JP2016032381A - Photovoltaic power generation facility - Google Patents

Photovoltaic power generation facility Download PDF

Info

Publication number
JP2016032381A
JP2016032381A JP2014154397A JP2014154397A JP2016032381A JP 2016032381 A JP2016032381 A JP 2016032381A JP 2014154397 A JP2014154397 A JP 2014154397A JP 2014154397 A JP2014154397 A JP 2014154397A JP 2016032381 A JP2016032381 A JP 2016032381A
Authority
JP
Japan
Prior art keywords
solar cell
solar
power generation
south
photovoltaic power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014154397A
Other languages
Japanese (ja)
Other versions
JP5870413B1 (en
Inventor
啓丞 馬場
Keisuke Baba
啓丞 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014154397A priority Critical patent/JP5870413B1/en
Application granted granted Critical
Publication of JP5870413B1 publication Critical patent/JP5870413B1/en
Publication of JP2016032381A publication Critical patent/JP2016032381A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic power generation facility in which a lower solar battery is prevented from being shaded by an upper solar battery even on the summer solstice.SOLUTION: In the photovoltaic power generation facility, solar batteries are disposed over three stages on support posts. On each H-shaped support post that is formed by horizontally providing a beam in at least one location between two support posts, the solar batteries are disposed toward the south and at an inclination angle of 30° to 50° while deviating the solar batteries around the support posts in a south-to-north direction, respectively, in such a manner that an angle formed from a line connecting a lower end of the upper solar battery and an upper end of the lower solar battery and the ground becomes greater than a meridian height (elevation angle) on the summer solstice in the latitude of an installation place.SELECTED DRAWING: Figure 1

Description

本発明は、太陽光パネルを柱を使用して設置する太陽光発電設備に関するものである。   The present invention relates to a photovoltaic power generation facility in which a solar panel is installed using a pillar.

特許文献1には、工場等の敷地内に太陽光発電用支持柱を立設し、太陽電池を複数枚直並列接続して必要な電圧と電流を得られるようにした太陽光発電パネルを横一列に複数枚並べた太陽光発電パネルユニットを、前記太陽光発電用支持柱に縦方向に複数段配置した太陽光発電システムが開示されている。   Patent Document 1 discloses a photovoltaic power generation panel in which a photovoltaic power generation support pillar is erected on the site of a factory or the like, and a plurality of solar cells are connected in series and parallel to obtain necessary voltages and currents. A photovoltaic power generation system is disclosed in which a plurality of photovoltaic power generation panel units arranged in a row are arranged in a plurality of stages in the vertical direction on the support pillar for photovoltaic power generation.

特開2010−50206号公報JP 2010-50206 A

特許文献1に記載の太陽光発電システムは、特許文献1の段落[0018]に「所定の間隔で太陽光発電用支持柱に固定されたので、効率よく大容量の太陽光発電を行うことができる。」と記載され、段落[0030]に「所定の間隔で太陽光発電用支持柱に固定されているので、太陽光が太陽光発電パネルユニットに照射する際に、上方に配置された太陽光発電パネルユニットによって影になることはない。」と記載されている。しかし、夏至のときの太陽の南中高度は、那覇市で約87°、兵庫県明石市で約79°、東京で約78°であり、特許文献1の図1(a)に示す太陽光発電パネルユニットの配設方法では、夏至を中心とした夏場には所定の間隔をかなり拡げかなりの高さにしないと、上方に配置された太陽光発電パネルユニットによる影を下方の太陽光発電パネルユニットに生じないようにすることができないという問題があった。一方、所定の間隔が短いときは、夏至を中心とした夏場には上方に配置された太陽光発電パネルユニットによって下方の太陽光発電パネルユニットに影が長時間生じるという問題があった。   The photovoltaic power generation system described in Patent Literature 1 is described in paragraph [0018] of Patent Literature 1 as “the photovoltaic power generation system is fixed to the photovoltaic power generation support pillars at predetermined intervals. In the paragraph [0030], it is fixed to the solar power generation support pillars at a predetermined interval. It will not be shaded by the photovoltaic panel unit. " However, the southern and middle altitudes of the sun during the summer solstice are about 87 ° in Naha City, about 79 ° in Akashi City, Hyogo Prefecture, and about 78 ° in Tokyo. The sunlight shown in FIG. In the arrangement method of the power generation panel unit, in the summer season centering on the summer solstice, if the predetermined interval is not considerably widened and the height is not considerably high, the shadow of the solar power generation panel unit arranged above is shaded below the solar power generation panel. There was a problem that the unit could not be prevented from occurring. On the other hand, when the predetermined interval is short, there has been a problem that in the summertime centering on the summer solstice, a shadow is generated for a long time on the lower solar power generation panel unit by the upper solar power generation panel unit.

本発明はこうした問題に鑑み創案されたもので、太陽の南中高度が最も高くなる夏至においても上方に配置された太陽電池によって下方の太陽電池に影が生じない太陽光発電設備を提供することを課題とする。   The present invention was devised in view of such problems, and provides a solar power generation facility in which a solar cell disposed below is not shaded by a solar cell disposed above even at the summer solstice when the sun's south and middle altitudes are highest. Is an issue.

請求項1に記載の太陽光発電設備1は、支柱3に太陽電池2を3段配設する太陽光発電設備1であって、2本の支柱3間に少なくとも1か所で梁4を横設したH柱型のそれぞれ支柱3に、それぞれの太陽電池2を、南向きで、30°〜50°の傾斜角9で、かつ直近の上方及び下方の太陽電池2間において、上方の太陽電池2の下端11と下方の太陽電池2の上端12とを結んだ線と地面7とのなす角度15を、設置場所の緯度における夏至における南中高度6(仰角5)より大きくなるように、支柱3を中心にそれぞれ南北方向にずらして配設することを特徴とする。   The solar power generation facility 1 according to claim 1 is a solar power generation facility 1 in which solar cells 2 are arranged in three stages on a support column 3, and a beam 4 is horizontally disposed at least at one place between two support columns 3. Each solar cell 2 is placed on each of the pillars 3 of the H-column type, and the upper solar cell is located between the nearest upper and lower solar cells 2 at an inclination angle 9 of 30 ° to 50 ° facing south. 2 so that the angle 15 formed by the line connecting the lower end 11 of 2 and the upper end 12 of the lower solar cell 2 and the ground 7 is larger than the south-high altitude 6 (elevation angle 5) at the summer solstice at the latitude of the installation location. 3 is centered and shifted in the north-south direction.

