JP2016032786A - Incineration residue treatment method - Google Patents

Incineration residue treatment method Download PDF

Info

Publication number
JP2016032786A
JP2016032786A JP2014156022A JP2014156022A JP2016032786A JP 2016032786 A JP2016032786 A JP 2016032786A JP 2014156022 A JP2014156022 A JP 2014156022A JP 2014156022 A JP2014156022 A JP 2014156022A JP 2016032786 A JP2016032786 A JP 2016032786A
Authority
JP
Japan
Prior art keywords
incineration residue
water
cooling
residue
incineration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014156022A
Other languages
Japanese (ja)
Other versions
JP6306969B2 (en
Inventor
久保田 洋
Hiroshi Kubota
洋 久保田
俊太郎 野口
Shuntaro Noguchi
俊太郎 野口
裕己 山田
Hiromi Yamada
裕己 山田
恒河 繁泉
Koga Shigeizumi
恒河 繁泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2014156022A priority Critical patent/JP6306969B2/en
Publication of JP2016032786A publication Critical patent/JP2016032786A/en
Application granted granted Critical
Publication of JP6306969B2 publication Critical patent/JP6306969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an incineration residue treatment method in which waste water containing an easily soluble component produced in a washing process is prevented from being discharged to the outside of treatment equipment as it is.SOLUTION: There is provided the incineration residue treatment method for treating incineration ash generated by incineration of waste, the method includes: a cooling step in which the incineration ash is put into a cooling tank 12A filled with cooling water to cool the incineration ash; a washing step in which the incineration ash taken out from the cooling tank 12A is continuously ventilated and water is intermittently sprinkled to the incineration ash to remove easily soluble component from the incineration ash. Waste water produced by washing the incineration ash in the washing step is used as cooling water to be put into the cooling tank 12A.SELECTED DRAWING: Figure 1

Description

本発明は、廃棄物を焼却処理した際に発生する焼却残渣、例えば、焼却灰を洗浄する洗浄工程を含む、焼却残渣の処理方法に関する。   The present invention relates to a method for treating incineration residues, including a cleaning step for cleaning incineration residues generated when incineration processing waste, for example, incineration ash.

廃棄物を焼却処理した際に発生する焼却残渣、例えば、焼却灰には、易溶出成分、つまり、Pb等の重金属類や有機物が含有されており、そのため焼却灰を最終処分もしくはリサイクルする際にこれらの易溶出成分が問題となることが多い。焼却灰の安定化において処分場へ埋立てる前に洗浄処理を行い、易溶出成分を除去することにより、埋立後の長期的な溶出挙動が改善されることが分かっている。また、近年の最終処分場の建設難に伴う処分場の容量が逼迫している現状において、埋立量の多くを占める焼却灰をリサイクルできることは既存処分場の延命化に大きく貢献する。焼却灰のリサイクルにおいて大きな障害となっているのが、焼却灰からの易溶出成分の溶出である。この問題についても焼却灰を洗浄処理することにより、大幅に性状を改善することができることが分かっており、今後の焼却灰処理において洗浄処理は有望な技術である。   Incineration residue generated when incinerating waste, for example, incineration ash, contains easily eluted components, that is, heavy metals such as Pb and organic matter, so when final disposal or recycling of incineration ash These easily eluting components are often problematic. In the stabilization of incineration ash, it has been found that long-term elution behavior after landfilling can be improved by carrying out a washing process before landfilling to a disposal site and removing easily eluted components. Moreover, in the current situation where the capacity of the disposal site is tight due to the difficulty of construction of the final disposal site, the ability to recycle incineration ash that accounts for a large amount of landfill will greatly contribute to the extension of the life of the existing disposal site. A major obstacle in the recycling of incineration ash is the elution of easily eluted components from the incineration ash. With regard to this problem, it has been found that the properties of the incineration ash can be improved significantly by cleaning the incineration ash, and the cleaning processing is a promising technique in the future incineration ash processing.

焼却炉に洗浄設備を設置し、焼却灰の安定化を促進する処理は、特許文献1、2に記載されている。特許文献1に記載された焼却灰の処理方法は、洗浄工程と乾燥工程と選別工程と粒状化工程とを備えている。   Patent Documents 1 and 2 describe a process of installing a cleaning facility in an incinerator and promoting stabilization of incineration ash. The incineration ash treatment method described in Patent Document 1 includes a cleaning process, a drying process, a sorting process, and a granulating process.

洗浄工程では、焼却灰から、金属片やクリンカー状の熔塊を機械的に除去後、該焼却灰を、少なくとも1段は洗浄水にCO2 ガスを吹き込みまたは酸を注入することにより塩分の溶出を促進させると同時に、重金属類の溶出を抑止するための薬注装置を備えた2〜3段の洗浄槽で水洗浄し、未燃有機物質、カーボン微粒子、微粉体を洗浄除去すると同時に、焼却灰中の塩分を溶出除去すると共に溶出してきた重金属類をも洗浄除去する。   In the washing process, after removing metal pieces and clinker-like ingots from the incineration ash, the incineration ash is subjected to salt elution by blowing CO2 gas or injecting acid into at least one stage of washing water. At the same time, it is washed with water in a 2-3 stage washing tank equipped with a chemical injection device to suppress elution of heavy metals, and unburned organic substances, carbon fine particles and fine powder are washed and removed, and at the same time, incineration ash The salt content is eluted and removed, and the eluted heavy metals are also washed away.

乾燥工程では、焼却灰を脱水装置により脱水し、蒸気または燃料油を熱源として乾燥させる。選別工程では、乾燥された焼却灰から、鉄分を除去し、更に非鉄金属類を除去する。粒状化工程では、残りである非金属物質を粒度別に分級後、粉砕及び研磨し、粒子状に加工する。   In the drying process, the incinerated ash is dehydrated by a dehydrator and dried using steam or fuel oil as a heat source. In the sorting step, iron is removed from the dried incineration ash, and nonferrous metals are further removed. In the granulation step, the remaining nonmetallic substance is classified according to particle size, then pulverized and polished, and processed into particles.

特許文献2に記載された焼却灰の安定化方法および廃棄物焼却設備は、冷却洗浄工程と、焼却炉冷却工程と、を含む。冷却洗浄工程は、廃棄物を焼却炉により燃焼して生成された焼却灰に洗浄水を散布して、焼却灰を冷却するとともに、焼却灰が含有する易溶出成分を溶出させる。焼却炉冷却工程は、冷却洗浄工程において排出された汚染水を、焼却炉の内部に散布して焼却炉を冷却する。   The stabilization method of incineration ash and the waste incineration facility described in Patent Document 2 include a cooling cleaning process and an incinerator cooling process. In the cooling and washing process, washing water is sprayed on the incineration ash generated by burning the waste in the incinerator to cool the incineration ash and to elute easily eluted components contained in the incineration ash. In the incinerator cooling process, the contaminated water discharged in the cooling and washing process is sprayed inside the incinerator to cool the incinerator.

特許第2670417号公報Japanese Patent No. 2670417 特許第4368733号公報Japanese Patent No. 4368733

しかしながら、特許文献1、2に記載された焼却灰の処理方法において、焼却灰を洗浄する工程では、易溶出成分を含む多量の廃水が発生し、その廃水を処理あるいは処分するための設備や費用が多大となる問題があった。   However, in the method for treating incineration ash described in Patent Documents 1 and 2, in the step of washing incineration ash, a large amount of waste water containing easily eluted components is generated, and facilities and costs for treating or disposing the waste water There was a big problem.

本発明の目的は、焼却残渣を処理する処理設備において、洗浄工程で発生した易溶出成分を含む廃水が、そのまま処理設備の外に排出されるのを防止することである。   An object of the present invention is to prevent wastewater containing easily eluted components generated in a cleaning process from being discharged out of the processing facility as it is in a processing facility for processing incineration residues.

本発明は、廃棄物の燃焼により発生した焼却残渣を処理する、焼却残渣の処理方法であって、冷却水を入れた冷却槽へ前記焼却残渣を入れて該焼却残渣を冷却する冷却工程と、前記冷却槽から取り出した前記焼却残渣に連続的に通気を行い、かつ、前記焼却残渣に断続的に散水して、前記焼却残渣から易溶出成分を除去する洗浄工程と、を有し、前記洗浄工程で前記焼却残渣を洗浄することで発生した廃水を、前記冷却槽に入れる冷却水として利用する。   The present invention is an incineration residue treatment method for treating incineration residue generated by combustion of waste, and cooling the incineration residue by placing the incineration residue in a cooling tank containing cooling water; A step of continuously ventilating the incineration residue taken out from the cooling tank, and intermittently watering the incineration residue to remove easily eluted components from the incineration residue, and the washing Waste water generated by washing the incineration residue in the process is used as cooling water to be put into the cooling tank.

本発明は、前記廃水を前記冷却槽へ入れる前に、前記廃水を前記易溶出成分と水とに分離する廃水処理工程が設けられ、前記廃水処理工程で分離された水を、前記冷却槽へ入れる冷却水として利用する。   The present invention is provided with a waste water treatment step for separating the waste water into the easily eluted component and water before putting the waste water into the cooling bath, and the water separated in the waste water treatment step is supplied to the cooling bath. Use as cooling water to fill.

本発明は、前記洗浄工程は、前記焼却残渣を洗浄して発生する前記廃水と、洗浄後における前記焼却残渣との液固比が1以下となるように、洗浄する前記焼却残渣の量と前記散水の量とを設定する。   In the present invention, the cleaning step includes the amount of the incineration residue to be cleaned and the amount of the incineration residue to be cleaned so that a liquid-solid ratio between the waste water generated by cleaning the incineration residue and the incineration residue after cleaning is 1 or less. Set the amount of watering.

本発明は、前記冷却槽で前記冷却水を吸収した前記焼却残渣を埋め立て処分場へ移送する。   The present invention transfers the incineration residue that has absorbed the cooling water in the cooling tank to a landfill site.

本発明は、前記冷却槽へ入れられる前記焼却残渣を、前記冷却水を吸収させる吸水用残渣と、前記冷却水を吸収せずに前記洗浄工程に移送する洗浄用残渣と、に分け、前記冷却水を吸収した前記吸水用残渣を前記埋め立て処分場へ移送する。   The present invention divides the incineration residue put into the cooling tank into a water absorption residue that absorbs the cooling water and a cleaning residue that is transferred to the cleaning step without absorbing the cooling water, and the cooling The water absorption residue that has absorbed water is transferred to the landfill site.

本発明は、前記冷却槽に入れられる前記焼却残渣を、所定の時間間隔で前記吸水用残渣と前記洗浄用残渣とに分ける。   The present invention divides the incineration residue put into the cooling tank into the water absorption residue and the cleaning residue at a predetermined time interval.

本発明は、前記冷却槽は、別々に設けられた第1冷却槽と第2冷却槽とを含み、前記吸水用残渣は前記第1冷却槽に入れられ、前記洗浄用残渣は前記第2冷却槽に入れられる。   In the present invention, the cooling tank includes a first cooling tank and a second cooling tank provided separately, the water absorption residue is placed in the first cooling tank, and the cleaning residue is the second cooling tank. Put in the tank.

