JP2016033343A - Fuel injection control unit - Google Patents

Fuel injection control unit Download PDF

Info

Publication number
JP2016033343A
JP2016033343A JP2014156045A JP2014156045A JP2016033343A JP 2016033343 A JP2016033343 A JP 2016033343A JP 2014156045 A JP2014156045 A JP 2014156045A JP 2014156045 A JP2014156045 A JP 2014156045A JP 2016033343 A JP2016033343 A JP 2016033343A
Authority
JP
Japan
Prior art keywords
time
learning
fuel injection
energization time
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014156045A
Other languages
Japanese (ja)
Other versions
JP6292070B2 (en
Inventor
康孝 江戸
Yasutaka Edo
康孝 江戸
信行 佐竹
Nobuyuki Satake
信行 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014156045A priority Critical patent/JP6292070B2/en
Priority to DE102015111086.5A priority patent/DE102015111086B4/en
Publication of JP2016033343A publication Critical patent/JP2016033343A/en
Application granted granted Critical
Publication of JP6292070B2 publication Critical patent/JP6292070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To increase the learning opportunity of current-carrying time without executing forced split injections.SOLUTION: An ECU 30 (fuel injection control unit) comprises: a map storage unit 43; a current-carrying-time setting unit 42; a detection circuit 52; a learning unit 44; and a correction unit 46. The map storage unit 43 stores an adaptive value of current carrying time Ti corresponding to a demanded injection quantity. The current-carrying-time setting unit 42 sets the current carrying time Ti on the basis of the stored adaptive value. The detection circuit 52 detects a behavior of a valve element 11. The learning unit 44 learns a detection result as correction data. The correction unit 46 corrects the current carrying time set by the current-carrying-time setting unit 42 on the basis of the learned correction data. If the current carrying time Ti is time within a predetermined range among time for partial lift injection, the learning unit 44 implements learning.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の燃焼に用いる燃料を噴射する燃料噴射弁の作動を制御する、燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device that controls the operation of a fuel injection valve that injects fuel used for combustion in an internal combustion engine.

この種の燃料噴射弁を制御する従来の制御装置は、燃料噴射弁への通電時間Tiと噴射量Qとの関係(Ti−Q特性)を表したマップを予め記憶させておき、要求噴射量に対応する通電時間Tiを、上記マップを参照して設定している。そして近年では、特に直噴式の内燃機関において、制御可能な噴射量の最小値をできるだけ小さくすることが求められている。   A conventional control device for controlling this type of fuel injection valve stores in advance a map representing the relationship (Ti-Q characteristic) between the energization time Ti and the injection amount Q to the fuel injection valve, and the required injection amount. Is set with reference to the map. In recent years, particularly in a direct-injection internal combustion engine, it is required to make the minimum value of the controllable injection amount as small as possible.

そこで、特許文献1に記載の制御装置では、弁体が開弁作動を開始してから最大開弁位置に達する前に閉弁作動を開始させるパーシャルリフト噴射を実施している。これによれば、最大開弁位置に達した後に閉弁作動を開始させるフルリフト噴射に限定した制御装置に比べて、噴射量の最小値を小さくできる。   Therefore, in the control device described in Patent Document 1, partial lift injection is performed to start the valve closing operation before reaching the maximum valve opening position after the valve element starts the valve opening operation. According to this, the minimum value of the injection amount can be reduced as compared with the control device limited to the full lift injection that starts the valve closing operation after reaching the maximum valve opening position.

特開2013−2400号公報JP 2013-2400 A

しかしながら、上記パーシャルリフト噴射では、Ti−Q特性の機差ばらつきが顕著に現れる。そこで本発明者らは、通電時間Tiが、パーシャルリフト噴射の領域における特定の時間である場合に、その通電終了後に弁体が閉弁したタイミングを検出し、その検出結果に応じてTi−Qマップを補正することを検討した。しかし、通電時間Tiが特定の時間になる機会は少ないので十分な学習ができない。   However, in the partial lift injection, the machine difference variation of the Ti-Q characteristic appears remarkably. Therefore, the present inventors detect the timing at which the valve body is closed after the energization is completed when the energization time Ti is a specific time in the partial lift injection region, and Ti-Q is determined according to the detection result. We considered correcting the map. However, there is little opportunity for the energization time Ti to be a specific time, so sufficient learning cannot be performed.

なお、この問題に対し本発明者らは、要求噴射量を複数回に分けて噴射する分割噴射を実施し、それらの噴射の1つを特定の時間にすることで学習機会を増やすことも検討した。しかし、このような分割噴射を実施すると、燃焼状態が所望の状態と異なることとなり、排気エミッション悪化や燃費悪化を招く。   In order to solve this problem, the present inventors also consider performing divided injection in which the required injection amount is divided into a plurality of times and increasing the learning opportunity by setting one of the injections at a specific time. did. However, when such divided injection is performed, the combustion state differs from the desired state, leading to deterioration of exhaust emission and fuel consumption.

本発明は、上記問題を鑑みてなされたもので、その目的は、強制的な分割噴射を実施すること無く通電時間の学習機会の増大を図った、燃料噴射制御装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel injection control device that increases the learning opportunity of the energization time without performing forced split injection.

ここに開示される発明は上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。   The invention disclosed herein employs the following technical means to achieve the above object. Note that the reference numerals in parentheses described in the claims and in this section indicate the correspondence with the specific means described in the embodiments described later, and do not limit the technical scope of the invention. .

開示される発明のひとつは、電気アクチュエータ(12、13、14)により生じた開弁力により弁体(11)を開弁作動させて、内燃機関の燃焼に用いる燃料を噴射する燃料噴射弁(10)に適用された燃料噴射制御装置(30)であることを前提とする。そして、内燃機関の1燃焼サイクル中に要求される燃料の噴射量である要求噴射量に対応する、電気アクチュエータへの通電時間(Ti)の適合値を記憶する記憶手段(43)と、記憶手段に記憶された適合値に基づき、電気アクチュエータへの通電時間を設定する通電時間設定手段(42)と、弁体の挙動を検出する検出手段(52)と、検出手段の検出結果を、適合値の補正に用いる補正データとして学習する学習手段(44)と、学習手段により学習された補正データに基づき、適合値を補正する補正手段(46)と、を備える。そして、電気アクチュエータへの通電時間が、弁体が開弁作動を開始してから最大開弁位置に達する前に閉弁作動を開始することとなるパーシャルリフト噴射の所定範囲(Wa)の時間であれば、学習手段による学習を実施することを特徴とする。   One of the disclosed inventions is a fuel injection valve (injecting fuel used for combustion of an internal combustion engine) by opening the valve body (11) by the valve opening force generated by the electric actuator (12, 13, 14). It is assumed that the fuel injection control device (30) is applied to 10). Storage means (43) for storing an adapted value of the energization time (Ti) to the electric actuator corresponding to the required injection amount which is the fuel injection amount required during one combustion cycle of the internal combustion engine; The energization time setting means (42) for setting the energization time to the electric actuator based on the adaptation value stored in the above, the detection means (52) for detecting the behavior of the valve body, and the detection results of the detection means Learning means (44) that learns as correction data to be used for the correction, and correction means (46) that corrects the fitness value based on the correction data learned by the learning means. The energization time of the electric actuator is a time of a predetermined range (Wa) of partial lift injection in which the valve closing operation is started before reaching the maximum valve opening position after the valve body starts the valve opening operation. If there is, learning by the learning means is performed.

この発明によれば、電気アクチュエータへの通電時間が、パーシャルリフト噴射を実施することとなる所定範囲の時間であれば、弁体の挙動を検出し、その検出結果に基づき通電時間の適合値を補正する。よって、通電時間と弁体の挙動との関係に基づく補正データの学習は、通電時間が特定の時間である場合に限られず、所定範囲であれば実施されることとなる。よって、強制的な分割噴射を実施すること無く通電時間の学習機会を増大できる。   According to the present invention, if the energization time to the electric actuator is within a predetermined range in which partial lift injection is to be performed, the behavior of the valve element is detected, and the adaptation value of the energization time is determined based on the detection result. to correct. Therefore, the learning of the correction data based on the relationship between the energization time and the behavior of the valve body is not limited to the case where the energization time is a specific time, but is performed within a predetermined range. Therefore, the learning opportunities for the energization time can be increased without performing forced split injection.

本発明の一実施形態に係る燃料噴射制御装置、およびその制御対象となる燃料噴射弁を示す概要図。1 is a schematic diagram showing a fuel injection control device according to an embodiment of the present invention and a fuel injection valve that is a control target thereof. 燃料噴射弁のフルリフト状態を示す図。The figure which shows the full lift state of a fuel injection valve. 燃料噴射弁のパーシャルリフト状態を示す図。The figure which shows the partial lift state of a fuel injection valve. 通電時間Tiと噴射量Qとの関係を示す特性マップ。The characteristic map which shows the relationship between the electricity supply time Ti and the injection quantity Q. 閉弁タイミングの計測時間および通電時間Tiの関係と、ばね特性との相関を表した試験結果。The test result showing the correlation between the measurement time of the valve closing timing and the energization time Ti and the spring characteristics. 図1に示す燃料噴射制御装置による学習の処理手順を示すフローチャート。The flowchart which shows the process sequence of learning by the fuel-injection control apparatus shown in FIG.

