JP2016032784A - Oxidative dehydrogenation catalyst, production method therefor, and oxidative dehydrogenation process - Google Patents

Oxidative dehydrogenation catalyst, production method therefor, and oxidative dehydrogenation process Download PDF

Info

Publication number
JP2016032784A
JP2016032784A JP2014155956A JP2014155956A JP2016032784A JP 2016032784 A JP2016032784 A JP 2016032784A JP 2014155956 A JP2014155956 A JP 2014155956A JP 2014155956 A JP2014155956 A JP 2014155956A JP 2016032784 A JP2016032784 A JP 2016032784A
Authority
JP
Japan
Prior art keywords
oxidative dehydrogenation
raw material
carbon atoms
molybdenum
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014155956A
Other languages
Japanese (ja)
Other versions
JP6404627B2 (en
Inventor
倫子 高崎
Tomoko Takasaki
倫子 高崎
範人 千代田
Norihito Chiyoda
範人 千代田
敦保 大塩
Atsuyasu Oshio
敦保 大塩
岩波 彦一
Hikoichi Iwanami
彦一 岩波
将希 嶋村
Masaki Shimamura
将希 嶋村
創司 山口
Soji Yamaguchi
創司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2014155956A priority Critical patent/JP6404627B2/en
Publication of JP2016032784A publication Critical patent/JP2016032784A/en
Application granted granted Critical
Publication of JP6404627B2 publication Critical patent/JP6404627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an oxidative dehydrogenation catalyst that exhibits excellent catalytic activity in an oxidative dehydrogenation reaction to obtain n-mono-olefin or i-mono-olefin such as butene or the like, and conjugated diene such as 1,3-butadiene or the like by oxidative dehydrogenation reacting a hydrocarbon raw-material comprising n-paraffin or i-paraffin such as butane or the like, or in an oxidative dehydrogenation reaction to obtain conjugated diene such as 1,3-butadiene or the like by oxidative dehydrogenation reacting a hydrocarbon raw-material comprising n-mono-olefin or i-mono-olefin such as butene or the like.SOLUTION: Provided is an oxidative dehydrogenation catalyst characterized in containing vanadium atom and magnesium atom and molybdenum atom and in which the ratio of the number of moles of molybdenum in terms of atom to the total number of moles of vanadium, magnesium and molybdenum in terms of atom, ((Mo/(V+Mg+Mo))×100), is 0.3 to 1.8 mol%.SELECTED DRAWING: Figure 1

Description

本発明は、酸化脱水素用の触媒及びその触媒の製造方法、並びにその触媒を用いた炭化水素の酸化脱水素方法に関する。詳しくは、炭素数が3〜5のn−パラフィン又は炭素数3〜5のn−モノオレフィンを含む炭化水素を酸素の存在下に酸化脱水素して、対応するモノオレフィン又は共役ジエンを製造するための酸化脱水素触媒及びその触媒の製造方法、並びにその触媒を用いた炭化水素の酸化脱水素方法に関する。   The present invention relates to a catalyst for oxidative dehydrogenation, a method for producing the catalyst, and a method for oxidative dehydrogenation of hydrocarbons using the catalyst. Specifically, a hydrocarbon containing n-paraffin having 3 to 5 carbon atoms or n-monoolefin having 3 to 5 carbon atoms is oxidatively dehydrogenated in the presence of oxygen to produce the corresponding monoolefin or conjugated diene. The present invention relates to an oxidative dehydrogenation catalyst, a method for producing the catalyst, and a hydrocarbon oxidative dehydrogenation method using the catalyst.

低級炭化水素の脱水素方法としては単純脱水素プロセスが工業化されているが、このプロセスは平衡の制約から、高収率で目的生成物を得ることは困難であり、且つ高温が必要である。さらにコーク析出による失活が大きく、触媒再生を頻繁に行う必要があるという問題があった。   As a method for dehydrogenating lower hydrocarbons, a simple dehydrogenation process has been industrialized. However, this process is difficult to obtain a target product in a high yield due to equilibrium limitations, and requires a high temperature. Furthermore, there is a problem that deactivation due to coke deposition is large and catalyst regeneration needs to be performed frequently.

一方、平衡上制約がない酸化脱水素方法により、低級パラフィンや低級オレフィンから、低級オレフィン又は共役ジエンを製造する試みが以前から行われており、酸化脱水素により低級アルカンからの低級オレフィンまたは共役ジエンを製造する触媒は種々提案されている。例えば、エタンからのエチレン製造触媒としてニッケル−ニオブ酸化物系触媒(例えば、特許文献1)、プロパンからのプロピレン製造触媒としてバナジウム−マグネシウム酸化物系触媒(例えば、特許文献2)、n−ブタンからのブテン、ブタジエン製造触媒としてモリブデン−マグネシウム酸化物系触媒(例えば、特許文献3)などが知られている。しかしながら、これら公知の触媒は、酸化脱水素の性能が低く、工業化に用いることはできないような低性能のものであった。   On the other hand, attempts have been made to produce lower olefins or conjugated dienes from lower paraffins and lower olefins by an oxidative dehydrogenation method that has no constraints on equilibrium, and lower olefins or conjugated dienes from lower alkanes by oxidative dehydrogenation. Various catalysts have been proposed for producing the. For example, a nickel-niobium oxide catalyst (for example, Patent Document 1) as an ethylene production catalyst from ethane, a vanadium-magnesium oxide catalyst (for example, Patent Document 2) as a propylene production catalyst from propane, and n-butane As a butene and butadiene production catalyst, a molybdenum-magnesium oxide catalyst (for example, Patent Document 3) is known. However, these known catalysts have low oxidative dehydrogenation performance and low performance that cannot be used for industrialization.

また、脱水素反応により低級アルカンや低級オレフィンから共役ジエンを製造する方法も種々検討されている。例えば、1,3−ブタジエンの製造方法として、モリブデン−マグネシウム酸化物触媒等を用いたn−ブタンからの酸化脱水素により1,3−ブタジエンを製造する方法(例えば、特許文献3)や、クロミア−アルミナ触媒を用いたブタン・ブテンの単純脱水素によって1,3−ブタジエンを製造する方法(例えば、非特許文献1)、Fe−Cr−KCO触媒を用いたブテンの単純脱水素によって1,3−ブタジエンを製造する方法(例えば、特許文献4)が検討されてきた。このうち、ブタン・ブテンの単純脱水素による方法が商業化されたが、コーク失活が大きく、触媒再生を頻繁に行う必要があるという問題があった。 Various methods for producing conjugated dienes from lower alkanes and lower olefins by dehydrogenation have also been studied. For example, as a method for producing 1,3-butadiene, a method for producing 1,3-butadiene by oxidative dehydrogenation from n-butane using a molybdenum-magnesium oxide catalyst or the like (for example, Patent Document 3), or chromia -A method of producing 1,3-butadiene by simple dehydrogenation of butane / butene using an alumina catalyst (for example, Non-Patent Document 1), Fe 2 O 3 -Cr 2 O 3 -K 2 CO 3 catalyst was used A method for producing 1,3-butadiene by simple dehydrogenation of butene (for example, Patent Document 4) has been studied. Among them, the method by simple dehydrogenation of butane / butene has been commercialized, but there is a problem that coke deactivation is large and catalyst regeneration needs to be frequently performed.

また、近年、ビスマス−モリブデン触媒を用いたn−ブテンを酸化脱水素することによりブタジエンを製造する方法(例えば、特許文献5)が検討されている。しかしながら、ビスマス−モリブデン触媒は、反応活性と1,3−ブタジエン収率は高いが、触媒系が複雑なことから商業規模での調整が困難であるという問題があった。   In recent years, a method for producing butadiene by oxidative dehydrogenation of n-butene using a bismuth-molybdenum catalyst (for example, Patent Document 5) has been studied. However, although the bismuth-molybdenum catalyst has high reaction activity and 1,3-butadiene yield, there is a problem that adjustment on a commercial scale is difficult due to the complicated catalyst system.

US7227049B2US72227049B2 特開2009−39679号公報JP 2009-39679 A 特開平3−74335号公報Japanese Patent Laid-Open No. 3-74335 特開昭56−21652号公報Japanese Patent Laid-Open No. 56-21652 特開2010−90082号公報JP 2010-90082 A

G.F.Hornaday,Petroleum Engr.,26,No.11,C−7(1954)G. F. Hornadey, Petroleum Engr. , 26, no. 11, C-7 (1954)

従って、本発明の目的は、ブタン等のn−パラフィン又はi−パラフィンを含む炭化水素原料の酸化脱水素反応により、ブテン等のn−モノオレフィン又はi−モノオレフィンや、1,3−ブタジエン等の共役ジエンを得る酸化脱水素反応、又はブテン等のn−モノオレフィン又はi−モノオレフィンを含む炭化水素原料の酸化脱水素反応により、1,3−ブタジエン等の共役ジエンを得る酸化脱水素反応において、優れた触媒活性を示す酸化脱水素触媒を提供することにある。   Accordingly, an object of the present invention is to oxidize and dehydrogenate a hydrocarbon raw material containing n-paraffin or i-paraffin such as butane, so that n-monoolefin or i-monoolefin such as butene, 1,3-butadiene, etc. Oxidative dehydrogenation reaction to obtain a conjugated diene of 1,3-butadiene or the like by an oxidative dehydrogenation reaction to obtain a conjugated diene of the hydrocarbon raw material containing n-monoolefin or i-monoolefin such as butene It is an object of the present invention to provide an oxidative dehydrogenation catalyst exhibiting excellent catalytic activity.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、バナジウム、マグネシウム及びモリブデンを必須成分として含み、且つ、これらの金属成分の比率が特定の比率である酸化脱水素触媒が、パラフィン及びモノオレフィンを酸化脱水素して、対応するモノオレフィン又は共役ジエンを得る酸化脱水素反応において、優れた触媒活性を示すことを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have included vanadium, magnesium, and molybdenum as essential components, and the ratio of these metal components is a specific ratio. The inventors have found that the raw catalyst exhibits excellent catalytic activity in the oxidative dehydrogenation reaction in which paraffin and monoolefin are oxidatively dehydrogenated to obtain the corresponding monoolefin or conjugated diene, and the present invention has been completed.

すなわち、本発明(1)は、炭化水素原料中に含まれる炭素数3〜5のパラフィン又は炭素数3〜5のモノオレフィンの酸化脱水素を行うための酸化脱水素触媒であり、
該炭化水素原料が、炭素数3〜5のパラフィンを含む炭化水素原料、炭素数3〜5のモノオレフィンを含む炭化水素原料又は炭素数3〜5のパラフィンと炭素数3〜5のモノオレフィンとを含む炭化水素原料であり、
該酸化脱水素触媒が、バナジウム原子と、マグネシウム原子と、モリブデン原子と、を含有し、且つ、バナジウム、マグネシウム及びモリブデンの原子換算の合計モル数に対するモリブデンの原子換算のモル数の割合((Mo/(V+Mg+Mo))×100)が0.3〜1.8モル%であること、
を特徴とする酸化脱水素触媒を提供するものである。
That is, the present invention (1) is an oxidative dehydrogenation catalyst for performing oxidative dehydrogenation of paraffins having 3 to 5 carbon atoms or monoolefins having 3 to 5 carbon atoms contained in a hydrocarbon raw material,
The hydrocarbon raw material is a hydrocarbon raw material containing a paraffin having 3 to 5 carbon atoms, a hydrocarbon raw material containing a monoolefin having 3 to 5 carbon atoms, or a paraffin having 3 to 5 carbon atoms and a monoolefin having 3 to 5 carbon atoms, A hydrocarbon feedstock containing
The oxidative dehydrogenation catalyst contains a vanadium atom, a magnesium atom, and a molybdenum atom, and the ratio of the number of moles of molybdenum in terms of atoms to the total number of moles in terms of atoms of vanadium, magnesium, and molybdenum ((Mo / (V + Mg + Mo)) × 100) is 0.3 to 1.8 mol%,
An oxidative dehydrogenation catalyst characterized by the above is provided.