本発明は、前記冷却槽内の冷却水の塩類濃度を測定し、前記冷却槽内の冷却水の塩類濃度が所定値未満である場合は、前記冷却水を吸収した前記焼却残渣を前記洗浄工程へ移送し、前記冷却槽内の冷却水の塩類濃度が所定値以上である場合は、前記冷却水を吸収した前記焼却残渣を前記埋め立て処分場へ移送する。   The present invention measures the salt concentration of the cooling water in the cooling tank, and when the cooling water salt concentration in the cooling tank is less than a predetermined value, the incineration residue that has absorbed the cooling water is the cleaning step When the salt concentration of the cooling water in the cooling tank is not less than a predetermined value, the incineration residue that has absorbed the cooling water is transferred to the landfill site.

本発明は、前記焼却残渣は、前記廃棄物を燃焼させて発生した主灰と飛灰とを含み、前記主灰は、前記冷却槽へ入れられ、前記飛灰に不溶化剤を混練して、前記飛灰に含まれる重金属類が溶出しないように安定化させる不溶化工程が設けられている。   In the present invention, the incineration residue includes main ash and fly ash generated by burning the waste, the main ash is put into the cooling tank, and the fly ash is kneaded with an insolubilizing agent, An insolubilization process is provided to stabilize heavy metals contained in the fly ash so that they do not elute.

本発明は、前記不溶化工程は、前記廃水処理工程で分離された前記水を、前記不溶化剤と共に前記飛灰に混練する。   In the present invention, in the insolubilization step, the water separated in the waste water treatment step is kneaded into the fly ash together with the insolubilizing agent.

本発明は、前記洗浄工程で発生した前記廃水を、前記廃棄物を燃焼する焼却炉に移送して前記焼却炉の温度を調節する。   The present invention controls the temperature of the incinerator by transferring the wastewater generated in the cleaning process to an incinerator that burns the waste.

本発明は、前記洗浄工程で発生した前記廃水を、前記焼却炉の廃熱を利用して乾燥固化塩とし、該乾燥固化塩を前記埋め立て処分場へ移送する。   In the present invention, the waste water generated in the washing step is converted into a dry solidified salt using waste heat of the incinerator, and the dry solidified salt is transferred to the landfill disposal site.

本発明は、前記冷却槽から取り出した前記焼却残渣をコンテナに収容して前記洗浄工程に移送する。   In the present invention, the incineration residue taken out from the cooling tank is accommodated in a container and transferred to the cleaning step.

本発明における前記洗浄工程は、前記焼却残渣が前記コンテナに収容された状態で、前記焼却残渣に連続的に通気を行い、かつ、前記焼却残渣に断続的に散水して、前記焼却残渣から易溶出成分を除去する。   The cleaning step according to the present invention facilitates the incineration residue from the incineration residue by continuously venting the incineration residue while the incineration residue is housed in the container, and intermittently watering the incineration residue. Remove the eluted components.

本発明によれば、洗浄工程で発生した易溶出成分を含む廃水が、冷却工程に移送されて焼却残渣に吸収される。したがって、易溶出成分を含む廃水がそのまま処理設備の外に排出されることを抑制できる。   According to the present invention, waste water containing easily eluted components generated in the cleaning process is transferred to the cooling process and absorbed by the incineration residue. Therefore, it can suppress that the wastewater containing an easily eluted component is discharged | emitted out of a processing facility as it is.

本発明の焼却残渣の処理方法が行われる処理設備の概念図である。It is a conceptual diagram of the processing equipment in which the processing method of the incineration residue of this invention is performed. 本発明の洗浄工程及び比較例の洗浄工程で行ったベンチマーク試験の条件を示す図表である。It is a graph which shows the conditions of the benchmark test performed by the washing | cleaning process of this invention, and the washing | cleaning process of a comparative example. 図2に示す各種の洗浄工程において、主灰から溶出された易溶出成分の量を示すグラフ図である。It is a graph which shows the quantity of the easily eluted component eluted from the main ash in the various washing | cleaning processes shown in FIG. 本発明の洗浄工程の効果を確認する洗浄試験の結果を示すグラフ図である。It is a graph which shows the result of the washing test which confirms the effect of the washing process of the present invention. 洗浄試験により主灰を洗浄した場合において、浸出水中のPb濃度とCl濃度の相関関係を示すグラフ図である。It is a graph which shows the correlation of Pb density | concentration in leachate, and Cl density | concentration, when main ash is wash | cleaned by the washing | cleaning test. 本発明の洗浄工程において、液固比を調整する処理を示す模式図である。It is a schematic diagram which shows the process which adjusts a liquid-solid ratio in the washing | cleaning process of this invention. 本発明の冷却工程において、冷却槽に入れられる主灰を、洗浄工程と埋め立て処分場とに分ける工程を説明する模式図である。In the cooling process of this invention, it is a schematic diagram explaining the process of dividing the main ash put into a cooling tank into a washing process and a landfill disposal site. 本発明の冷却工程において、冷却槽に入れられる主灰を、洗浄工程と埋め立て処分場とに分ける工程を説明する模式図である。In the cooling process of this invention, it is a schematic diagram explaining the process of dividing the main ash put into a cooling tank into a washing process and a landfill disposal site.

本発明の残渣処理方法が行われる処理設備を、図1の概念図を参照して説明する。処理設備10は、焼却炉11、灰冷却装置12、洗浄装置13、廃水処理装置14、不溶化装置15を有する。焼却炉11内では廃棄物が焼却されて、焼却残渣が発生する。焼却残渣は可燃物の灰であり、主灰及び飛灰を含む。主灰は、焼却炉11の炉底から排出されるものであり、飛灰は、廃棄物を焼却したときに発生する灰のうち排ガスと同伴して集塵装置で集められるものである。   A treatment facility in which the residue treatment method of the present invention is performed will be described with reference to the conceptual diagram of FIG. The treatment facility 10 includes an incinerator 11, an ash cooling device 12, a cleaning device 13, a wastewater treatment device 14, and an insolubilization device 15. In the incinerator 11, waste is incinerated to generate incineration residues. The incineration residue is combustible ash and includes main ash and fly ash. The main ash is discharged from the bottom of the incinerator 11, and the fly ash is collected by the dust collector along with the exhaust gas among the ash generated when the waste is incinerated.

また、焼却炉11内に散水するための散水機構16が設けられている。散水機構16は、スプリンクラーを含み、散水機構16から水を焼却炉11内に散水して、焼却炉11内の温度調節を行うことができる。   Further, a watering mechanism 16 for watering the incinerator 11 is provided. The watering mechanism 16 includes a sprinkler, and water can be sprinkled into the incinerator 11 from the watering mechanism 16 to adjust the temperature in the incinerator 11.

灰冷却装置12は、焼却炉11の下方に配置されており、焼却炉11から排出される主灰を冷却することが可能である。灰冷却装置12は、冷却槽12Aに冷却水が溜められている。また、冷却水を冷却槽12Aへ供給する供給管、及び冷却水を冷却槽12Aから排水する送水管が設けられている。送水管は、冷却槽12A内の一部を、散水機構16に導く経路A1を形成する。さらに、灰冷却装置12で冷却された主灰を、冷却槽12Aの外に排出する経路E2が設けられている。経路E2へ排出された主灰は、コンベア等の搬送手段により搬送されてコンテナ17へ収容される。   The ash cooling device 12 is disposed below the incinerator 11 and can cool the main ash discharged from the incinerator 11. As for the ash cooling device 12, the cooling water is stored in the cooling tank 12A. Further, a supply pipe that supplies cooling water to the cooling tank 12A and a water supply pipe that drains the cooling water from the cooling tank 12A are provided. The water pipe forms a path A1 that guides a part of the cooling tank 12A to the water spray mechanism 16. Furthermore, the path | route E2 which discharges the main ash cooled with the ash cooling device 12 out of the cooling tank 12A is provided. The main ash discharged to the path E <b> 2 is transported by transport means such as a conveyor and is stored in the container 17.

コンテナ17は洗浄装置13へ移送される。洗浄装置13は、主灰を収容する洗浄槽18と、洗浄槽18の上方に設けられた散水機構19と、洗浄槽18の底部に設けられた送気機構20と、を備えている。散水機構19は、水タンクに接続された送水管と、送水管の途中に設けられたバルブと、送水管の端部に取り付けられたスプリンクラーとを含む。洗浄槽18の上部は開口されており、散水機構19から散水された水が、洗浄槽18内の主灰へ供給される。送水管の途中に設けられたバルブを調節することにより、散水機構19から散水される水の量を変更できる。   The container 17 is transferred to the cleaning device 13. The cleaning device 13 includes a cleaning tank 18 that stores main ash, a watering mechanism 19 provided above the cleaning tank 18, and an air supply mechanism 20 provided at the bottom of the cleaning tank 18. The watering mechanism 19 includes a water supply pipe connected to the water tank, a valve provided in the middle of the water supply pipe, and a sprinkler attached to an end of the water supply pipe. The upper part of the cleaning tank 18 is opened, and the water sprayed from the water spray mechanism 19 is supplied to the main ash in the cleaning tank 18. By adjusting a valve provided in the middle of the water supply pipe, the amount of water sprayed from the water spray mechanism 19 can be changed.

送気機構20は、空気機械の一種であるブロワと、ブロワの吐出口から吐出される空気が流れる送気管と、を有する。ブロワの回転数、送気管に設けられたバルブを制御することにより、空気量を制御可能である。洗浄装置13は、洗浄後の廃水量と、水を含む主灰の量との重量比、具体的には、液固比が1以下となるように、洗浄槽18へ間欠的(断続的)に散水する水量と、洗浄槽18内の主灰の量と、を調整している。   The air supply mechanism 20 includes a blower that is a kind of air machine, and an air supply pipe through which air discharged from the blower outlet flows. The amount of air can be controlled by controlling the rotational speed of the blower and a valve provided in the air supply pipe. The cleaning device 13 is intermittent (intermittent) to the cleaning tank 18 so that the weight ratio between the amount of waste water after cleaning and the amount of main ash containing water, specifically, the liquid-solid ratio is 1 or less. The amount of water sprayed on the water and the amount of main ash in the cleaning tank 18 are adjusted.

また、洗浄槽18内に集水管が設けられており、主灰に散布されて主灰から溶出された易溶出成分を含む廃水は、集水管を通り洗浄槽18の外部に排出される。さらに、洗浄装置13で洗浄された主灰、つまり、易溶出成分が除去され主灰を、処理設備10の外部に排出する排出経路A2が設けられており、排出経路A2を搬送される主灰は、リサイクル工程B1、または埋め立て処分場C1へ搬送される。埋め立て処分場C1は、いわゆる、最終処分場である。   In addition, a water collection pipe is provided in the cleaning tank 18, and waste water containing easily-eluting components dispersed on the main ash and eluted from the main ash is discharged to the outside of the washing tank 18 through the water collection pipe. Furthermore, the main ash cleaned by the cleaning device 13, that is, the main ash that is removed from the easily eluted components and that discharges the main ash to the outside of the processing facility 10 is provided. Is transported to the recycling process B1 or the landfill site C1. The landfill disposal site C1 is a so-called final disposal site.