以下、図面を参照しながら発明を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。   Hereinafter, a plurality of modes for carrying out the invention will be described with reference to the drawings. In each embodiment, portions corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals and redundant description may be omitted. In each embodiment, when only a part of the configuration is described, the other configurations described above can be applied to other portions of the configuration.

図1に示す燃料噴射弁10は、点火式の内燃機関(ガソリンエンジン)に搭載されており、多気筒エンジンの各燃焼室へ直接燃料を噴射するものである。燃料噴射弁10へ供給される燃料は燃料ポンプ20により圧送され、燃料ポンプ20はエンジンの回転駆動力により駆動する。   A fuel injection valve 10 shown in FIG. 1 is mounted on an ignition internal combustion engine (gasoline engine), and directly injects fuel into each combustion chamber of a multi-cylinder engine. The fuel supplied to the fuel injection valve 10 is pumped by the fuel pump 20, and the fuel pump 20 is driven by the rotational driving force of the engine.

図2および図3に示すように、燃料噴射弁10は、弁体11、コイル12、固定コア13、可動コア14、スプリング15およびこれらを内部に収容するボデー16等を備えて構成されている。ボデー16の内部には、燃料通路と、燃料通路の下流端に位置する噴孔と、弁体11が離着座する着座面とが形成されている。弁体11に形成されたシート面を着座面に着座させるよう弁体11を閉弁作動させると、噴孔からの燃料噴射が停止される。シート面を着座面から離座させるよう弁体11を開弁作動(リフトアップ)させると、噴孔から燃料が噴射される。   As shown in FIGS. 2 and 3, the fuel injection valve 10 includes a valve body 11, a coil 12, a fixed core 13, a movable core 14, a spring 15, a body 16 that accommodates them, and the like. . Inside the body 16 are formed a fuel passage, an injection hole located at the downstream end of the fuel passage, and a seating surface on which the valve body 11 is seated. When the valve body 11 is closed so that the seat surface formed on the valve body 11 is seated on the seating surface, fuel injection from the injection hole is stopped. When the valve body 11 is opened (lifted up) so as to separate the seat surface from the seating surface, fuel is injected from the injection hole.

固定コア13および可動コア14は、コイル12への通電により生じた磁束の通路となる磁気回路を形成する。コイル12へ通電して固定コア13に電磁吸引力を生じさせると、この電磁吸引力により可動コア14が固定コア13に引き寄せられる。その結果、可動コア14に連結されている弁体11は、スプリング15の弾性力および燃圧閉弁力に抗してリフトアップ(開弁作動)する。一方、コイル12への通電を停止させると、スプリング15の弾性力により、弁体11は可動コア14とともに閉弁作動する。スプリング15はコイル状であり、燃料噴射弁10の中心軸線方向(図2の上下方向)に弾性変形する。スプリング15の弾性力は、弁体11へ閉弁側に付与される。スプリング15は、弁体11に弾性力を付与して閉弁作動させる弾性手段を提供する。   The fixed core 13 and the movable core 14 form a magnetic circuit serving as a path for magnetic flux generated by energization of the coil 12. When the coil 12 is energized to generate an electromagnetic attractive force on the fixed core 13, the movable core 14 is attracted to the fixed core 13 by this electromagnetic attractive force. As a result, the valve body 11 connected to the movable core 14 is lifted up (opening operation) against the elastic force of the spring 15 and the fuel pressure closing force. On the other hand, when the energization of the coil 12 is stopped, the valve element 11 is closed together with the movable core 14 by the elastic force of the spring 15. The spring 15 is coiled and elastically deforms in the direction of the central axis of the fuel injection valve 10 (vertical direction in FIG. 2). The elastic force of the spring 15 is applied to the valve body 11 on the valve closing side. The spring 15 provides an elastic means for applying an elastic force to the valve body 11 to perform a valve closing operation.

図1の説明に戻り、電子制御装置(ECU30)は、吸気量を制御するスロットルバルブ、点火プラグ、および燃料噴射弁10の作動を制御することで、エンジンの燃焼状態を制御し、ひいてはエンジンの出力および排気エミッションを制御する。したがって、ECU30は、燃料噴射弁10の作動を制御する燃料噴射制御装置を提供する。また、ECU30および燃料噴射弁10は、最適量の燃料を最適タイミングで噴射する燃料噴射システムを提供する。   1, the electronic control unit (ECU 30) controls the combustion state of the engine by controlling the operation of the throttle valve, the ignition plug, and the fuel injection valve 10 that control the intake air amount. Control power and exhaust emissions. Therefore, the ECU 30 provides a fuel injection control device that controls the operation of the fuel injection valve 10. The ECU 30 and the fuel injection valve 10 provide a fuel injection system that injects an optimal amount of fuel at an optimal timing.

ECU30は、マイクロコンピュータ(マイコン40)および集積回路(IC50)等を有する。マイコン40は、中央演算処理装置(CPU)およびメモリ等を有して構成され、予め記憶されたプログラムに従ってCPUが各種の処理を実行する。これにより、マイコン40は、後述する要求噴射量設定部41、通電時間設定部42、マップ記憶部43、学習部44、ばね特性推定部45および補正部46として機能する。   The ECU 30 includes a microcomputer (microcomputer 40) and an integrated circuit (IC50). The microcomputer 40 includes a central processing unit (CPU) and a memory, and the CPU executes various processes according to a program stored in advance. Thereby, the microcomputer 40 functions as a required injection amount setting unit 41, an energization time setting unit 42, a map storage unit 43, a learning unit 44, a spring characteristic estimation unit 45, and a correction unit 46, which will be described later.

要求噴射量設定部41は、車両運転者によるアクセルペダル踏込量、エンジン負荷およびエンジン回転数等に基づき、燃料の要求噴射量を算出する。この要求噴射量は、1燃焼サイクル中に各気筒に要求される燃料の噴射量であり、弁体11を1回開弁させた時に噴射される量に相当する。   The required injection amount setting unit 41 calculates the required injection amount of fuel based on the accelerator pedal depression amount, engine load, engine speed, and the like by the vehicle driver. This required injection amount is the fuel injection amount required for each cylinder during one combustion cycle, and corresponds to the amount injected when the valve element 11 is opened once.

通電時間設定部42は、要求噴射量に対応する、コイル12への通電時間Tiを設定する。要求噴射量に対応する通電時間Tiの適合値は、図4に示すマップM1、M2、M3の形式でマップ記憶部43に記憶されている。マップ記憶部43には、複数種類のマップM1、M2、M3が記憶されている。符号M1に示すマップは、ノミナル品の燃料噴射弁10を想定した適合値を示す。符号M2、M3に示すマップは、スプリング15の特性値がノミナル品と異なる場合の適合値を示す。   The energization time setting unit 42 sets an energization time Ti for the coil 12 corresponding to the required injection amount. The adaptation value of the energization time Ti corresponding to the required injection amount is stored in the map storage unit 43 in the format of maps M1, M2, and M3 shown in FIG. The map storage unit 43 stores a plurality of types of maps M1, M2, and M3. The map indicated by the reference symbol M1 indicates a conforming value assuming a nominal fuel injection valve 10. The maps indicated by reference numerals M2 and M3 indicate the appropriate values when the characteristic value of the spring 15 is different from that of the nominal product.

具体的には、スプリング15の弾性係数が大きく、弁体11を閉弁側へ押し付ける弾性力が大きいばね特性の場合には、コイル12への通電を停止させた後、弁体11の閉弁作動速度が速いので、実際の開弁時間が短くなる。よって、符号M2に示す如く噴射量Qが少なくなる。一方、スプリング15の弾性係数が小さく、弁体11を閉弁側へ押し付ける弾性力が小さいばね特性の場合には、コイル12への通電を停止させた後、弁体11の閉弁作動速度が遅いので、実際の開弁時間が長くなる。よって、符号M3に示す如く噴射量Qが多くなる。   Specifically, in the case of a spring characteristic in which the elastic coefficient of the spring 15 is large and the elastic force that presses the valve element 11 toward the valve closing side is large, the energization to the coil 12 is stopped and then the valve element 11 is closed. Since the operating speed is fast, the actual valve opening time is shortened. Therefore, the injection amount Q is reduced as indicated by the symbol M2. On the other hand, in the case of spring characteristics in which the elastic coefficient of the spring 15 is small and the elastic force that presses the valve body 11 toward the valve closing side is small, the valve closing operation speed of the valve body 11 is reduced after the energization to the coil 12 is stopped. Since it is slow, the actual valve opening time becomes longer. Therefore, the injection amount Q increases as indicated by the symbol M3.