また、本発明(2)は、炭化水素原料中に含まれるn−ブタンから酸化脱水素反応によってn−ブテン及び1,3−ブタジエンを製造するための酸化脱水素触媒であり、
該酸化脱水素触媒が、バナジウム原子と、マグネシウム原子と、モリブデン原子と、を含有し、且つ、バナジウム、マグネシウム及びモリブデンの原子換算の合計モル数に対するモリブデンの原子換算のモル数の割合((Mo/(V+Mg+Mo))×100)が0.3〜1.8モル%であること、
を特徴とする酸化脱水素触媒を提供するものである。
The present invention (2) is an oxidative dehydrogenation catalyst for producing n-butene and 1,3-butadiene from n-butane contained in a hydrocarbon raw material by an oxidative dehydrogenation reaction,
The oxidative dehydrogenation catalyst contains a vanadium atom, a magnesium atom, and a molybdenum atom, and the ratio of the number of moles of molybdenum in terms of atoms to the total number of moles in terms of atoms of vanadium, magnesium, and molybdenum ((Mo / (V + Mg + Mo)) × 100) is 0.3 to 1.8 mol%,
An oxidative dehydrogenation catalyst characterized by the above is provided.

また、本発明(3)は、バナジウム源、マグネシウム源及びモリブデン源が水に溶解又は分散されている原料混合液を調製し、次いで、該原料混合液中の水を蒸発させて除去して、原料混合物粉体を得、次いで、該原料混合物粉体を焼成することを特徴とする酸化脱水素触媒の製造方法を提供するものである。   In the present invention (3), a raw material mixture in which a vanadium source, a magnesium source and a molybdenum source are dissolved or dispersed in water is prepared, and then water in the raw material mixture is evaporated and removed. The present invention provides a method for producing an oxidative dehydrogenation catalyst, comprising obtaining a raw material mixture powder and then firing the raw material mixture powder.

また、本発明(4)は、本発明(1)の酸化脱水素触媒の存在下、400〜700℃で、炭化水素原料中に含まれる炭素数3〜5のパラフィン又は炭素数3〜5のモノオレフィンの酸化脱水素を行う酸化脱水素反応であり、該炭化水素原料が、炭素数3〜5のパラフィンを含む炭化水素原料、炭素数3〜5のモノオレフィンを含む炭化水素原料又は炭素数3〜5のパラフィンと炭素数3〜5のモノオレフィンとを含む炭化水素原料であることを特徴とする酸化脱水素方法を提供するものである。   Moreover, this invention (4) is C3-C5 paraffin or C3-C5 contained in a hydrocarbon raw material at 400-700 degreeC in presence of the oxidative dehydrogenation catalyst of this invention (1). It is an oxidative dehydrogenation reaction for oxidative dehydrogenation of monoolefin, and the hydrocarbon raw material is a hydrocarbon raw material containing paraffins having 3 to 5 carbon atoms, a hydrocarbon raw material containing monoolefins having 3 to 5 carbon atoms, or the number of carbon atoms The present invention provides a oxidative dehydrogenation method characterized by being a hydrocarbon raw material containing 3 to 5 paraffins and 3 to 5 carbon monoolefins.

本発明によれば、ブタン等のn−パラフィン又はi−パラフィンを含む炭化水素原料の酸化脱水素反応により、ブテン等のn−モノオレフィン又はi−モノオレフィンや、1,3−ブタジエン等の共役ジエンを得る酸化脱水素反応、又はブテン等のn−モノオレフィン又はi−モノオレフィンを含む炭化水素原料の酸化脱水素反応により、1,3−ブタジエン等の共役ジエンを得る酸化脱水素反応において、優れた触媒活性を示す酸化脱水素触媒を提供することができる。   According to the present invention, by oxidative dehydrogenation of a hydrocarbon raw material containing n-paraffin or i-paraffin such as butane, an n-monoolefin or i-monoolefin such as butene, or a conjugate such as 1,3-butadiene. In an oxidative dehydrogenation reaction for obtaining a conjugated diene such as 1,3-butadiene by an oxidative dehydrogenation reaction for obtaining a diene or an oxidative dehydrogenation reaction of a hydrocarbon raw material containing an n-monoolefin or i-monoolefin such as butene. An oxidative dehydrogenation catalyst exhibiting excellent catalytic activity can be provided.

触媒AのXRDチャートである。3 is an XRD chart of catalyst A. 触媒BのXRDチャートである。4 is an XRD chart of catalyst B. 触媒CのXRDチャートである。3 is an XRD chart of catalyst C. 触媒DのXRDチャートである。3 is an XRD chart of catalyst D. 触媒EのXRDチャートである。3 is an XRD chart of catalyst E.

本発明の酸化脱水素触媒は、炭化水素原料中に含まれる炭素数3〜5のパラフィン又は炭素数3〜5のモノオレフィンの酸化脱水素を行うための酸化脱水素触媒であり、
該炭化水素原料が、炭素数3〜5のパラフィンを含む炭化水素原料、炭素数3〜5のモノオレフィンを含む炭化水素原料又は炭素数3〜5のパラフィンと炭素数3〜5のモノオレフィンとを含む炭化水素原料であり、
該酸化脱水素触媒が、バナジウム原子と、マグネシウム原子と、モリブデン原子と、を含有し、且つ、バナジウム、マグネシウム及びモリブデンの原子換算の合計モル数に対するモリブデンの原子換算のモル数の割合((Mo/(V+Mg+Mo))×100)が0.3〜1.8モル%であること、
を特徴とする酸化脱水素触媒である。
The oxidative dehydrogenation catalyst of the present invention is an oxidative dehydrogenation catalyst for performing oxidative dehydrogenation of paraffins having 3 to 5 carbon atoms or monoolefins having 3 to 5 carbon atoms contained in a hydrocarbon raw material,
The hydrocarbon raw material is a hydrocarbon raw material containing a paraffin having 3 to 5 carbon atoms, a hydrocarbon raw material containing a monoolefin having 3 to 5 carbon atoms, or a paraffin having 3 to 5 carbon atoms and a monoolefin having 3 to 5 carbon atoms, A hydrocarbon feedstock containing
The oxidative dehydrogenation catalyst contains a vanadium atom, a magnesium atom, and a molybdenum atom, and the ratio of the number of moles of molybdenum in terms of atoms to the total number of moles in terms of atoms of vanadium, magnesium, and molybdenum ((Mo / (V + Mg + Mo)) × 100) is 0.3 to 1.8 mol%,
Is an oxidative dehydrogenation catalyst.

本発明の酸化脱水素触媒は、炭素数3〜5のパラフィン又は炭素数3〜5のモノオレフィンを酸化的に脱水素する酸化脱水素反応用の触媒である。炭化水素原料には、炭素数3〜5のパラフィンを含み炭素数3〜5のモノオレフィンを含まないもの、炭素数3〜5のモノオレフィンを含み炭素数3〜5のパラフィンを含まないもの、炭素数3〜5のパラフィンと炭素数3〜5のモノオレフィンの両方を含むものがある。炭化水素原料に含まれる炭素数3〜5のn−パラフィンとしては、プロパン、n−ブタン、n−ペンタンが挙げられ、炭素数3〜5のi−パラフィンとしては、i−ブタン、i−ペンタンが挙げられ、炭素数3〜5のn−モノオレフィンとしては、n−ブテン、n−ペンテンが挙げられ、炭素数3〜5のi−モノオレフィンとしては、i−ペンテンが挙げられる。パラフィンとしてはn−ブタンが好ましく、モノオレフィンとしてはn−ブテンが好ましい。特に、本発明の酸化脱水素触媒は、n−ブタンを酸化脱水素してn−ブテン及び1,3−ブタジエンを得る酸化脱水素反応において、有利に用いられる。   The oxidative dehydrogenation catalyst of the present invention is a catalyst for oxidative dehydrogenation that oxidatively dehydrogenates paraffins having 3 to 5 carbon atoms or monoolefins having 3 to 5 carbon atoms. The hydrocarbon raw material contains paraffins having 3 to 5 carbon atoms and does not contain monoolefins having 3 to 5 carbon atoms, those containing monoolefins having 3 to 5 carbon atoms and no paraffins having 3 to 5 carbon atoms, Some contain both paraffins having 3 to 5 carbon atoms and monoolefins having 3 to 5 carbon atoms. Examples of the n-paraffin having 3 to 5 carbon atoms contained in the hydrocarbon raw material include propane, n-butane and n-pentane. Examples of the i-paraffin having 3 to 5 carbon atoms include i-butane and i-pentane. Examples of the n-monoolefin having 3 to 5 carbon atoms include n-butene and n-pentene, and examples of the i-monoolefin having 3 to 5 carbon atoms include i-pentene. As paraffin, n-butane is preferable, and as monoolefin, n-butene is preferable. In particular, the oxidative dehydrogenation catalyst of the present invention is advantageously used in an oxidative dehydrogenation reaction in which n-butane is oxidatively dehydrogenated to obtain n-butene and 1,3-butadiene.

炭化水素原料は、炭素数3〜5のパラフィン及び炭素数3〜5のモノオレフィン以外の炭化水素を含んでいてもよい。炭化水素原料中の炭素数3〜5のパラフィン及び炭素数3〜5のモノオレフィンの含有量は、特に制限されないが、85質量%以上、好ましくは90質量%以上、特に好ましくは95質量%以上である。なお、炭化水素原料中の炭素数3〜5のパラフィン及び炭素数3〜5のモノオレフィンの含有量とは、炭化水素原料が炭素数3〜5のパラフィンを含み炭素数3〜5のモノオレフィンを含まない場合は、炭素数3〜5のパラフィンの合計含有量を指し、炭化水素原料が炭素数3〜5のモノオレフィンを含み炭素数3〜5のパラフィンを含まない場合は、炭素数3〜5のモノオレフィンの合計含有量を指し、炭化水素原料が炭素数3〜5のパラフィン及び炭素数3〜5のモノオレフィンの両方を含む場合は、炭素数3〜5のパラフィン及び炭素数3〜5のモノオレフィンの合計含有量を指す。   The hydrocarbon raw material may contain hydrocarbons other than paraffins having 3 to 5 carbon atoms and monoolefins having 3 to 5 carbon atoms. The content of the paraffin having 3 to 5 carbon atoms and the monoolefin having 3 to 5 carbon atoms in the hydrocarbon raw material is not particularly limited, but is 85% by mass or more, preferably 90% by mass or more, particularly preferably 95% by mass or more. It is. The content of paraffin having 3 to 5 carbon atoms and monoolefin having 3 to 5 carbon atoms in the hydrocarbon raw material means that the hydrocarbon raw material contains paraffin having 3 to 5 carbon atoms and monoolefin having 3 to 5 carbon atoms. Is included, it indicates the total content of paraffins having 3 to 5 carbon atoms, and when the hydrocarbon raw material contains monoolefins having 3 to 5 carbon atoms and no paraffins having 3 to 5 carbon atoms, 3 carbon atoms are contained. Refers to the total content of ˜5 monoolefins, and when the hydrocarbon raw material contains both paraffins having 3 to 5 carbon atoms and monoolefins having 3 to 5 carbon atoms, paraffins having 3 to 5 carbon atoms and 3 carbon atoms Refers to the total content of ˜5 monoolefins.