請求項1に記載の太陽光発電設備1は、複数段の太陽電池2をそれぞれ支柱3を中心にそれぞれ南北方向にずらして配設するので、太陽20の南中高度6が1年の期間で高くなる夏至においても上方の太陽電池2の影が下方の太陽電池2に生じないという効果を奏する。   The solar power generation facility 1 according to claim 1 has a plurality of stages of solar cells 2 that are shifted from each other in the north-south direction around the support column 3, so that the south-middle altitude 6 of the sun 20 is in a period of one year. There is an effect that the shadow of the upper solar cell 2 is not generated in the lower solar cell 2 even in the summer solstice.

本発明の太陽光発電設備1を設置する場所としては、戸建て住宅、集合住宅の一角、スーパーマーケット、ガソリンスタンド、高速道路の中継サービスエリア、ゴルフ場跡地、ビルや工場の緑地、遊休地、農地、農道、畦道、離島、砂漠地などであって、風力発電所の近傍、場所の形状や起伏などの設置環境に左右されない電力設備の必要な個所に、小規模から中・大規模設備までの設置が可能である。   The solar power generation facility 1 of the present invention is installed in a detached house, a corner of an apartment house, a supermarket, a gas station, a highway relay service area, a golf course site, green space of a building or factory, idle land, farmland, Installation from small to medium to large-scale facilities in places where power facilities are required, such as farm roads, tunnels, remote islands, desert areas, etc. Is possible.

太陽電池1の傾斜角9を30°〜50°のうちの所定の傾斜角としているので、30°未満又は50°超より日射量が大きくなるという効果を奏する。   Since the inclination angle 9 of the solar cell 1 is set to a predetermined inclination angle of 30 ° to 50 °, there is an effect that the amount of solar radiation becomes larger than 30 ° or more than 50 °.

太陽電池2は、一般的には方位角は真南が日射量は最大になるが、配設された支柱3の位置により多少最大になる方位角が異なる。よって、方位角を支柱3ごとに自在に回転させられるので、日射量を最大になる方位角にすることができる。   In general, the solar cell 2 has a maximum azimuth angle in the south but the solar radiation amount is maximum. However, the maximum azimuth angle differs depending on the position of the disposed support column 3. Therefore, since the azimuth angle can be freely rotated for each column 3, the azimuth angle can be maximized.

2本の支柱3間に少なくとも1か所で梁4を横設したH柱型としたことにより、太陽電池2の受ける風圧荷重強度を高め、太陽電池2の受ける風圧によって支柱3が倒れにくいという効果を奏する。   By adopting an H-column shape in which the beam 4 is horizontally provided at least at one place between the two columns 3, the wind pressure load strength received by the solar cell 2 is increased, and the column 3 is not easily collapsed by the wind pressure received by the solar cell 2. There is an effect.

本発明の太陽光発電設備の側面概要図である。It is a side surface schematic diagram of the photovoltaic power generation equipment of the present invention. 本発明の太陽光発電設備の正面概要図である。It is a front schematic diagram of the photovoltaic power generation equipment of the present invention. 下方の太陽電池に上方の太陽電池の影をつくらない太陽電池の配設方法の説明図である・It is an explanatory view of a solar cell arrangement method that does not create a shadow of the upper solar cell on the lower solar cell.- 特許文献1に記載の太陽光発電パネルユニットの場合の影の説明図である。It is explanatory drawing of the shadow in the case of the photovoltaic power generation panel unit of patent document 1. FIG. 方位角と日射量との関係を示す図である。It is a figure which shows the relationship between an azimuth and the amount of solar radiation. 傾斜角と日射量との関係を示す図である。It is a figure which shows the relationship between an inclination angle and the amount of solar radiation. メガソーラー化した場合の概要図である。It is an outline figure at the time of becoming mega solar.

本発明に係る太陽光発電設備1は、図1又は図2に示すように、支柱3に太陽電池2を3段配設する太陽光発電設備1であって、2本の支柱2間に少なくとも1か所で梁4を横設したH柱型のそれぞれ支柱3に、それぞれの太陽電池2を、南向きで、30°〜50°の傾斜角9で、かつ直近の上方及び下方の太陽電池2間において、上方の太陽電池2の下端と下方の太陽電池2の上端とを結んだ線と地面7とのなす角度15を、設置場所の緯度における夏至における南中高度6より大きくなるように、支柱3を中心にそれぞれ南北方向にずらして配設する。   As shown in FIG. 1 or FIG. 2, a solar power generation facility 1 according to the present invention is a solar power generation facility 1 in which three solar cells 2 are arranged on a support column 3, and at least between two support columns 2. Each solar cell 2 is placed on each of the pillars 3 in the form of a beam 4 horizontally arranged at one place, and each solar cell 2 is directed to the south with an inclination angle 9 of 30 ° to 50 ° and the nearest upper and lower solar cells. 2, the angle 15 formed by the line connecting the lower end of the upper solar cell 2 and the upper end of the lower solar cell 2 and the ground 7 is larger than the south-high altitude 6 at the summer solstice at the latitude of the installation location. The support columns 3 are arranged so as to be shifted in the north-south direction, respectively.

H柱型は2本の支柱2間に少なくとも1か所で梁4を架設したものである。支柱3は例えば配電線路用電柱13(コンクリートポール)であり、この2本の配電線路用電柱13をコンクリート基礎10で固めた地中に立設し、2本の配電線路用電柱13を少なくとも1か所で、例えば梁4で2本の配電線路用電柱13の両側面から抱合せて固定する。固定した正面視からの形態がH字に類似しているのでH柱型と名付けた。H柱型は高強度の構造物であるため、太陽電池2に対する風圧荷重でも倒壊しない強度を確保することができる。また、架線金物類を高強度のJIS規格品を使用すれば、施工精度が均一でさらに高強度のH柱とすることができる。   The H column type has a beam 4 installed between two support columns 2 at least at one place. The support column 3 is, for example, a distribution line power pole 13 (concrete pole). The two distribution line power poles 13 are erected in the ground solidified by the concrete foundation 10 and at least one of the two distribution line power poles 13 is provided. In place, for example, the beams 4 are fixed by being squeezed from both side faces of the two distribution line power poles 13. Since the shape from the fixed front view is similar to the H-shape, it was named H-column type. Since the H-column type is a high-strength structure, it is possible to ensure the strength that does not collapse even when wind pressure load is applied to the solar cell 2. Moreover, if high strength JIS standard products are used for the overhead wire hardware, the construction accuracy is uniform and the H column can be made even stronger.