ばね特性推定部45により、スプリング15の弾性係数がノミナル品のばね特性であると推定されれば、補正部46による補正を実施せず、ノミナル品を想定したマップM1に基づき設定された通電時間Tiの適合値で、コイル12への通電時間を制御する。具体的には、通電時間Tiに応じたパルスオン長さのパルス信号が、噴射パルス信号としてマイコン40からIC50へ出力される。IC50が有する駆動回路51は、噴射パルス信号のオン期間中、所定の電圧をコイル12へ印加する。したがって、噴射パルス信号は、通電開始時期および通電時間Tiを指令することにより、噴射開始時期および噴射量を指令していると言える。   If the spring characteristic estimation unit 45 estimates that the elastic coefficient of the spring 15 is the spring characteristic of the nominal product, the correction time is not corrected by the correction unit 46, and the energization time set based on the map M1 assuming the nominal product. The energization time to the coil 12 is controlled by the conforming value of Ti. Specifically, a pulse signal having a pulse-on length corresponding to the energization time Ti is output from the microcomputer 40 to the IC 50 as an ejection pulse signal. The drive circuit 51 included in the IC 50 applies a predetermined voltage to the coil 12 during the ON period of the ejection pulse signal. Therefore, it can be said that the injection pulse signal commands the injection start timing and the injection amount by commanding the energization start timing and the energization time Ti.

ばね特性推定部45により、ノミナル品に比べて所定以上弾性力が大きいばね特性であると推定されれば、通電時間設定部42で設定したマップM1に基づく適合値を、マップM2に基づく適合値に補正する。或いは、マップM2に基づき適合値を設定するように通電時間設定部42へ指令する。ばね特性推定部45により、ノミナル品に比べて所定以上弾性力が小さいばね特性であると推定されれば、通電時間設定部42で設定したマップM1に基づく適合値を、マップM3に基づく適合値に補正する。或いは、マップM3に基づき適合値を設定するように通電時間設定部42へ指令する。要するに、補正部46による補正量は、ノミナル品のマップM1に基づく通電時間Tiと、マップM2、M3に基づく通電時間Tiとのずれ量に相当する。   If it is estimated by the spring characteristic estimation unit 45 that the spring characteristic is larger than the nominal product by a predetermined elastic force, the adaptation value based on the map M1 set by the energization time setting unit 42 is changed to the adaptation value based on the map M2. To correct. Alternatively, it instructs the energization time setting unit 42 to set an appropriate value based on the map M2. If it is estimated by the spring characteristic estimation unit 45 that the spring characteristic is smaller than the nominal product by a predetermined elastic force, the adaptation value based on the map M1 set by the energization time setting unit 42 is changed to the adaptation value based on the map M3. To correct. Alternatively, it instructs the energization time setting unit 42 to set an appropriate value based on the map M3. In short, the correction amount by the correction unit 46 corresponds to a deviation amount between the energization time Ti based on the nominal product map M1 and the energization time Ti based on the maps M2 and M3.

コイル12への通電時間Tiと、噴孔からの燃料の噴射量Qとの関係を示す噴射特性(Ti−Q特性)を、予め試験して取得しておき、その試験結果に基づき、マップ記憶部43に記憶されているマップM1、M2、M3は作成されている。また、Ti−Q特性は、燃料噴射弁10へ供給される燃料の圧力(供給燃圧)に応じて異なってくる。そのため、マップM1、M2、M3は供給燃圧毎に作成されて記憶されている。マイコン40は、燃圧センサ21により検出された供給燃圧を取得する。通電時間設定部42および補正部46は、取得した供給燃圧に対応するマップM1、M2、M3を用いて、通電時間Tiの設定および補正を実施する。   An injection characteristic (Ti-Q characteristic) indicating the relationship between the energization time Ti to the coil 12 and the fuel injection amount Q from the nozzle hole is obtained by testing in advance, and the map memory is stored based on the test result. Maps M1, M2, and M3 stored in the unit 43 are created. Further, the Ti-Q characteristic varies depending on the pressure of the fuel supplied to the fuel injection valve 10 (supply fuel pressure). Therefore, the maps M1, M2, and M3 are created and stored for each supply fuel pressure. The microcomputer 40 acquires the supply fuel pressure detected by the fuel pressure sensor 21. The energization time setting unit 42 and the correction unit 46 set and correct the energization time Ti using the maps M1, M2, and M3 corresponding to the acquired supply fuel pressure.

さて、燃料噴射弁10は、通電時間Tiが十分に長い場合には図2に示すフルリフト噴射の態様で作動し、通電時間Tiが短い場合には図3に示すパーシャルリフト噴射の態様で作動する。フルリフト噴射では、弁体11がフルリフト位置(最大開弁位置)まで開弁作動し(図2(b)参照)、その後に閉弁作動する。フルリフト位置とは、可動コア14が固定コア13に当接する位置である。一方、パーシャルリフト噴射では、弁体11が開弁作動を開始した後、フルリフト位置に達していない状態(図3(b)参照)で閉弁作動を開始する。   The fuel injection valve 10 operates in the mode of full lift injection shown in FIG. 2 when the energization time Ti is sufficiently long, and operates in the mode of partial lift injection shown in FIG. 3 when the energization time Ti is short. . In the full lift injection, the valve body 11 opens to the full lift position (maximum valve opening position) (see FIG. 2B), and then closes. The full lift position is a position where the movable core 14 comes into contact with the fixed core 13. On the other hand, in the partial lift injection, after the valve body 11 starts the valve opening operation, the valve closing operation is started in a state where the full lift position has not been reached (see FIG. 3B).

図4のマップM1に示される噴射特性(Ti−Q特性)は、通電開始からt1時点で弁体11が開弁作動を開始することを表している。そして、t1時点後のt2時点で、弁体11がフルリフト位置に達したことを表している。したがって、通電時間Tiのうちt1時点からt2時点までの領域(パーシャルリフト領域)では、パーシャルリフト噴射の態様で燃料噴射弁10は作動する。一方、通電時間Tiのうちt2時点以降の領域(フルリフト領域)では、フルリフト噴射の態様で燃料噴射弁10は作動する。   The injection characteristics (Ti-Q characteristics) shown in the map M1 in FIG. 4 indicate that the valve element 11 starts the valve opening operation at time t1 from the start of energization. Then, at time t2 after time t1, the valve body 11 has reached the full lift position. Therefore, in the region (partial lift region) from the time t1 to the time t2 in the energization time Ti, the fuel injection valve 10 operates in the form of partial lift injection. On the other hand, in the region (full lift region) after the time t2 in the energization time Ti, the fuel injection valve 10 operates in the form of full lift injection.

なお、t2時点で可動コア14が固定コア13に衝突すると、その衝突の反動で可動コア14が固定コア13から一瞬離れて再び衝突するといったバウンド現象が生じる。すると、可動コア14とともに弁体11もバウンドするため噴孔が一時的に開閉を繰り返すこととなる。そのため、フルリフト領域のうち、t2時点から所定時間が経過するまでの領域(第3領域)では、図4に示すTi−Q特性は直線になっているが、実際には、弁体11がバウンドすることに起因してTi−Q特性は脈動した波形になる。   When the movable core 14 collides with the fixed core 13 at the time t2, a bounce phenomenon occurs in which the movable core 14 collides with the fixed core 13 for a moment after the collision. Then, since the valve body 11 also bounces together with the movable core 14, the nozzle hole temporarily repeats opening and closing. Therefore, in the full lift region, the Ti-Q characteristic shown in FIG. 4 is a straight line in the region (third region) from the time point t2 until the predetermined time elapses. As a result, the Ti-Q characteristic has a pulsating waveform.

図4に示すように、パーシャルリフト領域におけるTi−Q特性線の傾きは、フルリフト領域における傾きよりも大きい。したがって、通電時間Tiのずれに起因する噴射量Qのずれは、パーシャルリフト領域では大きく現れる。よって、パーシャルリフト領域では精度良く通電時間Tiを制御することが要求される。   As shown in FIG. 4, the inclination of the Ti-Q characteristic line in the partial lift region is larger than the inclination in the full lift region. Therefore, the deviation of the injection amount Q due to the deviation of the energization time Ti appears greatly in the partial lift region. Therefore, it is required to accurately control the energization time Ti in the partial lift region.

