を入れ替える必要がある。   In the above-described embodiment, the envelope detector (frequency conversion circuit) 113 extracts the transmission monitor I signal from the received RF signal. However, the transmission monitor Q signal is extracted instead of the transmission monitor I signal. May be. At this time, the transmission I signal is extracted from the delay circuit 115. Therefore, it is necessary to replace the switches SW1 and SW3 and to replace the switches SW2 and SW4.

100:RFフロント回路
110:送受信回路、111:送信回路、112:受信回路
120:位相検出回路、121:直交検波回路、121a:ギルバートセル回路、121b:出力回路、121c:電流/電圧変換回路、122:加算回路
130:補正制御回路
140:モニタ信号発振回路
150:第1のスイッチ回路
160:第2のスイッチ回路
200:ベースバンド回路
210:ディジタルベースバンド回路、211:FFT回路、212:演算回路、213:IQ信号発振回路
100: RF front circuit 110: Transmission / reception circuit, 111: Transmission circuit, 112: Reception circuit 120: Phase detection circuit, 121: Quadrature detection circuit, 121a: Gilbert cell circuit, 121b: Output circuit, 121c: Current / voltage conversion circuit, 122: addition circuit 130: correction control circuit 140: monitor signal oscillation circuit 150: first switch circuit 160: second switch circuit 200: baseband circuit 210: digital baseband circuit 211: FFT circuit 212: arithmetic circuit 213: IQ signal oscillation circuit

Claims (8)