そして、H柱型の支柱3に設置アーム18を取り付け、該設置アーム18に軽量腕金を井桁に構成した架台8を吊架する。架台8の材質として、例えばJISに規定された鋼材やアルミニウム合金などの市場で流通している部材を用いた場合にはコスト低減や短納期化を実現できる。また、溶融亜鉛メッキを施工することにより対候性に優れたものにすることができる。   Then, an installation arm 18 is attached to the H-column-type support column 3, and a gantry 8 in which a lightweight arm metal is formed in a well beam is suspended from the installation arm 18. As a material for the gantry 8, for example, when a member distributed in the market such as a steel material or an aluminum alloy specified in JIS is used, cost reduction and a short delivery time can be realized. Moreover, it can be made excellent in weather resistance by applying hot dip galvanizing.

太陽電池2は、例えば前記架台8に2つの太陽電池2を並列に配設し太陽電池モジュールユニット22とする。そして、1本の支柱3に前記太陽電池モジュールユニット22を3段に配設する。太陽光エネルギーを効果的に活用するために、太陽電池モジュールユニット22の方位角、傾斜角を考慮し、上方の太陽電池モジュールユニット22の影が下方の太陽電池モジュールユニット22に影響させないために太陽の南中高度である仰角を考慮して、太陽電池モジュールユニット22を3段に配設する。   In the solar cell 2, for example, two solar cells 2 are arranged in parallel on the mount 8 to form a solar cell module unit 22. And the said solar cell module unit 22 is arrange | positioned in one step | paragraph 3 at 3 steps | paragraphs. In order to effectively use solar energy, the azimuth and inclination angles of the solar cell module unit 22 are taken into consideration, and the shadow of the upper solar cell module unit 22 does not affect the lower solar cell module unit 22 so that the The solar cell module units 22 are arranged in three stages in consideration of the elevation angle which is the south-middle altitude.

まず、方位角である。方位角は、一般的には、図5に示すように、太陽電池2の発電量が最大になる南向きにするのが好ましい。しかし、夏場の午後の電力使用量が最大になることを見込んで、夏期の晴天時の最大出力時刻を午後にしたい場合には、図5に示すように西向きの方が南向きより日射量が一日の内で最大になる時刻が遅いから、方位角を少し西向きに設置する。   First, the azimuth angle. In general, as shown in FIG. 5, the azimuth angle is preferably set in the south direction where the power generation amount of the solar cell 2 is maximized. However, if we expect the maximum amount of power consumption in the afternoon in summer, and want to set the maximum output time in the afternoon in summer, the amount of solar radiation is more westward than southward as shown in FIG. Since the maximum time of the day is late, the azimuth is set slightly west.

次に、傾斜角である。太陽電池2の傾斜角9を30°〜50°とする。図6に示すように、傾斜角9が30°未満になると日射量が徐々に減少し、50°超になると急激に日射量が減少する。太陽電池2の発電量が最大になる年間最適傾斜角9は、図6に示す傾斜角と日射量との関係を示す図から、45°が最も好ましく、日射量は傾斜角30°のときの最大値の97.5%を確保可能となる。なお、傾斜角を30°にすると太陽電池をほぼ横置きにした形態となるので敷地の有効か活用に反するため、敷地有効活用と日射量とのバランスから傾斜角を45°とした。   Next, the inclination angle. The inclination angle 9 of the solar cell 2 is set to 30 ° to 50 °. As shown in FIG. 6, when the inclination angle 9 is less than 30 °, the amount of solar radiation gradually decreases, and when it exceeds 50 °, the amount of solar radiation decreases rapidly. The annual optimum inclination angle 9 at which the power generation amount of the solar cell 2 is maximized is most preferably 45 ° from the diagram showing the relationship between the inclination angle and the amount of solar radiation shown in FIG. 6, and the amount of solar radiation is when the inclination angle is 30 °. 97.5% of the maximum value can be secured. If the inclination angle is set to 30 °, the solar cell is almost horizontally placed, which is contrary to the effectiveness or utilization of the site. Therefore, the inclination angle is set to 45 ° from the balance between the effective use of the site and the amount of solar radiation.

次に、図3に示すように、直近の上方及び下方の太陽電池2間において、上方の太陽電池2の下端11と下方の太陽電池2の上端13とを結んだ線と地面7とのなす角度15を、設置場所の緯度における夏至における南中高度6の仰角5より大きくなるように、支柱を中心にそれぞれ南北方向にずらして配設する。図3に示すように、角度15を南中高度6(仰角5)より大きくするほど、下方の太陽電池2に上方の太陽電池2の影ができない。この南北方向にずらす配置を実現させることにより夏至においても上方の太陽電池の影響によって下方の太陽電池に影が生じない。ちなみに、図4に示すように、特許文献1の場合に、図1又は図3に示す太陽光21の南中高度78°を当てはめてみると、上方の太陽電池の影響によって下方の太陽電池に影Kが生じていることがわかる。   Next, as shown in FIG. 3, between the nearest upper and lower solar cells 2, a line connecting the lower end 11 of the upper solar cell 2 and the upper end 13 of the lower solar cell 2 and the ground 7 is formed. The angle 15 is arranged so as to be shifted in the north-south direction around the column so that the angle 15 becomes larger than the elevation angle 5 of the south-middle altitude 6 at the summer solstice at the latitude of the installation location. As shown in FIG. 3, the shadow of the upper solar cell 2 cannot be formed on the lower solar cell 2 as the angle 15 is made larger than the south-middle altitude 6 (elevation angle 5). By realizing the arrangement shifted in the north-south direction, even in the summer solstice, the lower solar cell is not shaded by the influence of the upper solar cell. By the way, as shown in FIG. 4, in the case of Patent Document 1, when applying the south-middle altitude of 78 ° of the sunlight 21 shown in FIG. It can be seen that a shadow K is generated.

支柱3の縦方向に段を成して配設した場合には、上方の太陽電池2の影が下方の太陽電池2に生じやすい。最も前記影が生じやすいのが夏至に太陽が最も高く昇った高度である南中高度6である。夏至の南中高度6は緯度によって異なり、数式1で求めることができる。   In the case where the columns 3 are arranged in the vertical direction, the shadow of the upper solar cell 2 is likely to occur in the lower solar cell 2. The shadow most likely to occur is the south-middle altitude 6, which is the altitude at which the sun has risen the highest during the summer solstice. The midsummer altitude 6 of the summer solstice varies depending on the latitude, and can be obtained from Equation 1.

[数式1]
夏至のときの太陽の南中高度6=90−(その場所の緯度A)+23.4
[Formula 1]
The sun's southern altitude at the time of the summer solstice 6 = 90-(latitude A of the place) + 23.4

各地の緯度と夏至のときの南中高度6を表1に示す。   Table 1 shows the latitude of each place and the South-China altitude 6 at the summer solstice.