IC50が有する検出回路52には、コイル12のマイナス端子の電圧Vmが入力される。この電圧Vmは、弁体の閉弁作動に伴い徐々に低下する波形となる。但し、徐々に低下する波形中に、一時的に電圧Vmが上昇する脈動波形が出現する。この脈動波形の出現は、閉弁作動している弁体11が閉弁位置に達した時点で作動停止したことに起因して生じる。つまり、脈動波形の出現タイミングが閉弁タイミングであると言える。この点を鑑み、検出回路52では、電圧Vmの波形中に脈動波形が出現するタイミングを検出し、その検出タイミングを閉弁タイミングとして検出する。   The voltage Vm at the minus terminal of the coil 12 is input to the detection circuit 52 included in the IC 50. This voltage Vm has a waveform that gradually decreases as the valve element is closed. However, a pulsation waveform in which the voltage Vm temporarily rises appears in the gradually decreasing waveform. The appearance of this pulsation waveform is caused by the operation being stopped when the valve element 11 that is in the valve closing operation reaches the valve closing position. That is, it can be said that the appearance timing of the pulsation waveform is the valve closing timing. In view of this point, the detection circuit 52 detects the timing at which the pulsation waveform appears in the waveform of the voltage Vm, and detects the detection timing as the valve closing timing.

具体的には、検出回路52は、コイル12への通電開始時点から脈動波形出現時点(閉弁時点)までの時間を計測し、その計測時間Tcを、閉弁タイミング検出結果としてマイコン40へ出力する。なお、燃料噴射弁10が備えるスプリング15の弾性力が強いほど、弁体11の閉弁作動速度が速くなるので、コイル12への通電停止から閉弁までに要する時間が短くなり、計測時間Tcは短くなる。   Specifically, the detection circuit 52 measures the time from the start of energization to the coil 12 to the current pulsation waveform output time (valve closing time), and outputs the measurement time Tc to the microcomputer 40 as the valve closing timing detection result. To do. Note that the stronger the elastic force of the spring 15 provided in the fuel injection valve 10, the faster the valve closing operation speed of the valve body 11, so that the time required from the stop of energization to the coil 12 to the valve closing becomes shorter, and the measurement time Tc Becomes shorter.

マイコン40による学習部44は、マイコン40からIC50へ出力した噴射パルス信号による通電時間Tiと、検出回路52からマイコン40が取得した計測時間Tcとの関係を学習する。図5に示す実線L1は、燃料噴射弁10がノミナル品である場合の学習結果を示す。スプリング15の弾性力が強い場合には、先述したように計測時間Tcが短くなるので、実線L2に例示される学習結果になる。一方、スプリング15の弾性力が弱い場合には、計測時間Tcが長くなるので、実線L3に例示される学習結果になる。したがって、学習部44による学習結果は、スプリング15の弾性力の特性を現していると言える。   The learning unit 44 by the microcomputer 40 learns the relationship between the energization time Ti by the injection pulse signal output from the microcomputer 40 to the IC 50 and the measurement time Tc acquired by the microcomputer 40 from the detection circuit 52. A solid line L1 illustrated in FIG. 5 indicates a learning result when the fuel injection valve 10 is a nominal product. When the elastic force of the spring 15 is strong, the measurement time Tc is shortened as described above, so that the learning result illustrated by the solid line L2 is obtained. On the other hand, when the elastic force of the spring 15 is weak, the measurement time Tc becomes long, so that the learning result illustrated by the solid line L3 is obtained. Therefore, it can be said that the learning result by the learning unit 44 shows the characteristic of the elastic force of the spring 15.

ばね特性推定部45は、学習部44による学習結果が、実線L1、L2、L3のいずれに近いかを推定することで、燃料噴射弁10のばね特性を推定し、推定したばね特性に応じた補正を補正部46が実行するよう、ばね特性の推定結果を補正部46へ出力する。具体的には、学習した計測時間Tcおよび通電時間Tiの図5のグラフ上における座標点が、実線L1に近い場合には、ノミナル品のばね特性であると推定する。一方、上記座標点が実線L2に近い場合には弾性力が強いばね特性であると推定し、実線L3に近い場合には弾性力が弱いばね特性であると推定する。   The spring characteristic estimation unit 45 estimates the spring characteristic of the fuel injection valve 10 by estimating which of the solid lines L1, L2, and L3 is close to the learning result by the learning unit 44, and according to the estimated spring characteristic The estimation result of the spring characteristic is output to the correction unit 46 so that the correction unit 46 executes the correction. Specifically, when the coordinate point on the graph of FIG. 5 of the learned measurement time Tc and energization time Ti is close to the solid line L1, it is estimated that the spring characteristics of the nominal product. On the other hand, when the coordinate point is close to the solid line L2, it is estimated that the spring characteristic is strong, and when it is close to the solid line L3, it is estimated that the spring characteristic is weak.

補正部46は、ばね特性推定部45による推定結果に基づき、通電時間設定部42にて設定された通電時間Tiを補正する。具体的には、ノミナル品のばね特性であると推定された場合には、マップM1に基づき通電時間Tiを設定する。つまり、補正部46による補正を実施しない。弾性力が強いばね特性であると推定された場合には、マップM2に基づき通電時間Tiを補正する。弾性力が弱いばね特性であると推定された場合には、マップM3に基づき通電時間Tiを補正する。   The correction unit 46 corrects the energization time Ti set by the energization time setting unit 42 based on the estimation result by the spring characteristic estimation unit 45. Specifically, when it is estimated that the spring characteristics of the nominal product, the energization time Ti is set based on the map M1. That is, the correction by the correction unit 46 is not performed. If it is estimated that the spring characteristic is strong, the energization time Ti is corrected based on the map M2. When it is estimated that the spring characteristic is weak in the elastic force, the energization time Ti is corrected based on the map M3.

なお、図5に示す複数本の実線L1、L2、L3の中間に学習による上記座標点が位置する場合には、線形補間によりばね特性を推定し、複数のマップM1、M2、M3を線形補間して通電時間Tiを補正する。   When the coordinate points obtained by learning are located between a plurality of solid lines L1, L2, and L3 shown in FIG. 5, spring characteristics are estimated by linear interpolation, and a plurality of maps M1, M2, and M3 are linearly interpolated. Thus, the energization time Ti is corrected.

図6は、上述した学習に関する手順を示すフローチャートであり、図6の処理は、噴射パルス信号を出力する毎にマイコン40によって繰り返し実行される。なお、多気筒エンジンの各気筒に設けられた燃料噴射弁10毎に、図6の処理は実施される。   FIG. 6 is a flowchart showing a procedure relating to the above-described learning, and the process of FIG. 6 is repeatedly executed by the microcomputer 40 every time an injection pulse signal is output. 6 is performed for each fuel injection valve 10 provided in each cylinder of the multi-cylinder engine.

先ず、図6のステップS10において、パーシャルリフト噴射を実施するか否かを判定する。具体的には、マイコン40が出力した噴射パルス信号に係る通電時間Tiが、パーシャルリフト領域であるか否かを判定する。パーシャルリフト噴射を実施すると判定された場合(S10:YES)、続くステップS11において、閉弁タイミングの検出を実施する。具体的には、検出回路52から出力される計測時間Tcの信号を取得する。   First, in step S10 of FIG. 6, it is determined whether or not partial lift injection is to be performed. Specifically, it is determined whether the energization time Ti related to the injection pulse signal output from the microcomputer 40 is in the partial lift region. When it is determined that the partial lift injection is to be performed (S10: YES), in the subsequent step S11, the valve closing timing is detected. Specifically, the signal of the measurement time Tc output from the detection circuit 52 is acquired.

続くステップS12では、学習実行条件が成立しているか否かを判定する。例えば、燃料温度が所定範囲を越えて低温または高温になっている場合には、燃料の粘性が想定を超えた状態になっていることに起因してTi−Q特性が変化しているとみなし、学習実行条件が成立していないと判定する。また、エンジン運転状態が急変した場合には学習実行条件が成立していないと判定する。例えばエンジン負荷やエンジン回転数の所定時間当たりの変化量が閾値を越えて大きくなっている場合に、エンジン運転状態が急変したと判定する。   In a succeeding step S12, it is determined whether or not a learning execution condition is satisfied. For example, when the fuel temperature exceeds a predetermined range and is low or high, it is considered that the Ti-Q characteristic has changed due to the fuel viscosity exceeding an assumed state. It is determined that the learning execution condition is not satisfied. Further, when the engine operating state changes suddenly, it is determined that the learning execution condition is not satisfied. For example, when the change amount per predetermined time of the engine load or the engine speed exceeds a threshold value, it is determined that the engine operating state has suddenly changed.

また、通電時間Tiが、図4に示す第1領域W1または第2領域W2である場合には、学習実行条件が成立していないと判定する。換言すれば、通電時間Tiが、パーシャルリフト領域のうち第1領域W1および第2領域W2を除く所定範囲Waである場合に、学習実行条件が成立したと判定する。第1領域W1は、パーシャルリフト領域のうち、第1所定時間よりも短い時間の領域である。第2領域W2は、パーシャルリフト領域のうち、第2所定時間よりも長い時間の領域である。第2所定時間は第1所定時間よりも長い。   Further, when the energization time Ti is the first region W1 or the second region W2 shown in FIG. 4, it is determined that the learning execution condition is not satisfied. In other words, it is determined that the learning execution condition is satisfied when the energization time Ti is the predetermined range Wa excluding the first region W1 and the second region W2 in the partial lift region. The first region W1 is a region having a time shorter than the first predetermined time in the partial lift region. The second area W2 is an area of the partial lift area that is longer than the second predetermined time. The second predetermined time is longer than the first predetermined time.

