JP2016037867A - Electric heating type catalyst device - Google Patents

Electric heating type catalyst device Download PDF

Info

Publication number
JP2016037867A
JP2016037867A JP2014159746A JP2014159746A JP2016037867A JP 2016037867 A JP2016037867 A JP 2016037867A JP 2014159746 A JP2014159746 A JP 2014159746A JP 2014159746 A JP2014159746 A JP 2014159746A JP 2016037867 A JP2016037867 A JP 2016037867A
Authority
JP
Japan
Prior art keywords
carrier
wiring member
catalyst device
outer cylinder
electrically heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014159746A
Other languages
Japanese (ja)
Inventor
秀次 内藤
Hideji Naito
秀次 内藤
夏樹 杉山
Natsuki Sugiyama
夏樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014159746A priority Critical patent/JP2016037867A/en
Publication of JP2016037867A publication Critical patent/JP2016037867A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress the occurrence of crack in a catalyst support due to a heating cycle.SOLUTION: An electric heating type catalyst device includes a catalyst support 10 for supporting a catalyst, a pair of electric diffusion layers 11 formed opposing each other on the outer peripheral face of the catalyst support 10, wiring members 30 fixed to the respective electric diffusion layers 11, and an outer cylinder 60 covering the outer peripheral face of the catalyst support 10 and having openings 61 in the side face for the wiring members 30 to be drawn out thereof to the outside. The catalyst support 10 is subjected to electric heating via the wiring members 30. Each wiring member 30 has a heat release suppressing structure on a drawn part 32 drawn out of the outer cylinder 60 for suppressing heat release.SELECTED DRAWING: Figure 5

Description

本発明は通電加熱式触媒装置に関する。   The present invention relates to an electrically heated catalyst device.

近年、自動車等のエンジンから排出される排気ガスを浄化する排気浄化装置として通電加熱式触媒(EHC:Electrically Heated Catalyst)装置が注目されている。EHCでは、エンジンの始動直後などのように排気ガスの温度が低く、触媒が活性化し難い条件下であっても、通電加熱により強制的に触媒を活性化させ、排気ガスの浄化効率を高めることができる。   2. Description of the Related Art In recent years, an electrically heated catalyst (EHC) device has attracted attention as an exhaust purification device that purifies exhaust gas discharged from an engine such as an automobile. In EHC, even if the exhaust gas temperature is low, such as immediately after the engine is started, and the catalyst is difficult to activate, the catalyst is forcibly activated by energization heating to increase the exhaust gas purification efficiency. Can do.

特許文献1に開示されたEHCでは、白金やパラジウム等の触媒を担持するハニカム構造を有する円柱状の担体の外周面に、当該担体の軸方向に延設された表面電極が形成されている。そして、表面電極に櫛歯状の配線が接続され、電流が供給される。この電流が表面電極において担体軸方向に広がることにより、担体全体が通電加熱される。これにより、担体に担持された触媒が活性化され、担体を通過する排気ガス中の未燃焼HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)等が触媒反応により浄化される。   In the EHC disclosed in Patent Document 1, a surface electrode extending in the axial direction of the carrier is formed on the outer peripheral surface of a columnar carrier having a honeycomb structure carrying a catalyst such as platinum or palladium. Then, comb-like wiring is connected to the surface electrode, and current is supplied. When this current spreads in the direction of the carrier axis in the surface electrode, the whole carrier is heated by energization. As a result, the catalyst supported on the carrier is activated, and unburned HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxide), etc. in the exhaust gas passing through the carrier are purified by the catalytic reaction. The

特開2013−136997号公報JP 2013-136997 A

発明者らは、通電加熱式触媒装置に関し、以下の課題を見出した。
上述の通電加熱式触媒装置では、昇温・降温の繰り返し(熱サイクル)により、担体にクラックが発生し、一部の配線には電流が流れ難くなるとともに、他の配線に電流が集中し、溶断に至るという問題があった。
The inventors have found the following problems with respect to the electrically heated catalyst device.
In the above-mentioned current heating type catalyst device, cracks occur in the carrier due to repeated heating and cooling (thermal cycle), current becomes difficult to flow in some wirings, and current concentrates in other wirings, There was a problem of fusing.

発明者らは、この担体におけるクラック発生の原因を探求した。図7は、従来の通電加熱式触媒装置における担体と電気拡散層との温度変化を示したグラフである。横軸が時間、縦軸が温度を示している。図7に示すように、降温時(担体通電オフ時)に担体と担体直上に形成された電気拡散層との温度差が大きくなり、両者の間に発生する熱応力が大きくなる。これは、配線からの放熱によって、電気拡散層の降温が促進されることが原因であると推察される。なお、電気拡散層は、配線から供給された電気を担体の軸方向及び周方向に広げるために、担体と表面電極との間に設けられており、特許文献1では省略されている。   The inventors sought the cause of cracking in this carrier. FIG. 7 is a graph showing the temperature change between the carrier and the electric diffusion layer in the conventional electrically heated catalyst device. The horizontal axis indicates time, and the vertical axis indicates temperature. As shown in FIG. 7, the temperature difference between the carrier and the electric diffusion layer formed immediately above the carrier increases when the temperature drops (when the carrier energization is turned off), and the thermal stress generated between the two increases. This is presumed to be caused by the temperature decrease of the electric diffusion layer being promoted by heat radiation from the wiring. The electric diffusion layer is provided between the carrier and the surface electrode in order to spread the electricity supplied from the wiring in the axial direction and the circumferential direction of the carrier, and is omitted in Patent Document 1.

本発明は、上記を鑑みなされたものであって、熱サイクルによる担体へのクラック発生が抑制された通電加熱式触媒装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide an electrically heated catalyst device in which the occurrence of cracks in a carrier due to thermal cycling is suppressed.