本発明の酸化脱水素触媒を用いて、炭素数3〜5のn−パラフィン又は炭素数3〜5のn−モノオレフィンの酸化脱水素を行い、対応するn−モノオレフィン又は共役ジエンを生成させる場合、炭化水素原料中の炭素数3〜5のn−パラフィン及び炭素数3〜5のn−モノオレフィンの含有量は、30質量%以上、好ましくは40質量%以上、特に好ましくは50質量%以上である。この場合、炭化水素原料中には、炭素数3〜5のn−パラフィン及び炭素数3〜5のn−モノオレフィン以外の炭化水素が含まれていてもよい。なお、炭化水素原料中の炭素数3〜5のn−パラフィン及び炭素数3〜5のn−モノオレフィンの含有量とは、炭化水素原料が炭素数3〜5のn−パラフィンを含み炭素数3〜5のn−モノオレフィンを含まない場合は、炭素数3〜5のn−パラフィンの合計含有量を指し、炭化水素原料が炭素数3〜5のn−モノオレフィンを含み炭素数3〜5のn−パラフィンを含まない場合は、炭素数3〜5のn−モノオレフィンの合計含有量を指し、炭化水素原料が炭素数3〜5のn−パラフィン及び炭素数3〜5のn−モノオレフィンの両方を含む場合は、炭素数3〜5のn−パラフィン及び炭素数3〜5のn−モノオレフィンの合計含有量を指す。   Using the oxidative dehydrogenation catalyst of the present invention, oxidative dehydrogenation of an n-paraffin having 3 to 5 carbon atoms or an n-monoolefin having 3 to 5 carbon atoms is performed to produce the corresponding n-monoolefin or conjugated diene. In this case, the content of the n-paraffin having 3 to 5 carbon atoms and the n-monoolefin having 3 to 5 carbon atoms in the hydrocarbon raw material is 30% by mass or more, preferably 40% by mass or more, particularly preferably 50% by mass. That's it. In this case, the hydrocarbon raw material may contain hydrocarbons other than n-paraffins having 3 to 5 carbon atoms and n-monoolefins having 3 to 5 carbon atoms. The content of the n-paraffin having 3 to 5 carbon atoms and the n-monoolefin having 3 to 5 carbon atoms in the hydrocarbon raw material means that the hydrocarbon raw material contains n-paraffin having 3 to 5 carbon atoms. When 3-5 n-monoolefins are not included, the total content of n-paraffins having 3 to 5 carbon atoms is indicated, and the hydrocarbon raw material contains 3 to 5 carbon atoms n-monoolefins and 3 to 3 carbon atoms. When it does not contain 5 n-paraffins, it refers to the total content of n-monoolefins having 3 to 5 carbon atoms, and hydrocarbon raw materials are n-paraffins having 3 to 5 carbon atoms and n-paraffins having 3 to 5 carbon atoms. When both monoolefins are included, the total content of n-paraffins having 3 to 5 carbon atoms and n-monoolefins having 3 to 5 carbon atoms is indicated.

本発明の酸化脱水素触媒は、パラフィン又はモノオレフィンを酸化脱水素して、共役ジエンを得る酸化脱水素反応用の触媒として、好適に用いられる。製造目的とする共役ジエンが1,3−ブタジエンの場合、1,3−ブタジエンの原料はn−ブタン又はn−ブテンであるので、この場合、炭化水素原料中のn−ブタン及びn−ブテンの含有量は、30質量%以上、好ましくは40質量%以上、特に好ましくは50質量%以上である。なお、炭化水素原料中のn−ブタン及びn−ブテンの含有量とは、炭化水素原料がn−ブタンを含みn−ブテンを含まない場合は、n−ブタンの含有量を指し、炭化水素原料がn−ブテンを含みn−ブタンを含まない場合は、n−ブテンの含有量を指し、炭化水素原料がn−ブタン及びn−ブテンの両方を含む場合は、n−ブタン及びn−ブテンの合計含有量を指す。また、製造目的とする共役ジエンがイソプレンの場合、イソプレンの原料はi−ペンタン又はi−ペンテンであるので、この場合、炭化水素原料中のi−ペンタン及びi−ペンテンの含有量は、30質量%以上、好ましくは40質量%以上、特に好ましくは50質量%以上である。なお、炭化水素原料中のi−ペンタン及びi−ペンテンの含有量とは、炭化水素原料がi−ペンタンを含みi−ペンテンを含まない場合は、i−ペンタンの含有量を指し、炭化水素原料がi−ペンテンを含みi−ペンタンを含まない場合は、i−ペンテンの含有量を指し、炭化水素原料がi−ペンタン及びi−ペンテンの両方を含む場合は、i−ペンタン及びi−ペンテンの合計含有量を指す。   The oxidative dehydrogenation catalyst of the present invention is suitably used as a catalyst for an oxidative dehydrogenation reaction in which paraffin or monoolefin is oxidatively dehydrogenated to obtain a conjugated diene. When the conjugated diene to be produced is 1,3-butadiene, the raw material for 1,3-butadiene is n-butane or n-butene. In this case, the n-butane and n-butene in the hydrocarbon raw material Content is 30 mass% or more, Preferably it is 40 mass% or more, Most preferably, it is 50 mass% or more. The contents of n-butane and n-butene in the hydrocarbon raw material refer to the content of n-butane when the hydrocarbon raw material contains n-butane and does not contain n-butene. Refers to the content of n-butene when it contains n-butene and does not contain n-butane, and when the hydrocarbon feed contains both n-butane and n-butene, Refers to the total content. When the conjugated diene to be produced is isoprene, the raw material for isoprene is i-pentane or i-pentene. In this case, the content of i-pentane and i-pentene in the hydrocarbon raw material is 30% by mass. % Or more, preferably 40% by mass or more, particularly preferably 50% by mass or more. The content of i-pentane and i-pentene in the hydrocarbon raw material refers to the content of i-pentane when the hydrocarbon raw material contains i-pentane and does not contain i-pentene. Refers to the content of i-pentene when i-pentene is included but does not include i-pentane, and when the hydrocarbon feedstock includes both i-pentane and i-pentene, Refers to the total content.

炭化水素原料としては、特に制限されないが、例えば、石油精製プロセスにおいて、常圧蒸留で得られるC3混合物、C4混合物、C5混合物、流動接触分解によって生産されたC3混合物、C4混合物、改質反応によって得られるC3混合物、C4混合物、C5混合物や、石油化学プロセスにおいてナフサ分解によって生産されたC4混合物、C5混合物から共役ジエンを抽出等により分離して残ったC4ラフィネート、C5ラフィネート等が挙げられる。また、本発明の酸化脱水素触媒を用いて炭化水素原料の酸化脱水素を行い得られる反応生成物から、目的とする成分を取り出した後の回収液も、炭化水素原料として挙げられる。また、炭化水素原料を、そのまま酸化脱水素反応に供しても、これらの炭化水素原料からプロパン、n−ブタン、n−ブテン、i−ペンタン、i−ペンテンを予め分離し、酸化脱水素反応に供してもよい。   Although it does not restrict | limit especially as a hydrocarbon raw material, For example, in a petroleum refining process, C3 mixture obtained by atmospheric distillation, C4 mixture, C5 mixture, C3 mixture produced by fluid catalytic cracking, C4 mixture, and reforming reaction Examples thereof include C3 mixture, C4 mixture, C5 mixture, C4 mixture produced by naphtha decomposition in a petrochemical process, C4 raffinate remaining after separation of conjugated diene from C5 mixture by extraction or the like, C5 raffinate, and the like. Moreover, the recovered liquid after taking out the target component from the reaction product obtained by performing the oxidative dehydrogenation of the hydrocarbon raw material using the oxidative dehydrogenation catalyst of the present invention is also exemplified as the hydrocarbon raw material. Further, even if the hydrocarbon raw material is directly subjected to an oxidative dehydrogenation reaction, propane, n-butane, n-butene, i-pentane, and i-pentene are separated from these hydrocarbon raw materials in advance and subjected to an oxidative dehydrogenation reaction. May be provided.

本発明の酸化脱水素触媒は、バナジウム原子と、マグネシウム原子と、モリブデン原子と、を含有する。本発明の酸化脱水素触媒は、バナジウムと、マグネシウムと、モリブデンとを共存させることにより、ブテン等のn−オレフィン又はブタジエン等の共役ジエンの選択性が高くなる。   The oxidative dehydrogenation catalyst of the present invention contains vanadium atoms, magnesium atoms, and molybdenum atoms. In the oxidative dehydrogenation catalyst of the present invention, the selectivity of n-olefins such as butene or conjugated dienes such as butadiene is enhanced by the coexistence of vanadium, magnesium and molybdenum.

本発明の酸化脱水素触媒中、バナジウム、マグネシウム及びモリブデンの原子換算の合計モル数に対するモリブデンの原子換算のモル数の割合((Mo/(V+Mg+Mo))×100)は、0.3〜1.8モル%、好ましくは0.5〜1.6モル%、特に好ましくは0.6〜1.2モル%である。本発明の酸化脱水素触媒中のバナジウム、マグネシウム及びモリブデンの原子換算の合計モル数に対するモリブデンの原子換算のモル数の割合が、上記範囲内にあることにより、モノオレフィン又は共役ジエンの選択性及び収率が高くなる。一方、本発明の酸化脱水素触媒中の、バナジウム、マグネシウム及びモリブデンの原子換算の合計モル数に対するモリブデンの原子換算のモル数の割合が、上記範囲未満だと、燃焼反応が抑制されず、CO又はCOの生成が多くなり、また、上記範囲を超えると、分解反応が進行し、分解生成物が多くなる。 In the oxidative dehydrogenation catalyst of the present invention, the ratio (mol / (V + Mg + Mo)) × 100 of the number of moles of molybdenum in terms of the total number of moles of vanadium, magnesium and molybdenum in terms of atoms is 0.3 to 1. It is 8 mol%, preferably 0.5 to 1.6 mol%, particularly preferably 0.6 to 1.2 mol%. The ratio of the number of moles in terms of atoms of molybdenum to the total number of moles in terms of atoms of vanadium, magnesium and molybdenum in the oxidative dehydrogenation catalyst of the present invention is within the above range, whereby the selectivity of monoolefin or conjugated diene and The yield is high. On the other hand, in the oxidative dehydrogenation catalyst of the present invention, if the ratio of the number of moles of molybdenum in terms of atoms to the total number of moles of atoms in vanadium, magnesium and molybdenum is less than the above range, the combustion reaction is not suppressed, and CO or generation of CO 2 is increased, also exceeds the above range, the decomposition reaction proceeds, become much degradation products.