廃水処理装置14は、洗浄装置13から排出された廃水を、易溶出成分と水とに分離する装置である。廃水処理装置14は、洗浄装置13から出る廃水を簡易的に水処理し、Pb等の重金属類やCaといった埋め立て処分場C1においてその溶出が問題となる易溶出成分を不溶化し、汚泥として廃水から除去する。   The waste water treatment device 14 is a device that separates waste water discharged from the cleaning device 13 into easily eluted components and water. The waste water treatment device 14 simply treats the waste water discharged from the cleaning device 13 to insolubilize easily eluted components that are problematic to elution in the landfill disposal site C1, such as heavy metals such as Pb and Ca, and form sludge as waste sludge. Remove.

また、廃水処理装置14において新たに発生する汚泥は、易溶出性のPb等の重金属類を不溶化し、またスケールの原因となるCaを炭酸化し、溶出しにくい形態へ変えて埋め立て処分場C1へ搬入する。したがって、埋め立て処分場C1における水処理への負荷軽減へ大きく寄与する。   In addition, the sludge newly generated in the wastewater treatment apparatus 14 insolubilizes heavy metals such as easily-dissolvable Pb, and also carbonates Ca that causes scale to change to a form that is difficult to elute and to the landfill disposal site C1. Carry in. Therefore, it greatly contributes to reducing the load on water treatment at the landfill site C1.

廃水処理装置14は、易溶出成分を含む廃水を、処理設備10の外(系外)へ排水することを目的とするのではなく、易溶出成分を減少させることが目的であり、排水基準等の基準を必ずしもクリアする必要は無い。そのため、凝集沈殿、吸着塔等の方法で、廃水から易溶出成分を不溶化もしくは分解し汚泥として除去すればよい。廃水処理装置14において、除去される易溶出成分には、次の(a)〜(c)に示す項目が含まれる。
(a)特別管理産業廃棄物の判定基準(燃えがら)に掲載されている項目
水銀、カドミウム、鉛、六価クロム、砒素、セレン、1,4-ジオキサン、ダイオキシン類
(b)最終処分場の廃止に係る技術上の基準 浸出水に関する規制値と測定頻度(管理型処分場廃止基準)に掲載されている項目
有機成分・窒素成分(アンモニア態、亜硝酸態、硝酸態)
ホウ素、フッ素・銅、亜鉛、溶解性鉄、溶解性Mn、SS等
(c)カルシウム
洗浄装置13は、廃水ベースにおける水と主灰と液固比(重量比)が1以下となるように、洗浄槽18内における主灰の量と、散水機構19から散水される水の量とを調整する。このため、廃水処理装置14は小型のもので対応可能である。廃水から汚泥として除去された易溶出成分は、経路A3を経て埋め立て処分場C1へ搬送される。
The wastewater treatment device 14 is not intended to drain wastewater containing easily eluted components out of the treatment facility 10 (outside of the system), but to reduce easily eluted components, such as drainage standards. It is not always necessary to clear the standard. Therefore, what is necessary is just to insolubilize or decompose | dissolve an easily eluted component from wastewater and to remove as sludge by methods, such as a coagulation sedimentation and an adsorption tower. In the wastewater treatment device 14, the easily eluted components to be removed include the items shown in the following (a) to (c).
(A) Items listed in the Judgment Criteria for Specially Controlled Industrial Waste (Flame) Mercury, cadmium, lead, hexavalent chromium, arsenic, selenium, 1,4-dioxane, dioxins (b) Abolition of final disposal site Technical standards related to leachate Control values for leachate and measurement frequency (Controlled disposal site abolition standards) Organic / nitrogen components (ammonia, nitrite, nitrate)
Boron, fluorine / copper, zinc, soluble iron, soluble Mn, SS, etc. (c) Calcium The cleaning device 13 is configured so that the water / main ash / liquid / solid ratio (weight ratio) in the wastewater base is 1 or less. The amount of main ash in the cleaning tank 18 and the amount of water sprayed from the water spray mechanism 19 are adjusted. For this reason, the wastewater treatment apparatus 14 is small and can be used. The easily eluted components removed from the waste water as sludge are conveyed to the landfill disposal site C1 via the route A3.

前記の不溶化装置15は、焼却炉11から出る焼却灰のうち、飛灰を処理する装置である。不溶化装置15は、飛灰に、不溶化剤としてキレート剤やセメントを混練させて、飛灰に含まれる重金属類を不溶化させる装置である。不溶化された飛灰は、経路A4を経て埋め立て処分場C1へ搬送される。   The insolubilizing device 15 is a device for treating fly ash out of the incinerated ash coming out of the incinerator 11. The insolubilizing apparatus 15 is an apparatus for insolubilizing heavy metals contained in the fly ash by kneading the fly ash with a chelating agent or cement as an insolubilizing agent. The insolubilized fly ash is conveyed to the landfill disposal site C1 via the route A4.

本実施形態における洗浄装置13で行われる洗浄工程を、具体的に説明する。洗浄装置13は、洗浄槽18内の主灰に対して散水と通気とを行うことによって、易溶出成分を主灰から溶出させることを促進する。このため、洗浄装置13においては、主灰が洗浄槽18内に静置され、スプリンクラー等の散水機構19から下に向けて散水を行う。散水は間欠運転で行い、かつ、少量・多数回で散水することにより、主灰に固定的な通水経路(つまり、水みち)が形成されることを抑制できる。また、散水を自動的に間欠的に行う場合、バルブをソレノイドバルブとし、ソレノイドバルブを開閉するコントローラを設け、タイマにより計測される時間により、コントローラがソレノイドバルブを開閉制御すればよい。なお、作業者がバルブを手動で開閉し、散水を間欠的に行うことも可能である。   The cleaning process performed by the cleaning apparatus 13 in this embodiment will be specifically described. The cleaning device 13 promotes the elution of easily eluted components from the main ash by spraying water and ventilating the main ash in the cleaning tank 18. For this reason, in the cleaning device 13, the main ash is left in the cleaning tank 18, and water is sprayed downward from a water spray mechanism 19 such as a sprinkler. Sprinkling is performed intermittently, and a small amount of water is sprayed many times, so that formation of a fixed water passage (that is, a water channel) in the main ash can be suppressed. When watering is performed automatically and intermittently, a solenoid valve is used as a valve, a controller for opening and closing the solenoid valve is provided, and the controller may control the opening and closing of the solenoid valve according to the time measured by a timer. It is also possible for the operator to manually open and close the valve and spray water intermittently.

このように、洗浄装置13では、散布した水が、主灰内で偏って浸透することなく全体に分散される。したがって、主灰中に含まれる易溶出成分を、少ない散水量で効率的に溶出させること、つまり、洗い出すことが可能である。   As described above, in the cleaning device 13, the sprayed water is dispersed throughout the main ash without unevenly penetrating. Therefore, it is possible to efficiently elute easily eluted components contained in the main ash with a small amount of watering, that is, to wash out.

図2は、洗浄装置13の有効性を確認するために行ったベンチスケール試験の結果、つまり、主灰を各種の洗浄方法(洗浄工程)により洗浄した実験結果を示す。図3は、図2に示した各種の洗浄方法において、主灰から溶出されたNa、Ca、Clの量を示す。本実施形態の洗浄装置13により行われる洗浄工程は、図2に示す洗浄名称のうち、散水・通気洗浄に相当する。散水・通気洗浄における洗浄条件は、1日当たりの散水強度(散水量)が148mmとなるように間欠散水する。また、散水・通気洗浄は、秒速2mmで24時間に亘り、連続的に、つまり、常時、通気を行って主灰を洗浄する。洗浄後の廃水量と主灰の量との液固比(重量比)は1以下に設定される。散水・通気洗浄は、特に、液固比が0.5〜0.6の範囲内となるように、間欠的な散水量、主灰の量を調整する。   FIG. 2 shows the results of a bench scale test performed to confirm the effectiveness of the cleaning device 13, that is, the experimental results of cleaning the main ash by various cleaning methods (cleaning steps). FIG. 3 shows the amounts of Na, Ca and Cl eluted from the main ash in the various cleaning methods shown in FIG. The cleaning process performed by the cleaning device 13 of the present embodiment corresponds to sprinkling / ventilation cleaning among the cleaning names shown in FIG. As for the cleaning conditions in watering and aeration cleaning, intermittent watering is performed so that the watering intensity (watering amount) per day is 148 mm. Further, the sprinkling and aeration cleaning is performed by continuously ventilating the main ash for 24 hours at a speed of 2 mm per second, that is, constantly. The liquid-solid ratio (weight ratio) between the amount of waste water after washing and the amount of main ash is set to 1 or less. In sprinkling / ventilation cleaning, the amount of intermittent watering and the amount of main ash are adjusted so that the liquid-solid ratio is in the range of 0.5 to 0.6.

機械撹拌洗浄は、比較例1の洗浄工程であり、機械撹拌洗浄の洗浄条件は、環境庁告示13号に準拠しており、液固比10で6時間振とうさせて主灰を洗浄した。浸漬洗浄は、比較例2の洗浄工程であり、浸漬洗浄の洗浄条件は、液固比0.6〜1.0とし、主灰を24時間水中に浸漬させて洗浄した。図2において、液固比は、洗浄装置から出る廃水と、洗浄後の主灰との重量比であり、廃水量を主灰量で除算した値である。   The mechanical stirring cleaning is the cleaning process of Comparative Example 1, and the cleaning conditions of the mechanical stirring cleaning are in accordance with Environment Agency Notification No. 13, and the main ash was cleaned by shaking for 6 hours at a liquid-solid ratio of 10. The immersion cleaning is a cleaning process of Comparative Example 2. The cleaning conditions for the immersion cleaning were a liquid-solid ratio of 0.6 to 1.0, and the main ash was immersed in water for 24 hours for cleaning. In FIG. 2, the liquid-solid ratio is a weight ratio between the waste water discharged from the cleaning device and the main ash after cleaning, and is a value obtained by dividing the amount of waste water by the amount of main ash.

各洗浄工程を比べると、Na、Clといった易溶出性の塩類の洗い出しについて、散水・通気洗浄における液固比は、機械撹拌式洗浄の液固比、浸漬洗浄の液固比よりも小さく抑制したうえで、機械撹拌式洗浄や浸漬洗浄と同等の洗い出し効果があることが分かる。一方、Caのように液固比に依存する塩類の洗い出し量について、本実施形態の洗浄装置13に相当する散水・通気洗浄は、機械撹拌式洗浄と比較すると少ない。   Comparing each washing process, the liquid-solid ratio in sprinkling / venting washing was suppressed to be smaller than the liquid-solid ratio in mechanical stirring type washing and the liquid-solid ratio in immersion washing for washing out easily-eluting salts such as Na and Cl. Moreover, it turns out that there exists a washout effect equivalent to mechanical stirring type washing | cleaning and immersion washing | cleaning. On the other hand, with regard to the amount of salt that is dependent on the liquid-solid ratio, such as Ca, watering and aeration cleaning corresponding to the cleaning device 13 of this embodiment is less than mechanical stirring cleaning.