本発明の一態様に係る通電加熱式触媒装置は、
触媒を担持する担体と、
前記担体の外周面において対向して形成された一対の電気拡散層と、
それぞれの前記電気拡散層に固定された配線部材と、
前記担体の外周面を覆うとともに、前記配線部材を外側へ引き出すための開口部を側面に有する外筒と、を備え、
前記配線部材を介して前記担体が通電加熱される、通電加熱式触媒装置であって、
前記配線部材は、前記外筒から引き出される引出部に、放熱を抑制するための放熱抑制構造を備えているものである。
The electrically heated catalyst device according to one aspect of the present invention is
A carrier carrying a catalyst;
A pair of electric diffusion layers formed opposite to each other on the outer peripheral surface of the carrier;
A wiring member fixed to each of the electric diffusion layers;
An outer cylinder covering the outer peripheral surface of the carrier and having an opening on the side surface for pulling out the wiring member to the outside; and
An electrically heated catalyst device in which the carrier is energized and heated through the wiring member,
The said wiring member is equipped with the heat dissipation suppression structure for suppressing heat dissipation in the drawer | drawing-out part pulled out from the said outer cylinder.

本発明の一態様に係る通電加熱式触媒装置では、配線部材が、外筒から引き出される引出部に、放熱を抑制するための放熱抑制構造を備えているため、担体の通電オフ時に電気拡散層の降温を抑制することができる。その結果、通電オフ時の担体と電気拡散層との温度差が小さくなり、両者の間に発生する熱応力も小さくなるため、熱サイクルによる担体へのクラック発生を抑制することができる。   In the electrically heated catalyst device according to one aspect of the present invention, since the wiring member has a heat dissipation suppressing structure for suppressing heat dissipation in the lead-out portion that is pulled out from the outer cylinder, the electric diffusion layer is turned off when the carrier is turned off. Can be suppressed. As a result, the temperature difference between the carrier and the electric diffusion layer when energization is turned off is reduced, and the thermal stress generated between them is also reduced, so that the occurrence of cracks in the carrier due to thermal cycling can be suppressed.

本発明により、熱サイクルによる担体へのクラック発生が抑制された通電加熱式触媒装置を提供することができる。   According to the present invention, it is possible to provide an energization heating type catalyst device in which the generation of cracks in the carrier due to thermal cycling is suppressed.

第1の実施の形態に係る通電加熱式触媒装置の斜視図である。1 is a perspective view of an electrically heated catalyst device according to a first embodiment. 図1において外筒60を取り除いた斜視図である。It is the perspective view which removed the outer cylinder 60 in FIG. 図2において表面電極20の真上から見た平面図である。FIG. 3 is a plan view seen from directly above a surface electrode 20 in FIG. 2. 図3におけるIV-IV切断線による横断面図である。FIG. 4 is a transverse sectional view taken along the line IV-IV in FIG. 3. 第2の実施の形態に係る配線部材30の平面図である。It is a top view of the wiring member 30 which concerns on 2nd Embodiment. 第3の実施の形態に係る配線部材30の平面図である。It is a top view of wiring member 30 concerning a 3rd embodiment. 従来の通電加熱式触媒装置における担体と電気拡散層との温度変化を示したグラフである。It is the graph which showed the temperature change of the support | carrier and an electric-diffusion layer in the conventional electrically heated catalyst apparatus.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiment. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.

(第1の実施の形態)
まず、図1〜図4を参照して、第1の実施の形態に係る通電加熱式触媒装置について説明する。図1は、第1の実施の形態に係る通電加熱式触媒装置の斜視図である。図2は、図1において外筒60を取り除いた斜視図である。図3は、図2において表面電極20の真上(x軸方向プラス側)から見た平面図である。図4は、図3におけるIV-IV切断線による横断面図である。
(First embodiment)
First, with reference to FIGS. 1-4, the electroheating type catalyst apparatus which concerns on 1st Embodiment is demonstrated. FIG. 1 is a perspective view of an electrically heated catalyst device according to the first embodiment. FIG. 2 is a perspective view with the outer cylinder 60 removed in FIG. FIG. 3 is a plan view as viewed from directly above the surface electrode 20 in FIG. 2 (plus side in the x-axis direction). 4 is a cross-sectional view taken along the line IV-IV in FIG.

なお、当然のことながら、図面に示した右手系xyz座標は、構成要素の位置関係を説明するための便宜的なものである。各図面におけるxyz座標は共通であって、y軸方向が担体10の軸方向である。ここで、通電加熱式触媒装置100を使用する際には、図4に示すようにz軸方向プラス向きを鉛直方向上向きに一致させることが好ましい。   As a matter of course, the right-handed xyz coordinates shown in the drawings are for convenience in explaining the positional relationship between the components. The xyz coordinates in each drawing are common, and the y-axis direction is the axial direction of the carrier 10. Here, when using the electrically heated catalyst device 100, it is preferable to match the positive z-axis direction with the upward vertical direction as shown in FIG.

図1に示すように、通電加熱式触媒装置100は、担体10及び外筒60を備えている。ここで、図2に示すように、通電加熱式触媒装置100は、担体10の外周面上に、電気拡散層11、表面電極20、配線部材30、固定層40を備えている。また、図3、図4に示すように、通電加熱式触媒装置100は、担体10と外筒60との間にマット50を備えている。すなわち、通電加熱式触媒装置100は、担体10、電気拡散層11、表面電極20、配線部材30、固定層40、マット50、外筒60を備えている。   As shown in FIG. 1, the electrically heated catalyst device 100 includes a carrier 10 and an outer cylinder 60. Here, as shown in FIG. 2, the electrically heated catalyst device 100 includes the electric diffusion layer 11, the surface electrode 20, the wiring member 30, and the fixed layer 40 on the outer peripheral surface of the carrier 10. As shown in FIGS. 3 and 4, the electrically heated catalyst device 100 includes a mat 50 between the carrier 10 and the outer cylinder 60. That is, the electrically heated catalyst device 100 includes the carrier 10, the electric diffusion layer 11, the surface electrode 20, the wiring member 30, the fixed layer 40, the mat 50, and the outer cylinder 60.