本発明の酸化脱水素触媒中、マグネシウムの原子換算のモル数に対するモリブデンの原子換算のモル数の割合((Mo/Mg)×100)は、好ましくは0.2〜8.0モル%、より好ましくは0.3〜2.2モル%、さらに好ましくは0.7〜2.0モル%、特に好ましくは1.0〜1.5モル%である。本発明の酸化脱水素触媒中のマグネシウムの原子換算のモル数に対するモリブデンの原子換算のモル数の割合が、上記範囲内にあることにより、モノオレフィン又は共役ジエンの選択性及び収率が高くなる。   In the oxidative dehydrogenation catalyst of the present invention, the ratio of the number of moles of molybdenum converted to the number of moles converted to atoms of magnesium ((Mo / Mg) × 100) is preferably 0.2 to 8.0 mole%. Preferably it is 0.3-2.2 mol%, More preferably, it is 0.7-2.0 mol%, Most preferably, it is 1.0-1.5 mol%. When the ratio of the number of moles of molybdenum converted to the number of moles converted to atoms of magnesium in the oxidative dehydrogenation catalyst of the present invention is within the above range, the selectivity and yield of the monoolefin or conjugated diene increases. .

本発明の酸化脱水素触媒中、バナジウムの原子換算のモル数に対するモリブデンの原子換算のモル数の割合((Mo/V)×100)は、好ましくは1.0〜12.0モル%、特に好ましくは2.0〜10.0モル%、より好ましくは4.0〜8.0モル%である。本発明の酸化脱水素触媒中のバナジウムの原子換算のモル数に対するモリブデンの原子換算のモル数の割合が、上記範囲内にあることにより、モノオレフィン又は共役ジエンの選択性及び収率が高くなる。   In the oxidative dehydrogenation catalyst of the present invention, the ratio of the number of moles of molybdenum converted to the number of moles of vanadium converted to atoms ((Mo / V) × 100) is preferably 1.0 to 12.0 mol%, particularly Preferably it is 2.0-10.0 mol%, More preferably, it is 4.0-8.0 mol%. When the ratio of the number of moles of molybdenum converted to the number of moles of vanadium in the oxidative dehydrogenation catalyst of the present invention is within the above range, the selectivity and yield of the monoolefin or conjugated diene increase. .

本発明の酸化脱水素触媒中、バナジウム、マグネシウム及びモリブデンの原子換算の合計モル数に対するバナジウム及びマグネシウムの原子換算の合計モル数の割合(((V+Mg)/(V+Mg+Mo))×100)は、好ましくは98.2〜99.7モル%、特に好ましくは98.4〜99.5モル%、より好ましくは98.8〜99.4モル%である。本発明の酸化脱水素触媒中のバナジウム、マグネシウム及びモリブデンの原子換算の合計モル数に対するバナジウム及びマグネシウムの原子換算の合計モル数の割合が、上記範囲内にあることにより、モノオレフィン又は共役ジエンの選択性及び収率が高くなる。   In the oxidative dehydrogenation catalyst of the present invention, the ratio of the total number of moles of vanadium and magnesium in terms of atoms to the total number of moles of vanadium, magnesium and molybdenum in terms of atoms (((V + Mg) / (V + Mg + Mo)) × 100) is preferable. Is 98.2 to 99.7 mol%, particularly preferably 98.4 to 99.5 mol%, more preferably 98.8 to 99.4 mol%. When the ratio of the total number of moles of vanadium and magnesium in terms of atoms to the total number of moles of vanadium, magnesium and molybdenum in the oxidative dehydrogenation catalyst of the present invention is within the above range, the monoolefin or conjugated diene Selectivity and yield are increased.

本発明の酸化脱水素触媒中、マグネシウムの原子換算のモル数に対するバナジウムの原子換算のモル数の割合((V/Mg)×100)は、好ましくは2.0〜30.0モル%、特に好ましくは5.0〜25.0モル%、より好ましくは10.0〜20.0モル%である。本発明の酸化脱水素触媒中のマグネシウムの原子換算のモル数に対するバナジウムの原子換算のモル数の割合が、上記範囲内にあることにより、モノオレフィン又は共役ジエンの選択性及び収率が高くなる。   In the oxidative dehydrogenation catalyst of the present invention, the ratio of the number of moles of vanadium in terms of atoms to the number of moles of atoms in magnesium ((V / Mg) × 100) is preferably 2.0 to 30.0 mol%, particularly Preferably it is 5.0-25.0 mol%, More preferably, it is 10.0-20.0 mol%. When the ratio of the number of moles of vanadium in terms of atoms to the number of moles of atoms in magnesium in the oxidative dehydrogenation catalyst of the present invention is within the above range, the selectivity and yield of the monoolefin or conjugated diene are increased. .

本発明の酸化脱水素触媒では、バナジウム原子、マグネシウム原子及びモリブデン原子は、単一金属の酸化物の状態で、あるいは、これらの2種の金属からなる複合酸化物の状態で、あるいは、単一金属の酸化物と複合酸化物の両方状態で、存在している。つまり、本発明の酸化脱水素触媒では、各金属原子がどのような状態又は構造で金属酸化物を形成しているかは、特に制限されず、例えば、(i)バナジウムとマグネシウムとモリブデンの複合酸化物であっても、(ii)マグネシウムの酸化物にバナジウムとマグネシウムとモリブデンの複合酸化物が担持されたものであっても、(iii)バナジウムとマグネシウムの複合酸化物に、モリブデンの酸化物が担持されたものであっても、(iv)マグネシウムの酸化物に、バナジウムとマグネシウムの複合酸化物とモリブデンの酸化物が担持されたものであっても、(v)(i)〜(iv)の混合物であってもよい。   In the oxidative dehydrogenation catalyst of the present invention, the vanadium atom, the magnesium atom and the molybdenum atom are in the state of a single metal oxide, or in the state of a composite oxide composed of these two metals, or in a single state. It exists in both metal oxide and composite oxide states. That is, in the oxidative dehydrogenation catalyst of the present invention, the state or structure in which each metal atom forms the metal oxide is not particularly limited. For example, (i) a composite oxidation of vanadium, magnesium and molybdenum Or (iii) a composite oxide of vanadium, magnesium and molybdenum supported on a magnesium oxide, or (iii) a molybdenum oxide on a composite oxide of vanadium and magnesium. Even if it is supported (iv) (v) (i) to (iv) (v) (v) (i) to (iv) even if the oxide of magnesium is supported by a composite oxide of vanadium and magnesium and an oxide of molybdenum It may be a mixture of

バナジン酸マグネシウムは、複合酸化物であり、オルト体(Mg)、ピロ体及びメタ体が存在する。本発明の酸化脱水素触媒は、マグネシウムの酸化物とバナジン酸マグネシウム複合酸化物とモリブデンの酸化物とを含有することが好ましく、マグネシウムの酸化物とオルトバナジン酸マグネシウム複合酸化物とモリブデンの酸化物とを含有することが特に好ましい。また、上記(i)〜(v)において、バナジウムとマグネシウムとの複合酸化物としては、オルトバナジン酸マグネシウム複合酸化物が好ましい。 Magnesium vanadate is a complex oxide, and there exist ortho-forms (Mg 3 V 2 O 8 ), pyro-forms, and meta-forms. The oxidative dehydrogenation catalyst of the present invention preferably contains an oxide of magnesium, a magnesium vanadate composite oxide, and an oxide of molybdenum, and an oxide of magnesium, an ortho vanadate magnesium composite oxide, and an oxide of molybdenum It is particularly preferable to contain In the above (i) to (v), the composite oxide of vanadium and magnesium is preferably a magnesium orthovanadate composite oxide.

本発明の酸化脱水素触媒は、X線回折分析において、2θ=42.9〜43.1°の回折ピークのピークトップの強度(a)に対する2θ=23.0〜23.2°の回折ピークのピークトップの強度(x)の相対強度比(x/a)が、0.1以下、好ましくは0.08以下、特に好ましくは0.04以下である。X線回折分析における2θが42.9〜43.1°の回折ピーク(a)は、MgOの(200)面に由来する回折ピークであり、また、X線回折分析における2θが23.0〜23.2°の回折ピーク(x)は、MgMoOの(0−12)面に由来する回折ピークである。なお、相対強度比(x/a)は、回折ピークのピーク高さ比である。 In the X-ray diffraction analysis, the oxidative dehydrogenation catalyst of the present invention has a diffraction peak of 2θ = 23.0 to 23.2 ° with respect to the intensity (a) of the peak top of the diffraction peak of 2θ = 42.9 to 43.1 °. The relative intensity ratio (x / a) of the peak top intensity (x) is 0.1 or less, preferably 0.08 or less, particularly preferably 0.04 or less. A diffraction peak (a) having 2θ of 42.9 to 43.1 ° in X-ray diffraction analysis is a diffraction peak derived from the (200) plane of MgO, and 2θ in X-ray diffraction analysis is 23.0 to 23.0. The diffraction peak (x) at 23.2 ° is a diffraction peak derived from the (0-12) plane of MgMoO 4 . The relative intensity ratio (x / a) is a peak height ratio of diffraction peaks.

バナジウムとマグネシウムとモリブデンを金属成分として含有する金属酸化物の製造において、先に、バナジン酸マグネシウム複合酸化物を製造し、得られたバナジン酸マグネシウム複合酸化物に、モリブデン化合物の溶液を含浸させて、次いで、モリブデン化合物溶液が含浸されたバナジン酸マグネシウム複合酸化物を焼成することにより、バナジウムとマグネシウムとモリブデンを金属成分として含有する金属酸化物を製造した場合(以下、「バナジン酸マグネシウム複合酸化物への含浸によるMo担持方法」とも記載する。)、得られる金属酸化物のX線回折分析チャートには、2θ=19.34°((110)面)、23.05°((0−12)面)、26.45°((1−21)面)近辺に、MgMoOに由来する回折ピークが観察される。それに対して、以下に述べる本発明の酸化脱水素触媒の製造方法により、金属酸化物を製造した場合、得られる金属酸化物のX線回折チャートには、2θ=19.34°、23.05°、26.45°近辺には、回折ピークが全く観察されないか、あるいは、2θ=19.34°、23.05°、26.45°近辺に回折ピークが観察されたとしても、非常に小さい。つまり、本発明の酸化脱水素触媒の製造方法により得られる金属酸化物(酸化脱水素触媒)は、上記バナジン酸マグネシウム複合酸化物への含浸によるMo担持方法により得られる金属酸化物とは、結晶構造が異なる。 In the production of a metal oxide containing vanadium, magnesium and molybdenum as metal components, first, a magnesium vanadate composite oxide is produced, and the obtained magnesium vanadate composite oxide is impregnated with a molybdenum compound solution. Then, when a metal oxide containing vanadium, magnesium and molybdenum as metal components is produced by firing the magnesium vanadate complex oxide impregnated with the molybdenum compound solution (hereinafter referred to as “magnesium vanadate complex oxide”). In addition, the X-ray diffraction analysis chart of the obtained metal oxide shows 2θ = 19.34 ° ((110) plane), 23.05 ° ((0-12). ) plane), near 26.45 ° ((1-21) plane), See This diffraction peaks derived from MgMoO 4 It is. On the other hand, when a metal oxide is produced by the method for producing an oxidative dehydrogenation catalyst of the present invention described below, the X-ray diffraction chart of the obtained metal oxide shows 2θ = 19.34 °, 23.05. No diffraction peak is observed at around °, 26.45 °, or even if diffraction peaks are observed at around 2θ = 19.34 °, 23.05 °, 26.45 °. . That is, the metal oxide (oxidation dehydrogenation catalyst) obtained by the method for producing an oxidative dehydrogenation catalyst of the present invention is different from the metal oxide obtained by the Mo supporting method by impregnation into the magnesium vanadate composite oxide. The structure is different.