Figure 2016032381
Figure 2016032381

表1より、那覇市の場合は夏至の南中高度6が87.28°であり、この南中高度6でも下方の太陽電池2に上方の太陽電池2による影を生じさせないのは、太陽電池2を段ごとに南北方向にずらすことによって初めて可能となる。図1の場合は太陽20の南中高度6が78°で作成しており、本発明の太陽光発電設備1では南中高度6が78°でも下方の太陽電池2に上方の太陽電池2による影が生じないことがわかる。那覇市のように南中高度が約87°に対しては、上方と下方の太陽電池2間の高さ方向の間隔を大きくするか、上方と下方の太陽電池2間の南北方向の間隔を大きくすることで対応できる。   From Table 1, in the case of Naha City, the summer solstice 6 is 87.28 °, and the solar cell 2 does not cause a shadow on the lower solar cell 2 even at the lower 6 It becomes possible only by shifting 2 in the north-south direction for each step. In the case of FIG. 1, the south / middle altitude 6 of the sun 20 is created at 78 °. In the solar power generation facility 1 of the present invention, even if the south / middle altitude 6 is 78 °, the lower solar cell 2 depends on the upper solar cell 2. It can be seen that no shadow occurs. As in Naha City, for an altitude of about 87 °, increase the distance in the height direction between the upper and lower solar cells 2 or increase the distance in the north-south direction between the upper and lower solar cells 2. We can cope by enlarging.

次に、表2に、各地で実施されているメガソーラーの面積と発電容量でデータと本発明の面積と発電容量を比較した。本発明は、上方の太陽電池2の影が下方の太陽電池2に影響しないので、太陽電池2をアレイ配置にすると、3KW当り設置面積は5.5m×4.0m=22平方メートルである。   Next, Table 2 compares the data, the area of the present invention, and the power generation capacity with the area and power generation capacity of the mega solar implemented in each place. In the present invention, since the shadow of the upper solar cell 2 does not affect the lower solar cell 2, when the solar cell 2 is arranged in an array, the installation area per 3 KW is 5.5 m × 4.0 m = 22 square meters.

Figure 2016032381
Figure 2016032381

表2から、図7に示すようにメガソーラー50などに比較して、大規模な発電所の建設計画の場合に、少なくとも約30%以上の設置面積の低減効果が見込める。   From Table 2, as shown in FIG. 7, compared with the mega solar 50 or the like, in the case of a large-scale power plant construction plan, an effect of reducing the installation area by at least about 30% can be expected.

また、H柱型太陽光発電設備1は、電柱の側面や基礎部分に、電力量計箱32、電源切替箱33、パワーコンディショナー30、配線ダクト31、電力貯蔵用バッテリー装置などを設置することが可能であり、避雷針設備等も設置可能であり、発電した電気を電力負荷及び通信線を他の地域との連携に使用する強電電力用電線、弱電電線類を支持し、引き留めるための装柱金具類を接続できる架空線連携することも可能である。   In addition, the H-column type solar power generation facility 1 can be installed with a watt hour meter box 32, a power supply switching box 33, a power conditioner 30, a wiring duct 31, a power storage battery device, and the like on the side surface and the base portion of the power pole. It is possible to install lightning rod equipment, etc., and the pole brackets to support and retain high-power electric wires and weak electric wires that use the generated electricity for power load and communication lines in cooperation with other regions It is also possible to link overhead lines that can be connected.

1 太陽光発電設備
2 太陽電池
3 支柱
4 梁
5 仰角
6 南中高度
7 地面
8 架台
9 傾斜角
10 コンクリート基礎
11 下端
12 上端
13 電柱
15 角度
18 設置アーム
20 太陽
21 太陽光
22 太陽電池モジュールユニット
30 パワーコンディショナー
31 配線ダクト
32 電力量計箱
33 電源切替箱
50 メガソーラー
K 影
DESCRIPTION OF SYMBOLS 1 Photovoltaic power generation equipment 2 Solar cell 3 Prop 4 Beam 5 Elevation angle 6 South and middle altitude 7 Ground 8 Mounting base 9 Inclination angle 10 Concrete foundation 11 Lower end 12 Upper end 13 Electric pole 15 Angle 18 Installation arm 20 Solar 21 Solar 22 Solar cell module unit 30 Power conditioner 31 Wiring duct 32 Electric energy meter box 33 Power switch box 50 Mega solar K Shadow

本発明は、太陽光パネルを柱を使用して設置する太陽光発電設備に関するものである。   The present invention relates to a photovoltaic power generation facility in which a solar panel is installed using a pillar.

特許文献1には、工場等の敷地内に太陽光発電用支持柱を立設し、太陽電池を複数枚直並列接続して必要な電圧と電流を得られるようにした太陽光発電パネルを横一列に複数枚並べた太陽光発電パネルユニットを、前記太陽光発電用支持柱に縦方向に複数段配置した太陽光発電システムが開示されている。   Patent Document 1 discloses a photovoltaic power generation panel in which a photovoltaic power generation support pillar is erected on the site of a factory or the like, and a plurality of solar cells are connected in series and parallel to obtain necessary voltages and currents. A photovoltaic power generation system is disclosed in which a plurality of photovoltaic power generation panel units arranged in a row are arranged in a plurality of stages in the vertical direction on the support pillar for photovoltaic power generation.

特開2010−50206号公報JP 2010-50206 A

特許文献1に記載の太陽光発電システムは、特許文献1の段落[0018]に「所定の間隔で太陽光発電用支持柱に固定されたので、効率よく大容量の太陽光発電を行うことができる。」と記載され、段落[0030]に「所定の間隔で太陽光発電用支持柱に固定されているので、太陽光が太陽光発電パネルユニットに照射する際に、上方に配置された太陽光発電パネルユニットによって影になることはない。」と記載されている。しかし、夏至のときの太陽の南中高度は、那覇市で約87°、兵庫県明石市で約79°、東京で約78°であり、特許文献1の図1(a)に示す太陽光発電パネルユニットの配設方法では、夏至を中心とした夏場には所定の間隔をかなり拡げかなりの高さにしないと、上方に配置された太陽光発電パネルユニットによる影を下方の太陽光発電パネルユニットに生じないようにすることができないという問題があった。一方、所定の間隔が短いときは、夏至を中心とした夏場には上方に配置された太陽光発電パネルユニットによって下方の太陽光発電パネルユニットに影が長時間生じるという問題があった。   The photovoltaic power generation system described in Patent Literature 1 is described in paragraph [0018] of Patent Literature 1 as “the photovoltaic power generation system is fixed to the photovoltaic power generation support pillars at predetermined intervals. In the paragraph [0030], it is fixed to the solar power generation support pillars at a predetermined interval. It will not be shaded by the photovoltaic panel unit. " However, the southern and middle altitudes of the sun during the summer solstice are about 87 ° in Naha City, about 79 ° in Akashi City, Hyogo Prefecture, and about 78 ° in Tokyo. The sunlight shown in FIG. In the arrangement method of the power generation panel unit, in the summer season centering on the summer solstice, if the predetermined interval is not considerably widened and the height is not considerably high, the shadow of the solar power generation panel unit arranged above is shaded below the solar power generation panel. There was a problem that the unit could not be prevented from occurring. On the other hand, when the predetermined interval is short, there has been a problem that in the summertime centering on the summer solstice, a shadow is generated for a long time on the lower solar power generation panel unit by the upper solar power generation panel unit.