学習実行条件が成立したと判定された場合(S12:YES)、続くステップS13において、学習部44における学習値を更新する。具体的には、図5に示す座標点(学習値)を追加する。また、同じ通電時間Tiに対して異なる計測時間Tcを取得した場合には、最新の計測時間Tcに書き換える。   When it is determined that the learning execution condition is satisfied (S12: YES), the learning value in the learning unit 44 is updated in the subsequent step S13. Specifically, coordinate points (learned values) shown in FIG. 5 are added. Further, when different measurement times Tc are acquired for the same energization time Ti, the latest measurement time Tc is rewritten.

続くステップS14では、複数の学習値と、予めマイコン40に記憶しておいた複数種類のサンプルデータ、つまり実線L1、L2、L3との関係性を推定する。具体的には、実線L1、L2、L3のいずれに学習値が近いかを推定する。続くステップS15では、ばね特性ずれを推定する。具体的には、予めマイコン40に記憶しておいた複数種類のTi−Q特性のいずれに該当するかを推定する。   In subsequent step S14, the relationship between the plurality of learning values and a plurality of types of sample data stored in advance in the microcomputer 40, that is, solid lines L1, L2, and L3 is estimated. Specifically, it is estimated which of the solid lines L1, L2, and L3 is closer to the learning value. In the subsequent step S15, the spring characteristic deviation is estimated. Specifically, it is estimated which of a plurality of types of Ti-Q characteristics stored in advance in the microcomputer 40 corresponds.

続くステップS16では、ノミナル品における要求噴射量に対する通電時間Tiと、推定されたばね特性における要求噴射量に対する通電時間Tiとのずれを推定する。続くステップS17では、ステップS16で推定した通電時間Tiのずれ量を補正量として算出する。なお、ステップS10にてパーシャルリフト噴射を実施しないと判定した場合(S10:NO)、またはステップS12にて学習実行条件が成立していないと判定された場合(S12:NO)には、検出回路52にて検出される計測時間Tcをリセットさせる。   In the subsequent step S16, a deviation between the energization time Ti for the required injection amount in the nominal product and the energization time Ti for the required injection amount in the estimated spring characteristics is estimated. In subsequent step S17, the deviation amount of the energization time Ti estimated in step S16 is calculated as a correction amount. If it is determined in step S10 that partial lift injection is not performed (S10: NO), or if it is determined in step S12 that the learning execution condition is not satisfied (S12: NO), the detection circuit The measurement time Tc detected at 52 is reset.

以上により、本実施形態によれば、通電時間Tiが、パーシャルリフト噴射を実施することとなる所定範囲Waの時間であれば、弁体11が閉弁するまでの時間(計測時間Tc)を検出し、その検出結果に基づき通電時間Tiの適合値を補正する。よって、通電時間Tiと弁体11の挙動(計測時間Tc)との関係に基づく学習値は、通電時間Tiが特定の時間である場合に限られず、所定範囲Waであれば実施されることとなる。よって、強制的な分割噴射を実施すること無く通電時間Tiの学習機会を増大できる。   As described above, according to the present embodiment, if the energization time Ti is within the predetermined range Wa in which the partial lift injection is performed, the time until the valve body 11 is closed (measurement time Tc) is detected. Then, based on the detection result, the matching value of the energization time Ti is corrected. Therefore, the learning value based on the relationship between the energization time Ti and the behavior of the valve body 11 (measurement time Tc) is not limited to the case where the energization time Ti is a specific time, and is implemented within the predetermined range Wa. Become. Therefore, the learning opportunities for the energization time Ti can be increased without performing forced split injection.

ここで、Ti−Q特性は、スプリング15の弾性特性の違いに応じて異なってくることは先述した通りであるが、燃料の性状に起因した燃料の粘性の違いや、コイル12の温度に起因したコイル抵抗値の違いに応じても異なってくる。但し、これら各種の要因のうち、スプリング15の弾性特性の違いが、Ti−Q特性に最も大きな影響を及ぼす。   Here, as described above, the Ti-Q characteristic varies depending on the difference in the elastic characteristic of the spring 15. However, the Ti-Q characteristic depends on the difference in the viscosity of the fuel due to the properties of the fuel and the temperature of the coil 12. It also differs depending on the difference in coil resistance. However, among these various factors, the difference in the elastic characteristics of the spring 15 has the greatest influence on the Ti-Q characteristics.

この知見に基づき、本実施形態では、燃料噴射弁10はスプリング15を有しており、学習部44(学習手段)により学習された学習値(補正データ)に基づき、スプリング15の弾性特性を推定するばね特性推定部45(特性推定手段)を備える。そして、補正部46(補正手段)は、ばね特性推定部45による推定結果に基づき、通電時間Tiの適合値に対する補正量を設定する。そのため、燃料の粘性やコイル抵抗値を推定して補正量を設定する場合に比べて、高精度で補正できる。   Based on this knowledge, in this embodiment, the fuel injection valve 10 has the spring 15, and the elastic characteristic of the spring 15 is estimated based on the learning value (correction data) learned by the learning unit 44 (learning means). A spring characteristic estimation unit 45 (characteristic estimation means). Then, the correction unit 46 (correction unit) sets a correction amount for the matching value of the energization time Ti based on the estimation result by the spring characteristic estimation unit 45. Therefore, the correction can be performed with higher accuracy than in the case where the correction amount is set by estimating the viscosity of the fuel and the coil resistance value.

ここで、通電時間Tiのうち第1所定時間よりも短い第1領域W1では、図4に示すように、ばね特性の違いに起因したTi−Q特性のばらつきが大きく生じない。この点を鑑みた本実施形態では、学習が実行される通電時間Tiの所定範囲Waは第1領域W1を除く範囲に設定されている。そのため、第1領域W1の学習値によりばね特性の推定精度が低下することを抑制でき、ひいては補正の精度を向上できる。   Here, in the first region W <b> 1 shorter than the first predetermined time in the energization time Ti, as shown in FIG. 4, the variation in Ti-Q characteristics due to the difference in spring characteristics does not occur. In this embodiment in view of this point, the predetermined range Wa of the energization time Ti in which learning is performed is set to a range excluding the first region W1. Therefore, it can suppress that the estimation precision of a spring characteristic falls by the learning value of 1st area | region W1, and can improve the precision of correction | amendment by extension.

また、通電時間Tiのうち第2所定時間よりも長い第2領域W2では、先述したバウンド現象に起因してTi−Q特性は脈動した波形になる。この点を鑑みた本実施形態では、学習が実行される通電時間Tiの所定範囲Waは第2領域W2を除く範囲に設定されている。そのため、第2領域W2の学習値によりばね特性の推定精度が低下することを抑制でき、ひいては補正の精度を向上できる。   Further, in the second region W2 that is longer than the second predetermined time in the energization time Ti, the Ti-Q characteristic has a pulsating waveform due to the bound phenomenon described above. In this embodiment in view of this point, the predetermined range Wa of the energization time Ti in which learning is executed is set to a range excluding the second region W2. Therefore, it can suppress that the estimation precision of a spring characteristic falls by the learning value of 2nd area | region W2, and can improve the precision of correction | amendment by extension.

さらに本実施形態では、マップ記憶部43は、供給燃圧毎に適合値を区別して記憶する。通電時間設定部42は、燃料噴射時の供給燃圧に応じた適合値に基づき通電時間Tiを設定する。学習部44は、検出回路52により検出された時の供給燃圧毎に、補正データを区別して学習する。先述した通り、Ti−Q特性は供給燃圧に応じて異なってくるので、供給燃圧毎に適合値を区別して記憶して通電時間Tiを設定し、学習も供給燃圧毎に区別して実施する本実施形態によれば、学習精度を向上でき、噴射量を高精度で制御できる。   Furthermore, in this embodiment, the map memory | storage part 43 distinguishes and memorize | stores a suitable value for every supply fuel pressure. The energization time setting unit 42 sets the energization time Ti based on a conforming value corresponding to the supply fuel pressure at the time of fuel injection. The learning unit 44 learns by distinguishing correction data for each supply fuel pressure detected by the detection circuit 52. As described above, since the Ti-Q characteristic varies depending on the supply fuel pressure, a suitable value is distinguished and stored for each supply fuel pressure, the energization time Ti is set, and learning is also performed separately for each supply fuel pressure. According to the embodiment, learning accuracy can be improved, and the injection amount can be controlled with high accuracy.