このように、本実施形態の洗浄装置13に相当する散水・通気洗浄は、少量の散水で高効率に塩類を洗い出すことに優れているが、Ca等のように主灰中に大量に含有されており、液固比に依存して溶出する塩類の洗い出しにはあまり向いていない。しかし、実際には主灰中に数十%近く含有するCa等を全量洗い出すことは現実的ではない。また、水処理の負荷を大きくすることにもなるため、このような成分については初期に易溶出部分の洗い出しを行いながら、不溶化することが望ましい。   Thus, sprinkling and aeration cleaning corresponding to the cleaning device 13 of this embodiment is excellent in washing out salts with high efficiency with a small amount of sprinkling, but is contained in a large amount in the main ash such as Ca. Therefore, it is not suitable for washing out salt that elutes depending on the liquid-solid ratio. However, in practice, it is not practical to wash out all the Ca and the like contained in the main ash by several tens of percent. Moreover, since the load of water treatment will also be increased, it is desirable to insolubilize such components while washing out the easily-eluting portion in the initial stage.

次に、洗浄装置13で主灰から易溶出成分を溶出させる場合に、通気の有無による溶出作用への影響を説明する。図4は、主灰を散水・通気洗浄法により洗浄する試験を行った結果を示すグラフ図である。洗浄試験は、内径φ104mmのカラム内に主灰を高さ300mmで収容して、主灰を散水・通気洗浄法により洗浄するものである。洗浄後の主灰を、10cm毎に上層・中層・下層に3等分し、各層の主灰における溶出水(環告13号)中のCl濃度を測定した結果が、図4に示されている。   Next, the influence on the elution action by the presence or absence of aeration when the easily eluting components are eluted from the main ash by the cleaning device 13 will be described. FIG. 4 is a graph showing the results of a test for cleaning the main ash by the watering / venting cleaning method. In the cleaning test, main ash is accommodated in a column having an inner diameter of φ104 mm at a height of 300 mm, and the main ash is cleaned by a sprinkling / ventilation cleaning method. The main ash after washing was divided into three equal parts every 10 cm into the upper layer, middle layer, and lower layer, and the results of measuring the Cl concentration in the elution water (announcement No. 13) in the main ash of each layer are shown in FIG. Yes.

散水強度(散水量)が1日当たり320mmである第1処理区と、散水強度(散水量)が1日当たり160mmの2処理区とを設定し、それぞれの処理区について、通気有り・無しの比較を行った。散水強度が大きい第1処理区において、通気無しでは中層の溶出水中のClの濃度が、他層より高い。これは、主灰内で通水経路が形成がされたことが原因と推定される。一方、第1処理区において、通気有りでは中層における溶出水中のClの濃度が低下しており、主灰内で通水経路の形成が緩和されたか、もしくは通水経路が解消されたことを示唆している。   Set the first treatment section with a sprinkling strength (sprinkling amount) of 320 mm per day and two processing sections with a sprinkling strength (sprinkling amount) of 160 mm per day, and compare each treatment section with and without aeration. went. In the first treatment section where the sprinkling strength is large, the concentration of Cl in the elution water in the middle layer is higher than in the other layers without aeration. This is presumed to be caused by the formation of water passages in the main ash. On the other hand, in the first treatment zone, the presence of aeration decreased the concentration of Cl in the elution water in the middle layer, suggesting that the formation of the water passage was eased in the main ash or that the water passage was eliminated. doing.

これに対して、第2処理区では、通気の有無に係わらず、上層から下層に向けて溶出水中のClの濃度が高くなるという通常の溶出傾向が見られ、散水強度が適当であることが確認された。しかし、第2処理区の中層・下層は、通気無しよりも通気有りの方が、Clの濃度が低くなっており、通気によるClの洗い出し促進効果が示唆された。   On the other hand, in the second treatment zone, a normal elution tendency that the concentration of Cl in the elution water increases from the upper layer toward the lower layer regardless of the presence or absence of aeration is observed, and the watering strength is appropriate. confirmed. However, in the middle and lower layers of the second treatment zone, the concentration of Cl is lower when there is aeration than when there is aeration, suggesting the effect of promoting the washing out of Cl by aeration.

図5は、洗浄装置13に対応する散水・通気洗浄法により主灰を洗浄した場合において、浸出水中のPb濃度とCl濃度の相関関係を示す回帰直線である。浸出水は、易溶出成分を含み、かつ、主灰から出た水であり、「浸出水」は、洗浄装置から出る「廃水」と同義である。浸出水中のPb濃度とCl濃度は、決定係数R2 =0.90と高い相関関係を示し、易溶性成分については、重金属類であっても同様の溶出傾向を示すことが確認された。決定係数0.90は以下のようにして算出した。
y=0.0068x−562.06
2 =0.9053
以上のように、洗浄装置13で洗浄して易溶出成分が除去された主灰は、元の主灰の性状にもよるが、洗浄によりリサイクル基準を満たすことができれば、セメント原料、路盤材等の土木系資材、ブロック等のコンクリート二次製品へのリサイクルが可能となる。従来であれば、そのまま最終処分場へ埋立処分される主灰が、本実施形態の洗浄装置13で洗浄してリサイクルできることとなれば、主灰処分費の削減になるだけではなく、逼迫する最終処分場の延命化に大きく貢献できる。
FIG. 5 is a regression line showing the correlation between the Pb concentration and the Cl concentration in the leachate when the main ash is washed by the sprinkling / ventilation washing method corresponding to the washing device 13. The leachate contains easily-eluting components and comes out of the main ash, and “leaching water” is synonymous with “waste water” coming out of the cleaning device. The Pb concentration and Cl concentration in the leachate showed a high correlation with the coefficient of determination R2 = 0.90, and it was confirmed that the readily soluble components showed the same elution tendency even with heavy metals. The determination coefficient 0.90 was calculated as follows.
y = 0.068x-562.06
R 2 = 0.9053
As described above, the main ash from which the easily eluted components have been removed by the cleaning device 13 depends on the properties of the original main ash, but if the recycling standard can be satisfied by the cleaning, the cement raw material, the roadbed material, etc. Recycling to secondary concrete products such as civil engineering materials and blocks. Conventionally, if the main ash that is landfilled to the final disposal site can be cleaned and recycled by the cleaning device 13 of the present embodiment, not only will the main ash disposal cost be reduced, but also the tight final This can greatly contribute to extending the life of the disposal site.

また、主灰の性状や社会情勢等により、主灰をリサイクルすることが困難な場合でも、本実施形態の洗浄装置13で洗浄処理を行った主灰は、従来のように無処理で埋立てる場合に比べて、格段に安定化が進んでいる。したがって、処分場の早期廃止へ貢献することができる。   Even when it is difficult to recycle the main ash due to the nature of the main ash, social conditions, etc., the main ash that has been subjected to the cleaning process by the cleaning device 13 of the present embodiment is landfilled without any treatment as in the past. Compared to the case, stabilization is progressing significantly. Therefore, it can contribute to the early abolition of the disposal site.

さらに、洗浄装置13においては、洗浄槽18の上から散水を行い、かつ、洗浄槽18の下部からブロア等を含む送気機構20を用いて、主灰の下から上へ向けて通気を行う。通気の効果としては、通水経路が形成されることを抑制する効果や、CO2 による塩類の溶出を促進する効果が挙げられる。また、主灰と空気との接触時間を長く確保するため、最大1日程度の洗浄時間を要するが、一方で廃水ベースにおける液固比は1以下であり、本実施形態の洗浄工程から出る廃水量は、比較例の洗浄工程から出る廃水量よりも少ない。   Further, in the cleaning device 13, water is sprayed from above the cleaning tank 18, and air is ventilated from below the main ash from the lower part of the cleaning tank 18 using an air supply mechanism 20 including a blower and the like. . The effect of aeration includes an effect of suppressing the formation of a water passage and an effect of promoting the elution of salts by CO2. In addition, in order to ensure a long contact time between the main ash and air, a cleaning time of about 1 day is required at the maximum. On the other hand, the liquid-solid ratio in the wastewater base is 1 or less, and the wastewater discharged from the cleaning process of this embodiment. The amount is less than the amount of waste water from the cleaning process of the comparative example.

さらに、本実施形態においては、灰冷却装置12で冷却された主灰は、コンテナ17に収容されて洗浄装置13へ搬送される。したがって、焼却炉11と洗浄装置13とが、処理設備10内で互いに離れた場所にあっても、主灰を洗浄装置13で洗浄することができる。また、焼却炉11及び洗浄装置13は、処理設備10内における設置場所の自由度が増す。   Furthermore, in this embodiment, the main ash cooled by the ash cooling device 12 is accommodated in the container 17 and conveyed to the cleaning device 13. Therefore, even if the incinerator 11 and the cleaning device 13 are located in the processing facility 10 away from each other, the main ash can be cleaned by the cleaning device 13. Moreover, the incinerator 11 and the cleaning apparatus 13 increase the degree of freedom of the installation location in the processing facility 10.

本実施形態において、洗浄装置13において、廃水ベースにおける液固比を1以下にするために、作業者が手作業により、洗浄装置13に搬入される主灰の量と、散水量とを調整してもよい。一方、廃水ベースにおける液固比を1以下にするために、洗浄装置13に搬入される主灰の量と、散水量とを自動的に調整する例を、図6を参照して説明する。   In the present embodiment, in the cleaning device 13, the operator manually adjusts the amount of main ash carried into the cleaning device 13 and the amount of water spray so that the liquid-solid ratio in the wastewater base is 1 or less. May be. On the other hand, an example of automatically adjusting the amount of main ash carried into the cleaning device 13 and the amount of water spray to make the liquid-solid ratio in the wastewater base 1 or less will be described with reference to FIG.

コンテナ17から洗浄槽18に入れられる主灰量を調整する調整機構21が設けられている。調整機構21は、例えば、計量部、シャッタ等を有する。調整機構21は、コントローラ22によりシャッタが開閉され、洗浄槽18に供給する主灰量が制御される。また、コントローラ22は、散水機構19のバルブを制御して、洗浄槽18内の主灰に対する散水量を制御する。   An adjustment mechanism 21 that adjusts the amount of main ash that is put into the cleaning tank 18 from the container 17 is provided. The adjustment mechanism 21 includes, for example, a weighing unit and a shutter. In the adjusting mechanism 21, the shutter is opened and closed by the controller 22, and the amount of main ash supplied to the cleaning tank 18 is controlled. Further, the controller 22 controls the valve of the watering mechanism 19 to control the amount of water sprayed on the main ash in the cleaning tank 18.

本実施形態の洗浄装置13で発生する廃水量は、比較例の洗浄装置で発生する廃水量に比べて少ないため、廃水処理装置14において、廃水を易溶出成分と水とに分離し、分離された水を、処理設備10内へ移送することができる。以下、廃水処理装置14で分離された水を、処理設備10内へ移送する経路を説明する。   Since the amount of wastewater generated in the cleaning device 13 of this embodiment is smaller than the amount of wastewater generated in the cleaning device of the comparative example, the wastewater treatment device 14 separates the wastewater into easily eluted components and water. Water can be transferred into the treatment facility 10. Hereinafter, the path | route which transfers the water isolate | separated with the waste water treatment apparatus 14 into the processing equipment 10 is demonstrated.