本発明はこうした問題に鑑み創案されたもので、太陽の南中高度が最も高くなる夏至においても上方に配置された太陽電池によって下方の太陽電池に影が生じない太陽光発電設備を提供することを課題とする。   The present invention was devised in view of such problems, and provides a solar power generation facility in which a solar cell disposed below is not shaded by a solar cell disposed above even at the summer solstice when the sun's south and middle altitudes are highest. Is an issue.

請求項1に記載の太陽光発電設備1は、支柱3に太陽電池2を3段配設する太陽光発電設備1であって、2本の支柱3間に少なくとも1か所で梁4を横設したH柱型のそれぞれ支柱3に、それぞれの太陽電池2を、同一段に並列に配設した複数の太陽電池2をそれぞれ近設する太陽電池2とは非連結の形態で、南向きで、30°〜50°の傾斜角9で、かつ直近の上方及び下方の太陽電池2間において、上方の太陽電池2の下端11と下方の太陽電池2の上端12とを結んだ線と地面7とのなす角度15を、設置場所の緯度における夏至における南中高度6(仰角5)より大きくなるように配設し最下段の太陽電池2と最上段の太陽電池2とを、支柱3を中心にそれぞれ南北方向にずらして配設することを特徴とする。 The solar power generation facility 1 according to claim 1 is a solar power generation facility 1 in which solar cells 2 are arranged in three stages on a support column 3, and a beam 4 is horizontally disposed at least at one place between two support columns 3. Each solar cell 2 is arranged on each of the pillars 3 of the H-column type, and a plurality of solar cells 2 arranged in parallel on the same stage are not connected to the solar cells 2 that are close to each other. A line connecting the lower end 11 of the upper solar cell 2 and the upper end 12 of the lower solar cell 2 with the inclination angle 9 of 30 ° to 50 ° and the nearest upper and lower solar cells 2 and the ground 7 Is arranged to be larger than the south-high altitude 6 (elevation angle 5) at the summer solstice at the latitude of the installation location, and the lowermost solar cell 2 and the uppermost solar cell 2 are It is characterized by being shifted from the north and south in the center.

請求項1に記載の太陽光発電設備1は、複数段の太陽電池2をそれぞれ支柱3を中心にそれぞれ南北方向にずらして配設するので、太陽20の南中高度6が1年の期間で高くなる夏至においても上方の太陽電池2の影が下方の太陽電池2に生じないという効果を奏する。   The solar power generation facility 1 according to claim 1 has a plurality of stages of solar cells 2 that are shifted from each other in the north-south direction around the support column 3, so that the south-middle altitude 6 of the sun 20 is in a period of one year. There is an effect that the shadow of the upper solar cell 2 is not generated in the lower solar cell 2 even in the summer solstice.

本発明の太陽光発電設備1を設置する場所としては、戸建て住宅、集合住宅の一角、スーパーマーケット、ガソリンスタンド、高速道路の中継サービスエリア、ゴルフ場跡地、ビルや工場の緑地、遊休地、農地、農道、畦道、離島、砂漠地などであって、風力発電所の近傍、場所の形状や起伏などの設置環境に左右されない電力設備の必要な個所に、小規模から中・大規模設備までの設置が可能である。   The solar power generation facility 1 of the present invention is installed in a detached house, a corner of an apartment house, a supermarket, a gas station, a highway relay service area, a golf course site, green space of a building or factory, idle land, farmland, Installation from small to medium to large-scale facilities in places where power facilities are required, such as farm roads, tunnels, remote islands, desert areas, etc. Is possible.

太陽電池1の傾斜角9を30°〜50°のうちの所定の傾斜角としているので、30°未満又は50°超より日射量が大きくなるという効果を奏する。   Since the inclination angle 9 of the solar cell 1 is set to a predetermined inclination angle of 30 ° to 50 °, there is an effect that the amount of solar radiation becomes larger than 30 ° or more than 50 °.

太陽電池2は、一般的には方位角は真南が日射量は最大になるが、配設された支柱3の位置により多少最大になる方位角が異なる。よって、方位角を支柱3ごとに自在に回転させられるので、日射量を最大になる方位角にすることができる。   In general, the solar cell 2 has a maximum azimuth angle in the south but the solar radiation amount is maximum. However, the maximum azimuth angle differs depending on the position of the disposed support column 3. Therefore, since the azimuth angle can be freely rotated for each column 3, the azimuth angle can be maximized.

2本の支柱3間に少なくとも1か所で梁4を横設したH柱型としたことにより、太陽電池2の受ける風圧荷重強度を高め、太陽電池2の受ける風圧によって支柱3が倒れにくいという効果を奏する。   By adopting an H-column shape in which the beam 4 is horizontally provided at least at one place between the two columns 3, the wind pressure load strength received by the solar cell 2 is increased, and the column 3 is not easily collapsed by the wind pressure received by the solar cell 2. There is an effect.

本発明の太陽光発電設備の側面概要図である。It is a side surface schematic diagram of the photovoltaic power generation equipment of the present invention. 本発明の太陽光発電設備の正面概要図である。It is a front schematic diagram of the photovoltaic power generation equipment of the present invention. 下方の太陽電池に上方の太陽電池の影をつくらない太陽電池の配設方法の説明図である・It is an explanatory view of a solar cell arrangement method that does not create a shadow of the upper solar cell on the lower solar cell.- 特許文献1に記載の太陽光発電パネルユニットの場合の影の説明図である。It is explanatory drawing of the shadow in the case of the photovoltaic power generation panel unit of patent document 1. FIG. 方位角と日射量との関係を示す図である。It is a figure which shows the relationship between an azimuth and the amount of solar radiation. 傾斜角と日射量との関係を示す図である。It is a figure which shows the relationship between an inclination angle and the amount of solar radiation. メガソーラー化した場合の概要図である。It is an outline figure at the time of becoming mega solar.