互いに直交関係にある送信I信号と送信Q信号を入力し、送信Iローカル信号と送信Qローカル信号とにより直交変調した後に加算し、送信RF信号として送信する送信回路を備えた送受信装置のIQミスマッチ補正方法において、
内部で発生したモニタI信号とモニタQ信号を前記送信回路に入力し直交変調した後に加算してモニタRF信号を生成し、
該モニタRF信号をベースバンド信号の周波数に周波数変換して送信モニタI信号と送信モニタQ信号の一方の信号を生成するとともに、該生成した前記一方の信号を遅延処理して前記送信モニタI信号と前記送信モニタQ信号の他方を生成し、
前記送信モニタI信号と前記送信モニタQ信号との送信側位相誤差を検出し、
前記送信モニタI信号と前記送信モニタQ信号を加算した信号と前記送信モニタI信号又は前記送信モニタQ信号との位相差に基づき、前記送信モニタI信号と前記送信モニタQ信号の送信側振幅誤差を検出し、
前記送信側位相誤差に基づき前記送信回路の移相器の移相量を制御して前記送信Iローカル信号と前記送信Qローカル信号の位相差を補正し、前記送信側振幅誤差に基づき前記送信回路の増幅器を制御して前記送信I信号と前記送信Q信号の利得差を補正する、
ことを特徴とする送受信装置のIQミスマッチ補正方法。
IQ mismatch of a transmission / reception apparatus including a transmission circuit that inputs a transmission I signal and a transmission Q signal that are orthogonal to each other, adds after performing quadrature modulation with the transmission I local signal and the transmission Q local signal, and transmits as a transmission RF signal In the correction method,
An internally generated monitor I signal and monitor Q signal are input to the transmission circuit and orthogonally modulated and then added to generate a monitor RF signal,
The monitor RF signal is frequency converted to the frequency of the baseband signal to generate one signal of a transmission monitor I signal and a transmission monitor Q signal, and the generated one signal is subjected to delay processing to generate the transmission monitor I signal. And the other of the transmission monitor Q signal,
Detecting a transmission-side phase error between the transmission monitor I signal and the transmission monitor Q signal;
Based on a phase difference between a signal obtained by adding the transmission monitor I signal and the transmission monitor Q signal and the transmission monitor I signal or the transmission monitor Q signal, a transmission-side amplitude error between the transmission monitor I signal and the transmission monitor Q signal. Detect
A phase shift amount of a phase shifter of the transmission circuit is controlled based on the transmission side phase error to correct a phase difference between the transmission I local signal and the transmission Q local signal, and the transmission circuit is based on the transmission side amplitude error. A gain difference between the transmission I signal and the transmission Q signal is controlled by controlling the amplifier of
An IQ mismatch correction method for a transmission / reception device.
IQミスマッチが補正された請求項1に記載の送信回路と、該送信回路から受信した受信RF信号を受信Iローカル信号と受信Qローカル信号とにより直交復調して受信I信号と受信Q信号に分離する受信回路と、を備えた送受信装置のIQミスマッチ補正方法において、
前記モニタI信号と前記モニタQ信号をIQミスマッチが補正されている前記送信回路に入力して前記送信回路から前記送信RF信号を出力し、前記送信RF信号を前記受信回路により受信し、前記受信Iローカル信号と前記受信Qローカル信号とにより直交復調して受信モニタI信号と受信モニタQ信号を生成し、
前記受信モニタI信号と前記受信モニタQ信号との受信側位相誤差を検出し、
前記受信モニタI信号と前記受信モニタQ信号を加算した信号と前記受信モニタI信号又は前記受信モニタQ信号との位相差に基づき、前記受信モニタI信号と前記受信モニタQ信号の受信側振幅誤差を検出し、
前記受信側位相誤差に基づき前記受信回路の移相器の移相量を制御して前記受信Iローカル信号と前記受信Qローカル信号の位相差を補正し、前記受信側振幅誤差に基づき前記受信回路の増幅器の利得を制御して前記受信I信号と前記受信Q信号の利得差を補正する、
ことを特徴とする送受信装置のIQミスマッチ補正方法。
2. The transmission circuit according to claim 1, wherein the IQ mismatch is corrected, and the reception RF signal received from the transmission circuit is orthogonally demodulated by the reception I local signal and the reception Q local signal and separated into a reception I signal and a reception Q signal. An IQ mismatch correction method for a transmission / reception device comprising:
The monitor I signal and the monitor Q signal are input to the transmission circuit in which IQ mismatch is corrected, the transmission RF signal is output from the transmission circuit, the transmission RF signal is received by the reception circuit, and the reception The reception monitor I signal and the reception monitor Q signal are generated by performing orthogonal demodulation with the I local signal and the reception Q local signal,
Detecting a reception-side phase error between the reception monitor I signal and the reception monitor Q signal;
Based on the phase difference between the signal obtained by adding the reception monitor I signal and the reception monitor Q signal and the reception monitor I signal or the reception monitor Q signal, a reception-side amplitude error between the reception monitor I signal and the reception monitor Q signal. Detect