処理設備10において、廃水処理装置14で分離された水の移送経路は、以下の第1経路D1〜第4経路D4を含む。   In the treatment facility 10, the water transfer path separated by the wastewater treatment apparatus 14 includes the following first path D1 to fourth path D4.

(第1経路)
第1経路D1を移送される水は、灰冷却装置12の冷却槽12Aへ入れられる。つまり、処理設備10は、廃水処理装置14で廃水を易溶出成分と水とに分離し、分離した水を冷却槽12Aへ入れて冷却水として利用し、主灰に吸収させて、再度、洗浄装置13に戻すことが可能である。したがって、廃水がそのまま処理設備10の外に排出されることを抑制できる。
(First route)
The water transferred through the first path D1 is put into the cooling tank 12A of the ash cooling device 12. In other words, the treatment facility 10 separates the wastewater into the easily eluted components and water by the wastewater treatment device 14, puts the separated water into the cooling tank 12A and uses it as cooling water, absorbs it into the main ash, and cleans it again. It is possible to return to the device 13. Therefore, it can suppress that wastewater is discharged | emitted out of the processing equipment 10 as it is.

ところで、廃水処理装置14で分離された水を、灰冷却装置12、洗浄装置13に循環させる工程を繰り返していると、灰冷却装置12の冷却槽12A内の塩濃度が徐々に上昇することが想定される。そこで、処理設備10では、灰冷却装置12の冷却槽12A内の塩濃度が上昇することを抑制するために、以下の処理を実行可能である。   By the way, if the process of circulating the water separated by the wastewater treatment device 14 to the ash cooling device 12 and the cleaning device 13 is repeated, the salt concentration in the cooling tank 12A of the ash cooling device 12 may gradually increase. is assumed. Therefore, in the processing facility 10, the following processing can be executed in order to suppress an increase in the salt concentration in the cooling tank 12A of the ash cooling device 12.

まず、廃棄物の燃焼後に焼却炉11から排出される主灰は、含水率がほぼ0%に近い状態にある。これに対して、冷却槽12Aから排出された主灰の含水率は30〜40%となっている。これは、冷却槽12A内の主灰が吸水し、冷却水を持ち出すことを意味している。そこで、本実施形態では、主灰が吸水することを利用して、冷却槽12A内の冷却水を主灰で吸収させた後、その主灰の少なくとも一部を、経路E1から埋め立て処分場C1に搬送することが可能である。このように、冷却槽12A内の主灰を、洗浄装置13と経路E1とに分配すれば、廃水が洗浄装置13、廃水処理装置14、灰冷却装置12を循環する回数を減らすことができ、灰冷却槽内の塩濃度が上昇することを防止できる。   First, the main ash discharged from the incinerator 11 after the combustion of the waste is in a state where the moisture content is nearly 0%. On the other hand, the water content of the main ash discharged from the cooling tank 12A is 30 to 40%. This means that the main ash in the cooling tank 12A absorbs water and takes out the cooling water. Therefore, in the present embodiment, the main ash absorbs the cooling water in the cooling tank 12A using the main ash, and then at least a part of the main ash is reclaimed from the route E1 to the landfill disposal site C1. It is possible to transport it. Thus, if the main ash in the cooling tank 12A is distributed to the cleaning device 13 and the path E1, the number of times the wastewater circulates through the cleaning device 13, the wastewater treatment device 14, and the ash cooling device 12 can be reduced. It is possible to prevent the salt concentration in the ash cooling tank from increasing.

次に、灰冷却装置12に搬入された主灰を、洗浄装置13と経路E1とに分配する例を説明する。   Next, an example in which main ash carried into the ash cooling device 12 is distributed to the cleaning device 13 and the path E1 will be described.

(分配例1)
前述のように、乾燥した含水率0%で重量1tの主灰は、含水率30%まで可能であれ約0.4tの冷却水を吸水できる。一方、洗浄装置13は、液固比1以下、具体的には、液固比0.5程度で主灰を洗浄することが可能である。つまり、廃水量を約0.4tの廃水量にするためには、洗浄装置13に主灰を約0.8t収容すればよい。
(Distribution example 1)
As described above, the main ash having a dry water content of 0% and a weight of 1 t can absorb about 0.4 t of cooling water even if the water content can be up to 30%. On the other hand, the cleaning device 13 can clean the main ash at a liquid / solid ratio of 1 or less, specifically, at a liquid / solid ratio of about 0.5. That is, the main ash may be accommodated in the cleaning device 13 in order to reduce the amount of waste water to about 0.4 t.

そこで、焼却炉11から含水率0%の主灰約1.0tが灰冷却装置12へ排出され、かつ、冷却槽12A内の冷却水を含んで約1.4tの冷却済みの主灰が得られた場合は、冷却水を含む約1.4tの主灰のうち、約0.6tの主灰を灰冷却装置12から出し、経路E1から埋め立て処分場C1へ移送し、残りの約0.8tの主灰を洗浄装置13に搬送するように、冷却水を含む主灰の分配割合を決定することができる。なお、焼却炉11から灰冷却装置12へ排出される主灰の重量は任意に変更可能であり、焼却炉11から灰冷却装置12へ排出される主灰の重量に合わせて、液固比、灰冷却装置12で吸水した主灰を洗浄装置13と経路E1とに分配する割合を設定すればよい。   Therefore, about 1.0 t of main ash having a moisture content of 0% is discharged from the incinerator 11 to the ash cooling device 12 and about 1.4 t of cooled main ash is obtained including the cooling water in the cooling tank 12A. If about 1.4 tons of main ash containing cooling water, about 0.6 tons of main ash is taken out from the ash cooler 12 and transferred from the path E1 to the landfill disposal site C1. The distribution ratio of the main ash including the cooling water can be determined so that the 8t main ash is conveyed to the cleaning device 13. In addition, the weight of the main ash discharged | emitted from the incinerator 11 to the ash cooling device 12 can be changed arbitrarily, according to the weight of the main ash discharged from the incinerator 11 to the ash cooling device 12, the liquid-solid ratio, What is necessary is just to set the ratio which distributes the main ash absorbed with the ash cooling device 12 to the washing | cleaning apparatus 13 and the path | route E1.

このように、冷却水を含む主灰の分配割合を決定すると、灰冷却装置12に投入される含水率0%の主灰は、廃水処理装置14から出る水を全て吸収可能である。したがって、本実施形態の処理設備10は、洗浄装置13から出る廃水が、処理設備10の外にそのまま出ることを確実に防止できる。   As described above, when the distribution ratio of the main ash including the cooling water is determined, the main ash having a water content of 0% that is put into the ash cooling device 12 can absorb all the water that is discharged from the waste water treatment device 14. Therefore, the treatment facility 10 of the present embodiment can reliably prevent the waste water from the cleaning device 13 from leaving the treatment facility 10 as it is.

灰冷却装置12で冷却された主灰を、洗浄装置13と経路E1とに分配する工程は作業者が手作業で行うことが可能であるが、自動的に行うことも可能である。灰冷却装置12で冷却された主灰を、洗浄装置13と経路E1とに自動的に分配する工程を、図7を参照して説明する。灰冷却装置12から分岐する2つの経路E1,E2が設けられている。経路E2は、コンベア及びコンテナ17につながっている。また、灰冷却装置12の主灰を、経路E1と経路E2とに分配する分配機構23が設けられている。分配機構23は、経路E1,E2をそれぞれ開閉するシャッタを有し、分配機構23を制御するコントローラ24が設けられている。図7の分配機構23のシャッタの開度をそれぞれ制御することにより、灰冷却装置12で吸水した主灰を洗浄装置13と経路E1とに分配する割合を制御できる。   The process of distributing the main ash cooled by the ash cooling device 12 to the cleaning device 13 and the path E1 can be performed manually by an operator, but can also be performed automatically. A process of automatically distributing the main ash cooled by the ash cooling device 12 to the cleaning device 13 and the path E1 will be described with reference to FIG. Two paths E1 and E2 branched from the ash cooling device 12 are provided. The path E <b> 2 is connected to the conveyor and the container 17. Moreover, the distribution mechanism 23 which distributes the main ash of the ash cooling device 12 into the path | route E1 and the path | route E2 is provided. The distribution mechanism 23 has shutters that open and close the paths E1 and E2, respectively, and a controller 24 that controls the distribution mechanism 23 is provided. By controlling the opening degree of the shutter of the distribution mechanism 23 in FIG. 7, the ratio of distributing the main ash absorbed by the ash cooling device 12 to the cleaning device 13 and the path E1 can be controlled.

(分配例2)
分配例2における灰冷却装置12は、冷却槽12A内の冷却水の少なくとも一部を主灰と共に取り出すために、焼却炉11から排出される主灰を、時間別に「洗浄処理する主灰」と「吸水させる主灰」に区分し、吸水させる主灰により冷却水を持ち出させる構造である。例えば、灰冷却装置12内の主灰を全て洗浄装置13へ搬送する第1の時間帯と、灰冷却装置12内の灰を全て経路E1へ移動する第2の時間帯隔とを、設定する。灰冷却装置12内の主灰を、洗浄装置13と経路E1とに分配する作業は、人為的に行ってもよいし、図7に示す構成を利用することも可能である。
(Distribution example 2)
The ash cooling device 12 in the distribution example 2 refers to main ash discharged from the incinerator 11 as “main ash to be cleaned” according to time in order to take out at least a part of the cooling water in the cooling tank 12A together with the main ash. The structure is divided into “main ash that absorbs water” and cooling water is taken out by the main ash that absorbs water. For example, a first time zone for transferring all the main ash in the ash cooling device 12 to the cleaning device 13 and a second time zone for moving all the ash in the ash cooling device 12 to the path E1 are set. . The operation of distributing the main ash in the ash cooling device 12 to the cleaning device 13 and the path E1 may be performed manually, or the configuration shown in FIG. 7 may be used.

例えば、コントローラ24にタイマ25の信号が入力される。タイマ25は、第1の時間帯に相当する時間間隔を検出し、かつ、第2の時間帯に相当する時間間隔を検出し、これらの検出信号をコントローラ24へ入力する。そして、コントローラ24は、第1の時間帯において、灰冷却装置12内の主灰を全て洗浄装置13へ搬送するように、分配機構23のシャッタを制御する。また、コントローラ24は、第2の時間帯において、灰冷却装置12内の灰を全て経路E1へ移送するように、分配機構23のシャッタを制御する。   For example, the signal of the timer 25 is input to the controller 24. The timer 25 detects a time interval corresponding to the first time zone, detects a time interval corresponding to the second time zone, and inputs these detection signals to the controller 24. Then, the controller 24 controls the shutter of the distribution mechanism 23 so as to convey all the main ash in the ash cooling device 12 to the cleaning device 13 in the first time zone. In addition, the controller 24 controls the shutter of the distribution mechanism 23 so as to transfer all the ash in the ash cooling device 12 to the path E1 in the second time zone.