本発明に係る太陽光発電設備1は、図1又は図2に示すように、支柱3に太陽電池2を3段配設する太陽光発電設備1であって、2本の支柱2間に少なくとも1か所で梁4を横設したH柱型のそれぞれ支柱3に、それぞれの太陽電池2を、同一段に並列に配設した複数の太陽電池2をそれぞれ近設する太陽電池2とは非連結の形態で、南向きで、30°〜50°の傾斜角9で、かつ直近の上方及び下方の太陽電池2間において、上方の太陽電池2の下端と下方の太陽電池2の上端とを結んだ線と地面7とのなす角度15を、設置場所の緯度における夏至における南中高度6より大きくなるように配設し最下段の太陽電池2と最上段の太陽電池2とを、支柱3を中心にそれぞれ南北方向にずらして配設する。 As shown in FIG. 1 or FIG. 2, a solar power generation facility 1 according to the present invention is a solar power generation facility 1 in which three solar cells 2 are arranged on a support column 3, and at least between two support columns 2. It is different from the solar cell 2 in which a plurality of solar cells 2 arranged in parallel on the same stage are respectively arranged on each of the pillars 3 of the H column type in which the beam 4 is horizontally arranged at one place. In the form of connection, the lower end of the upper solar cell 2 and the upper end of the lower solar cell 2 are connected between the solar cells 2 at the inclination angle 9 of 30 ° to 50 ° and the nearest upper and lower solar cells 2. The angle 15 formed by the connected line and the ground surface 7 is arranged so as to be larger than the south-middle altitude 6 at the summer solstice at the latitude of the installation location, and the bottom solar cell 2 and the top solar cell 2 are 3 are shifted in the north-south direction around the center.

H柱型は2本の支柱2間に少なくとも1か所で梁4を架設したものである。支柱3は例えば配電線路用電柱13(コンクリートポール)であり、この2本の配電線路用電柱13をコンクリート基礎10で固めた地中に立設し、2本の配電線路用電柱13を少なくとも1か所で、例えば梁4で2本の配電線路用電柱13の両側面から抱合せて固定する。固定した正面視からの形態がH字に類似しているのでH柱型と名付けた。H柱型は高強度の構造物であるため、太陽電池2に対する風圧荷重でも倒壊しない強度を確保することができる。また、架線金物類を高強度のJIS規格品を使用すれば、施工精度が均一でさらに高強度のH柱とすることができる。   The H column type has a beam 4 installed between two support columns 2 at least at one place. The support column 3 is, for example, a distribution line power pole 13 (concrete pole). The two distribution line power poles 13 are erected in the ground solidified by the concrete foundation 10 and at least one of the two distribution line power poles 13 is provided. In place, for example, the beams 4 are fixed by being squeezed from both side faces of the two distribution line power poles 13. Since the shape from the fixed front view is similar to the H-shape, it was named H-column type. Since the H-column type is a high-strength structure, it is possible to ensure the strength that does not collapse even when wind pressure load is applied to the solar cell 2. Moreover, if high strength JIS standard products are used for the overhead wire hardware, the construction accuracy is uniform and the H column can be made even stronger.

そして、H柱型の支柱3に設置アーム18を取り付け、該設置アーム18に軽量腕金を井桁に構成した架台8を吊架する。架台8の材質として、例えばJISに規定された鋼材やアルミニウム合金などの市場で流通している部材を用いた場合にはコスト低減や短納期化を実現できる。また、溶融亜鉛メッキを施工することにより対候性に優れたものにすることができる。   Then, an installation arm 18 is attached to the H-column-type support column 3, and a gantry 8 in which a lightweight arm metal is formed in a well beam is suspended from the installation arm 18. As a material for the gantry 8, for example, when a member distributed in the market such as a steel material or an aluminum alloy specified in JIS is used, cost reduction and a short delivery time can be realized. Moreover, it can be made excellent in weather resistance by applying hot dip galvanizing.

太陽電池2は、例えば前記架台8に2つの太陽電池2を並列に配設し太陽電池モジュールユニット22とする。そして、1本の支柱3に前記太陽電池モジュールユニット22を3段に配設する。太陽光エネルギーを効果的に活用するために、太陽電池モジュールユニット22の方位角、傾斜角を考慮し、上方の太陽電池モジュールユニット22の影が下方の太陽電池モジュールユニット22に影響させないために太陽の南中高度である仰角を考慮して、太陽電池モジュールユニット22を3段に配設する。   In the solar cell 2, for example, two solar cells 2 are arranged in parallel on the mount 8 to form a solar cell module unit 22. And the said solar cell module unit 22 is arrange | positioned in one step | paragraph 3 at 3 steps | paragraphs. In order to effectively use solar energy, the azimuth and inclination angles of the solar cell module unit 22 are taken into consideration, and the shadow of the upper solar cell module unit 22 does not affect the lower solar cell module unit 22 so that the The solar cell module units 22 are arranged in three stages in consideration of the elevation angle which is the south-middle altitude.

まず、方位角である。方位角は、一般的には、図5に示すように、太陽電池2の発電量が最大になる南向きにするのが好ましい。しかし、夏場の午後の電力使用量が最大になることを見込んで、夏期の晴天時の最大出力時刻を午後にしたい場合には、図5に示すように西向きの方が南向きより日射量が一日の内で最大になる時刻が遅いから、方位角を少し西向きに設置する。   First, the azimuth angle. In general, as shown in FIG. 5, the azimuth angle is preferably set in the south direction where the power generation amount of the solar cell 2 is maximized. However, if we expect the maximum amount of power consumption in the afternoon in summer, and want to set the maximum output time in the afternoon in summer, the amount of solar radiation is more westward than southward as shown in FIG. Since the maximum time of the day is late, the azimuth is set slightly west.

次に、傾斜角である。太陽電池2の傾斜角9を30°〜50°とする。図6に示すように、傾斜角9が30°未満になると日射量が徐々に減少し、50°超になると急激に日射量が減少する。太陽電池2の発電量が最大になる年間最適傾斜角9は、図6に示す傾斜角と日射量との関係を示す図から、45°が最も好ましく、日射量は傾斜角30°のときの最大値の97.5%を確保可能となる。なお、傾斜角を30°にすると太陽電池をほぼ横置きにした形態となるので敷地の有効か活用に反するため、敷地有効活用と日射量とのバランスから傾斜角を45°とした。   Next, the inclination angle. The inclination angle 9 of the solar cell 2 is set to 30 ° to 50 °. As shown in FIG. 6, when the inclination angle 9 is less than 30 °, the amount of solar radiation gradually decreases, and when it exceeds 50 °, the amount of solar radiation decreases rapidly. The annual optimum inclination angle 9 at which the power generation amount of the solar cell 2 is maximized is most preferably 45 ° from the diagram showing the relationship between the inclination angle and the amount of solar radiation shown in FIG. 6, and the amount of solar radiation is when the inclination angle is 30 °. 97.5% of the maximum value can be secured. If the inclination angle is set to 30 °, the solar cell is almost horizontally placed, which is contrary to the effectiveness or utilization of the site. Therefore, the inclination angle is set to 45 ° from the balance between the effective use of the site and the amount of solar radiation.