なお、本発明において、X線回折分析(XRD)の測定条件は、以下の通りである。相対強度比(x/a)は、回折ピークのピーク高さ比である。
<測定条件>
線源:CuKα
管電圧:40kV
管電流:40mA
サンプリング幅:0.02°
走査速度:2°/分
In the present invention, the measurement conditions for X-ray diffraction analysis (XRD) are as follows. The relative intensity ratio (x / a) is a peak height ratio of diffraction peaks.
<Measurement conditions>
Radiation source: CuKα
Tube voltage: 40 kV
Tube current: 40 mA
Sampling width: 0.02 °
Scanning speed: 2 ° / min

本発明の酸化脱水素触媒は、主として、バナジウム原子と、マグネシウム原子と、モリブデン原子と、酸素原子と、からなる化合物であるが、本発明の酸化脱水素触媒は、本発明の効果を損なわない範囲で、他の金属原子を含んでいてもよい。また、本発明の酸化脱水素触媒は、本発明の効果を損なわない範囲で、上記金属原子以外を不純物として含有することは許容される。   The oxidative dehydrogenation catalyst of the present invention is a compound mainly composed of vanadium atoms, magnesium atoms, molybdenum atoms and oxygen atoms, but the oxidative dehydrogenation catalyst of the present invention does not impair the effects of the present invention. It may contain other metal atoms in the range. In addition, the oxidative dehydrogenation catalyst of the present invention is allowed to contain impurities other than the metal atoms as long as the effects of the present invention are not impaired.

本発明の酸化脱水素触媒は、粉状又は粒状の金属酸化物であるが、そのような粉状又は粒状の本発明の酸化脱水素触媒を、粉状又は粒状のまま用いてもよいし、あるいは、粉状又は粒状の本発明の酸化脱水素触媒を、圧縮成形等により成形して、成形体として用いてもよいし、あるいは、粉状又は粒状の本発明の酸化脱水素触媒を、バインダーを用いて成形して、成形体として用いてもよい。   The oxidative dehydrogenation catalyst of the present invention is a powdered or granular metal oxide, but such a powdery or granular oxidative dehydrogenation catalyst of the present invention may be used in a powdered or granular form, Alternatively, the powdered or granular oxidative dehydrogenation catalyst of the present invention may be molded by compression molding or the like and used as a molded body, or the powdered or granular oxidative dehydrogenation catalyst of the present invention may be used as a binder. May be used as a molded body.

本発明の酸化脱水素触媒が、バインダーを用いて成形された成形体として用いられる場合、成形体全体の質量に対するバナジウムのV換算量、マグネシウムのMgO換算量及びモリブデンのMoO換算量の合計の割合(((V換算量+MgO換算量+MoO換算量)/成形体全質量)×100)は、好ましくは50質量%以上、特に好ましくは70質量%で以上ある。成形体全体の質量に対するバナジウムのV換算量、マグネシウムのMgO換算量及びモリブデンのMoO換算量の合計の割合が上記範囲にあることにより、モノオレフィン又は共役ジエンの選択率及び収率が高くなる。なお、本発明において、バナジウムのV換算量とは、成形体中に含有されているバナジウム原子が、全てVとして存在しているとして計算した場合のVの質量を指し、また、マグネシウムのMgO換算量とは、成形体中に含有されているマグネシウム原子が、全てMgOとして存在しているとして計算した場合のMgOの質量を指し、また、モリブデンのMoO換算量とは、成形体中に含有されているモリブデン原子が、全てMoOとして存在しているとして計算した場合のMoOの質量を指す。 When the oxidative dehydrogenation catalyst of the present invention is used as a molded body molded using a binder, the amount of vanadium converted to V 2 O 5, the amount of magnesium converted to MgO and the amount of molybdenum converted to MoO 3 with respect to the mass of the entire molded body The total ratio of (((V 2 O 5 converted amount + MgO converted amount + MoO 3 converted amount) / total mass of molded article) × 100) is preferably 50% by mass or more, particularly preferably 70% by mass or more. The ratio of the total amount of vanadium in terms of V 2 O 5, the amount of magnesium in terms of MgO and the amount of molybdenum in terms of MoO 3 relative to the total mass of the compact is within the above range, so that the selectivity and yield of monoolefin or conjugated diene Becomes higher. In the present invention, the terms of V 2 O 5 amount of vanadium, vanadium atom contained in the molded body, the mass of V 2 O 5 when calculated as being present as all V 2 O 5 In addition, the MgO equivalent amount of magnesium refers to the mass of MgO when it is calculated that all the magnesium atoms contained in the compact are present as MgO, and is equivalent to MoO 3 of molybdenum. the amount and the molybdenum atom contained in the molded body, refers to the mass of MoO 3 when calculated as being present all as MoO 3.

本発明の酸化脱水素触媒が、バインダーを用いて成形された成形体として用いられる場合、成形体中の全金属原子の原子換算の合計モル数に対するバナジウム、マグネシウム及びモリブデンの原子換算の合計モル数の割合(((V+Mg+Mo)/成形体中の全金属原子)×100)は、好ましくは60モル%以上、特に好ましくは80モル%以上である。成形体中の全金属原子の原子換算の合計モル数に対するバナジウム、マグネシウム及びモリブデンの原子換算の合計モル数の割合が上記範囲にあることにより、モノオレフィン又は共役ジエンの選択率及び収率が高くなる。   When the oxidative dehydrogenation catalyst of the present invention is used as a molded body molded using a binder, the total number of moles of vanadium, magnesium and molybdenum in terms of atoms relative to the total number of moles of atoms in all metal atoms in the shaped body. The ratio (((V + Mg + Mo) / total metal atoms in the molded body) × 100) is preferably 60 mol% or more, particularly preferably 80 mol% or more. When the ratio of the total number of moles of vanadium, magnesium and molybdenum in terms of atoms to the total number of moles of atoms of all metal atoms in the compact is in the above range, the selectivity and yield of monoolefin or conjugated diene are high. Become.

本発明の酸化脱水素触媒は、以下に述べる本発明の酸化脱水素触媒の製造方法により、好適に製造される。   The oxidative dehydrogenation catalyst of the present invention is preferably produced by the method for producing the oxidative dehydrogenation catalyst of the present invention described below.

本発明の酸化脱水素触媒の製造方法は、バナジウム源と、マグネシウム源と、モリブデン源と、が水に溶解又は分散されている原料混合液を調製し、次いで、得られた原料混合液中の水を蒸発させて除去して、原料混合物粉体を得、次いで、得られた原料混合物粉体を焼成することを特徴とする酸化脱水素触媒の製造方法である。   The method for producing an oxidative dehydrogenation catalyst of the present invention comprises preparing a raw material mixed solution in which a vanadium source, a magnesium source, and a molybdenum source are dissolved or dispersed in water, and then in the obtained raw material mixed solution. It is a method for producing an oxidative dehydrogenation catalyst, characterized by evaporating and removing water to obtain a raw material mixture powder and then firing the obtained raw material mixture powder.

本発明の酸化脱水素触媒の製造方法では、先ず、バナジウム源と、マグネシウム源と、モリブデン源と、が水に溶解又は分散されている原料混合液を調製する。   In the method for producing an oxidative dehydrogenation catalyst of the present invention, first, a raw material mixed solution in which a vanadium source, a magnesium source, and a molybdenum source are dissolved or dispersed in water is prepared.

バナジウム源、マグネシウム源、モリブデン源とは、酸化脱水素触媒を構成する金属原子の供給源となる金属原子源であり、バナジウム、マグネシウム、モリブデンを含有する化合物である。このような金属原子源としては、例えば、バナジウム、マグネシウム、モリブデンの塩化物、硝酸塩、硫酸塩、酢酸塩、アンモニウム塩や、これらの金属原子のうちの2種以上からなる複合塩等が挙げられる。   A vanadium source, a magnesium source, and a molybdenum source are a metal atom source used as the supply source of the metal atom which comprises an oxidative dehydrogenation catalyst, and is a compound containing vanadium, magnesium, and molybdenum. Examples of such metal atom sources include vanadium, magnesium, molybdenum chlorides, nitrates, sulfates, acetates, ammonium salts, and complex salts composed of two or more of these metal atoms. .

原料混合液を調製する方法としては、特に制限されず、各金属原子源を水に直接添加して撹拌混合してもよいし、あるいは、金属原子源を水に溶解又は分散させたものを水に添加して撹拌混合してもよい。原料混合液の調製の際には、必要に応じて、40〜60℃で加熱しながら撹拌混合を行う。   The method of preparing the raw material mixture is not particularly limited, and each metal atom source may be directly added to water and mixed with stirring, or a solution obtained by dissolving or dispersing a metal atom source in water. And may be mixed with stirring. In preparation of the raw material mixture, stirring and mixing are performed while heating at 40 to 60 ° C., if necessary.

原料混合液中の各金属原子の含有量は、製造目的とする酸化脱水素触媒を構成する各金属原子のモル比により、適宜選択される。   Content of each metal atom in a raw material liquid mixture is suitably selected by the molar ratio of each metal atom which comprises the oxidative dehydrogenation catalyst made into a manufacturing objective.

本発明の酸化脱水素触媒の製造方法では、次いで、得られた原料混合液中の水を蒸発させて水を除去して、原料混合物粉体を得る。原料混合液中の水を蒸発させる方法としては、特に制限されず、常圧下又は減圧下で、原料混合液を加熱する方法が挙げられる。原料混合液中の水の蒸発を常圧下で行う場合、加熱温度は、特に制限されないが、好ましくは50〜150℃である。原料混合液中の水の蒸発を減圧下で行う場合、加熱温度は減圧度等に応じて、適宜選択される。また、水の蒸発操作を行った後、必要に応じて、乾燥を行うことができる。乾燥の際の乾燥温度は、特に制限されないが、好ましくは60〜150℃であり、また、乾燥時間は、6〜48時間程度であればよい。   In the method for producing an oxidative dehydrogenation catalyst of the present invention, the water in the obtained raw material mixture is then evaporated to remove the water to obtain a raw material mixture powder. The method for evaporating water in the raw material mixture is not particularly limited, and examples thereof include a method of heating the raw material mixture under normal pressure or reduced pressure. When evaporation of water in the raw material mixture is performed under normal pressure, the heating temperature is not particularly limited, but is preferably 50 to 150 ° C. When the water in the raw material mixture is evaporated under reduced pressure, the heating temperature is appropriately selected according to the degree of reduced pressure. Moreover, after performing the evaporation operation of water, it can dry as needed. Although the drying temperature in the case of drying is not restrict | limited in particular, Preferably it is 60-150 degreeC, and drying time should just be about 6 to 48 hours.

