JP2016031330A - Thermal conductivity measuring system - Google Patents

Thermal conductivity measuring system Download PDF

Info

Publication number
JP2016031330A
JP2016031330A JP2014154624A JP2014154624A JP2016031330A JP 2016031330 A JP2016031330 A JP 2016031330A JP 2014154624 A JP2014154624 A JP 2014154624A JP 2014154624 A JP2014154624 A JP 2014154624A JP 2016031330 A JP2016031330 A JP 2016031330A
Authority
JP
Japan
Prior art keywords
thermal conductivity
sample
temperature gradient
magnetic field
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014154624A
Other languages
Japanese (ja)
Inventor
諒介 前川
Ryosuke Maekawa
諒介 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014154624A priority Critical patent/JP2016031330A/en
Publication of JP2016031330A publication Critical patent/JP2016031330A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermal conductivity measuring system capable of accurately measuring the thermal conductivity of a sample even if a magnetic field or an electric field is applied to the sample.SOLUTION: A thermal conductivity measuring system comprises: electric field/magnetic field application means; temperature gradient prediction means; temperature gradient adjustment means; and thermal conductivity measuring means. The electric field/magnetic field application means applies an electric field or a magnetic field to a sample. The temperature gradient prediction means predicts a temperature gradient within the sample on the basis of temperatures detected at a plurality of points in the sample. The temperature gradient adjustment means heats or cools the sample in order to eliminate the temperature gradient predicted by the temperature gradient prediction means when the electric field/magnetic field application means applies the electric field or the magnetic field to the sample. The thermal conductivity measuring means measures the thermal conductivity of the sample in a state in which the temperature gradient adjustment means heats or cools the sample.SELECTED DRAWING: Figure 1

Description

本発明は、熱伝導率の計測技術に関する。   The present invention relates to a thermal conductivity measurement technique.

従来から、試料の熱伝導率を計測する技術が知られている。例えば、特許文献1には、熱伝導率を測定する試料の両面の温度差と、試料の厚さ方向に流れる熱流量とをそれぞれ計測して所定の算出式により熱伝導率を求める熱伝導率測定装置において、試料に密着させて一対の熱電変換装置を配置することで、試料の平均温度を制御する技術が開示されている。   Conventionally, a technique for measuring the thermal conductivity of a sample is known. For example, Patent Document 1 discloses a thermal conductivity in which a temperature difference between both surfaces of a sample whose thermal conductivity is to be measured and a heat flow rate flowing in the thickness direction of the sample are respectively measured and the thermal conductivity is obtained by a predetermined calculation formula. A technique for controlling the average temperature of a sample by disposing a pair of thermoelectric conversion devices in close contact with the sample in the measurement device is disclosed.

特開昭63−290949号公報JP-A-63-290949

内部で抵抗率が異なる試料において、磁場や電場を与えたときの熱伝導率を求める場合、磁場や電場を与えることにより発生した電流に起因した試料自体の発熱によって、試料中に温度勾配が生じる。この場合、正確な熱伝導率を求めることができないという問題がある。   When obtaining the thermal conductivity of a sample with different resistivity inside when applying a magnetic field or electric field, a temperature gradient occurs in the sample due to the heat generated by the sample itself due to the current generated by applying the magnetic field or electric field. . In this case, there is a problem that an accurate thermal conductivity cannot be obtained.

本発明は、上記のような課題を解決するためになされたものであり、試料に磁場や電場を与えた場合であっても、試料の熱伝導率を正確に計測することが可能な熱伝導率測定システムを提供することを主な目的とする。   The present invention has been made to solve the above-described problems, and is capable of accurately measuring the thermal conductivity of a sample even when a magnetic field or an electric field is applied to the sample. The main purpose is to provide a rate measurement system.

