JP2016036431A - Airway gas analyzer - Google Patents
Airway gas analyzer Download PDFInfo
- Publication number
- JP2016036431A JP2016036431A JP2014160158A JP2014160158A JP2016036431A JP 2016036431 A JP2016036431 A JP 2016036431A JP 2014160158 A JP2014160158 A JP 2014160158A JP 2014160158 A JP2014160158 A JP 2014160158A JP 2016036431 A JP2016036431 A JP 2016036431A
- Authority
- JP
- Japan
- Prior art keywords
- airway
- gas
- optical fiber
- infrared
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Endoscopes (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本発明は,気道内ガス分析装置に関するものであり,特に内視鏡もしくはカテーテルを介して気道内に挿入し,気道内の局所的な酸素および二酸化炭素の濃度を測定するための気道内ガス分析装置に関する. The present invention relates to an airway gas analyzer, and more particularly, to an airway gas analyzer for inserting into an airway via an endoscope or a catheter and measuring local oxygen and carbon dioxide concentrations in the airway. Regarding the device.
呼気中の酸素および二酸化炭素濃度は,肺機能モニタリングのための重要な要素であり,通常は口腔内からサンプリングした呼気を電気的もしくは光学的なセンサにより測定する.特にリアルタイムでこれらの濃度をモニタリングすると,呼吸に応じて各ガスの濃度変化を観察することができ,肺をはじめとする呼吸器官の機能を詳細に知ることが可能で,疾病診断における重要な指標となる.また,酸素濃度と二酸化炭素濃度は対象的に変化することから,これらのデータを相補的に処理することにより,一方のみの成分を指標とした際よりもさらに高い精度で呼吸機能の診断が可能となる. Expiratory oxygen and carbon dioxide concentrations are important factors for pulmonary function monitoring, and the breath sampled from the oral cavity is usually measured by an electrical or optical sensor. Especially when these concentrations are monitored in real time, it is possible to observe changes in the concentration of each gas in response to breathing, and it is possible to know in detail the functions of the respiratory organs including the lungs. It becomes. In addition, since oxygen and carbon dioxide concentrations change in a targeted manner, it is possible to diagnose respiratory function with higher accuracy than when only one component is used as an index by processing these data in a complementary manner. It becomes.
さらに気管支内視鏡を用いて,気道内に局所的に存在するの酸素および二酸化炭素の濃度を測定すれば,肺などの呼吸器官において機能不全となっている部位を特定することが可能である.特に気管支内視鏡下での処置などにおいては,これらのガス濃度をリアルタイムでモニタすることにより,適切な処置を短時間で行うことが可能となり,患者への負担も大きく軽減される.
しかし気管支内視鏡下での呼気計測は,内視鏡に挿入したカテーテルに接続したマイクロポンプなどで微少量の局所的な呼気を収集し,それを体外に配置した分析装置により測定を行うのが通常である.これは,各種の電気的および光学的なガスセンサは比較的大型であり内視鏡の先端に配置することは困難であるとともに,センサの構造上,体内での安全性を保つことが難しいためである.カテーテルを用いた呼気サンプリングは比較的微少量のガス計測も可能であるが,カテーテル吸引時にタイムラグが生じるため,カテーテル先端位置におけるリアルタイムなモニタリングを行うことは困難である. However, measurement of exhaled breath under bronchoscopy is performed by collecting a small amount of local exhalation with a micropump connected to a catheter inserted into the endoscope and measuring it with an analyzer placed outside the body. Is normal. This is because various electric and optical gas sensors are relatively large and difficult to place at the tip of an endoscope, and it is difficult to maintain safety in the body due to the structure of the sensor. is there. Breath sampling using a catheter can measure a relatively small amount of gas, but a time lag occurs when the catheter is aspirated, so it is difficult to perform real-time monitoring at the catheter tip position.