(分配例3)
灰冷却装置12に搬入された主灰を、洗浄装置13と経路E1とに分配する分配例3を、図8を参照して説明する。灰冷却装置12は、冷却槽12B,12Cを備えている。冷却槽12B,12Cは、それぞれ独立して設けられている。冷却槽12B内には冷却水が入れられており、冷却槽12B内の冷却水が減少すると、水道水、工業用水、井水等真水を冷却槽12B内に供給して、減少分の冷却水を補う。これに対して、冷却槽12Cには、第1経路D1を通って移送される水が供給される。また、冷却槽12Cは経路E1へつながっている。冷却槽12Bは経路E2を介して洗浄装置13へつながる。灰冷却装置12は、切替機構26を有する。切替機構26は、シャッタ等で構成されており、切替機構26は、コントローラ27により制御される。コントローラ27は切替機構26を制御して、焼却炉11から排出される主灰を、冷却槽12Bまたは冷却槽12Cに分配する。
(Distribution example 3)
A distribution example 3 in which the main ash carried into the ash cooling device 12 is distributed to the cleaning device 13 and the path E1 will be described with reference to FIG. The ash cooling device 12 includes cooling tanks 12B and 12C. The cooling tanks 12B and 12C are provided independently. Cooling water is put in the cooling tank 12B, and when the cooling water in the cooling tank 12B decreases, fresh water such as tap water, industrial water, and well water is supplied into the cooling tank 12B, and the cooling water corresponding to the decrease is supplied. Make up. On the other hand, the water transferred through the first path D1 is supplied to the cooling tank 12C. The cooling tank 12C is connected to the path E1. The cooling bath 12B is connected to the cleaning device 13 via the path E2. The ash cooling device 12 has a switching mechanism 26. The switching mechanism 26 includes a shutter or the like, and the switching mechanism 26 is controlled by a controller 27. The controller 27 controls the switching mechanism 26 to distribute the main ash discharged from the incinerator 11 to the cooling tank 12B or the cooling tank 12C.

(分配例4)
灰冷却装置12に搬入された主灰を、洗浄装置13と経路E1とに分配する分配例4を、図7を参照して説明する。分配例4では、冷却槽12A内の電気伝導度(EC)を測定する測定機構(センサ)28が設けられている。測定機構28の信号がコントローラ24に入力され、コントローラ24は分配機構23を制御する。冷却槽12A内の塩濃度が高ければ、廃水の電気伝導度は高くなる。そして、測定機構28で検出される電気伝導度が所定値未満であれば、灰冷却装置12で冷却水を吸収した主灰が、洗浄装置13へ移送される。これに対して、測定機構28で検出される電気伝導度が所定値以上では、灰冷却装置12で冷却水を吸収した主灰が、経路E1を通り埋め立て処分場C1へ移送される。
(Distribution example 4)
A distribution example 4 in which the main ash carried into the ash cooling device 12 is distributed to the cleaning device 13 and the path E1 will be described with reference to FIG. In the distribution example 4, a measurement mechanism (sensor) 28 for measuring the electrical conductivity (EC) in the cooling bath 12A is provided. A signal from the measurement mechanism 28 is input to the controller 24, and the controller 24 controls the distribution mechanism 23. If the salt concentration in the cooling tank 12A is high, the electrical conductivity of the wastewater is high. If the electrical conductivity detected by the measurement mechanism 28 is less than a predetermined value, the main ash having absorbed cooling water by the ash cooling device 12 is transferred to the cleaning device 13. On the other hand, when the electrical conductivity detected by the measurement mechanism 28 is equal to or greater than the predetermined value, the main ash having absorbed the cooling water by the ash cooling device 12 is transferred to the landfill site C1 through the path E1.

ここで、電気伝導度の所定値は、塩類の濃縮度合いを示す。冷却水の電気伝導度が所定値以上である場合は、例えば、「冷却水を含んだ主灰が洗浄装置13にて真水で洗浄されても、洗浄済み主灰中に残存する塩類濃度が、洗浄前における主灰の濃度よりも高くなってしまうという不具合が生じるため、灰冷却装置12で冷却水を吸収した主灰は、埋め立て処分場C1へ移送される。   Here, the predetermined value of electrical conductivity indicates the degree of salt concentration. When the electrical conductivity of the cooling water is equal to or higher than a predetermined value, for example, “the concentration of salts remaining in the washed main ash even when the main ash containing cooling water is washed with fresh water by the cleaning device 13, Since the malfunction that it will become higher than the density | concentration of the main ash before washing | cleaning arises, the main ash which absorbed cooling water with the ash cooling device 12 is transferred to the landfill disposal site C1.

これに対して、冷却水の電気伝導度が所定値未満である場合は、上記の不具合は生じないため、灰冷却装置12で冷却水を吸収した水を洗浄装置13へ移送する。つまり、電気伝導度の所定値は、冷却水を含んだ主灰が洗浄装置13で洗浄されて、塩類を除去すること可能か否かを判断する閾値であり、予めコントローラ24のメモリに記憶されている。   On the other hand, when the electrical conductivity of the cooling water is less than the predetermined value, the above-described problem does not occur, and thus the water that has absorbed the cooling water by the ash cooling device 12 is transferred to the cleaning device 13. That is, the predetermined value of electrical conductivity is a threshold value for determining whether or not the main ash containing cooling water is washed by the washing device 13 to remove salts, and is stored in the memory of the controller 24 in advance. ing.

また、冷却槽12A内における冷却水の塩類濃度を推定する指標は、電気伝導度(EC)の他、冷却水のイオン濃度(ナトリウム、塩素等)、冷却水の密度、冷却水の粘度、冷却水における光の吸収率、冷却水における光の屈折率、冷却水の旋光度、冷却水の放射線量のうち、少なくとも1つを用いても良い。この場合、測定機構28は、各指標をそれぞれ別々に検出可能なものを用いる。   In addition to the electrical conductivity (EC), the index for estimating the salt concentration of the cooling water in the cooling tank 12A is the cooling water ion concentration (sodium, chlorine, etc.), the cooling water density, the cooling water viscosity, and the cooling. You may use at least 1 among the absorptivity of the light in water, the refractive index of the light in cooling water, the optical rotation of cooling water, and the radiation dose of cooling water. In this case, the measurement mechanism 28 uses what can detect each index separately.

そして、測定機構28により検出された指標のうち、少なくとも1つの指標が所定値以上である場合に、灰冷却装置12で冷却水を吸収した主灰は、埋め立て処分場C1へ移送することができる。これに対して、上記した各指標のうち、少なくとも1つの指標が所定値未満である場合に、灰冷却装置12で冷却水を吸収した主灰は、洗浄装置13へ移送することができる。   And when at least one parameter | index detected by the measurement mechanism 28 is more than predetermined value, the main ash which absorbed cooling water with the ash cooling device 12 can be transferred to the landfill disposal site C1. . On the other hand, the main ash that has absorbed the cooling water by the ash cooling device 12 can be transferred to the cleaning device 13 when at least one of the above-described indexes is less than a predetermined value.

(第2経路)
第2経路D2は、廃水処理装置14から出る水の一部を、不溶化装置15へ移送する経路である。そして、不溶化装置15は、飛灰と不溶加剤等(キレート、セメント)を混合撹拌する際に、水を添加する。焼却炉11がストーカ炉であれば、飛灰の発生量は、他の焼却炉に比べて主灰の1/3以下であり、かつ、飛灰に含まれる塩濃度は、他の焼却炉に比べて10倍近く高い。そのため、廃水処理装置14から出る水を不溶化装置15へ移送する場合は、水を濃縮して移送する。濃縮方法としては、水の循環利用、熱による濃縮が有効である。水の循環利用は、廃水処理装置14、灰冷却装置12、洗浄装置13を含む閉じられた系内で、水を循環させることである。このように、廃水処理装置14から出た水は、第2経路D2を通り不溶化装置15へ移送される。そして、不溶化装置15で水が飛灰に混練され、水が混練された飛灰は経路A4を通り、埋め立て処分場C1へ搬送される。したがって、廃水処理装置14から出た水が、そのままの状態で処理設備10の系外へ出ることを防止できる。
(Second route)
The second path D <b> 2 is a path for transferring a part of the water discharged from the wastewater treatment device 14 to the insolubilization device 15. And the insolubilizer 15 adds water, when mixing and stirring fly ash, an insoluble additive etc. (chelate, cement). If the incinerator 11 is a stoker furnace, the amount of fly ash generated is 1/3 or less of the main ash compared to other incinerators, and the salt concentration contained in the fly ash is different from that of other incinerators. Compared to 10 times higher. Therefore, when transferring the water discharged from the waste water treatment apparatus 14 to the insolubilization apparatus 15, the water is concentrated and transferred. As a concentration method, water circulation and heat concentration are effective. The circulation of water is to circulate water in a closed system including the wastewater treatment device 14, the ash cooling device 12, and the cleaning device 13. In this way, the water discharged from the wastewater treatment device 14 is transferred to the insolubilization device 15 through the second path D2. Then, water is kneaded into fly ash by the insolubilizer 15, and the fly ash kneaded with water passes through the path A4 and is conveyed to the landfill disposal site C1. Therefore, it is possible to prevent the water discharged from the waste water treatment apparatus 14 from leaving the system of the treatment facility 10 as it is.

(第3経路)
第3経路D3は、廃水処理装置14から出た水を、焼却炉11へ搬送する経路である。前記のように、灰冷却装置12内の冷却水を炉内に散布する散水機構16が設けられており、廃水処理装置14から出た水を、散水機構16から焼却炉11内に散布して蒸発させ、あるいは、焼却炉11内の温度調整に利用することができる。第3経路D3は単独で設けてもよいし、第3経路D3と、灰冷却槽内の水を焼却炉11へ散布する送水管とを合流させ、合流した水を焼却炉11へ散布してもよい。
(3rd route)
The third path D <b> 3 is a path for transporting water from the wastewater treatment device 14 to the incinerator 11. As described above, the watering mechanism 16 for spraying the cooling water in the ash cooling device 12 into the furnace is provided, and the water discharged from the wastewater treatment device 14 is sprayed into the incinerator 11 from the watering mechanism 16. It can be evaporated or used for temperature adjustment in the incinerator 11. The third path D3 may be provided alone, or the third path D3 and the water pipe that sprays the water in the ash cooling tank to the incinerator 11 are merged, and the merged water is sprayed to the incinerator 11. Also good.

(第4経路)
第4経路D4は、廃水処理装置14から出る水を移送する経路であり、第4経路D4を移送される水は濃縮された後に乾燥機31に投入される。水の濃縮方法は、前述と同じである。乾燥機31は、濃縮された水を乾燥させて乾燥固化塩とし、乾燥固化塩は汚泥と共に経路A3を通り埋め立て処分場C1へ搬送される。
(4th route)
The fourth path D4 is a path for transferring water from the wastewater treatment apparatus 14, and the water transferred through the fourth path D4 is concentrated and then introduced into the dryer 31. The water concentration method is the same as described above. The dryer 31 dries the concentrated water to obtain a dry solidified salt, and the dry solidified salt is conveyed to the landfill disposal site C1 through the path A3 together with sludge.