次に、図3に示すように、直近の上方及び下方の太陽電池2間において、上方の太陽電池2の下端11と下方の太陽電池2の上端13とを結んだ線と地面7とのなす角度15を、設置場所の緯度における夏至における南中高度6の仰角5より大きくなるように、支柱を中心にそれぞれ南北方向にずらして配設する。図3に示すように、角度15を南中高度6(仰角5)より大きくするほど、下方の太陽電池2に上方の太陽電池2の影ができない。この南北方向にずらす配置を実現させることにより夏至においても上方の太陽電池の影響によって下方の太陽電池に影が生じない。ちなみに、図4に示すように、特許文献1の場合に、図1又は図3に示す太陽光21の南中高度78°を当てはめてみると、上方の太陽電池の影響によって下方の太陽電池に影Kが生じていることがわかる。   Next, as shown in FIG. 3, between the nearest upper and lower solar cells 2, a line connecting the lower end 11 of the upper solar cell 2 and the upper end 13 of the lower solar cell 2 and the ground 7 is formed. The angle 15 is arranged so as to be shifted in the north-south direction around the column so that the angle 15 becomes larger than the elevation angle 5 of the south-middle altitude 6 at the summer solstice at the latitude of the installation location. As shown in FIG. 3, the shadow of the upper solar cell 2 cannot be formed on the lower solar cell 2 as the angle 15 is made larger than the south-middle altitude 6 (elevation angle 5). By realizing the arrangement shifted in the north-south direction, even in the summer solstice, the lower solar cell is not shaded by the influence of the upper solar cell. By the way, as shown in FIG. 4, in the case of Patent Document 1, when applying the south-middle altitude of 78 ° of the sunlight 21 shown in FIG. It can be seen that a shadow K is generated.

支柱3の縦方向に段を成して配設した場合には、上方の太陽電池2の影が下方の太陽電池2に生じやすい。最も前記影が生じやすいのが夏至に太陽が最も高く昇った高度である南中高度6である。夏至の南中高度6は緯度によって異なり、数式1で求めることができる。   In the case where the columns 3 are arranged in the vertical direction, the shadow of the upper solar cell 2 is likely to occur in the lower solar cell 2. The most prone to the shadow is the south-middle altitude 6, which is the altitude at which the sun rose the highest during the summer solstice. The midsummer altitude 6 of the summer solstice varies depending on the latitude, and can be obtained from Equation 1.

Figure 2016032381
Figure 2016032381

各地の緯度と夏至のときの南中高度6を表1に示す。   Table 1 shows the latitude of each place and the South-China altitude 6 at the summer solstice.

Figure 2016032381
Figure 2016032381

表1より、那覇市の場合は夏至の南中高度6が87.28°であり、この南中高度6でも下方の太陽電池2に上方の太陽電池2による影を生じさせないのは、太陽電池2を段ごとに南北方向にずらすことによって初めて可能となる。図1の場合は太陽20の南中高度6が78°で作成しており、本発明の太陽光発電設備1では南中高度6が78°でも下方の太陽電池2に上方の太陽電池2による影が生じないことがわかる。那覇市のように南中高度が約87°に対しては、上方と下方の太陽電池2間の高さ方向の間隔を大きくするか、上方と下方の太陽電池2間の南北方向の間隔を大きくすることで対応できる。   From Table 1, in the case of Naha City, the summer solstice 6 is 87.28 °, and the solar cell 2 does not cause a shadow on the lower solar cell 2 even at the lower 6 It becomes possible only by shifting 2 in the north-south direction for each step. In the case of FIG. 1, the south / middle altitude 6 of the sun 20 is created at 78 °. In the solar power generation facility 1 of the present invention, even if the south / middle altitude 6 is 78 °, the lower solar cell 2 depends on the upper solar cell 2. It can be seen that no shadow occurs. As in Naha City, for an altitude of about 87 °, increase the distance in the height direction between the upper and lower solar cells 2 or increase the distance in the north-south direction between the upper and lower solar cells 2. We can cope by enlarging.

次に、表2に、各地で実施されているメガソーラーの面積と発電容量でデータと本発明の面積と発電容量を比較した。本発明は、上方の太陽電池2の影が下方の太陽電池2に影響しないので、太陽電池2をアレイ配置にすると、3KW当り設置面積は5.5m×4.0m=22平方メートルである。   Next, Table 2 compares the data, the area of the present invention, and the power generation capacity with the area and power generation capacity of the mega solar implemented in each place. In the present invention, since the shadow of the upper solar cell 2 does not affect the lower solar cell 2, when the solar cell 2 is arranged in an array, the installation area per 3 KW is 5.5 m × 4.0 m = 22 square meters.

Figure 2016032381
Figure 2016032381

表2から、図7に示すようにメガソーラー50などに比較して、大規模な発電所の建設計画の場合に、少なくとも約30%以上の設置面積の低減効果が見込める。   From Table 2, as shown in FIG. 7, compared with the mega solar 50 or the like, in the case of a large-scale power plant construction plan, an effect of reducing the installation area by at least about 30% can be expected.

また、H柱型太陽光発電設備1は、電柱の側面や基礎部分に、電力量計箱32、電源切替箱33、パワーコンディショナー30、配線ダクト31、電力貯蔵用バッテリー装置などを設置することが可能であり、避雷針設備等も設置可能であり、発電した電気を電力負荷及び通信線を他の地域との連携に使用する強電電力用電線、弱電電線類を支持し、引き留めるための装柱金具類を接続できる架空線連携することも可能である。   In addition, the H-column type solar power generation facility 1 can be installed with a watt hour meter box 32, a power supply switching box 33, a power conditioner 30, a wiring duct 31, a power storage battery device, and the like on the side surface and the base portion of the power pole. It is possible to install lightning rod equipment, etc., and the pole brackets to support and retain high-power electric wires and weak electric wires that use the generated electricity for power load and communication lines in cooperation with other regions It is also possible to link overhead lines that can be connected.