なお、図1では、マット50は省略されている。また、図3では、一方の表面電極20について、担体10、電気拡散層11、配線部材30、固定層40、マット50との位置関係が示されているが、他方の表面電極20についても同様である。具体的には、図2、図4に示すように、2つの表面電極20は、yz平面に平行な対称面に関して鏡面対称な位置関係にある。   In FIG. 1, the mat 50 is omitted. 3 shows the positional relationship between the carrier electrode 10, the electric diffusion layer 11, the wiring member 30, the fixing layer 40, and the mat 50 for one surface electrode 20, but the same applies to the other surface electrode 20. It is. Specifically, as shown in FIGS. 2 and 4, the two surface electrodes 20 are in a mirror-symmetrical positional relationship with respect to a symmetry plane parallel to the yz plane.

通電加熱式触媒装置100は、例えば自動車等の排気経路上に設けられ、エンジンから排出される排気ガスを浄化する。通電加熱式触媒装置100では、一対の表面電極20間において担体10が通電加熱され、担体10に担持された触媒が活性化される。これにより、担体10を通過する排気ガス中の未燃焼HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)等が触媒反応により浄化される。   The electrically heated catalyst device 100 is provided on an exhaust path of an automobile or the like, for example, and purifies exhaust gas discharged from the engine. In the electrically heated catalyst device 100, the carrier 10 is electrically heated between the pair of surface electrodes 20, and the catalyst supported on the carrier 10 is activated. Thereby, unburned HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxide) and the like in the exhaust gas passing through the carrier 10 are purified by the catalytic reaction.

担体10は、白金やパラジウム等の触媒を担持する多孔質部材である。また、担体10自体は、通電加熱されるため、導電性を有するセラミックス、具体的には例えばSiC(炭化珪素)からなることが好ましい。図2に示すように、担体10は、外形が略円柱形状であって、内部はハニカム構造を有している。白抜き矢印で示すように、排気ガスが担体10の内部を担体10の軸方向(y軸方向)に通過する。   The carrier 10 is a porous member that supports a catalyst such as platinum or palladium. Further, since the carrier 10 itself is energized and heated, it is preferable that the carrier 10 is made of conductive ceramics, specifically, for example, SiC (silicon carbide). As shown in FIG. 2, the carrier 10 has a substantially cylindrical shape and has a honeycomb structure inside. As indicated by the white arrow, the exhaust gas passes through the inside of the carrier 10 in the axial direction (y-axis direction) of the carrier 10.

電気拡散層11は、配線部材30から供給された電気を担体10の軸方向及び周方向に広げるために担体10の外表面に形成された厚さ50〜200μm程度のセラミックス層である。ここで、電気拡散層11は、担体10よりも低抵抗なセラミックスからなり、例えば担体10と一体に形成されている。具体的には、例えば担体10を構成するSiC(炭化珪素)に金属Siを添加することにより、担体10よりも低抵抗にすることができる。当然のことながら、電気拡散層11は、表面電極20よりは高抵抗である。   The electric diffusion layer 11 is a ceramic layer having a thickness of about 50 to 200 μm formed on the outer surface of the carrier 10 in order to spread electricity supplied from the wiring member 30 in the axial direction and the circumferential direction of the carrier 10. Here, the electric diffusion layer 11 is made of ceramics having a resistance lower than that of the carrier 10, and is formed integrally with the carrier 10, for example. Specifically, the resistance can be made lower than that of the carrier 10 by adding metal Si to SiC (silicon carbide) constituting the carrier 10, for example. As a matter of course, the electric diffusion layer 11 has a higher resistance than the surface electrode 20.

また、電気拡散層11は、図2に示すように、一対の表面電極20のそれぞれの下層に形成されている。また、図3に示すように、それぞれの電気拡散層11は、矩形状の平面形状を有し、担体軸方向(y軸方向)に延設されている。ここで、電気拡散層11は、表面電極20よりも担体軸方向及び円周方向に広がって形成されている。   Moreover, the electric diffusion layer 11 is formed in each lower layer of a pair of surface electrode 20, as shown in FIG. Moreover, as shown in FIG. 3, each electric diffusion layer 11 has a rectangular planar shape and extends in the carrier axis direction (y-axis direction). Here, the electric diffusion layer 11 is formed so as to extend in the carrier axis direction and the circumferential direction from the surface electrode 20.

表面電極20は、図2に示すように、電気拡散層11上に形成され、かつ、担体10を介して互いに対向配置された一対の電極である。表面電極20は、電気拡散層11と物理的に接触しているとともに電気的に接続されている。また、図3に示すように、それぞれの表面電極20は、矩形状の平面形状を有し、担体軸方向(y軸方向)に延設されている。さらに、図4に示すように、表面電極20は、配線部材30、外部電極81、外部配線82を介して、バッテリ83に電気的に接続されている。このような構成により、担体10に電流が供給され、通電加熱される。なお、一対の表面電極20のうちの一方がプラス極、他方がマイナス極であるが、いずれの表面電極20がプラス極あるいはマイナス極になってもよい。つまり、担体10を流れる電流の向きは限定されない。   As shown in FIG. 2, the surface electrode 20 is a pair of electrodes formed on the electric diffusion layer 11 and arranged to face each other via the carrier 10. The surface electrode 20 is in physical contact with and electrically connected to the electric diffusion layer 11. As shown in FIG. 3, each surface electrode 20 has a rectangular planar shape and extends in the carrier axis direction (y-axis direction). Further, as shown in FIG. 4, the surface electrode 20 is electrically connected to the battery 83 via the wiring member 30, the external electrode 81, and the external wiring 82. With such a configuration, a current is supplied to the carrier 10 and is heated by energization. One of the pair of surface electrodes 20 is a positive electrode and the other is a negative electrode. However, any surface electrode 20 may be a positive electrode or a negative electrode. That is, the direction of the current flowing through the carrier 10 is not limited.