(他の実施形態)
以上、発明の好ましい実施形態について説明したが、発明は上述した実施形態に何ら制限されることなく、以下に例示するように種々変形して実施することが可能である。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(Other embodiments)
The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made as illustrated below. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.

図1に示す実施形態では、コイル12のマイナス端子の電圧Vm変化に基づき弁体11の閉弁タイミングを検出回路52が検出している。これに対し、コイル12を流れる電流の変化に基づき弁体11の閉弁タイミングを検出してもよい。   In the embodiment shown in FIG. 1, the detection circuit 52 detects the valve closing timing of the valve element 11 based on the change in the voltage Vm at the minus terminal of the coil 12. On the other hand, the valve closing timing of the valve body 11 may be detected based on a change in the current flowing through the coil 12.

図4に示す実施形態では、第1領域W1および第2領域W2での学習を禁止しているが、これらの領域での学習を実施してもよい。或いは、第1領域W1および第2領域W2での学習値に対する重み付けを小さく設定し、所定範囲Waの学習値に対する重み付けを大きく設定して学習してもよい。   In the embodiment shown in FIG. 4, learning in the first region W1 and the second region W2 is prohibited, but learning in these regions may be performed. Alternatively, learning may be performed by setting a small weight for the learning value in the first region W1 and the second region W2, and setting a large weight for the learning value in the predetermined range Wa.

図1に示す実施形態では、弁体11の閉弁に伴い電圧波形に生じる脈動を検出することで閉弁タイミングを検出しているが、本発明はこのような弁体11の挙動検出に限定されるものではない。例えば、弁体11のリフト量をリフトセンサで検出してもよい。或いは、エンジンの燃焼室の圧力(筒内圧)を筒内圧センサで検出し、その検出値に基づき噴射量を推定してもよい。或いは、噴射に伴い生じる供給燃圧の変化に基づき弁体11の挙動を検出してもよい。要するに、噴射量と相関のある物理量の具体例として、閉弁タイミングの他にも、リフト量、筒内圧、供給燃圧等が挙げられる。   In the embodiment shown in FIG. 1, the valve closing timing is detected by detecting the pulsation generated in the voltage waveform when the valve body 11 is closed. However, the present invention is limited to such behavior detection of the valve body 11. Is not to be done. For example, the lift amount of the valve body 11 may be detected by a lift sensor. Alternatively, the pressure in the combustion chamber of the engine (in-cylinder pressure) may be detected by an in-cylinder pressure sensor, and the injection amount may be estimated based on the detected value. Or you may detect the behavior of the valve body 11 based on the change of the supply fuel pressure which arises with injection. In short, specific examples of the physical quantity correlated with the injection quantity include the lift quantity, the in-cylinder pressure, the supply fuel pressure and the like in addition to the valve closing timing.

上記実施形態では、コイル12、固定コア13および可動コア14が、弁体11を開弁作動させる電気アクチュエータを提供している。これに対し、ピエゾ素子を電気アクチュエータとして用いてもよい。   In the above embodiment, the coil 12, the fixed core 13, and the movable core 14 provide an electric actuator that opens the valve body 11. On the other hand, a piezoelectric element may be used as an electric actuator.

図1に示す実施形態では、燃料噴射弁10がシリンダヘッドに取り付けられているが、シリンダブロックに取り付けられた燃料噴射弁を適用対象としてもよい。また、上記実施形態では、点火式の内燃機関(ガソリンエンジン)に搭載された燃料噴射弁10を適用対象としているが、圧縮自着火式の内燃機関(ディーゼルエンジン)に搭載された燃料噴射弁を対象としてもよい。さらに、上記実施形態では、燃焼室へ直接燃料を噴射する燃料噴射弁を制御対象としているが、吸気管へ燃料を噴射する燃料噴射弁を制御対象としてもよい。   In the embodiment shown in FIG. 1, the fuel injection valve 10 is attached to the cylinder head, but the fuel injection valve attached to the cylinder block may be applied. In the above embodiment, the fuel injection valve 10 mounted on the ignition type internal combustion engine (gasoline engine) is applied, but the fuel injection valve mounted on the compression ignition type internal combustion engine (diesel engine) is used. It may be a target. Furthermore, in the above-described embodiment, the fuel injection valve that directly injects fuel into the combustion chamber is the control target.

上記実施形態では、燃料噴射制御装置(ECU30)が提供する各種手段と機能は、マイコン40のソフトウェアにより提供されているが、ソフトウェアおよびハードウェアあるいはそれらの組合せによって提供することもできる。例えば、マイコン40による各種手段をアナログ回路によって構成してもよい。或いは、IC50の検出回路52により提供される検出手段を、マイコン40のソフトウェアによって構成してもよい。   In the above embodiment, the various means and functions provided by the fuel injection control device (ECU 30) are provided by the software of the microcomputer 40, but may be provided by software and hardware or a combination thereof. For example, various means by the microcomputer 40 may be configured by an analog circuit. Alternatively, the detection means provided by the detection circuit 52 of the IC 50 may be configured by software of the microcomputer 40.

12…コイル(電気アクチュエータ)、13…固定コア(電気アクチュエータ)、14…可動コア(電気アクチュエータ)、30…ECU(燃料噴射制御装置)、42…通電時間設定部(通電時間設定手段)、43…マップ記憶部(記憶手段)、44…学習部(学習手段)、46…補正部(補正手段)、52…検出回路(検出手段)、Ti…通電時間、Wa…所定範囲。   DESCRIPTION OF SYMBOLS 12 ... Coil (electric actuator), 13 ... Fixed core (electric actuator), 14 ... Movable core (electric actuator), 30 ... ECU (fuel injection control apparatus), 42 ... Energization time setting part (energization time setting means), 43 ... Map storage unit (storage unit), 44 ... Learning unit (learning unit), 46 ... Correction unit (correction unit), 52 ... Detection circuit (detection unit), Ti ... Energizing time, Wa ... Predetermined range.

開示される発明のひとつは、電気アクチュエータ(12、13、14)により生じた開弁力により弁体(11)を開弁作動させて、内燃機関の燃焼に用いる燃料を噴射する燃料噴射弁(10)に適用された燃料噴射制御装置(30)であることを前提とする。そして、内燃機関の1燃焼サイクル中に要求される燃料の噴射量である要求噴射量に対応する、電気アクチュエータへの通電時間(Ti)の適合値を記憶する記憶手段(43)と、記憶手段に記憶された適合値に基づき、電気アクチュエータへの通電時間を設定する通電時間設定手段(42)と、弁体の挙動を検出する検出手段(52)と、検出手段の検出結果を、適合値の補正に用いる補正データとして学習する学習手段(44)と、学習手段により学習された補正データに基づき、通電時間設定手段により設定された通電時間を補正する補正手段(46)と、を備える。そして、電気アクチュエータへの通電時間が、弁体が開弁作動を開始してから最大開弁位置に達する前に閉弁作動を開始することとなるパーシャルリフト噴射の所定範囲(Wa)の時間であれば、学習手段による学習を実施することを特徴とする。 One of the disclosed inventions is a fuel injection valve (injecting fuel used for combustion of an internal combustion engine) by opening the valve body (11) by the valve opening force generated by the electric actuator (12, 13, 14). It is assumed that the fuel injection control device (30) is applied to 10). Storage means (43) for storing an adapted value of the energization time (Ti) to the electric actuator corresponding to the required injection amount which is the fuel injection amount required during one combustion cycle of the internal combustion engine; The energization time setting means (42) for setting the energization time to the electric actuator based on the adaptation value stored in the above, the detection means (52) for detecting the behavior of the valve body, and the detection results of the detection means Learning means (44) that learns as correction data used for the correction, and correction means (46) that corrects the energization time set by the energization time setting means based on the correction data learned by the learning means. The energization time of the electric actuator is a time of a predetermined range (Wa) of partial lift injection in which the valve closing operation is started before reaching the maximum valve opening position after the valve body starts the valve opening operation. If there is, learning by the learning means is performed.

この発明によれば、電気アクチュエータへの通電時間が、パーシャルリフト噴射を実施することとなる所定範囲の時間であれば、弁体の挙動を検出し、その検出結果に基づき通電時間を補正する。よって、通電時間と弁体の挙動との関係に基づく補正データの学習は、通電時間が特定の時間である場合に限られず、所定範囲であれば実施されることとなる。よって、強制的な分割噴射を実施すること無く通電時間の学習機会を増大できる。 According to the present invention, energization time of the electric actuator, if the time of the predetermined range to be able to implement the partial lift injection, detects the behavior of the valve body, it is corrected between energization on the basis of the detection result . Therefore, the learning of the correction data based on the relationship between the energization time and the behavior of the valve body is not limited to the case where the energization time is a specific time, but is performed within a predetermined range. Therefore, the learning opportunities for the energization time can be increased without performing forced split injection.