カテーテルの先端に微少なガスセルを配置し,光学的にガス濃度を分析すれば,気道内における局所的なガス濃度計測が可能となると思われる.二酸化炭素濃度は一般的に赤外光に対する吸収が大きいため,二酸化炭素分子の吸収帯に合わせた赤外光を照射した際の吸光度を測定することにより測定が可能である.一方,赤外不活性である酸素は赤外吸収法で測定することは不可能であり,近赤外光もしくは可視光を励起光とするラマン散乱分光法による検出が適している.しかし,一般的な石英ガラス光ファイバは二酸化炭素の吸収帯である4ミクロン付近の光に対して不透明であり,カテーテル先端に配置したガスセルまで光を導くことはできない.また,ラマン散乱分光に用いられる近赤外光に対しては,石英ガラスファイバは透明であるものの石英ガラスから強力なラマンノイズが発生するため,これを除去するための光学フィルタをファイバ先端に配置する必要があり,微少径のカテーテル先端にこれを配置することは難しい. If a small gas cell is placed at the tip of the catheter and the gas concentration is analyzed optically, local gas concentration measurement in the airway will be possible. Since carbon dioxide concentration is generally highly absorbed by infrared light, it can be measured by measuring the absorbance when irradiated with infrared light that matches the absorption band of carbon dioxide molecules. On the other hand, oxygen that is inactive in infrared cannot be measured by the infrared absorption method, and detection by Raman scattering spectroscopy using near infrared light or visible light as excitation light is suitable. However, a general silica glass optical fiber is opaque to light around 4 microns, which is the absorption band of carbon dioxide, and cannot guide light to the gas cell placed at the tip of the catheter. For near-infrared light used for Raman scattering spectroscopy, quartz glass fiber is transparent, but strong Raman noise is generated from quartz glass, so an optical filter to remove this is placed at the fiber tip. It is difficult to place it at the tip of a small diameter catheter.
本発明は従来の気道内ガス分析装置がもつ上記の問題点を解決するために考案されたものであり,内視鏡もしくはカテーテルを介して気道内に挿入し,気道内の局所的な酸素および二酸化炭素の濃度を測定するための気道内ガス分析装置を実現することを目的としている. The present invention has been devised to solve the above-mentioned problems of the conventional airway gas analyzer, and is inserted into the airway through an endoscope or a catheter, and local oxygen and The purpose is to realize an airway gas analyzer for measuring the concentration of carbon dioxide.
上記課題を解決するために,反射鏡を備えた微少ガスセルと,ガスセルへの励起光およびガスセルからの戻り光を伝送するための光ファイバと,前記励起光を発生する光源と,前記微少ガスセルからの戻り光を検出して分析する光分析装置により構成されていることを特徴とする気道内ガス分析装置を提供する. In order to solve the above problems, a micro gas cell having a reflecting mirror, an optical fiber for transmitting excitation light to the gas cell and return light from the gas cell, a light source for generating the excitation light, and the micro gas cell An airway gas analyzer characterized by comprising an optical analyzer that detects and analyzes the return light of the air.
また,前記微少ガスセルの長さが1センチメートル以下であることを特徴とするものであってもよい. The micro gas cell may have a length of 1 centimeter or less.
また,前記微少ガスセルに測定対象となるガスを流入させるための孔が複数設けられていることを特徴とするものであってもよい. In addition, a plurality of holes for allowing a gas to be measured to flow into the minute gas cell may be provided.
また,前記光ファイバが中空光ファイバであることを特徴とするものであってもよい. The optical fiber may be a hollow optical fiber.
また,前記ガスセルおよび前記光ファイバの直径が2ミリメートル以下であることを特徴とするものであってもよい. The gas cell and the optical fiber may have a diameter of 2 millimeters or less.
また,前記励起光が可視もしくは近赤外光であって,前記微少ガスセル内の酸素のラマン散乱光を検出することにより,気道内の酸素濃度を測定することを特徴とするものであってもよい. Further, the excitation light is visible or near infrared light, and the oxygen concentration in the airway is measured by detecting Raman scattered light of oxygen in the minute gas cell. Good.
また,前記励起光が赤外光であって,前記微少ガスセル内の二酸化炭素の赤外吸収を検出することにより,気道内の二酸化炭素濃度を測定することを特徴とするものであってもよい. The excitation light may be infrared light, and the carbon dioxide concentration in the airway may be measured by detecting infrared absorption of carbon dioxide in the minute gas cell. .
また,可視光もしくは近赤外光源,および赤外光源の2つの光源を備え,前記光ファイバがこれら2つの光源を伝送可能な光ファイバであって,前記微少ガスセル内の酸素のラマン散乱光および二酸化炭素の赤外吸収をともに検出することにより,気道内の酸素濃度および二酸化炭素濃度を測定することを特徴とするものであってもよい. The optical fiber includes two light sources, a visible light or near-infrared light source, and an infrared light source, and the optical fiber can transmit these two light sources, and the Raman scattered light of oxygen in the minute gas cell and It may be characterized by measuring the oxygen concentration and carbon dioxide concentration in the airway by detecting both infrared absorption of carbon dioxide.