また、表面電極20は、例えばプラズマ溶射により形成された厚さ50〜200μm程度の溶射皮膜である。表面電極20は配線部材30と同様に通電するため、この溶射皮膜は金属ベースである必要がある。溶射皮膜のマトリクスを構成する金属としては、800℃以上の高温下での使用に耐えるため、高温下での耐酸化性に優れたNi−Cr合金(但し、Cr含有量は20〜60質量%)、MCrAlY合金(但し、MはFe、Co、Niのうち少なくとも一種)が好ましい。ここで、上記NiCr合金、MCrAlY合金は、他の合金元素を含んでいてもよい。   The surface electrode 20 is a sprayed coating having a thickness of about 50 to 200 μm formed by plasma spraying, for example. Since the surface electrode 20 is energized in the same manner as the wiring member 30, this thermal spray coating needs to be a metal base. The metal constituting the matrix of the thermal spray coating is a Ni-Cr alloy having excellent oxidation resistance at high temperatures in order to withstand use at high temperatures of 800 ° C. or higher (however, the Cr content is 20 to 60% by mass) ), MCrAlY alloy (where M is at least one of Fe, Co and Ni). Here, the NiCr alloy and MCrAlY alloy may contain other alloy elements.

配線部材30は、図3に示すように、それぞれの表面電極20の上に配置されている。配線部材30は、図3に示すように、表面電極20上において担体円周方向に延設された櫛歯状配線31、外部電極81(図4)へ接続される引出部32を有している。配線部材30は、全体が例えば厚さ0.1mm程度の金属薄板である。櫛歯状配線31の幅は、例えば1mm程度である。また、配線部材30は、800℃以上の高温下での使用に耐えるため、例えばステンレス系合金、Ni基系合金、Co基系合金などの耐熱(耐酸化)合金からなることが好ましい。電気伝導度、耐熱性、高温下における耐酸化性、排気ガス雰囲気における耐腐食性等の性能やコストを考慮すると、ステンレス系合金が好ましい。   As shown in FIG. 3, the wiring member 30 is disposed on each surface electrode 20. As shown in FIG. 3, the wiring member 30 has a comb-like wiring 31 extending in the carrier circumferential direction on the surface electrode 20 and a lead portion 32 connected to the external electrode 81 (FIG. 4). Yes. The entire wiring member 30 is a thin metal plate having a thickness of about 0.1 mm, for example. The width of the comb-like wiring 31 is, for example, about 1 mm. In addition, the wiring member 30 is preferably made of a heat-resistant (oxidation-resistant) alloy such as a stainless-based alloy, a Ni-based alloy, or a Co-based alloy in order to endure use at a high temperature of 800 ° C. or higher. In consideration of performance and cost such as electrical conductivity, heat resistance, oxidation resistance at high temperature, and corrosion resistance in an exhaust gas atmosphere, stainless steel alloys are preferable.

図3に示すように、複数の櫛歯状配線31は、表面電極20の形成領域の略全体に亘って、担体円周方向に延設されるとともに、担体軸方向(y軸方向)に沿って略等間隔に並設されている。さらに、全ての櫛歯状配線31は、表面電極20の形成領域のz軸方向プラス側において引出部32に接続されている。図3の例では、表面電極20上に12本の櫛歯状配線31が設けられている。櫛歯状配線31は、いずれも固定層40により表面電極20に固定されるととともに電気的に接続されている。なお、当然のことながら、櫛歯状配線31の本数は12本に限定されるものではなく、適宜決定される。   As shown in FIG. 3, the plurality of comb-like wirings 31 extend in the carrier circumferential direction over substantially the entire region where the surface electrode 20 is formed, and extend along the carrier axis direction (y-axis direction). Are arranged at approximately equal intervals. Further, all the comb-like wirings 31 are connected to the lead portion 32 on the plus side in the z-axis direction of the formation region of the surface electrode 20. In the example of FIG. 3, twelve comb-like wirings 31 are provided on the surface electrode 20. Each of the comb-like wirings 31 is fixed to the surface electrode 20 by the fixing layer 40 and is electrically connected. As a matter of course, the number of the comb-like wirings 31 is not limited to 12 and is appropriately determined.

引出部32は、表面電極20に固定されておらず、外筒60の外側へ引き出されている。ここで、引出部32は、複数の屈曲部を有し、伸縮可能に形成されている。つまり、引出部32が蛇腹状に形成されている。図面の例では、例えば図4に示すように、引出部32が3つの屈曲部(z軸方向プラス側から見て2つの山折りと1つの谷折り)を有し、断面M字状に形成されている。引出部32が2つの屈曲部(1つの山折りと1つの谷折り)を有し、断面N字状に形成されていてもよい。さらに、引出部32が4つ以上の屈曲部を有していてもよい。なお、図3では、引出部32が引き伸ばされた状態が示されている。   The lead portion 32 is not fixed to the surface electrode 20 and is drawn to the outside of the outer cylinder 60. Here, the drawer | drawing-out part 32 has a some bending part, and is formed so that expansion-contraction is possible. That is, the drawer part 32 is formed in a bellows shape. In the example of the drawing, as shown in FIG. 4, for example, the lead-out portion 32 has three bent portions (two mountain folds and one valley fold when viewed from the positive side in the z-axis direction) and is formed in an M-shaped cross section. Has been. The lead portion 32 may have two bent portions (one mountain fold and one valley fold), and may be formed in an N-shaped cross section. Furthermore, the drawer | drawing-out part 32 may have four or more bending parts. In FIG. 3, a state in which the drawer portion 32 is extended is shown.