本発明の1つの観点では、試料の熱伝導率を計測する熱伝導率測定システムは、前記試料に電場又は磁場を与える電場/磁場印加手段と、前記試料中の複数点で検出した温度に基づき、前記試料の内部での温度勾配を予測する温度勾配予測手段と、前記電場/磁場印加手段によって電場又は磁場が印加されたときに、前記温度勾配予測手段が予測した温度勾配をなくすように、前記試料を加熱又は冷却する温度勾配調整手段と、前記温度勾配調整手段により前記試料を加熱又は冷却した状態で前記試料の熱伝導率を計測する熱伝導率計測手段と、を有する。   In one aspect of the present invention, a thermal conductivity measurement system for measuring the thermal conductivity of a sample is based on electric field / magnetic field applying means for applying an electric field or a magnetic field to the sample, and temperatures detected at a plurality of points in the sample. A temperature gradient predicting means for predicting a temperature gradient inside the sample and a temperature gradient predicted by the temperature gradient predicting means when an electric field or a magnetic field is applied by the electric field / magnetic field applying means. Temperature gradient adjusting means for heating or cooling the sample, and thermal conductivity measuring means for measuring the thermal conductivity of the sample in a state where the sample is heated or cooled by the temperature gradient adjusting means.

上記の熱伝導率測定システムは、電場/磁場印加手段と、温度勾配予測手段と、温度勾配調整手段と、熱伝導率計測手段と、を有する。電場/磁場印加手段は、試料に電場又は磁場を与える。温度勾配予測手段は、試料中の複数点で検出した温度に基づき、試料の内部での温度勾配を予測する。温度勾配調整手段は、電場/磁場印加手段によって電場又は磁場が印加されたときに、温度勾配予測手段が予測した温度勾配をなくすように、試料を加熱又は冷却する。熱伝導計測手段は、温度勾配調整手段により試料を加熱又は冷却した状態で試料の熱伝導率を計測する。この態様により、熱伝導率測定システムは、電場又は磁場を与えた試料の熱伝導率を正確に計測することができる。   The thermal conductivity measuring system includes an electric field / magnetic field applying unit, a temperature gradient predicting unit, a temperature gradient adjusting unit, and a thermal conductivity measuring unit. The electric field / magnetic field applying means applies an electric field or a magnetic field to the sample. The temperature gradient predicting means predicts a temperature gradient inside the sample based on temperatures detected at a plurality of points in the sample. The temperature gradient adjusting means heats or cools the sample so as to eliminate the temperature gradient predicted by the temperature gradient predicting means when an electric field or magnetic field is applied by the electric field / magnetic field applying means. The thermal conductivity measuring means measures the thermal conductivity of the sample while the sample is heated or cooled by the temperature gradient adjusting means. According to this aspect, the thermal conductivity measurement system can accurately measure the thermal conductivity of a sample to which an electric field or a magnetic field is applied.

実施形態に係る熱伝導率測定システムの構成を示すブロック図である。It is a block diagram which shows the structure of the thermal conductivity measuring system which concerns on embodiment. (A)は、温度勾配検出処理の概要を示す図である。(B)は、放射温度計の検出値に基づく熱伝導率可変材料内の温度の推定値を示す。(A) is a figure which shows the outline | summary of a temperature gradient detection process. (B) shows the estimated value of the temperature in the thermal conductivity variable material based on the detected value of the radiation thermometer. (A)は、温度勾配調整処理の概要を示す図である。(B)は、調整用加熱部による加熱時での熱伝導率可変材料内の座標と温度との関係を示す。(A) is a figure which shows the outline | summary of a temperature gradient adjustment process. (B) shows the relationship between the coordinates in the thermal conductivity variable material and the temperature during heating by the adjustment heating unit. 熱伝導率計測処理の概要を示す図である。It is a figure which shows the outline | summary of a thermal conductivity measurement process.

以下、図面を参照して本発明に係る電動車両の好適な実施の形態について説明する。   Hereinafter, preferred embodiments of an electric vehicle according to the present invention will be described with reference to the drawings.