A phase shift amount of a phase shifter of the reception circuit is controlled based on the reception side phase error to correct a phase difference between the reception I local signal and the reception Q local signal, and the reception circuit is based on the reception side amplitude error. A gain difference between the received I signal and the received Q signal is controlled by controlling a gain of the amplifier;
An IQ mismatch correction method for a transmission / reception device.
互いに直交関係にある送信I信号と送信Q信号を入力し、送信Iローカル信号と送信Qローカル信号とにより直交変調した後に加算し、送信RF信号として送信する送信回路を備えた送受信装置において、
モニタI信号とモニタQ信号を生成するモニタ信号発振回路と、
前記モニタ信号発振回路から出力した前記モニタI信号と前記モニタQ信号が前記送信回路に入力して直交変調された後に加算されたモニタRF信号を入力し周波数変換して、送信モニタI信号と送信モニタQ信号の一方の信号を生成する周波数変換回路と、
該周波数変換回路から出力する前記一方の信号を遅延して前記送信モニタI信号と前記送信モニタQ信号の他方を生成する遅延回路と、
前記送信モニタI信号と前記送信モニタQ信号との位相差を検出して送信側第1位相誤差信号を生成するとともに、前記送信モニタI信号と前記送信モニタQ信号を加算した信号と前記送信モニタI信号又は前記送信モニタQ信号との位相差を検出して送信側第2位相誤差信号を生成する位相検出回路と、
該位相検出回路で得られた前記送信側第1位相誤差信号に基づき前記送信回路の移相器の移相量を制御して前記送信Iローカル信号と前記送信Qローカル信号の位相差を補正し、前記位相検出回路で得られた前記送信側第2位相誤差信号に基づき前記送信I信号と前記送信Q信号の送信側振幅誤差信号を求め、該送信側振幅誤差信号に基づき前記送信回路の増幅器の利得を制御して前記送信I信号と前記送信Q信号の利得を補正する補正制御回路と、
を備えることを特徴とする送受信装置。
In a transmission / reception apparatus including a transmission circuit that inputs a transmission I signal and a transmission Q signal that are orthogonal to each other, adds after performing quadrature modulation with the transmission I local signal and the transmission Q local signal, and transmits as a transmission RF signal.
A monitor signal oscillation circuit for generating a monitor I signal and a monitor Q signal;
The monitor I signal output from the monitor signal oscillation circuit and the monitor Q signal are input to the transmission circuit and quadrature modulated and then added to the monitor RF signal, and the frequency is converted to transmit the monitor I signal and the transmission. A frequency conversion circuit for generating one of the monitor Q signals;
A delay circuit that delays the one signal output from the frequency conversion circuit to generate the other of the transmission monitor I signal and the transmission monitor Q signal;
A transmission side first phase error signal is generated by detecting a phase difference between the transmission monitor I signal and the transmission monitor Q signal, and a signal obtained by adding the transmission monitor I signal and the transmission monitor Q signal to the transmission monitor A phase detection circuit that detects a phase difference from the I signal or the transmission monitor Q signal and generates a transmission-side second phase error signal;
Based on the first phase error signal on the transmission side obtained by the phase detection circuit, the phase shift amount of the phase shifter of the transmission circuit is controlled to correct the phase difference between the transmission I local signal and the transmission Q local signal. A transmission side amplitude error signal of the transmission I signal and the transmission Q signal is obtained based on the transmission side second phase error signal obtained by the phase detection circuit, and an amplifier of the transmission circuit is obtained based on the transmission side amplitude error signal. A correction control circuit for controlling the gain of the transmission I signal and the transmission Q signal by controlling the gain of the transmission I signal,
A transmission / reception apparatus comprising:
IQミスマッチが補正された請求項3に記載の送信回路と、受信回路と、を備えた送受信装置において、
前記受信回路は、前記送信回路から出力するIQミスマッチが補正されたモニタRF信号を入力して、受信Iローカル信号と受信Qローカル信号とにより直交復調して、受信モニタI信号と受信モニタQ信号を生成し、
前記位相検出回路は、さらに、前記受信モニタI信号と前記受信モニタQ信号との位相差を検出して受信側第1位相誤差信号を生成するとともに、前記受信モニタI信号と前記受信モニタQ信号を加算した信号と前記受信モニタI信号又は前記受信モニタQ信号との位相差を検出して受信側第2位相誤差信号を生成し、
前記補正制御回路は、さらに、前記位相検出回路で得られた前記受信側第1位相誤差信号に基づき前記受信回路の移相器の移相量を制御して前記受信Iローカル信号と前記受信Qローカル信号の位相差を補正し、前記位相検出回路で得られた前記受信側第2位相誤差信号に基づき前記受信I信号と前記受信Q信号の受信側振幅誤差信号を求め、該受信側振幅誤差信号に基づき前記受信回路の増幅器の利得を制御して前記受信I信号と前記受信Q信号の利得を補正する、
ことを特徴とする送受信装置。
In the transmission / reception apparatus comprising the transmission circuit according to claim 3 and the reception circuit corrected for IQ mismatch,
The reception circuit receives the monitor RF signal corrected from the IQ mismatch output from the transmission circuit, performs quadrature demodulation with the reception I local signal and the reception Q local signal, and receives the reception monitor I signal and the reception monitor Q signal. Produces