蛇腹状の引出部32は、製造段階では折り畳まれた状態になっている。そのため、配線部材30の引出部32と外筒60とが干渉することがなく、配線部材30を備えた担体10を外筒60に圧入することができる。そして、担体10を外筒60に圧入した後、引出部32を外筒60の外側へ容易に引き出すことができる。ここで、配線部材30として冷間圧延された薄板を焼鈍した焼鈍材(伸び15%以上)を使用することにより、引出部32を容易に蛇腹状に折り畳むことができる。   The bellows-like drawer 32 is in a folded state at the manufacturing stage. Therefore, the lead portion 32 of the wiring member 30 and the outer cylinder 60 do not interfere with each other, and the carrier 10 including the wiring member 30 can be press-fitted into the outer cylinder 60. Then, after the carrier 10 is press-fitted into the outer cylinder 60, the drawer portion 32 can be easily pulled out to the outside of the outer cylinder 60. Here, by using an annealed material (elongation of 15% or more) obtained by annealing a cold-rolled thin plate as the wiring member 30, the lead-out portion 32 can be easily folded into a bellows shape.

固定層40は、櫛歯状配線31上に形成された厚さ300〜500μm程度のボタン形状の溶射皮膜である。表面電極20上に配線部材30を配置し、その上にマスキングジグ治具を配置し、プラズマ溶射を行うことにより、固定層40を形成することができる。溶射皮膜の組成などについては、上述した表面電極20と同様にすればよい。   The fixed layer 40 is a button-shaped sprayed coating having a thickness of about 300 to 500 μm formed on the comb-like wiring 31. The fixed layer 40 can be formed by disposing the wiring member 30 on the surface electrode 20, disposing the masking jig jig thereon, and performing plasma spraying. The composition of the thermal spray coating may be the same as that of the surface electrode 20 described above.

上述の通り、固定層40により、櫛歯状配線31が表面電極20に固定されるとともに電気的に接続される。図3の例では、それぞれの櫛歯状配線31が、1つの固定層40のみによって表面電極20に固定されている。このような構成により、金属からなる配線部材30と、セラミックスからなる担体10との線膨張係数差に基づく熱ひずみ(熱応力)を緩和することができる。つまり、個々の固定層40を極力小さい形状とし、点在させることにより、上記熱ひずみ(熱応力)を緩和している。なお、それぞれの櫛歯状配線31を2個以上の固定層40により固定してもよい。その場合の固定層40の個数及び間隔は適宜決定することができる。   As described above, the comb-like wiring 31 is fixed to the surface electrode 20 and electrically connected by the fixing layer 40. In the example of FIG. 3, each comb-like wiring 31 is fixed to the surface electrode 20 by only one fixing layer 40. With such a configuration, thermal strain (thermal stress) based on a difference in linear expansion coefficient between the wiring member 30 made of metal and the carrier 10 made of ceramics can be relaxed. That is, the thermal strain (thermal stress) is alleviated by making the individual fixed layers 40 as small as possible and interspersed. Each comb-like wiring 31 may be fixed by two or more fixing layers 40. In this case, the number and interval of the fixed layers 40 can be determined as appropriate.

マット(保持部材)50は、可撓性を有する断熱部材である。マット50は、図3に破線で示すように、担体10の外周面全体に巻き付けられており、図4に示すように、担体10と外筒60との間に充填されている。マット50により、担体10が外筒60に固定・保持されるとともに、排気ガスが外筒60の外部へ漏れないようにシールされる。   The mat (holding member) 50 is a heat insulating member having flexibility. The mat 50 is wound around the entire outer peripheral surface of the carrier 10 as shown by a broken line in FIG. 3, and is filled between the carrier 10 and the outer cylinder 60 as shown in FIG. By the mat 50, the carrier 10 is fixed and held on the outer cylinder 60, and the exhaust gas is sealed so as not to leak to the outside of the outer cylinder 60.

マット50には、図3、図4に示すように、配線部材30の引出部32を外筒60の外側へ導出するための開口部51が2つ設けられている。図3に示すように、開口部51は、配線部材30の形成位置に対応して、担体10の軸方向中央部において矩形状に形成されている。また、図4に示す横断面視では、2つの開口部51は、yz平面に平行な対称面に関して鏡面対称に配置されている。シール性を確保するため、図3に示したy軸方向における開口部51の枠幅wは30mm以上であることが好ましい。なお、図面の例では、開口部51の形状は矩形状であるが、特に限定されるものではない。例えば、開口部51の形状は、円形状や楕円形状などであってもよい。   As shown in FIGS. 3 and 4, the mat 50 is provided with two openings 51 for leading the lead-out portion 32 of the wiring member 30 to the outside of the outer cylinder 60. As shown in FIG. 3, the opening 51 is formed in a rectangular shape in the central portion in the axial direction of the carrier 10 corresponding to the position where the wiring member 30 is formed. Further, in the cross-sectional view shown in FIG. 4, the two openings 51 are arranged in mirror symmetry with respect to a symmetry plane parallel to the yz plane. In order to ensure sealing performance, the frame width w of the opening 51 in the y-axis direction shown in FIG. 3 is preferably 30 mm or more. In the example of the drawing, the shape of the opening 51 is rectangular, but is not particularly limited. For example, the shape of the opening 51 may be a circular shape or an elliptical shape.