本発明の酸化脱水素触媒の製造方法では、次いで、得られた原料混合物粉体を焼成して、酸化脱水素触媒を得る。焼成温度は、特に制限されないが、好ましくは400〜900℃、特に好ましくは500〜800℃である。焼成時間は、特に制限されないが、好ましくは3〜30時間である。原料混合物粉体の焼成では、一度焼成した物を、同じ温度又は異なる温度で焼成することにより、焼成を複数回行ってもよい。ただし、高温での焼成による触媒のシンタリングによる影響を考慮すれば、焼成の最高温度は、750℃以下が好ましい。   In the method for producing an oxidative dehydrogenation catalyst of the present invention, the obtained raw material mixture powder is then fired to obtain an oxidative dehydrogenation catalyst. The firing temperature is not particularly limited, but is preferably 400 to 900 ° C, particularly preferably 500 to 800 ° C. The firing time is not particularly limited, but is preferably 3 to 30 hours. In firing the raw material mixture powder, the fired product may be fired a plurality of times by firing the fired product at the same temperature or at different temperatures. However, in consideration of the influence of sintering of the catalyst due to calcination at high temperature, the maximum temperature of calcination is preferably 750 ° C. or less.

原料混合物粉体の焼成においては、焼成中に焼成対象を十分に磨砕して、焼成時の触媒成分の不均一化を抑制することが好ましい。磨砕には、乳鉢、ボールミル等が用いられ、手動式/自動式のいずれも使用可能である。   In firing the raw material mixture powder, it is preferable that the firing target is sufficiently ground during firing to prevent the catalyst components from becoming uneven during firing. For grinding, a mortar, a ball mill, or the like is used, and either a manual type or an automatic type can be used.

本発明の酸化脱水素方法は、本発明の酸化脱水素触媒の存在下、400〜700℃で、炭化水素原料中に含まれる炭素数3〜5のパラフィン又は炭素数3〜5のモノオレフィンの酸化脱水素を行う酸化脱水素反応であり、該炭化水素原料が、炭素数3〜5のパラフィンを含む炭化水素原料、炭素数3〜5のモノオレフィンを含む炭化水素原料又は炭素数3〜5のパラフィンと炭素数3〜5のモノオレフィンを含む炭化水素原料であることを特徴とする酸化脱水素方法である。つまり、本発明の酸化脱水素方法は、炭素数3〜5のパラフィン又は炭素数3〜5のモノオレフィンを含む炭化水素原料を原料にして、触媒として、本発明の酸化脱水素触媒を用いて、酸化脱水素反応を行うものである。   The oxidative dehydrogenation method of the present invention comprises a C3-5 paraffin or a C3-5 monoolefin contained in a hydrocarbon raw material at 400 to 700 ° C. in the presence of the oxidative dehydrogenation catalyst of the present invention. It is an oxidative dehydrogenation reaction in which oxidative dehydrogenation is performed, and the hydrocarbon raw material includes a hydrocarbon raw material containing paraffin having 3 to 5 carbon atoms, a hydrocarbon raw material containing monoolefin having 3 to 5 carbon atoms, or 3 to 5 carbon atoms. It is an oxidative dehydrogenation method characterized by being a hydrocarbon raw material containing paraffin and 3 to 5 carbon monoolefin. That is, the oxidative dehydrogenation method of the present invention uses a hydrocarbon raw material containing a paraffin having 3 to 5 carbon atoms or a monoolefin having 3 to 5 carbon atoms as a raw material, and uses the oxidative dehydrogenation catalyst of the present invention as a catalyst. The oxidative dehydrogenation reaction is performed.

本発明の酸化脱水素方法に係る炭化水素原料は、本発明の酸化脱水素触媒に係る炭化水素原料と同様である。   The hydrocarbon raw material according to the oxidative dehydrogenation method of the present invention is the same as the hydrocarbon raw material according to the oxidative dehydrogenation catalyst of the present invention.

本発明の酸化脱水素方法における酸化脱水素反応の反応温度は、400〜700℃、好ましくは500〜700℃、特に好ましくは600〜675℃である。酸化脱水素反応の反応温度が、上記範囲にあることにより、CO又はCOの生成及びコークの生成が少なく、且つ、モノオレフィン又は共役ジエンの選択率及び収率が高くなる。一方、酸化脱水素反応の反応温度が、上記範囲未満だと、転化率又はモノオレフィン若しくは共役ジエンの収率が低くなり、また、上記範囲を超えると、分解反応が進み過ぎて、CO又はCOの生成やコークの生成が多くなる。 The reaction temperature of the oxidative dehydrogenation reaction in the oxidative dehydrogenation method of the present invention is 400 to 700 ° C, preferably 500 to 700 ° C, particularly preferably 600 to 675 ° C. When the reaction temperature of the oxidative dehydrogenation is in the above range, the production of CO or CO 2 and the production of coke are small, and the selectivity and yield of monoolefin or conjugated diene are increased. On the other hand, when the reaction temperature of the oxidative dehydrogenation reaction is less than the above range, the conversion rate or the yield of monoolefin or conjugated diene becomes low. When the reaction temperature exceeds the above range, the decomposition reaction proceeds excessively, and CO or CO 2 generation and coke generation increase.

本発明の酸化脱水素方法の形態例としては、例えば、触媒が充填されている固定床流通式反応装置を用いて、その反応装置に、加熱下、原料ガスを供給する方法が挙げられる。原料ガスは、例えば、パラフィン、あるいは、オレフィン、あるいは、パラフィン又はオレフィンを含む炭化水素と、酸素源と、希釈剤との混合ガスとして供給される。酸素源としては、純酸素又は空気が用いられる。希釈ガスとしては、窒素、ヘリウム又はスチームが用いられるが、原料ガスと酸素源が反応することで生じる発熱を抑制するために、スチームを用いることが好ましい。原料ガスの供給量は、特に制限されず、触媒活性、触媒充填量、接触時間、圧力損失などにより、適宜調節される。原料ガスとして、パラフィン、あるいは、オレフィン、あるいは、パラフィン又はオレフィンを含む炭化水素と酸素の混合ガスを用いる場合、酸素過剰だと、パラフィン又はオレフィンの完全酸化によるCOの生成が多くなるため、酸素に対するパラフィン又はオレフィンの分圧比(パラフィン又はオレフィン/酸素)が0.5以上であることが好ましい。反応圧力は、特に制限されず、常圧、加圧のいずれでもよい。 As an example of the oxidative dehydrogenation method of the present invention, for example, a method of supplying a raw material gas under heating to a reaction apparatus using a fixed bed flow type reaction apparatus filled with a catalyst can be mentioned. The source gas is supplied, for example, as a mixed gas of paraffin, olefin, or a hydrocarbon containing paraffin or olefin, an oxygen source, and a diluent. Pure oxygen or air is used as the oxygen source. Nitrogen, helium, or steam is used as the dilution gas, but steam is preferably used in order to suppress the heat generated by the reaction between the source gas and the oxygen source. The supply amount of the raw material gas is not particularly limited, and is appropriately adjusted depending on catalyst activity, catalyst filling amount, contact time, pressure loss, and the like. When paraffin, olefin, or a mixed gas of hydrocarbon and oxygen containing paraffin or olefin is used as a raw material gas, oxygen excess increases the amount of CO 2 produced by complete oxidation of paraffin or olefin. The partial pressure ratio of paraffin or olefin to paraffin (paraffin or olefin / oxygen) is preferably 0.5 or more. The reaction pressure is not particularly limited, and may be normal pressure or increased pressure.

また、本発明の酸化脱水素触媒は、本発明の酸化脱水素触媒の製造方法により得られた酸化脱水素触媒である。すなわち、本発明の酸化脱水素触媒は、バナジウム源と、マグネシウム源と、モリブデン源と、が水に溶解又は分散されている原料混合液を調製し、次いで、得られた原料混合液中の水を蒸発させて除去して、原料混合物粉体を得、次いで、得られた原料混合物粉体を焼成することにより得られたものであることを特徴とする酸化脱水素触媒である。   The oxidative dehydrogenation catalyst of the present invention is an oxidative dehydrogenation catalyst obtained by the method for producing an oxidative dehydrogenation catalyst of the present invention. That is, the oxidative dehydrogenation catalyst of the present invention prepares a raw material mixture in which a vanadium source, a magnesium source, and a molybdenum source are dissolved or dispersed in water, and then the water in the obtained raw material mixture Is an oxidative dehydrogenation catalyst obtained by evaporating and removing a raw material mixture powder and then firing the obtained raw material mixture powder.

以下に実施例を挙げて、本発明を具体的に説明するが、本発明はこれに制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

(実施例1)
<触媒A>0.5Mo−Mg−V−O触媒
蒸留水200mlに、バナジン酸アンモニウム3.340gを溶解させ、更に、水酸化マグネシウム8.767gと、蒸留水4.3mlにモリブデン酸アンモニウム四水和物0.151gを溶解させた水溶液とを加えて撹拌して、原料混合液を得た。
次いで、得られた原料混合液を、撹拌しながら50℃で加熱して蒸発乾固させ、次いで、蒸発乾固物を110℃で12時間乾燥して、原料混合物粉体を得た。
次いで、得られた原料混合物粉体を、空気中700℃で6時間焼成し、触媒Aを得た。
次いで、得られた触媒AのX線回折分析を行った。その結果、触媒Aは、オルトバナジン酸マグネシウム及び酸化マグネシウムの結晶構造を示した。また、得られたXRDチャートを図1に示す。また、XRDチャートから、相対強度比(x/a)を求めた。その結果を表1に示す。
Example 1
<Catalyst A> 0.5 Mo-Mg-V-O catalyst Into 200 ml of distilled water, 3.340 g of ammonium vanadate is dissolved. Further, 8.767 g of magnesium hydroxide and 4.3 ml of distilled water are mixed with ammonium molybdate tetrahydrate. An aqueous solution in which 0.151 g of the Japanese product was dissolved was added and stirred to obtain a raw material mixture.
Next, the obtained raw material mixture was heated to 50 ° C. with stirring to evaporate to dryness, and then the evaporated dry matter was dried at 110 ° C. for 12 hours to obtain a raw material mixture powder.
Next, the obtained raw material mixture powder was calcined in the air at 700 ° C. for 6 hours to obtain Catalyst A.
Subsequently, X-ray diffraction analysis of the obtained catalyst A was performed. As a result, the catalyst A showed a crystal structure of magnesium orthovanadate and magnesium oxide. The obtained XRD chart is shown in FIG. Further, the relative intensity ratio (x / a) was determined from the XRD chart. The results are shown in Table 1.

(実施例2)
<触媒B>1.1Mo−Mg−V−O触媒
蒸留水10mlにモリブデン酸アンモニウム四水和物0.353gを溶解させた水溶液を用いる他は、実施例1と同様にして触媒の製造を行い、触媒Bを得た。
次いで、得られた触媒BのX線回折分析を行った。その結果、触媒Bは、オルトバナジン酸マグネシウム及び酸化マグネシウムの結晶構造を示した。また、得られたXRDチャートを図2に示す。また、XRDチャートから、相対強度比(x/a)を求めた。その結果を表1に示す。
(Example 2)
<Catalyst B> 1.1 Mo-Mg-V-O catalyst A catalyst was produced in the same manner as in Example 1 except that an aqueous solution in which 0.353 g of ammonium molybdate tetrahydrate was dissolved in 10 ml of distilled water was used. Catalyst B was obtained.
Subsequently, the obtained catalyst B was subjected to X-ray diffraction analysis. As a result, Catalyst B showed a crystal structure of magnesium orthovanadate and magnesium oxide. Moreover, the obtained XRD chart is shown in FIG. Further, the relative intensity ratio (x / a) was determined from the XRD chart. The results are shown in Table 1.