The phase detection circuit further detects a phase difference between the reception monitor I signal and the reception monitor Q signal to generate a reception-side first phase error signal, and also receives the reception monitor I signal and the reception monitor Q signal. , And the reception monitor I signal or the reception monitor Q signal is detected to generate a reception-side second phase error signal,
The correction control circuit further controls the amount of phase shift of the phase shifter of the receiving circuit based on the first phase error signal on the receiving side obtained by the phase detecting circuit, and the received I local signal and the received Q A phase difference between local signals is corrected, a reception side amplitude error signal between the reception I signal and the reception Q signal is obtained based on the reception side second phase error signal obtained by the phase detection circuit, and the reception side amplitude error is obtained. Controlling the gain of the amplifier of the receiving circuit based on the signal to correct the gain of the received I signal and the received Q signal;
A transmitting / receiving apparatus characterized by the above.
請求項3に記載の送受信装置において、
前記補正制御回路は、前記送信側第2位相誤差と前記送信側振幅誤差との関係を示す第1テーブルを備えることを特徴とする送受信装置。
The transmission / reception apparatus according to claim 3,
The transmission / reception apparatus, wherein the correction control circuit includes a first table indicating a relationship between the transmission-side second phase error and the transmission-side amplitude error.
請求項4に記載の送受信装置において、
前記補正制御回路は、前記送信側第2位相誤差と前記送信側振幅誤差との関係を示す第1テーブルと、前記受信側第2位相誤差と前記受信側振幅誤差との関係を示す第2テーブルとを備えることを特徴とする送受信装置。
The transmission / reception apparatus according to claim 4,
The correction control circuit includes a first table indicating a relationship between the transmission-side second phase error and the transmission-side amplitude error, and a second table indicating a relationship between the reception-side second phase error and the reception-side amplitude error. A transmission / reception device comprising:
請求項3に記載の送受信装置において、
前記位相検出回路は、第1タイミングで前記送信モニタI信号と前記送信モニタQ信号を加算する加算器と、第2タイミングで前記送信モニタI信号と前記送信モニタQ信号を乗算して前記送信側第1位相誤差信号を生成し、前記第1タイミングで前記加算器の出力と前記送信モニタI信号又は前記送信モニタQ信号とを乗算して前記送信側第2位相差信号を生成する直交検波回路と、を備えることを特徴とする送受信装置。
The transmission / reception apparatus according to claim 3,
The phase detection circuit includes an adder that adds the transmission monitor I signal and the transmission monitor Q signal at a first timing, and multiplies the transmission monitor I signal and the transmission monitor Q signal at a second timing. A quadrature detection circuit that generates a first phase error signal and multiplies the output of the adder by the transmission monitor I signal or the transmission monitor Q signal at the first timing to generate the transmission-side second phase difference signal. And a transmission / reception apparatus comprising:
請求項4に記載の送受信装置において、
前記位相検出回路の前記加算器は、さらに、第3タイミングで前記受信モニタI信号と前記受信モニタQ信号を加算し、
前記位相検出回路の前記直交検波回路は、さらに、第4タイミングで前記受信モニタI信号と前記受信モニタQ信号を乗算して前記受信側第1位相誤差信号を生成し、前記第3タイミングで前記加算器の出力と前記受信モニタI信号又は前記受信モニタQ信号とを乗算して前記受信側第2位相差信号を生成する、
ことを特徴とする送受信装置。
The transmission / reception apparatus according to claim 4,
The adder of the phase detection circuit further adds the reception monitor I signal and the reception monitor Q signal at a third timing,
The quadrature detection circuit of the phase detection circuit further generates the reception-side first phase error signal by multiplying the reception monitor I signal and the reception monitor Q signal at a fourth timing, and at the third timing, Multiplying the output of the adder and the reception monitor I signal or the reception monitor Q signal to generate the reception-side second phase difference signal;
A transmitting / receiving apparatus characterized by the above.
JP2014161517A 2014-08-07 2014-08-07 IQ mismatch correction method and transmitter / receiver Active JP6408291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014161517A JP6408291B2 (en) 2014-08-07 2014-08-07 IQ mismatch correction method and transmitter / receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014161517A JP6408291B2 (en) 2014-08-07 2014-08-07 IQ mismatch correction method and transmitter / receiver