外筒60は、担体10を収納するための筐体であって、円柱状の担体10よりも一回り大きい直径を有するパイプである。図1に示すように、外筒60はマット50を介して担体10の略全体を覆っている。ここで、外筒60は、例えばステンレス系合金などの金属からなることが好ましい。   The outer cylinder 60 is a casing for housing the carrier 10 and is a pipe having a diameter that is slightly larger than that of the columnar carrier 10. As shown in FIG. 1, the outer cylinder 60 covers substantially the entire carrier 10 via a mat 50. Here, the outer cylinder 60 is preferably made of a metal such as a stainless alloy.

外筒60の側面には、図1、4に示すように、配線部材30の引出部32を外筒60の外側へ導出するための開口部61が設けられている。そのため、図1に示すように、開口部61は、引出部32の形成位置に対応して、外筒60の軸方向中央部に2箇所設けられている。また、図4に示す横断面視では、2つの開口部61は、中心部よりもやや上側(z軸方向プラス側)において、yz平面に平行な面に関して鏡面対称に配置されている。なお、図面の例では、開口部61の形状は円形状であるが、特に限定されるものではない。例えば、開口部61の形状は、楕円形状や矩形状などであってもよい。   As shown in FIGS. 1 and 4, the side surface of the outer cylinder 60 is provided with an opening 61 for leading the lead-out portion 32 of the wiring member 30 to the outside of the outer cylinder 60. Therefore, as shown in FIG. 1, the opening 61 is provided at two positions in the central portion in the axial direction of the outer cylinder 60 corresponding to the position where the lead-out portion 32 is formed. Further, in the cross-sectional view shown in FIG. 4, the two openings 61 are arranged mirror-symmetrically with respect to a plane parallel to the yz plane on the slightly upper side (z-axis direction plus side) from the center. In the example of the drawing, the shape of the opening 61 is circular, but is not particularly limited. For example, the shape of the opening 61 may be an elliptical shape or a rectangular shape.

ここで、本実施の形態に係る通電加熱式触媒装置100では、配線部材30の引出部32に、放熱を抑制するための放熱抑制構造が設けられている。放熱抑制構造は、例えば引出部32から放出される熱を遮断するための断熱構造や引出部32から放出される熱を低減するための低放射化構造である。当該断熱構造や低放射化構造は、引出部32の片面もしくは両面に形成されている。当然のことながら、放熱抑制の観点から、放熱抑制構造を引出部32の両面に形成する方が好ましい。   Here, in the electrically heated catalyst device 100 according to the present embodiment, a heat radiation suppressing structure for suppressing heat radiation is provided in the drawing portion 32 of the wiring member 30. The heat radiation suppressing structure is, for example, a heat insulating structure for blocking heat released from the lead portion 32 or a low radiation structure for reducing heat released from the lead portion 32. The heat insulation structure and the low radiation structure are formed on one side or both sides of the lead portion 32. As a matter of course, it is preferable to form the heat radiation suppressing structure on both surfaces of the drawing portion 32 from the viewpoint of heat radiation suppression.

断熱構造としては、例えばジルコニアやアルミナなどの断熱性を有するセラミックスからなるコーティング層すなわち断熱層を例示することができる。当該コーティング層は、断熱性の観点から多孔質であることが好ましい。当該コーティング層は、溶射やスパッタリングなどにより形成することができる。   Examples of the heat insulating structure include a coating layer made of ceramics having heat insulating properties such as zirconia and alumina, that is, a heat insulating layer. The coating layer is preferably porous from the viewpoint of heat insulation. The coating layer can be formed by thermal spraying or sputtering.

低放射化構造としては、熱反射率の高い金属(例えばAu、Al、Niなど)からなるコーティング層すなわち金属反射膜を例示することができる。当該コーティング層は、めっきやスパッタリングなどにより形成することができる。また、低放射化構造として、引出部32の表面を鏡面加工してもよい。   Examples of the low radiation structure include a coating layer made of a metal having a high thermal reflectance (for example, Au, Al, Ni, etc.), that is, a metal reflective film. The coating layer can be formed by plating or sputtering. Moreover, you may mirror-finish the surface of the extraction | drawer part 32 as a low radiationization structure.

上述の通り、実施の形態1に係る通電加熱式触媒装置100では、配線部材30の引出部32に、放熱を抑制するための放熱抑制構造が設けられている。そのため、担体10の通電オフ時に配線部材30からの放熱による電気拡散層11の降温を抑制することができる。その結果、通電オフ時の担体10の外表面と電気拡散層11との温度差が従来よりも小さくなり、両者の間に発生する熱応力を小さくすることができる。従って、本実施の形態に係る通電加熱式触媒装置では、熱サイクルによる担体へのクラック発生を抑制することができる。   As described above, in the electrically heated catalyst device 100 according to the first embodiment, the drawing portion 32 of the wiring member 30 is provided with a heat dissipation suppressing structure for suppressing heat dissipation. Therefore, the temperature drop of the electric diffusion layer 11 due to heat radiation from the wiring member 30 can be suppressed when the carrier 10 is turned off. As a result, the temperature difference between the outer surface of the carrier 10 and the electric diffusion layer 11 when the energization is turned off becomes smaller than in the conventional case, and the thermal stress generated between the two can be reduced. Therefore, in the electrically heated catalyst device according to the present embodiment, the occurrence of cracks in the carrier due to the thermal cycle can be suppressed.