(実施例3)
<触媒C>1.6Mo−Mg−V−O触媒
蒸留水14.3mlにモリブデン酸アンモニウム四水和物0.504gを溶解させた水溶液を用いる他は、実施例1と同様にして触媒の製造を行い、触媒Cを得た。
次いで、得られた触媒CのX線回折分析を行った。その結果、触媒Cは、オルトバナジン酸マグネシウム及び酸化マグネシウムの結晶構造を示した。また、得られたXRDチャートを図3に示す。また、XRDチャートから、相対強度比(x/a)を求めた。その結果を表1に示す。
(Example 3)
<Catalyst C> 1.6Mo—Mg—V—O catalyst Production of catalyst in the same manner as in Example 1 except that 0.504 g of ammonium molybdate tetrahydrate was dissolved in 14.3 ml of distilled water. The catalyst C was obtained.
Subsequently, the obtained catalyst C was subjected to X-ray diffraction analysis. As a result, catalyst C showed a crystal structure of magnesium orthovanadate and magnesium oxide. The obtained XRD chart is shown in FIG. Further, the relative intensity ratio (x / a) was determined from the XRD chart. The results are shown in Table 1.

(比較例1)
<触媒D>2.0Mo−Mg−V−O触媒
蒸留水20mlにモリブデン酸アンモニウム四水和物0.706gを溶解させた水溶液を用いる他は、実施例1と同様にして触媒の製造を行い、触媒Dを得た。
次いで、得られた触媒DのX線回折分析を行った。その結果、触媒Dは、オルトバナジン酸マグネシウム及び酸化マグネシウムの結晶構造を示した。また、得られたXRDチャートを図4に示す。また、XRDチャートから、相対強度比(x/a)を求めた。その結果を表1に示す。
(Comparative Example 1)
<Catalyst D> 2.0 Mo-Mg-V-O catalyst A catalyst was produced in the same manner as in Example 1 except that an aqueous solution in which 0.706 g of ammonium molybdate tetrahydrate was dissolved in 20 ml of distilled water was used. Catalyst D was obtained.
Subsequently, X-ray diffraction analysis of the obtained catalyst D was performed. As a result, catalyst D showed a crystal structure of magnesium orthovanadate and magnesium oxide. Moreover, the obtained XRD chart is shown in FIG. Further, the relative intensity ratio (x / a) was determined from the XRD chart. The results are shown in Table 1.

(比較例2)
<触媒E>Mg−V−O触媒
蒸留水200mlに、バナジン酸アンモニウム3.340gを溶解させ、更に、水酸化マグネシウム8.767gを加えて撹拌して、原料混合液を得た。
次いで、得られた原料混合液を、撹拌しながら50℃で加熱して蒸発乾固させ、次いで、蒸発乾固物を110℃で12時間乾燥して、原料混合物粉体を得た。
次いで、得られた原料混合物粉体を、空気中700℃で6時間焼成し、触媒Eを得た。
次いで、得られた触媒EのX線回折分析を行った。その結果、触媒Eは、オルトバナジン酸マグネシウム及び酸化マグネシウムの結晶構造を示した。また、得られたXRDチャートを図5に示す。また、XRDチャートから、相対強度比(x/a)を求めた。その結果を表1に示す。
(Comparative Example 2)
<Catalyst E> Mg-V-O catalyst 3.340 g of ammonium vanadate was dissolved in 200 ml of distilled water, and further 8.767 g of magnesium hydroxide was added and stirred to obtain a raw material mixture.
Next, the obtained raw material mixture was heated to 50 ° C. with stirring to evaporate to dryness, and then the evaporated dry matter was dried at 110 ° C. for 12 hours to obtain a raw material mixture powder.
Next, the obtained raw material mixture powder was calcined in the air at 700 ° C. for 6 hours to obtain Catalyst E.
Subsequently, the obtained catalyst E was subjected to X-ray diffraction analysis. As a result, catalyst E showed a crystal structure of magnesium orthovanadate and magnesium oxide. Moreover, the obtained XRD chart is shown in FIG. Further, the relative intensity ratio (x / a) was determined from the XRD chart. The results are shown in Table 1.

(X線回折分析)
得られた触媒の粉末X線回折分析を、UltimaIV(Regaku社製)を用いて、以下測定条件にて行った。
<測定条件>
線源:CuKα
管電圧:40kV
管電流:40mA
サンプリング幅:0.02°
走査速度:2°/分
走査角度:5〜90°
(X-ray diffraction analysis)
Powder X-ray diffraction analysis of the obtained catalyst was performed under the following measurement conditions using Ultima IV (manufactured by Regaku).
<Measurement conditions>
Radiation source: CuKα
Tube voltage: 40 kV
Tube current: 40 mA
Sampling width: 0.02 °
Scanning speed: 2 ° / min Scanning angle: 5-90 °

得られたX線回折チャート中の2θ=42.9〜43.1°の回折ピーク(a)に対する2θ=23.0〜23.2°の回折ピーク(x)の相対強度比(x/a)(回折ピークのピーク高さ比)を、それぞれ求めた。   The relative intensity ratio of the diffraction peak (x) of 2θ = 23.0 to 23.2 ° to the diffraction peak (a) of 2θ = 42.9 to 43.1 ° in the obtained X-ray diffraction chart (x / a ) (Peak height ratio of diffraction peaks) was obtained respectively.

Figure 2016032784
Figure 2016032784

(触媒性能の評価)
常圧固定床流通式反応装置を用い、下記のようにして酸化的脱水素反応を行い、触媒の性能評価を行った。
上記のようにして得られた触媒0.25gを反応装置に充填した。次いで反応装置に空気を31.5ml/minで流通させながら、反応管内部の温度を450℃まで昇温させた。450℃に到達した後、空気31.5ml/minを加え、30分間流通させて、触媒の前処理(酸化処理)を行った。前処理終了後、スチームを112ml/min、n−ブタンを3.1ml/minで加えて流通させることにより、n−ブタン:空気:スチーム(モル比)=1:10:36、全流量が146.6ml/minになるように、原料ガスを流通させて、n−ブタンの酸化的脱水素反応を60分間行った。反応結果を表2〜表6に示す。
(Evaluation of catalyst performance)
Using an atmospheric pressure fixed bed flow type reactor, the oxidative dehydrogenation reaction was performed as follows, and the performance of the catalyst was evaluated.
The reaction apparatus was charged with 0.25 g of the catalyst obtained as described above. Next, the temperature inside the reaction tube was raised to 450 ° C. while allowing air to flow through the reaction apparatus at 31.5 ml / min. After reaching 450 ° C., 31.5 ml / min of air was added and the mixture was circulated for 30 minutes to pretreat the catalyst (oxidation treatment). After completion of the pretreatment, steam was added at 112 ml / min and n-butane was added at 3.1 ml / min to circulate, so that n-butane: air: steam (molar ratio) = 1: 10: 36 and the total flow rate was 146. The raw material gas was circulated so that it might become 6 ml / min, and the oxidative dehydrogenation reaction of n-butane was performed for 60 minutes. The reaction results are shown in Tables 2-6.

n−ブタン転化率、CO、CO、炭素数1〜3の炭化水素、ブテン及びブタジエン選択率、ブテン及びブタジエン収率を、以下のようにして計算した。 n- butane conversion, CO, CO 2, hydrocarbons having 1 to 3 carbon atoms, butene and butadiene selectivity, butene and butadiene yield, was calculated as follows.

転化率(%)=((原料ガス中のn−ブタン炭素モル数−生成ガス中のn−ブタンの炭素モル数)/原料ガス中のn−ブタン炭素モル数)×100   Conversion rate (%) = ((number of moles of n-butane carbon in raw material gas−number of carbon moles of n-butane in product gas) / number of moles of n-butane carbon in raw material gas) × 100

生成物選択率(%)=(生成ガス中の各生成物の炭素モル数/(原料ガス中のn−ブタン炭素モル数−生成ガス中のn−ブタン炭素モル数))×100
*式中、各生成物の炭素モル数とは、選択率の対象となるCO、CO、ブテン、ブタジエンのそれぞれの炭素モル数である。
Product selectivity (%) = (number of moles of carbon in each product gas / (number of moles of n-butane carbon in raw material gas−number of moles of n-butane carbon in product gas)) × 100
* In the formula, the number of carbon moles of each product is the number of carbon moles of CO, CO 2 , butene, and butadiene, which are the targets of selectivity.

ブテン収率(%)=(生成ガス中のブテン炭素モル数/生成ガス中の全炭素モル数)×100   Butene yield (%) = (number of moles of butene carbon in the product gas / total number of moles of carbon in the product gas) × 100

ブタジエン収率(%)=(生成ガス中のブタジエンの炭素モル数/生成ガス中の全炭素モル数)×100   Butadiene yield (%) = (number of moles of butadiene in product gas / total number of moles of carbon in product gas) × 100

原料ガス及び生成ガスの分析を、TCDガスクロマトグラフ(ジーエルサイエンス GC−353B)及びFIDガスクロマトグラフ(ジーエルサイエンス GC−353B)を用いて行った。O及びNの分析には、モレキュラーシーブ13X、CO及びCOの分析には、Unibeads C充填カラム(ジーエルサイエンス社製)を用い、炭化水素化合物の分析には、HP−AL/Sキャピラリーカラム(Agilent technologies社製)を用いた。 The analysis of the source gas and the product gas was performed using a TCD gas chromatograph (GL Science GC-353B) and an FID gas chromatograph (GL Science GC-353B). Molecular sieve 13X for analysis of O 2 and N 2 , Unibeads C packed column (manufactured by GL Sciences) is used for analysis of CO and CO 2 , and HP-AL / S capillary column for analysis of hydrocarbon compounds (Manufactured by Agilent Technologies) was used.

なお、以下の表中、C1〜C3は炭素数が1から3の炭化水素の合計を指し、n−Cはn−ブテンを指し、1,3−Cは1,3−ブタジエンを指す。 In the following table, C1 to C3 indicate the total of hydrocarbons having 1 to 3 carbon atoms, n-C 4 H 8 indicates n-butene, 1,3-C 4 H 8 indicates 1,3 -Refers to butadiene.