以下,図面に基づいて本発明の実施の形態を説明する.図1は,本発明の実施の形態の一例を示す気道内ガス分析装置の構成図である.赤外光源1からの光は,近赤外レーザ光源2からの光とビームスプリッタ3で合波されて光ファイバ4へ入射する.光ファイバ4はカテーテル5に挿入された状態で気道内へとその先端が導かれる.光ファイバ4の先端には微少ガスセル6が取り付けられ,ガスセル内と光ファイバはファイバ先端に取り付けられた封止窓7によって仕切られているため,微少ガスセル6の内部に存在するガスの濃度が測定される.なお微少ガスセル6には内部にガスが流入できるように複数の穿孔8が設けられている.微少ガスセル6の先端には反射鏡9が取り付けられ,ここで反射された光は光ファイバ4へ戻り光として再入射する.この戻り光はビームスプリッタ3で反射されたのち,波長選択性ビームスプリッタ10により,赤外検出器11およびラマン分光器12へと導かれる.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an airway gas analyzer showing an example of an embodiment of the present invention. The light from the
赤外光源1は中赤外波長領域において広範なパワースペクトルを有する熱光源が好適である.その場合は,赤外検出器11は二酸化炭素の吸収ピークである波長4.2ミクロン付近のみを抽出する光学フィルタを取り付けたもの,もしくは赤外波長域のスペクトルを測定可能な分光器であってもよい.また赤外光源1として,波長4.2ミクロン付近で発振する量子カスケードレーザなどのレーザ光源を用いれば,強い光パワーが得られるために高いSN比での二酸化炭素濃度測定が可能となる.近赤外レーザ光源2は波長780ナノメートル付近で発振する半導体レーザ光源が好適であり,ラマン分光器12との組み合わせにより酸素濃度の測定が可能となる.またラマン分光器の代わりに,酸素のラマンスペクトル波長のみを抽出する光学フィルタと通常の光検出器を組み合わせたものを用いると,より簡易な測定系を構成することが可能となる.
The
光ファイバ4は,二酸化炭素濃度を測定するための中赤外光と酸素濃度を測定するための近赤外光を低損失に伝送可能であるとともに,近赤外レーザ光を入射した際にラマンノイズを極力発生しないものであることが望ましい.中空光ファイバはこれらの条件をみたすために本発明の光ファイバ4として好適である.その場合,中空光ファイバは直径1ミリ以下で高い可とう性を有しているものが好ましく,ガラスキャピラリチューブの内面に銀薄膜が形成されている中空光ファイバが適している.また中空光ファイバの内面には,中赤外光および近赤外光の両方に対して低損失性が得られるような誘電体コーティングが施されているものがさらに好適である.
The
図2は微少ガスセルの外観図の一例である.光ファイバ4に微少ガスセル6が取り付けられ,ガスセル内部へは穿孔8からガスが流入する.内部への流入コンダクタンスを高めるために,ガスセル6に十分な機械的強度が保たれる範囲で,穿孔の口径はできるだけ大きく,数はできるだけ多いことが望ましい.穿孔のかわりにガスセル6が網目構造を有していてもよい.また反射鏡9は中赤外光と近赤外光の両方に対して高い反射率を有することが望ましく,ファイバへの再入射効率を向上させるために凹面鏡構造を有していてもよい.また,微少ガスセル6の長さはガスを十分な感度で検出可能な範囲内でできるだけ小さいことが望ましく,1センチメートル以下であれば気道内部の局所的なガス濃度を検出することができる.また微少ガスセルの外径は内視鏡やカテーテルに挿入可能なように2ミリメートル以下であることが望ましい.