熱解析の結果、従来構造では、通電オフ時の担体10の外表面と電気拡散層11との温度差が150℃であって、担体10に発生する熱応力が37MPaであった。これに対し、実施の形態1に係る通電加熱式触媒装置100では、通電オフ時の担体10の外表面と電気拡散層11との温度差が30℃となり、担体10に発生する熱応力が10MPaまで低減した。   As a result of the thermal analysis, in the conventional structure, the temperature difference between the outer surface of the carrier 10 and the electric diffusion layer 11 when the energization was turned off was 150 ° C., and the thermal stress generated in the carrier 10 was 37 MPa. On the other hand, in the electrically heated catalyst device 100 according to the first embodiment, the temperature difference between the outer surface of the carrier 10 and the electric diffusion layer 11 when the electricity is turned off is 30 ° C., and the thermal stress generated in the carrier 10 is 10 MPa. Reduced to.

(第2の実施の形態)
次に、図5を参照して、第2の実施の形態に係る通電加熱式触媒装置について説明する。図5は、第2の実施の形態に係る配線部材30の平面図である。
図5に示すように、第2の実施の形態に係る通電加熱式触媒装置では、放熱抑制構造として、箔状の引出部32が断面U字形状(断面コの字形状)に折り曲げられている。その他の構成は、実施の形態1と同様であるため、説明を省略する。
(Second Embodiment)
Next, with reference to FIG. 5, an electrically heated catalyst device according to a second embodiment will be described. FIG. 5 is a plan view of the wiring member 30 according to the second embodiment.
As shown in FIG. 5, in the electrically heated catalyst device according to the second embodiment, the foil-like lead portion 32 is bent into a U-shaped section (a U-shaped section) as a heat dissipation suppressing structure. . Since other configurations are the same as those of the first embodiment, description thereof is omitted.

実施の形態2に係る通電加熱式触媒装置では、断面U字形状に折り曲げられた引出部32の内側(上面)において、折り曲げられた配線同士が対向している。そのため、引出部32の内側(上面)からは放熱しないと考えることができる。すなわち、引出部32における放熱面積が約1/2になる。そのため、担体10の通電オフ時に配線部材30からの放熱による電気拡散層11の降温を抑制することができる。その結果、通電オフ時の担体10の外表面と電気拡散層11との温度差が従来よりも小さくなり、両者の間に発生する熱応力を小さくすることができる。従って、本実施の形態に係る通電加熱式触媒装置では、熱サイクルによる担体へのクラック発生を抑制することができる。   In the electrically heated catalyst device according to the second embodiment, the folded wires face each other on the inner side (upper surface) of the lead-out portion 32 that is folded into a U-shaped cross section. Therefore, it can be considered that heat is not radiated from the inside (upper surface) of the drawing portion 32. That is, the heat radiation area in the lead-out portion 32 is about ½. Therefore, the temperature drop of the electric diffusion layer 11 due to heat radiation from the wiring member 30 can be suppressed when the carrier 10 is turned off. As a result, the temperature difference between the outer surface of the carrier 10 and the electric diffusion layer 11 when the energization is turned off becomes smaller than in the conventional case, and the thermal stress generated between the two can be reduced. Therefore, in the electrically heated catalyst device according to the present embodiment, the occurrence of cracks in the carrier due to the thermal cycle can be suppressed.

熱解析の結果、従来構造では、通電オフ時の担体10の外表面と電気拡散層11との温度差が150℃であって、担体10に発生する熱応力が37MPaであった。これに対し、実施の形態2に係る通電加熱式触媒装置では、通電オフ時の担体10の外表面と電気拡散層11との温度差が90℃となり、担体10に発生する熱応力が25MPaまで低減した。   As a result of the thermal analysis, in the conventional structure, the temperature difference between the outer surface of the carrier 10 and the electric diffusion layer 11 when the energization was turned off was 150 ° C., and the thermal stress generated in the carrier 10 was 37 MPa. In contrast, in the electrically heated catalyst device according to the second embodiment, the temperature difference between the outer surface of the carrier 10 and the electric diffusion layer 11 when the current is turned off is 90 ° C., and the thermal stress generated in the carrier 10 is up to 25 MPa. Reduced.

(第3の実施の形態)
次に、図6を参照して、第3の実施の形態に係る通電加熱式触媒装置について説明する。図6は、第3の実施の形態に係る配線部材30の平面図である。
図6に示すように、第3の実施の形態に係る通電加熱式触媒装置では、放熱抑制構造として、引出部32の断面形状が円形になっている。その他の構成は、実施の形態1と同様であるため、説明を省略する。
(Third embodiment)
Next, with reference to FIG. 6, an electrically heated catalyst device according to a third embodiment will be described. FIG. 6 is a plan view of the wiring member 30 according to the third embodiment.
As shown in FIG. 6, in the electrically heated catalyst device according to the third embodiment, the cross-sectional shape of the lead-out portion 32 is circular as the heat dissipation suppressing structure. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

実施の形態3に係る通電加熱式触媒装置では、引出部32の断面形状が円形になっているため、同じ断面積のまま表面積を約1/6に低減することができる。すなわち、引出部32における放熱面積が約1/6になる。そのため、担体10の通電オフ時に配線部材30からの放熱による電気拡散層11の降温を抑制することができる。その結果、通電オフ時の担体10の外表面と電気拡散層11との温度差が従来よりも小さくなり、両者の間に発生する熱応力を小さくすることができる。従って、本実施の形態に係る通電加熱式触媒装置では、熱サイクルによる担体へのクラック発生を抑制することができる。   In the electrically heated catalyst device according to the third embodiment, since the cross-sectional shape of the extraction portion 32 is circular, the surface area can be reduced to about 1/6 with the same cross-sectional area. That is, the heat radiation area in the lead-out part 32 is about 1/6. Therefore, the temperature drop of the electric diffusion layer 11 due to heat radiation from the wiring member 30 can be suppressed when the carrier 10 is turned off. As a result, the temperature difference between the outer surface of the carrier 10 and the electric diffusion layer 11 when the energization is turned off becomes smaller than in the conventional case, and the thermal stress generated between the two can be reduced. Therefore, in the electrically heated catalyst device according to the present embodiment, the occurrence of cracks in the carrier due to the thermal cycle can be suppressed.