Figure 2016032784
Figure 2016032784

Figure 2016032784
Figure 2016032784

Figure 2016032784
Figure 2016032784

Figure 2016032784
Figure 2016032784

Figure 2016032784
Figure 2016032784

Figure 2016032784
Figure 2016032784

Claims (8)

炭化水素原料中に含まれる炭素数3〜5のパラフィン又は炭素数3〜5のモノオレフィンの酸化脱水素を行うための酸化脱水素触媒であり、
該炭化水素原料が、炭素数3〜5のパラフィンを含む炭化水素原料、炭素数3〜5のモノオレフィンを含む炭化水素原料又は炭素数3〜5のパラフィンと炭素数3〜5のモノオレフィンとを含む炭化水素原料であり、
該酸化脱水素触媒が、バナジウム原子と、マグネシウム原子と、モリブデン原子と、を含有し、且つ、バナジウム、マグネシウム及びモリブデンの原子換算の合計モル数に対するモリブデンの原子換算のモル数の割合((Mo/(V+Mg+Mo))×100)が0.3〜1.8モル%であること、
を特徴とする酸化脱水素触媒。
An oxidative dehydrogenation catalyst for performing oxidative dehydrogenation of paraffins having 3 to 5 carbon atoms or monoolefins having 3 to 5 carbon atoms contained in a hydrocarbon raw material;
The hydrocarbon raw material is a hydrocarbon raw material containing a paraffin having 3 to 5 carbon atoms, a hydrocarbon raw material containing a monoolefin having 3 to 5 carbon atoms, or a paraffin having 3 to 5 carbon atoms and a monoolefin having 3 to 5 carbon atoms, A hydrocarbon feedstock containing
The oxidative dehydrogenation catalyst contains a vanadium atom, a magnesium atom, and a molybdenum atom, and the ratio of the number of moles of molybdenum in terms of atoms to the total number of moles in terms of atoms of vanadium, magnesium, and molybdenum ((Mo / (V + Mg + Mo)) × 100) is 0.3 to 1.8 mol%,
An oxidative dehydrogenation catalyst.
X線回折分析において、2θ=42.9〜43.1°の回折ピークのピークトップの強度(a)に対する2θ=23.0〜23.2°の回折ピークのピークトップの強度(x)の相対強度比(x/a)が0.04以下であることを特徴とする請求項1記載の酸化脱水素触媒。   In the X-ray diffraction analysis, the peak top intensity (x) of the diffraction peak at 2θ = 23.0 to 23.2 ° with respect to the peak top intensity (a) of the diffraction peak at 2θ = 42.9-43.1 °. The oxidative dehydrogenation catalyst according to claim 1, wherein the relative intensity ratio (x / a) is 0.04 or less. バナジウム源、マグネシウム源及びモリブデン源が水に溶解又は分散されている原料混合液を調製し、次いで、該原料混合液中の水を蒸発させて除去して、原料混合物粉体を得、次いで、該原料混合物粉体を焼成することにより得られたものであることを特徴とする請求項1記載の酸化脱水素触媒。   A raw material mixture in which a vanadium source, a magnesium source and a molybdenum source are dissolved or dispersed in water is prepared, and then water in the raw material mixture is removed by evaporation to obtain a raw material mixture powder, 2. The oxidative dehydrogenation catalyst according to claim 1, wherein the oxidative dehydrogenation catalyst is obtained by firing the raw material mixture powder. 炭化水素原料中に含まれるn−ブタンから酸化脱水素反応によってn−ブテン及び1,3−ブタジエンを製造するための酸化脱水素触媒であり、
該酸化脱水素触媒が、バナジウム原子と、マグネシウム原子と、モリブデン原子と、を含有し、且つ、バナジウム、マグネシウム及びモリブデンの原子換算の合計モル数に対するモリブデンの原子換算のモル数の割合((Mo/(V+Mg+Mo))×100)が0.3〜1.8モル%であること、
を特徴とする酸化脱水素触媒。
An oxidative dehydrogenation catalyst for producing n-butene and 1,3-butadiene by oxidative dehydrogenation reaction from n-butane contained in a hydrocarbon raw material,
The oxidative dehydrogenation catalyst contains a vanadium atom, a magnesium atom, and a molybdenum atom, and the ratio of the number of moles of molybdenum in terms of atoms to the total number of moles in terms of atoms of vanadium, magnesium, and molybdenum ((Mo / (V + Mg + Mo)) × 100) is 0.3 to 1.8 mol%,
An oxidative dehydrogenation catalyst.
X線回折分析において、2θ=42.9〜43.1°の回折ピークのピークトップの強度(a)に対する2θ=23.0〜23.2°の回折ピークのピークトップの強度(x)の相対強度比(x/a)が0.04以下であることを特徴とする請求項4記載の酸化脱水素触媒。   In the X-ray diffraction analysis, the peak top intensity (x) of the diffraction peak at 2θ = 23.0 to 23.2 ° with respect to the peak top intensity (a) of the diffraction peak at 2θ = 42.9-43.1 °. The oxidative dehydrogenation catalyst according to claim 4, wherein the relative intensity ratio (x / a) is 0.04 or less. バナジウム源、マグネシウム源及びモリブデン源が水に溶解又は分散されている原料混合液を調製し、次いで、該原料混合液中の水を蒸発させて除去して、原料混合物粉体を得、次いで、該原料混合物粉体を焼成することにより得られたものであることを特徴とする請求項4記載の酸化脱水素触媒。   A raw material mixture in which a vanadium source, a magnesium source and a molybdenum source are dissolved or dispersed in water is prepared, and then water in the raw material mixture is removed by evaporation to obtain a raw material mixture powder, The oxidative dehydrogenation catalyst according to claim 4, wherein the oxidative dehydrogenation catalyst is obtained by firing the raw material mixture powder. バナジウム源、マグネシウム源及びモリブデン源が水に溶解又は分散されている原料混合液を調製し、次いで、該原料混合液中の水を蒸発させて除去して、原料混合物粉体を得、次いで、該原料混合物粉体を焼成することを特徴とする酸化脱水素触媒の製造方法。   A raw material mixture in which a vanadium source, a magnesium source and a molybdenum source are dissolved or dispersed in water is prepared, and then water in the raw material mixture is removed by evaporation to obtain a raw material mixture powder, A method for producing an oxidative dehydrogenation catalyst, comprising calcining the raw material mixture powder. 請求項1〜3いずれか1項記載の酸化脱水素触媒の存在下、400〜700℃で、炭化水素原料中に含まれる炭素数3〜5のパラフィン又は炭素数3〜5のモノオレフィンの酸化脱水素を行う酸化脱水素反応であり、該炭化水素原料が、炭素数3〜5のパラフィンを含む炭化水素原料、炭素数3〜5のモノオレフィンを含む炭化水素原料又は炭素数3〜5のパラフィンと炭素数3〜5のモノオレフィンとを含む炭化水素原料であることを特徴とする酸化脱水素方法。   Oxidation of paraffins having 3 to 5 carbon atoms or monoolefins having 3 to 5 carbon atoms contained in the hydrocarbon raw material at 400 to 700 ° C in the presence of the oxidative dehydrogenation catalyst according to any one of claims 1 to 3. It is an oxidative dehydrogenation reaction in which dehydrogenation is performed, and the hydrocarbon raw material is a hydrocarbon raw material containing paraffins having 3 to 5 carbon atoms, a hydrocarbon raw material containing monoolefins having 3 to 5 carbon atoms, or 3 to 5 carbon atoms. An oxidative dehydrogenation method comprising a hydrocarbon raw material containing paraffin and a monoolefin having 3 to 5 carbon atoms.
JP2014155956A 2014-07-31 2014-07-31 Oxidative dehydrogenation catalyst, method for producing oxidative dehydrogenation catalyst, and oxidative dehydrogenation method Active JP6404627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014155956A JP6404627B2 (en) 2014-07-31 2014-07-31 Oxidative dehydrogenation catalyst, method for producing oxidative dehydrogenation catalyst, and oxidative dehydrogenation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014155956A JP6404627B2 (en) 2014-07-31 2014-07-31 Oxidative dehydrogenation catalyst, method for producing oxidative dehydrogenation catalyst, and oxidative dehydrogenation method

Publications (2)

Publication Number Publication Date
JP2016032784A true JP2016032784A (en) 2016-03-10
JP6404627B2 JP6404627B2 (en) 2018-10-10

Family

ID=55451964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014155956A Active JP6404627B2 (en) 2014-07-31 2014-07-31 Oxidative dehydrogenation catalyst, method for producing oxidative dehydrogenation catalyst, and oxidative dehydrogenation method

Country Status (1)

Country Link
JP (1) JP6404627B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936603A (en) * 1972-08-02 1974-04-05
JP2005529950A (en) * 2002-06-13 2005-10-06 ヴェロシス インコーポレイテッド Catalytic oxidative dehydrogenation process and microchannel reactor therefor
WO2009028700A1 (en) * 2007-08-30 2009-03-05 Nippon Shokubai Co., Ltd. Method for oxidatively dehydrogenating alkane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936603A (en) * 1972-08-02 1974-04-05
JP2005529950A (en) * 2002-06-13 2005-10-06 ヴェロシス インコーポレイテッド Catalytic oxidative dehydrogenation process and microchannel reactor therefor
WO2009028700A1 (en) * 2007-08-30 2009-03-05 Nippon Shokubai Co., Ltd. Method for oxidatively dehydrogenating alkane

Also Published As

Publication number Publication date
JP6404627B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
TWI629255B (en) Process for converting paraffin to olefin and catalyst for use therein
US9713804B2 (en) Catalyst composition for the dehydrogenation of alkanes
JP2010534553A (en) Zinc ferrite catalyst, method for producing the same, and method for producing 1,3-butadiene using the same
KR101706851B1 (en) Preparing method of multi-component complex metal oxide catalyst
JP2011512236A (en) Method for producing multi-component bismuth molybdate catalyst containing four metal components and method for producing 1,3-butadiene using said catalyst
JP2011148720A (en) Method for producing butadiene
KR20130046458A (en) A method for preparing 1,3-butadiene using continuous reactors
Putra et al. Oxidative dehydrogenation of propane to propylene over Al2O3-supported Sr–V–Mo catalysts
JP5906167B2 (en) Metal oxide catalyst, method for producing the same, and method for producing alkadiene
JP6698110B2 (en) Catalyst and hydrocarbon conversion process using the catalyst
JP6366407B2 (en) Oxidative dehydrogenation catalyst, method for producing oxidative dehydrogenation catalyst, and oxidative dehydrogenation method
JP6404627B2 (en) Oxidative dehydrogenation catalyst, method for producing oxidative dehydrogenation catalyst, and oxidative dehydrogenation method
Sun et al. Sintering-resistant Cu/B/Ca/Al2O3 catalysts for durable hydrogenation of sec-butyl acetate to 2-butanol and ethanol
WO2015152159A1 (en) Method for producing unsaturated hydrocarbon
Zhang et al. Factors influencing 1, 3-butadiene formation for light alkane dehydrogenation
Jiang et al. Effect of MgO on WO3/SiO2-catalyzed light olefin metathesis using different feedstocks
TW201822879A (en) Hydrocarbon conversion catalyst system
JP6119017B2 (en) Method for producing oxidative dehydrogenation catalyst
CN111032602B (en) Steam-free process for the conversion of butenes to 1, 3-butadiene
WO2016152324A1 (en) Diene production method
KR101419995B1 (en) Method of Producing Magnesia-zirconia Mixed Carrier for Catalyst for Oxidative Dehydrogenation of n-Butane, Method of Producing Magnesium-zirconia Carrier-Supported Magnesium Orthovanadate Catalyst, and Method of Producing n-Butene and 1,3-Butadiene Using Said Catalyst
KR101341242B1 (en) Magnesium orthovanadate-magnesia-zirconia catalyst prepared by a single-step sol-gel method for oxidative dehydrogenation of n-butane, preparation method thereof, and method for producing n-butene and 1,3-butadiene using said catalyst
TWI692466B (en) A process for conversion of a hydrocarbon feed
Harmse Improvement of propylene yield via butene metathesis
CN112805087A (en) Catalyst comprising metal oxide promoter for propylene production

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180913

R150 Certificate of patent or registration of utility model

Ref document number: 6404627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250