Figure 2 shows an example of the appearance of a micro gas cell. A
1 赤外光源
2 近赤外レーザー光源
3 ビームスプリッタ
4 光ファイバ
5 カテーテル
6 ガスセル
7 ファイバ封止窓
8 ガス導入孔
9 反射鏡
10 波長選択性ビームスプリッタ
11 赤外光検出器
12 ラマン分光器
DESCRIPTION OF
Claims (9)
前記励起光を発生する光源と,前記微少ガスセルからの戻り光を検出して分析する光分析装置により
構成されていることを特徴とする気道内ガス分析装置, A micro gas cell with a reflecting mirror, an optical fiber for transmitting excitation light to the gas cell and return light from the gas cell,
An airway gas analyzer comprising: a light source that generates the excitation light; and an optical analyzer that detects and analyzes the return light from the micro gas cell;
A visible light or near-infrared light source, and an infrared light source, and the optical fiber is an optical fiber capable of transmitting these two light sources, and the Raman scattered light of oxygen and carbon dioxide in the micro gas cell The airway gas analyzer according to claim 1, wherein the oxygen concentration and carbon dioxide concentration in the airway are measured by detecting both infrared absorptions of the airway.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014160158A JP2016036431A (en) | 2014-08-06 | 2014-08-06 | Airway gas analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014160158A JP2016036431A (en) | 2014-08-06 | 2014-08-06 | Airway gas analyzer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016036431A true JP2016036431A (en) | 2016-03-22 |
Family
ID=55528090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014160158A Pending JP2016036431A (en) | 2014-08-06 | 2014-08-06 | Airway gas analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016036431A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110954502A (en) * | 2019-12-18 | 2020-04-03 | 北京航天易联科技发展有限公司 | Optical air chamber probe, pipeline flowing gas real-time detection device and method |
CN112118787A (en) * | 2018-03-15 | 2020-12-22 | 剑桥呼吸创新有限公司 | Improved carbon dioxide detector |
CN114062324A (en) * | 2021-11-10 | 2022-02-18 | 大连海事大学 | Device and method for preventing optical detection lens from being stained in smoke component detection |
US11371942B2 (en) | 2017-12-07 | 2022-06-28 | Mitsubishi Heavy Industries, Ltd. | Raman scattered light acquisition device, composition analysis device comprising same, and gas turbine plant |
-
2014
- 2014-08-06 JP JP2014160158A patent/JP2016036431A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11371942B2 (en) | 2017-12-07 | 2022-06-28 | Mitsubishi Heavy Industries, Ltd. | Raman scattered light acquisition device, composition analysis device comprising same, and gas turbine plant |
CN112118787A (en) * | 2018-03-15 | 2020-12-22 | 剑桥呼吸创新有限公司 | Improved carbon dioxide detector |
CN110954502A (en) * | 2019-12-18 | 2020-04-03 | 北京航天易联科技发展有限公司 | Optical air chamber probe, pipeline flowing gas real-time detection device and method |
CN114062324A (en) * | 2021-11-10 | 2022-02-18 | 大连海事大学 | Device and method for preventing optical detection lens from being stained in smoke component detection |
CN114062324B (en) * | 2021-11-10 | 2024-05-17 | 大连海事大学 | Device and method for preventing smoke component detection optical detection lens from being stained |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghorbani et al. | ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes | |
US8642966B2 (en) | Gas analyzer for measuring at least two components of a gas | |
KR950014941B1 (en) | Multi-channel molecular gas analysis by laser-activated raman light scattering | |
US8705029B2 (en) | System and method for detection of analytes in exhaled breath | |
Chow et al. | A Raman cell based on hollow core photonic crystal fiber for human breath analysis | |
CN102890069B (en) | Gas sensor, analyzer and method for measuring oxygen concentration of a respiratory gas | |
US20180153439A1 (en) | Time-Resolved Single-breath Analysis Using Spectroscopic Methods | |
US20110295140A1 (en) | Method and Apparatus for Measuring Trace Levels of CO in Human Breath Using Cavity Enhanced, Mid-Infared Absorption Spectroscopy | |
CN111629664B (en) | Device for detecting carbon dioxide | |
US4370553A (en) | Contaminated sample gas analyzer and gas cell therefor | |
JP2016036431A (en) | Airway gas analyzer | |
Marchenko et al. | Quantum cascade laser-based sensor for detection of exhaled and biogenic nitric oxide | |
US20090270700A1 (en) | Non-invasive glucose sensor | |
WO2010058150A1 (en) | Apparatus for measurement of gas concentrations in breath | |
WO1999056615A1 (en) | Non-invasive measurement of analyte in the tympanic membrane | |
Zhou et al. | Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection | |
CN104142308A (en) | FENO detection system based on broadband light source cavity enhanced absorption spectroscopy | |
US20220287588A1 (en) | Universal portable breath content alayzer | |
CN102784427B (en) | Airway adapter and gas analyzer for measuring oxygen concentration in breathing gas | |
Okita et al. | Small-volume cavity cell using hollow optical fiber for Raman scattering-based gas detection | |
US11366056B2 (en) | Respiratory gas analyzer and a beam splitter therefor | |
US20220233097A1 (en) | System and method for mainstream exhaled oxygen sensor | |
Chen et al. | An Optical Micro-nano fiber Sensor Monitoring Exhaled Carbon Dioxide Gas | |
JPH01107736A (en) | Aspiration monitoring method and apparatus | |
Wolff et al. | Photoacoustic sensor for medical diagnostics |