以上により、本実施形態によれば、通電時間Tiが、パーシャルリフト噴射を実施することとなる所定範囲Waの時間であれば、弁体11が閉弁するまでの時間(計測時間Tc)を検出し、その検出結果に基づき通電時間Tiを補正する。よって、通電時間Tiと弁体11の挙動(計測時間Tc)との関係に基づく学習値は、通電時間Tiが特定の時間である場合に限られず、所定範囲Waであれば実施されることとなる。よって、強制的な分割噴射を実施すること無く通電時間Tiの学習機会を増大できる。 As described above, according to the present embodiment, if the energization time Ti is within the predetermined range Wa in which the partial lift injection is performed, the time until the valve body 11 is closed (measurement time Tc) is detected. Then, the energization time Ti is corrected based on the detection result. Therefore, the learning value based on the relationship between the energization time Ti and the behavior of the valve body 11 (measurement time Tc) is not limited to the case where the energization time Ti is a specific time, and is implemented within the predetermined range Wa. Become. Therefore, the learning opportunities for the energization time Ti can be increased without performing forced split injection.

この知見に基づき、本実施形態では、燃料噴射弁10はスプリング15を有しており、学習部44(学習手段)により学習された学習値(補正データ)に基づき、スプリング15の弾性特性を推定するばね特性推定部45(特性推定手段)を備える。そして、補正部46(補正手段)は、ばね特性推定部45による推定結果に基づき、通電時間Tiに対する補正量を設定する。そのため、燃料の粘性やコイル抵抗値を推定して補正量を設定する場合に比べて、高精度で補正できる。 Based on this knowledge, in this embodiment, the fuel injection valve 10 has the spring 15, and the elastic characteristic of the spring 15 is estimated based on the learning value (correction data) learned by the learning unit 44 (learning means). A spring characteristic estimation unit 45 (characteristic estimation means). Then, the correction unit 46 (correcting means), based on the estimation result by the spring characteristic estimating unit 45 sets the correction amount against the energizing time T i. Therefore, the correction can be performed with higher accuracy than in the case where the correction amount is set by estimating the viscosity of the fuel and the coil resistance value.

Claims (5)

電気アクチュエータ(12、13、14)により生じた開弁力により弁体(11)を開弁作動させて、内燃機関の燃焼に用いる燃料を噴射する燃料噴射弁(10)に適用された燃料噴射制御装置(30)において、
内燃機関の1燃焼サイクル中に要求される燃料の噴射量である要求噴射量に対応する、前記電気アクチュエータへの通電時間(Ti)の適合値を記憶する記憶手段(43)と、
前記記憶手段に記憶された前記適合値に基づき、前記電気アクチュエータへの通電時間を設定する通電時間設定手段(42)と、
前記弁体の挙動を検出する検出手段(52)と、
前記検出手段の検出結果を、前記適合値の補正に用いる補正データとして学習する学習手段(44)と、
前記学習手段により学習された前記補正データに基づき、前記適合値を補正する補正手段(46)と、
を備え、
前記電気アクチュエータへの通電時間が、前記弁体が開弁作動を開始してから最大開弁位置に達する前に閉弁作動を開始することとなるパーシャルリフト噴射の所定範囲(Wa)の時間であれば、前記学習手段による学習を実施することを特徴とする燃料噴射制御装置。
Fuel injection applied to the fuel injection valve (10) for injecting fuel used for combustion of the internal combustion engine by opening the valve body (11) by the valve opening force generated by the electric actuator (12, 13, 14) In the control device (30),
Storage means (43) for storing a conforming value of the energization time (Ti) to the electric actuator corresponding to a required injection amount which is a fuel injection amount required during one combustion cycle of the internal combustion engine;
An energization time setting means (42) for setting an energization time to the electric actuator based on the adaptation value stored in the storage means;
Detection means (52) for detecting the behavior of the valve body;
Learning means (44) for learning the detection result of the detection means as correction data used for correcting the adaptation value;
Correction means (46) for correcting the fitness value based on the correction data learned by the learning means;
With
The energization time of the electric actuator is a time of a predetermined range (Wa) of partial lift injection that starts the valve closing operation before reaching the maximum valve opening position after the valve body starts the valve opening operation. If there is, a fuel injection control device that performs learning by the learning means.
前記燃料噴射弁は、前記弁体に弾性力を付与して閉弁作動させる弾性手段(15)を有しており、
前記学習手段により学習された前記補正データに基づき、前記弾性手段の特性を推定する特性推定手段(45)を備え、
前記補正手段は、前記特性推定手段による推定結果に基づき、前記適合値に対する補正量を設定することを特徴とする請求項1に記載の燃料噴射制御装置。
The fuel injection valve has elastic means (15) for applying an elastic force to the valve body to perform a valve closing operation,
Based on the correction data learned by the learning means, comprising characteristic estimation means (45) for estimating the characteristics of the elastic means,
The fuel injection control device according to claim 1, wherein the correction unit sets a correction amount for the adaptive value based on an estimation result by the characteristic estimation unit.
前記パーシャルリフト噴射を実施させる前記通電時間の領域のうち、第1所定時間よりも短い時間を第1領域(W1)と呼ぶ場合において、
前記所定範囲は、前記第1領域を除く範囲に設定されていることを特徴とする請求項1または2に記載の燃料噴射制御装置。
In the case where the time shorter than the first predetermined time is referred to as the first region (W1) among the regions of the energization time for performing the partial lift injection,
The fuel injection control device according to claim 1, wherein the predetermined range is set to a range excluding the first region.
前記パーシャルリフト噴射を実施させる前記通電時間の領域のうち、第2所定時間よりも長い時間を第2領域(W2)と呼ぶ場合において、
前記所定範囲は、前記第2領域を除く範囲に設定されていることを特徴とする請求項1〜3のいずれか1つに記載の燃料噴射制御装置。
Among the energization time areas in which the partial lift injection is performed, when a time longer than a second predetermined time is referred to as a second area (W2),
The fuel injection control device according to any one of claims 1 to 3, wherein the predetermined range is set to a range excluding the second region.
前記記憶手段は、前記燃料噴射弁に供給される燃料の圧力である供給燃圧毎に、前記適合値を区別して記憶し、
前記通電時間設定手段は、燃料噴射時の前記供給燃圧に応じた前記適合値に基づき前記通電時間を設定し、
前記学習手段は、前記検出手段により検出された時の前記供給燃圧毎に、前記補正データを区別して学習することを特徴とする請求項1〜4のいずれか1つに記載の燃料噴射制御装置。
The storage means distinguishes and stores the adaptive value for each supply fuel pressure, which is the pressure of fuel supplied to the fuel injection valve,
The energization time setting means sets the energization time based on the adaptive value according to the supply fuel pressure at the time of fuel injection,
5. The fuel injection control device according to claim 1, wherein the learning unit discriminates and learns the correction data for each supply fuel pressure detected by the detection unit. 6. .
JP2014156045A 2014-07-31 2014-07-31 Fuel injection control device Active JP6292070B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014156045A JP6292070B2 (en) 2014-07-31 2014-07-31 Fuel injection control device
DE102015111086.5A DE102015111086B4 (en) 2014-07-31 2015-07-09 Fuel injection control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014156045A JP6292070B2 (en) 2014-07-31 2014-07-31 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2016033343A true JP2016033343A (en) 2016-03-10
JP6292070B2 JP6292070B2 (en) 2018-03-14

Family

ID=55079662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156045A Active JP6292070B2 (en) 2014-07-31 2014-07-31 Fuel injection control device

Country Status (2)