Publications (2)

Publication Number Publication Date
JP2016039482A true JP2016039482A (en) 2016-03-22
JP6408291B2 JP6408291B2 (en) 2018-10-17

Family

ID=55530246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014161517A Active JP6408291B2 (en) 2014-08-07 2014-08-07 IQ mismatch correction method and transmitter / receiver

Country Status (1)

Country Link
JP (1) JP6408291B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923840A (en) * 2017-09-27 2019-06-21 马克设备株式会社 Phase analysis circuit
JPWO2022172425A1 (en) * 2021-02-15 2022-08-18

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11374803B2 (en) 2020-10-16 2022-06-28 Analog Devices, Inc. Quadrature error correction for radio transceivers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136836A (en) * 1991-09-18 1993-06-01 Yokogawa Electric Corp Digital modulation signal generator
JPH1141033A (en) * 1997-07-22 1999-02-12 Oki Electric Ind Co Ltd Orthogonal balance mixer circuit and receiver
JP2006526348A (en) * 2003-05-30 2006-11-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for estimating IQ imbalance
US20070202812A1 (en) * 2006-02-23 2007-08-30 Joonbae Park Tranceiver circuit for compensating IQ mismatch and carrier leakage and method for controlling the same
WO2009008445A1 (en) * 2007-07-10 2009-01-15 Nec Corporation Signal processor and signal processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136836A (en) * 1991-09-18 1993-06-01 Yokogawa Electric Corp Digital modulation signal generator
JPH1141033A (en) * 1997-07-22 1999-02-12 Oki Electric Ind Co Ltd Orthogonal balance mixer circuit and receiver
JP2006526348A (en) * 2003-05-30 2006-11-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for estimating IQ imbalance
US20070202812A1 (en) * 2006-02-23 2007-08-30 Joonbae Park Tranceiver circuit for compensating IQ mismatch and carrier leakage and method for controlling the same
WO2009008445A1 (en) * 2007-07-10 2009-01-15 Nec Corporation Signal processor and signal processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109923840A (en) * 2017-09-27 2019-06-21 马克设备株式会社 Phase analysis circuit
JPWO2022172425A1 (en) * 2021-02-15 2022-08-18
JP7286030B2 (en) 2021-02-15 2023-06-02 三菱電機株式会社 Amplitude phase detection circuit

Also Published As

Publication number Publication date
JP6408291B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
JP3398910B2 (en) Image rejection receiver
EP1786097A1 (en) Receiver using DC Offset Adjustment for optimal IP2
JP4901679B2 (en) Wireless transmission / reception device and wireless transmission method
JPH08508632A (en) I / Q quadrature modulator circuit
JP2006101388A (en) Receiver, receiving method and mobile radio terminal
JP2011160214A (en) Receiving apparatus and image rejection method
WO2006101094A1 (en) Transmitting apparatus, communication device, and mobile wireless unit
JP5360210B2 (en) Polyphase filter and single sideband mixer having the same
US20140146917A1 (en) Transmitter with pre-distortion module, a method thereof
JP6408291B2 (en) IQ mismatch correction method and transmitter / receiver
JP2007104007A (en) Orthogonal modulator, and vector correction method in the same
EP1916764B1 (en) Method and apparatus for compensating for mismatch occurring in radio frequency quadrature transceiver
US20190158325A1 (en) Carrier leakage correction method for quadrature modulator
JP5429191B2 (en) Reception device, image signal attenuation method, and mismatch compensation method
US6490326B1 (en) Method and apparatus to correct for in-phase and quadrature-phase gain imbalance in communication circuitry
EP2995052B1 (en) Correction of quadrature phase and gain mismatch in receiver down-conversion using a dual cordic architecture
JP5292061B2 (en) Quadrature demodulator
JP2006262156A (en) Transmission apparatus and strain compensation method for transmission amplifier
JP6445286B2 (en) Phase detector, phase adjustment circuit, receiver and transmitter
JP6148728B2 (en) Transmitter
US7209723B2 (en) Direct conversion circuit having reduced bit errors
US20080075198A1 (en) Method for I/Q signal adjustment
JP2006511144A (en) Mixer system with amplitude correction, in-phase correction and phase correction
JP6463565B1 (en) Image rejection mixer and communication circuit
JP6921358B2 (en) Mixer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180920

R150 Certificate of patent or registration of utility model

Ref document number: 6408291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250