乾燥固化塩は、塩類が埋め立て処分場C1で溶出することを減じるため、乾燥固化塩を埋め立て処分場C1へ搬送する前に、セメント固化等不溶化処理を施してもよい。さらに、乾燥機31で行う水の乾燥処理に、焼却炉11の廃熱を利用することで、効率的な処理システムとすることも可能である。焼却炉11の廃熱を、乾燥機31へ輸送する熱輸送システム32としては、例えば、蒸気を輸送する配管、ヒートパイプ、潜熱蓄熱材を収容した配管または容器を用いることができる。   Since the dried solidified salt reduces the elution of salts at the landfill disposal site C1, insolubilization treatment such as cement solidification may be performed before the dried solidified salt is transported to the landfill disposal site C1. Furthermore, an efficient treatment system can be obtained by utilizing the waste heat of the incinerator 11 for the drying treatment of the water performed in the dryer 31. As the heat transport system 32 for transporting the waste heat of the incinerator 11 to the dryer 31, for example, a pipe for transporting steam, a heat pipe, a pipe or a container containing a latent heat storage material can be used.

本実施形態において、洗浄装置13は焼却炉11から独立しているため、洗浄装置13は焼却炉11に隣接する場所に設置する必要はなく、既存の焼却施設の敷地内の空いたスペースに洗浄装置13を設置可能である。したがって、洗浄装置13を設けるために、既存の焼却炉11の仕様を変更する必要もほとんどない。そのため焼却炉11の運転等に影響を与えずに洗浄装置13の設置が可能である。   In the present embodiment, since the cleaning device 13 is independent of the incinerator 11, the cleaning device 13 does not need to be installed in a place adjacent to the incinerator 11, and is cleaned in a vacant space in the site of the existing incineration facility. The device 13 can be installed. Therefore, there is almost no need to change the specifications of the existing incinerator 11 in order to provide the cleaning device 13. Therefore, the cleaning device 13 can be installed without affecting the operation of the incinerator 11.

ただし、焼却炉11から離れた場所に洗浄装置13を設置する場合、別途、廃水処理装置14で処理した後の水を、バッキューム車やポンプ等で、第3経路D3を介して焼却炉11に移送する必要がある。また、洗浄装置13における断続散水の制御は非常にシンプルなため、洗浄装置13を構成する機械のメンテナンスや、洗浄作業に多くの人工を必要とせず、焼却施設職員への負担も少ない。さらに、第1経路D1〜第3経路D3において、水を搬送する搬送手段として、管、コンテナ、トラック等の何れを用いるかは、水の量、各設備同士の距離等を考慮して選択すればよい。   However, when the cleaning device 13 is installed in a place away from the incinerator 11, the water after being separately treated by the waste water treatment device 14 is transferred to the incinerator 11 via the third path D3 by a vacuum car or a pump. Need to be transported. In addition, since the intermittent water spray control in the cleaning device 13 is very simple, maintenance of the machine constituting the cleaning device 13 and a large amount of man-hours are not required for the cleaning work, and the burden on the incineration facility staff is small. Further, in the first route D1 to the third route D3, which of pipes, containers, trucks, etc. is used as the transport means for transporting water is selected in consideration of the amount of water, the distance between the facilities, and the like. That's fine.

本実施形態の処理設備10において、主灰及び飛灰が、本発明の焼却残渣に相当し、焼却炉11で行われる処理が、本発明の焼却工程であり、灰冷却装置12で行われる処理が、本発明の冷却工程であり、洗浄装置13で行われる処理が、本発明の洗浄工程であり、廃水処理装置14で行われる処理が、本発明の廃水処理工程であり、不溶化装置15で行われる処理が、本発明の不溶化工程である。処理設備10で行われる工程が、本発明の処理方法である。また、図8の冷却槽12Cが、本発明の第1冷却槽に相当し、図8の冷却槽12Bが、本発明の第2冷却槽に相当する。さらに、図7及び図8において、洗浄装置13に移送される主灰が、本発明における洗浄用残渣に相当し、埋め立て処分場C1へ移送される主灰が、本発明における吸水用残渣に相当する。   In the treatment facility 10 of the present embodiment, the main ash and fly ash correspond to the incineration residue of the present invention, and the process performed in the incinerator 11 is the incineration process of the present invention, and the process performed in the ash cooling device 12. Is the cooling process of the present invention, the process performed in the cleaning device 13 is the cleaning process of the present invention, the process performed in the waste water treatment apparatus 14 is the waste water treatment process of the present invention, and the insolubilization apparatus 15 The treatment to be performed is the insolubilization step of the present invention. The process performed in the processing facility 10 is the processing method of the present invention. 8 corresponds to the first cooling tank of the present invention, and the cooling tank 12B of FIG. 8 corresponds to the second cooling tank of the present invention. Further, in FIGS. 7 and 8, the main ash transferred to the cleaning device 13 corresponds to the cleaning residue in the present invention, and the main ash transferred to the landfill disposal site C1 corresponds to the water absorption residue in the present invention. To do.

本発明の冷却工程は、廃水処理工程から出た水の少なくとも一部を用いて、焼却残渣を冷却する。本発明の処理方法は、冷却工程で冷却水を吸収した焼却残渣の全部を洗浄工程に移送する処理と、冷却工程で冷却水を吸収した焼却残渣の一部を洗浄工程に移送し、かつ、一部を埋め立て処分場に移送する処理と、冷却工程で冷却水を吸収した焼却残渣の全部を埋め立て処分場に移送する処理と、を選択的に切り替えることができる。つまり、本発明の処理装置は、焼却工程から冷却工程に移送された焼却残渣の全部を、洗浄装置に移送しない場合もある。   The cooling process of the present invention cools the incineration residue using at least part of the water discharged from the wastewater treatment process. In the treatment method of the present invention, the entire incineration residue that has absorbed cooling water in the cooling step is transferred to the washing step, the incineration residue that has absorbed cooling water in the cooling step is transferred to the washing step, and It is possible to selectively switch between the process of transferring a part to the landfill site and the process of transferring all of the incineration residue that has absorbed the cooling water in the cooling process to the landfill site. That is, the processing apparatus of the present invention may not transfer all of the incineration residue transferred from the incineration process to the cooling process to the cleaning apparatus.

また、本発明の処理設備10は、廃水処理装置14から出た水の全部を灰冷却装置12へ移送する処理と、廃水処理装置14から出た水の一部を灰冷却装置12へ移送し、その残りを不溶化装置15または焼却炉11の少なくとも一方へ移送する処理と、を切り替えることができる。   Further, the treatment facility 10 of the present invention transfers all of the water discharged from the wastewater treatment device 14 to the ash cooling device 12 and transfers a part of the water discharged from the wastewater treatment device 14 to the ash cooling device 12. The process of transferring the remainder to at least one of the insolubilizer 15 or the incinerator 11 can be switched.

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、焼却残渣は、焼却炉内で廃棄物を焼却処理した後に残るものであり、可燃物が燃焼して発生した灰(主灰、飛灰)の他、可燃物の燃え残り、不燃物を含む。また、図1において、洗浄装置13で発生した廃水を、廃水処理装置14を迂回させて第4経路D4で濃縮し、かつ、乾燥機31で乾燥させて乾燥固化塩とし、その乾燥固化塩を汚泥と共に経路A3を経て埋め立て処分場C1へ搬送することも可能である。さらに、洗浄工程においては、コンテナ17を洗浄槽18として使用することも可能である。つまり、主灰は、コンテナ17内に収容された状態で、通気及び断続的な散水が行われる。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, incineration residues are those that remain after incineration of waste in an incinerator. In addition to ash (main ash, fly ash) generated by combustion of combustible materials, combustible materials remain unburned and incombustible materials. Including. In FIG. 1, the wastewater generated in the cleaning device 13 is bypassed by the wastewater treatment device 14 and concentrated in the fourth path D4, and dried in the dryer 31 to obtain a dry solidified salt. It is also possible to transport to the landfill disposal site C1 via the route A3 together with the sludge. Furthermore, the container 17 can be used as the cleaning tank 18 in the cleaning process. That is, the main ash is ventilated and intermittently watered while being accommodated in the container 17.

10 処理設備
11 焼却炉
12 灰冷却装置
12A,12B,12C 冷却槽
13 洗浄装置
14 廃水処理装置
15 不溶化装置
DESCRIPTION OF SYMBOLS 10 Treatment equipment 11 Incinerator 12 Ash cooling device 12A, 12B, 12C Cooling tank 13 Cleaning device 14 Wastewater treatment device 15 Insolubilization device

Claims (14)