Country Link
JP (1) JP6292070B2 (en)
DE (1) DE102015111086B4 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006814A1 (en) * 2015-07-09 2017-01-12 日立オートモティブシステムズ株式会社 Control device for fuel injection device
CN107542590A (en) * 2016-06-29 2018-01-05 丰田自动车株式会社 The control device and control method of internal combustion engine
DE102017215963A1 (en) 2016-09-13 2018-03-15 Honda Motor Co., Ltd. CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINE
CN108487997A (en) * 2017-01-20 2018-09-04 丰田自动车株式会社 Fuel injection control system for internal combustion engine
KR20190057142A (en) * 2016-10-12 2019-05-27 씨피티 그룹 게엠베하 Operation of fuel injector with hydraulic stop function
KR20190057392A (en) * 2016-10-12 2019-05-28 씨피티 그룹 게엠베하 Operation of fuel injector with hydraulic stop function
JP2020176559A (en) * 2019-04-19 2020-10-29 マツダ株式会社 Learning control method of fuel injection amount
US11181068B1 (en) 2020-06-29 2021-11-23 Denso Corporation Injection control device
US11181067B1 (en) 2020-06-29 2021-11-23 Denso Corporation Injection control device
US11181066B2 (en) 2019-03-07 2021-11-23 Denso Corporation Injection controller
JP2021188549A (en) * 2020-05-28 2021-12-13 株式会社デンソー Injection control device
JP2022010833A (en) * 2020-06-29 2022-01-17 株式会社デンソー Injection control device
US11306675B2 (en) 2020-06-29 2022-04-19 Denso Corporation Injection control device
US11313308B2 (en) 2020-06-29 2022-04-26 Denso Corporation Injection control device
US11326537B2 (en) 2020-06-29 2022-05-10 Denso Corporation Injection control device
US11326545B2 (en) 2020-06-29 2022-05-10 Denso Corporation Injection control device
US11326538B2 (en) 2020-07-16 2022-05-10 Denso Corporation Injection control device
US11401880B2 (en) 2020-05-28 2022-08-02 Denso Corporation Injection control device
US11421620B2 (en) 2020-06-29 2022-08-23 Denso Corporation Injection control device
US11448154B2 (en) 2020-05-28 2022-09-20 Denso Corporation Injection control device
US11525418B2 (en) 2020-06-29 2022-12-13 Denso Corporation Injection control device
US11614048B2 (en) 2020-07-29 2023-03-28 Denso Corporation Injection control device
US11674467B2 (en) 2020-07-16 2023-06-13 Denso Corporation Injection control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016207629B3 (en) * 2016-05-03 2017-05-11 Continental Automotive Gmbh Identification of fuel injectors with similar motion behavior
JP6544292B2 (en) * 2016-05-06 2019-07-17 株式会社デンソー Fuel injection control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201992A (en) * 2001-01-04 2002-07-19 Denso Corp Injection amount control method, and injection device and system
JP2011122489A (en) * 2009-12-09 2011-06-23 Denso Corp Fuel injection device
JP2013002400A (en) * 2011-06-20 2013-01-07 Hitachi Automotive Systems Ltd Fuel injection device
JP2013108422A (en) * 2011-11-18 2013-06-06 Denso Corp Fuel injection control device of internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007062279B4 (en) * 2007-12-21 2017-04-13 Robert Bosch Gmbh Method for operating an internal combustion engine
DE102009003211B4 (en) * 2009-05-19 2019-08-01 Robert Bosch Gmbh Method for controlling injectors in an internal combustion engine
DE102010041320B4 (en) * 2010-09-24 2021-06-24 Vitesco Technologies GmbH Determination of the closing time of a control valve of an indirectly driven fuel injector
DE102010041880B4 (en) * 2010-10-01 2022-02-03 Vitesco Technologies GmbH Determining the ballistic trajectory of an electromagnetically driven armature of a coil actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201992A (en) * 2001-01-04 2002-07-19 Denso Corp Injection amount control method, and injection device and system
JP2011122489A (en) * 2009-12-09 2011-06-23 Denso Corp Fuel injection device
JP2013002400A (en) * 2011-06-20 2013-01-07 Hitachi Automotive Systems Ltd Fuel injection device
JP2013108422A (en) * 2011-11-18 2013-06-06 Denso Corp Fuel injection control device of internal combustion engine

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017006814A1 (en) * 2015-07-09 2018-03-08 日立オートモティブシステムズ株式会社 Control device for fuel injection device
WO2017006814A1 (en) * 2015-07-09 2017-01-12 日立オートモティブシステムズ株式会社 Control device for fuel injection device
US10352264B2 (en) 2015-07-09 2019-07-16 Hitachi Automotive Systems, Ltd. Fuel injector control device
CN107542590B (en) * 2016-06-29 2020-08-28 丰田自动车株式会社 Control device and control method for internal combustion engine
JP2018003652A (en) * 2016-06-29 2018-01-11 トヨタ自動車株式会社 Control device of internal combustion engine
CN107542590A (en) * 2016-06-29 2018-01-05 丰田自动车株式会社 The control device and control method of internal combustion engine
US10267252B2 (en) 2016-06-29 2019-04-23 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine and method for controlling internal combustion engine
US10180113B2 (en) 2016-09-13 2019-01-15 Honda Motor Co., Ltd. Control system for internal combustion engine
DE102017215963B4 (en) 2016-09-13 2019-03-21 Honda Motor Co., Ltd. CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINE
DE102017215963A1 (en) 2016-09-13 2018-03-15 Honda Motor Co., Ltd. CONTROL SYSTEM FOR INTERNAL COMBUSTION ENGINE
KR102169755B1 (en) * 2016-10-12 2020-10-26 씨피티 그룹 게엠베하 Operation of fuel injectors with hydraulic stop function
KR102168252B1 (en) 2016-10-12 2020-10-21 씨피티 그룹 게엠베하 Operation of fuel injectors with hydraulic stop function
KR20190057142A (en) * 2016-10-12 2019-05-27 씨피티 그룹 게엠베하 Operation of fuel injector with hydraulic stop function
KR20190057392A (en) * 2016-10-12 2019-05-28 씨피티 그룹 게엠베하 Operation of fuel injector with hydraulic stop function
CN108487997B (en) * 2017-01-20 2021-05-11 丰田自动车株式会社 Fuel injection control device for internal combustion engine
CN108487997A (en) * 2017-01-20 2018-09-04 丰田自动车株式会社 Fuel injection control system for internal combustion engine
US11181066B2 (en) 2019-03-07 2021-11-23 Denso Corporation Injection controller
JP7282311B2 (en) 2019-04-19 2023-05-29 マツダ株式会社 Learning control method for fuel injection amount
JP2020176559A (en) * 2019-04-19 2020-10-29 マツダ株式会社 Learning control method of fuel injection amount
JP7367614B2 (en) 2020-05-28 2023-10-24 株式会社デンソー injection control device
JP2021188549A (en) * 2020-05-28 2021-12-13 株式会社デンソー Injection control device
US11384704B2 (en) 2020-05-28 2022-07-12 Denso Corporation Injection control device
US11448154B2 (en) 2020-05-28 2022-09-20 Denso Corporation Injection control device
US11401880B2 (en) 2020-05-28 2022-08-02 Denso Corporation Injection control device
US11181067B1 (en) 2020-06-29 2021-11-23 Denso Corporation Injection control device
US11255286B2 (en) 2020-06-29 2022-02-22 Denso Corporation Injection control device
US11326545B2 (en) 2020-06-29 2022-05-10 Denso Corporation Injection control device
US11181068B1 (en) 2020-06-29 2021-11-23 Denso Corporation Injection control device
US11313308B2 (en) 2020-06-29 2022-04-26 Denso Corporation Injection control device
US11306675B2 (en) 2020-06-29 2022-04-19 Denso Corporation Injection control device
US11421620B2 (en) 2020-06-29 2022-08-23 Denso Corporation Injection control device
US11326537B2 (en) 2020-06-29 2022-05-10 Denso Corporation Injection control device
US11525418B2 (en) 2020-06-29 2022-12-13 Denso Corporation Injection control device
JP7354940B2 (en) 2020-06-29 2023-10-03 株式会社デンソー injection control device
JP2022010833A (en) * 2020-06-29 2022-01-17 株式会社デンソー Injection control device
US11674467B2 (en) 2020-07-16 2023-06-13 Denso Corporation Injection control device
US11326538B2 (en) 2020-07-16 2022-05-10 Denso Corporation Injection control device
US11614048B2 (en) 2020-07-29 2023-03-28 Denso Corporation Injection control device

Also Published As

Publication number Publication date
DE102015111086B4 (en) 2020-04-02
JP6292070B2 (en) 2018-03-14
DE102015111086A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP6292070B2 (en) Fuel injection control device
US9970376B2 (en) Fuel injection controller and fuel injection system
US9494100B2 (en) Determining the closing point in time of an injection valve on the basis of an analysis of the actuation voltage using an adapted reference voltage signal
JP6520815B2 (en) Fuel injection control device
CN107965395B (en) Injector control device and injector control method
JP6520816B2 (en) Fuel injection control device
JP6544293B2 (en) Fuel injection control device
JP6358163B2 (en) Fuel injection control device for internal combustion engine
US10428755B2 (en) Control device for internal combustion engine
US10260448B2 (en) Fuel injection control device for internal combustion engine
US10876486B2 (en) Fuel injection control device
WO2018221527A1 (en) Fuel injection control device of internal combustion engine
US11193444B2 (en) Fuel injection valve control device and control method for the same
US20110120420A1 (en) Method for determining a characteristics map of the injection quantity via an electric variable of an electrically triggered fuel injector
WO2016170739A1 (en) Fuel injection control device
US11486328B2 (en) Injection control device
US11060474B2 (en) Fuel injection control device
JP7006155B2 (en) Fuel injection control device
JP6035583B2 (en) Fuel injection control device for internal combustion engine
US11236697B2 (en) Fuel injection control device and fuel injection control method
JP2024022186A (en) injection control device
JP7000720B2 (en) Fuel injection control device for internal combustion engine
JP2019190334A (en) Control device of fuel injection valve and its method
JP6398631B2 (en) Fuel injection status acquisition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180129

R151 Written notification of patent or utility model registration

Ref document number: 6292070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250