1 太陽光発電設備
2 太陽電池
3 支柱
4 梁
5 仰角
6 南中高度
7 地面
8 架台
9 傾斜角
10 コンクリート基礎
11 下端
12 上端
13 電柱
15 角度
18 設置アーム
20 太陽
21 太陽光
22 太陽電池モジュールユニット
30 パワーコンディショナー
31 配線ダクト
32 電力量計箱
33 電源切替箱
50 メガソーラー
K 影
DESCRIPTION OF SYMBOLS 1 Photovoltaic power generation equipment 2 Solar cell 3 Prop 4 Beam 5 Elevation angle 6 South and middle altitude 7 Ground 8 Mounting base 9 Inclination angle 10 Concrete foundation 11 Lower end 12 Upper end 13 Electric pole 15 Angle 18 Installation arm 20 Solar 21 Solar 22 Solar cell module unit 30 Power conditioner 31 Wiring duct 32 Electric energy meter box 33 Power switch box 50 Mega solar K Shadow

Claims (1)

支柱に太陽電池を3段配設する太陽光発電設備であって、
2本の支柱間に少なくとも1か所で梁を横設したH柱型のそれぞれ支柱に、
それぞれの太陽電池を、
南向きで、30°〜50°の傾斜角で、かつ
直近の上方及び下方の太陽電池間において、上方の太陽電池の下端と下方の太陽電池の上端とを結んだ線と地面とのなす角度を、設置場所の緯度における夏至における南中高度より大きくなるように、支柱を中心にそれぞれ南北方向にずらして配設することを特徴とする太陽光発電設備。
It is a photovoltaic power generation facility in which three stages of solar cells are arranged on a support,
In each of the pillars of the H column type where the beam is laid in at least one place between the two pillars,
Each solar cell
The angle between the ground and the line connecting the lower end of the upper solar cell and the upper end of the lower solar cell between the upper and lower solar cells closest to the south, at an inclination angle of 30 ° to 50 °. The solar power generation equipment is characterized by being arranged so as to be shifted in the north-south direction around the support so that it is larger than the south-mid altitude at the summer solstice at the latitude of the installation location.
JP2014154397A 2014-07-30 2014-07-30 Solar power generation equipment Active JP5870413B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154397A JP5870413B1 (en) 2014-07-30 2014-07-30 Solar power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154397A JP5870413B1 (en) 2014-07-30 2014-07-30 Solar power generation equipment

Publications (2)

Publication Number Publication Date
JP5870413B1 JP5870413B1 (en) 2016-03-01
JP2016032381A true JP2016032381A (en) 2016-03-07

Family

ID=55362110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154397A Active JP5870413B1 (en) 2014-07-30 2014-07-30 Solar power generation equipment

Country Status (1)

Country Link
JP (1) JP5870413B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7509479B1 (en) 2023-12-05 2024-07-02 啓丞 馬場 Solar power system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888389A (en) * 1994-09-16 1996-04-02 Hitachi Ltd Solar power generation unit
JPH08162660A (en) * 1994-12-07 1996-06-21 Kazuichi Torii Support device for solar cell
JPH10210777A (en) * 1997-01-22 1998-08-07 Asaka Sekkei Jimusho:Kk Three-dimensional combination device of tower and solar power panels
JP2005252163A (en) * 2004-03-08 2005-09-15 National Agriculture & Bio-Oriented Research Organization Structure and method for mounting solar panel
JP2010050206A (en) * 2008-08-20 2010-03-04 Aichi Kinzoku Kogyo Kk Photovoltaic generation system
KR101010452B1 (en) * 2008-03-13 2011-01-21 현대중공업 주식회사 Solar Power-Generation Tower
JP2011249543A (en) * 2010-05-26 2011-12-08 Houseplan Co Ltd Seesaw-type solar power generation device
EP2515347A1 (en) * 2011-04-21 2012-10-24 Techsun Energy S.R.L. Pillar construction for photovoltaic systems
JP2014134056A (en) * 2013-01-11 2014-07-24 Koji Yoshizawa Solar panel tower

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888389A (en) * 1994-09-16 1996-04-02 Hitachi Ltd Solar power generation unit
JPH08162660A (en) * 1994-12-07 1996-06-21 Kazuichi Torii Support device for solar cell
JPH10210777A (en) * 1997-01-22 1998-08-07 Asaka Sekkei Jimusho:Kk Three-dimensional combination device of tower and solar power panels
JP2005252163A (en) * 2004-03-08 2005-09-15 National Agriculture & Bio-Oriented Research Organization Structure and method for mounting solar panel
KR101010452B1 (en) * 2008-03-13 2011-01-21 현대중공업 주식회사 Solar Power-Generation Tower
JP2010050206A (en) * 2008-08-20 2010-03-04 Aichi Kinzoku Kogyo Kk Photovoltaic generation system
JP2011249543A (en) * 2010-05-26 2011-12-08 Houseplan Co Ltd Seesaw-type solar power generation device
EP2515347A1 (en) * 2011-04-21 2012-10-24 Techsun Energy S.R.L. Pillar construction for photovoltaic systems
JP2014134056A (en) * 2013-01-11 2014-07-24 Koji Yoshizawa Solar panel tower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7509479B1 (en) 2023-12-05 2024-07-02 啓丞 馬場 Solar power system

Also Published As

Publication number Publication date
JP5870413B1 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
Vasisht et al. Performance of solar photovoltaic installations: Effect of seasonal variations
Tallab et al. Predict system efficiency of 1 MWc photovoltaic power plant interconnected to the distribution network using PVSYST software
JP2015216766A (en) Photovoltaic power generation device
Bilir et al. Photovoltaic system assessment for a school building
US20200244211A1 (en) Method and system apparatus for vertical installation of solar cell panel
GB2503944A (en) A sun Tracking Solar Panel Array
Chen et al. Are the optimum angles of photovoltaic systems so important?
Mubarak et al. Optimal Power Analysis for the Installation of On-Grid Rooftop Photovoltaic Solar Systems (RPVSS) in the Industrial Engineering Laboraturiom Building, Bukit Indah Universitas Malikussaleh Lhokseumawe Aceh
US20220021327A1 (en) System that increases solar energy production for large scale solar energy installations
Radovic et al. Hybrid photovoltaic-diesel energy system optimization (case study of electric power supply for buildings under the weather conditions of Montenegro)
JP5870413B1 (en) Solar power generation equipment
CN108809215A (en) Side sets up photovoltaic battery panel electricity generating plan on a highway
KR20100115652A (en) Solar cell module assembly
Tansel et al. Solar energy harvesting at closed landfills: Energy yield and wind loads on solar panels on top and side slopes
Baumgartner et al. Solar ski lift PV carport and other solar wings cable based solutions
Rosa-Clot et al. RAST: RoundAbout solar tracking
JP3178805U (en) Solar power panel layout
BG67499B1 (en) Active tracking system for the positioning of solar panels
JP3192880U (en) Solar power system
JP2010192777A (en) Photovoltaic power generation facility and installation method of solar cell array
RU106725U1 (en) Solar power station
CN106253803B (en) Solar power system
Kostić et al. Solar PV plants in Serbia and practical experience for solar power plant “Solaris 1&2” in Kladovo
CN105024630A (en) Roof photovoltaic generation support system
CN204886802U (en) Roof photovoltaic power generation photovoltaic mounting system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 5870413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250