廃棄物の燃焼により発生した焼却残渣を処理する、焼却残渣の処理方法であって、
冷却水を入れた冷却槽へ前記焼却残渣を入れて該焼却残渣を冷却する冷却工程と、
前記冷却槽から取り出した前記焼却残渣に連続的に通気を行い、かつ、前記焼却残渣に断続的に散水して、前記焼却残渣から易溶出成分を除去する洗浄工程と、
を有し、
前記洗浄工程で前記焼却残渣を洗浄することで発生した廃水を、前記冷却槽に入れる冷却水として利用する、焼却残渣の処理方法。
An incineration residue treatment method for treating incineration residue generated by combustion of waste,
A cooling step of cooling the incineration residue by putting the incineration residue into a cooling tank containing cooling water;
A washing step of continuously ventilating the incineration residue taken out from the cooling tank, and intermittently watering the incineration residue to remove easily eluted components from the incineration residue,
Have
A method for treating incineration residue, wherein waste water generated by washing the incineration residue in the washing step is used as cooling water to be put into the cooling tank.
請求項1に記載の焼却残渣の処理方法において、
前記廃水を前記冷却槽へ入れる前に、前記廃水を前記易溶出成分と水とに分離する廃水処理工程が設けられ、
前記廃水処理工程で分離された水を、前記冷却槽へ入れる冷却水として利用する、焼却残渣の処理方法。
In the processing method of the incineration residue of Claim 1,
Before putting the wastewater into the cooling tank, a wastewater treatment step is provided to separate the wastewater into the easily eluted components and water,
A method for treating an incineration residue, wherein the water separated in the waste water treatment step is used as cooling water to be put into the cooling tank.
請求項2に記載の焼却残渣の処理方法において、
前記洗浄工程は、前記焼却残渣を洗浄して発生する前記廃水と、洗浄後における前記焼却残渣との液固比が1以下となるように、洗浄する前記焼却残渣の量と前記散水の量とを設定する、焼却残渣の処理方法。
In the processing method of the incineration residue of Claim 2,
In the washing step, the amount of the incineration residue to be washed and the amount of water spray are adjusted so that the liquid-solid ratio between the waste water generated by washing the incineration residue and the incineration residue after washing is 1 or less. Set the incineration residue treatment method.
請求項3に記載の焼却残渣の処理方法において、
前記冷却槽で前記冷却水を吸収した前記焼却残渣を埋め立て処分場へ移送する、焼却残渣の処理方法。
In the processing method of the incineration residue of Claim 3,
A method for treating incineration residue, wherein the incineration residue that has absorbed the cooling water in the cooling tank is transferred to a landfill site.
請求項4に記載の焼却残渣の処理方法において、
前記冷却槽へ入れられる前記焼却残渣を、前記冷却水を吸収させる吸水用残渣と、前記冷却水を吸収せずに前記洗浄工程に移送する洗浄用残渣と、に分け、
前記冷却水を吸収した前記吸水用残渣を前記埋め立て処分場へ移送する、焼却残渣の処理方法。
In the processing method of the incineration residue of Claim 4,
The incineration residue put into the cooling tank is divided into a water absorption residue that absorbs the cooling water and a cleaning residue that is transferred to the cleaning step without absorbing the cooling water,
A method for treating incineration residue, wherein the residue for absorbing water that has absorbed the cooling water is transferred to the landfill site.
請求項5に記載の焼却残渣の処理方法において、
前記冷却槽に入れられる前記焼却残渣を、所定の時間間隔で前記吸水用残渣と前記洗浄用残渣とに分ける、焼却残渣の処理方法。
In the processing method of the incineration residue of Claim 5,
A method for treating an incineration residue, wherein the incineration residue placed in the cooling tank is divided into the water absorption residue and the cleaning residue at a predetermined time interval.
請求項5に記載の焼却残渣の処理方法において、
前記冷却槽は、別々に設けられた第1冷却槽と第2冷却槽とを含み、
前記吸水用残渣は前記第1冷却槽に入れられ、前記洗浄用残渣は前記第2冷却槽に入れられる、焼却残渣の処理方法。
In the processing method of the incineration residue of Claim 5,
The cooling tank includes a first cooling tank and a second cooling tank provided separately,
The method for treating an incineration residue, wherein the residue for water absorption is placed in the first cooling tank, and the residue for washing is placed in the second cooling tank.
請求項4に記載の焼却残渣の処理方法において、
前記冷却槽内の冷却水の塩類濃度を測定し、
前記冷却槽内の冷却水の塩類濃度が所定値未満である場合は、前記冷却水を吸収した前記焼却残渣を前記洗浄工程へ移送し、
前記冷却槽内の冷却水の塩類濃度が所定値以上である場合は、前記冷却水を吸収した前記焼却残渣を前記埋め立て処分場へ移送する、焼却残渣の処理方法。
In the processing method of the incineration residue of Claim 4,
Measure the salt concentration of cooling water in the cooling tank,
When the salt concentration of the cooling water in the cooling tank is less than a predetermined value, the incineration residue that has absorbed the cooling water is transferred to the cleaning step,
When the salt concentration of the cooling water in the cooling tank is a predetermined value or more, the incineration residue processing method of transferring the incineration residue that has absorbed the cooling water to the landfill site.
請求項2〜8のいずれか1項に記載の焼却残渣の処理方法において、
前記焼却残渣は、前記廃棄物を燃焼させて発生した主灰と飛灰とを含み、
前記主灰は、前記冷却槽へ入れられ、
前記飛灰に不溶化剤を混練して、前記飛灰に含まれる重金属類が溶出しないように安定化させる不溶化工程が設けられている、焼却残渣の処理方法。
In the processing method of the incineration residue of any one of Claims 2-8,
The incineration residue includes main ash and fly ash generated by burning the waste,
The main ash is put into the cooling tank,
A method for treating an incineration residue, wherein an insolubilizing step is provided in which an insolubilizing agent is kneaded in the fly ash and stabilized so that heavy metals contained in the fly ash are not eluted.
請求項9に記載の焼却残渣の処理方法において、
前記不溶化工程は、前記廃水処理工程で分離された前記水を、前記不溶化剤と共に前記飛灰に混練する、焼却残渣の処理方法。
In the processing method of the incineration residue of Claim 9,
The insolubilization step is a method for treating an incineration residue in which the water separated in the waste water treatment step is kneaded into the fly ash together with the insolubilizing agent.
請求項1〜10のいずれか1項に記載の焼却残渣の処理方法において、
前記洗浄工程で発生した前記廃水を、前記廃棄物を燃焼する焼却炉に移送して前記焼却炉の温度を調節する、焼却残渣の処理方法。
In the processing method of the incineration residue of any one of Claims 1-10,
A method for treating an incineration residue, wherein the waste water generated in the washing step is transferred to an incinerator for burning the waste to adjust the temperature of the incinerator.
請求項1〜10のいずれか1項に記載の焼却残渣の処理方法において、
前記洗浄工程で発生した前記廃水を、前記焼却炉の廃熱を利用して乾燥固化塩とし、該乾燥固化塩を前記埋め立て処分場へ移送する、焼却残渣の処理方法。
In the processing method of the incineration residue of any one of Claims 1-10,
A method for treating an incineration residue, wherein the waste water generated in the washing step is converted into a dry solidified salt using waste heat of the incinerator, and the dry solidified salt is transferred to the landfill disposal site.
請求項1〜11のいずれか1項に記載の焼却残渣の処理方法において、
前記冷却槽から取り出した前記焼却残渣をコンテナに収容して前記洗浄工程に移送する、焼却残渣の処理方法。
In the processing method of the incineration residue of any one of Claims 1-11,
A method for treating incineration residue, wherein the incineration residue taken out from the cooling bath is accommodated in a container and transferred to the cleaning step.
請求項13に記載の焼却残渣の処理方法において、
前記洗浄工程は、前記焼却残渣が前記コンテナに収容された状態で、前記焼却残渣に連続的に通気を行い、かつ、前記焼却残渣に断続的に散水して、前記焼却残渣から易溶出成分を除去する、焼却残渣の処理方法。
In the processing method of the incineration residue of Claim 13,
In the cleaning step, the incineration residue is housed in the container, and the incineration residue is continuously vented, and water is intermittently sprinkled on the incineration residue to remove easily eluted components from the incineration residue. Incineration residue treatment method to be removed.
JP2014156022A 2014-07-31 2014-07-31 Incineration residue treatment method Active JP6306969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014156022A JP6306969B2 (en) 2014-07-31 2014-07-31 Incineration residue treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014156022A JP6306969B2 (en) 2014-07-31 2014-07-31 Incineration residue treatment method

Publications (2)

Publication Number Publication Date
JP2016032786A true JP2016032786A (en) 2016-03-10
JP6306969B2 JP6306969B2 (en) 2018-04-04

Family

ID=55451966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156022A Active JP6306969B2 (en) 2014-07-31 2014-07-31 Incineration residue treatment method

Country Status (1)

Country Link
JP (1) JP6306969B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193571A1 (en) * 2020-03-27 2021-09-30 株式会社フジタ Treatment method for incinerator fly ash
JP2022083569A (en) * 2020-11-25 2022-06-06 Jx金属株式会社 Container of burned gold and silver slag transport and transport method of the same
JP7492408B2 (en) 2020-08-20 2024-05-29 株式会社フジタ How to generate leachate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273379A (en) * 2001-03-22 2002-09-24 Touso Sangyo Kk Heavy metal immobilizing agent and waste treatment method
JP2003117520A (en) * 2001-10-15 2003-04-22 Hitachi Zosen Corp Method for treating incineration ash
JP2003300053A (en) * 2002-04-04 2003-10-21 Takuma Co Ltd Method for sorting and cleaning incineration ash
JP2004167350A (en) * 2002-11-19 2004-06-17 Taiheiyo Cement Corp Processing method of incineration ash
JP2004183912A (en) * 2002-11-29 2004-07-02 Taiheiyo Cement Corp Waste incineration plant and waste incineration method
JP2005313059A (en) * 2004-04-28 2005-11-10 Taisei Corp Stabilization method for incineration ash and waste-incinerating facility
JP2008036520A (en) * 2006-08-04 2008-02-21 Yoshinobu Hayashi Method for stabilizing fly ash
JP2012183503A (en) * 2011-03-07 2012-09-27 Fujita Corp Pretreatment method of incineration ash

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273379A (en) * 2001-03-22 2002-09-24 Touso Sangyo Kk Heavy metal immobilizing agent and waste treatment method
JP2003117520A (en) * 2001-10-15 2003-04-22 Hitachi Zosen Corp Method for treating incineration ash
JP2003300053A (en) * 2002-04-04 2003-10-21 Takuma Co Ltd Method for sorting and cleaning incineration ash
JP2004167350A (en) * 2002-11-19 2004-06-17 Taiheiyo Cement Corp Processing method of incineration ash
JP2004183912A (en) * 2002-11-29 2004-07-02 Taiheiyo Cement Corp Waste incineration plant and waste incineration method
JP2005313059A (en) * 2004-04-28 2005-11-10 Taisei Corp Stabilization method for incineration ash and waste-incinerating facility
JP2008036520A (en) * 2006-08-04 2008-02-21 Yoshinobu Hayashi Method for stabilizing fly ash
JP2012183503A (en) * 2011-03-07 2012-09-27 Fujita Corp Pretreatment method of incineration ash

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193571A1 (en) * 2020-03-27 2021-09-30 株式会社フジタ Treatment method for incinerator fly ash
JP7457793B2 (en) 2020-03-27 2024-03-28 株式会社フジタ How to dispose of incinerated fly ash
JP7492408B2 (en) 2020-08-20 2024-05-29 株式会社フジタ How to generate leachate
JP2022083569A (en) * 2020-11-25 2022-06-06 Jx金属株式会社 Container of burned gold and silver slag transport and transport method of the same
JP7227207B2 (en) 2020-11-25 2023-02-21 Jx金属株式会社 Container for transportation of incinerated gold and silver slag, and transportation method of incinerated gold and silver slag

Also Published As

Publication number Publication date
JP6306969B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
Mancini et al. On the ASR and ASR thermal residues characterization of full scale treatment plant
JP6306969B2 (en) Incineration residue treatment method
JP2007083144A (en) Ash treating method and system
JPH05208184A (en) Method and device for removing contaminant
CN104990089B (en) The innoxious high temperature incineration processing system of solid waste and method
KR100762187B1 (en) Bottom ash stabilization system for recycling of wastes burning ash
CN104438311A (en) Thermal-sensitivity contaminant contaminated soil thermal drive desorption repair system
KR101034569B1 (en) Apparatus for drying and solidifying sludge
Mancini et al. Full scale treatment of ASR wastes in a modified rotary kiln
CN104180376B (en) A kind of incineration treatment of garbage technique
CN209782638U (en) system for hazardous waste is handled to pyrolysis gasifier
JP2012241951A (en) Method and apparatus for separating and conveying of ash
JPH10238725A (en) Waste treatment method and device
CN204786444U (en) Admittedly useless innoxious high temperature incineration disposal system
CN216705453U (en) Direct thermal desorption device and waste heat recovery system for contaminated soil
JP2008246367A (en) Pretreatment method, pretreatment system, pretreatment field and pretreatment facility for incineration ash
KR102308485B1 (en) Total waste recycling treatment system
JP2009148715A (en) Industrial waste treating method and industrial waste treating apparatus
JP4350485B2 (en) Method and apparatus for firing and detoxifying multiple / mixed contaminants
JP2008255748A (en) Energy saving method by installment of industrial waste incineration facility in asphalt concrete production plant
KR100240833B1 (en) Trash disposal system
JP3833697B1 (en) Method and system for managing basicity and heavy metal concentration of incinerated ash
JP4368733B2 (en) Incineration ash stabilization method and waste incineration equipment
JP2005299993A (en) Incineration facility, or gasification facility, and its operating method
CN109882852A (en) A kind of system and processing method of pyrolysis gasification furnace processing hazardous waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180309

R150 Certificate of patent or registration of utility model

Ref document number: 6306969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250