熱解析の結果、従来構造では、通電オフ時の担体10の外表面と電気拡散層11との温度差が150℃であって、担体10に発生する熱応力が37MPaであった。これに対し、実施の形態3に係る通電加熱式触媒装置では、通電オフ時の担体10の外表面と電気拡散層11との温度差が30℃となり、担体10に発生する熱応力が10MPaまで低減した。   As a result of the thermal analysis, in the conventional structure, the temperature difference between the outer surface of the carrier 10 and the electric diffusion layer 11 when the energization was turned off was 150 ° C., and the thermal stress generated in the carrier 10 was 37 MPa. In contrast, in the electrically heated catalyst device according to the third embodiment, the temperature difference between the outer surface of the carrier 10 and the electric diffusion layer 11 when the current is turned off is 30 ° C., and the thermal stress generated in the carrier 10 is up to 10 MPa. Reduced.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

10 担体
11 電気拡散層
20 表面電極
30 配線部材
31 櫛歯状配線
32 引出部
40 固定層
50 マット
51 開口部
60 外筒
61 開口部
81 外部電極
82 外部配線
83 バッテリ
100 通電加熱式触媒装置
DESCRIPTION OF SYMBOLS 10 Support | carrier 11 Electrical diffusion layer 20 Surface electrode 30 Wiring member 31 Comb-shaped wiring 32 Lead part 40 Fixed layer 50 Mat 51 Opening part 60 Outer cylinder 61 Opening part 81 External electrode 82 External wiring 83 Battery 100 Electric heating type catalytic device

Claims (1)

触媒を担持する担体と、
前記担体の外周面において対向して形成された一対の電気拡散層と、
それぞれの前記電気拡散層に固定された配線部材と、
前記担体の外周面を覆うとともに、前記配線部材を外側へ引き出すための開口部を側面に有する外筒と、を備え、
前記配線部材を介して前記担体が通電加熱される、通電加熱式触媒装置であって、
前記配線部材は、前記外筒から引き出される引出部に、放熱を抑制するための放熱抑制構造を備えている、
通電加熱式触媒装置。
A carrier carrying a catalyst;
A pair of electric diffusion layers formed opposite to each other on the outer peripheral surface of the carrier;
A wiring member fixed to each of the electric diffusion layers;
An outer cylinder covering the outer peripheral surface of the carrier and having an opening on the side surface for pulling out the wiring member to the outside; and
An electrically heated catalyst device in which the carrier is energized and heated through the wiring member,
The wiring member is provided with a heat dissipation suppressing structure for suppressing heat dissipation in the lead-out portion that is pulled out from the outer cylinder.
Electric heating type catalytic device.
JP2014159746A 2014-08-05 2014-08-05 Electric heating type catalyst device Pending JP2016037867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014159746A JP2016037867A (en) 2014-08-05 2014-08-05 Electric heating type catalyst device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014159746A JP2016037867A (en) 2014-08-05 2014-08-05 Electric heating type catalyst device

Publications (1)

Publication Number Publication Date
JP2016037867A true JP2016037867A (en) 2016-03-22

Family

ID=55529168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014159746A Pending JP2016037867A (en) 2014-08-05 2014-08-05 Electric heating type catalyst device

Country Status (1)

Country Link
JP (1) JP2016037867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113756914A (en) * 2020-06-02 2021-12-07 丰田自动车株式会社 Electrically heated catalyst device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113756914A (en) * 2020-06-02 2021-12-07 丰田自动车株式会社 Electrically heated catalyst device
CN113756914B (en) * 2020-06-02 2023-06-02 丰田自动车株式会社 Electrically heated catalyst device

Similar Documents

Publication Publication Date Title
JP6052250B2 (en) Electric heating type catalytic device
JP5910620B2 (en) Electric heating catalyst device and method for manufacturing the same
JP5761161B2 (en) Electric heating catalyst device and method for manufacturing the same
US9295944B2 (en) Electrically heated catalyst device and its manufacturing method
JP5967127B2 (en) Electric heating catalyst device and method for manufacturing the same
JP5967128B2 (en) Electric heating catalyst device and method for manufacturing the same
JP5783037B2 (en) Electric heating catalyst device and method for manufacturing the same
JP6079716B2 (en) Electric heating type catalytic device
JP2012106164A (en) Electrical heating type catalyst
JP5353674B2 (en) Catalytic converter device
JP5765221B2 (en) Electric heating catalyst device and method for manufacturing the same
JP5664517B2 (en) Electric heating type catalytic device
JP2016037867A (en) Electric heating type catalyst device
JP5757274B2 (en) Electric heating type catalytic converter
JP2016030238A (en) Electrically heating type catalyst device
JP2015169167A (en) Electrically heated catalyst device and manufacturing method of same
JP7331553B2 (en) Electric heating catalyst device
JP2015112534A (en) Manufacturing method of electric heating type catalyst device
JP2012172580A (en) Exhaust emission control device
JP2013136967A (en) Electrically heated catalytic device and method for manufacturing the same
JP2012125669A (en) Exhaust emission control device
JP5691773B2 (en) Catalytic converter device
JP2022162721A (en) Catalyst device
JP2015062873A (en) Electrification heating type catalyst device