[熱伝導率測定システムの構成]
図1は、本実施形態に係る熱伝導率測定システムの構成を示すブロック図である。熱伝導率測定システムは、試料である熱伝導率可変材料1の熱伝導率を測定するシステムであって、電源2と、熱伝導率測定装置3と、放射温度計4と、調整用加熱部5と、測定用加熱部6とを有する。
[Configuration of thermal conductivity measurement system]
FIG. 1 is a block diagram showing the configuration of the thermal conductivity measurement system according to this embodiment. The thermal conductivity measurement system is a system for measuring the thermal conductivity of the thermal conductivity variable material 1 as a sample, and includes a power source 2, a thermal conductivity measuring device 3, a radiation thermometer 4, and an adjustment heating unit. 5 and a heating part 6 for measurement.

熱伝導率可変材料1は、第1材料11と第2材料12との積層体であり、電場や磁場の印加の有無により熱伝導率が変化する。図1は、熱伝導率可変材料1が電源2により所定の電圧が印加された状態を示す。また、第1材料11は、第2材料12よりも抵抗率が高い。従って、電源2により電圧が印加された場合の第1材料11の発熱量は、第2材料12の発熱量よりも多くなる。   The thermal conductivity variable material 1 is a laminated body of a first material 11 and a second material 12, and the thermal conductivity changes depending on whether an electric field or a magnetic field is applied. FIG. 1 shows a state in which a predetermined voltage is applied to the heat conductivity variable material 1 by a power source 2. Further, the first material 11 has a higher resistivity than the second material 12. Therefore, the amount of heat generated by the first material 11 when a voltage is applied from the power source 2 is greater than the amount of heat generated by the second material 12.

放射温度計4は、熱伝導率可変材料1を対象とした放射側温を行う。放射温度計4は、熱伝導率の計測時には、第2材料12側の熱伝導率可変材料1の表面である第2表面9dでの温度を計測する。また、放射温度計4は、熱伝導率の計測前の熱伝導率可変材料1内の温度勾配を検出する処理では、境界面9mの温度、第1材料11側の熱伝導率可変材料1の表面である第1表面9uの温度、及び第2表面9dでの温度を計測する。   The radiation thermometer 4 performs radiation side temperature for the thermal conductivity variable material 1. The radiation thermometer 4 measures the temperature at the second surface 9d, which is the surface of the thermal conductivity variable material 1 on the second material 12 side, when measuring the thermal conductivity. Further, the radiation thermometer 4 detects the temperature gradient in the thermal conductivity variable material 1 before the measurement of the thermal conductivity, and the temperature of the boundary surface 9m, the thermal conductivity variable material 1 on the first material 11 side. The temperature of the first surface 9u, which is the surface, and the temperature of the second surface 9d are measured.

調整用加熱部5は、第2表面9dから熱伝導率可変材料1を加熱するためのレーザである。調整用加熱部5は、熱伝導率可変材料1内に生じた温度勾配をキャンセルする(即ち温度勾配を0にする)のに用いられる。測定用加熱部6は、熱伝導率の測定を目的として第1表面9uから熱伝導率可変材料1を加熱するためのレーザである。調整用加熱部5及び測定用加熱部6は、熱伝導率測定装置3の制御に基づき加熱の有無が切り替えられる。   The adjustment heating unit 5 is a laser for heating the heat conductivity variable material 1 from the second surface 9d. The adjustment heating unit 5 is used to cancel the temperature gradient generated in the heat conductivity variable material 1 (that is, to set the temperature gradient to 0). The measurement heating unit 6 is a laser for heating the thermal conductivity variable material 1 from the first surface 9 u for the purpose of measuring thermal conductivity. The heating unit for adjustment 5 and the heating unit for measurement 6 are switched on and off based on the control of the thermal conductivity measuring device 3.

熱伝導率測定装置3は、レーザフラッシュ法に基づき、電圧印加時の熱伝導率可変材料1の熱伝導率を計測する。このとき、熱伝導率測定装置3は、熱伝導率可変材料1への電圧印加によって生じる電流と、第1材料11と第2材料12との抵抗率の差異とに起因して生じる熱伝導率可変材料1内の温度勾配をなくすように、調整用加熱部5により第2表面9dを加熱する。そして、熱伝導率測定装置3は、測定用加熱部6により第1表面9uを加熱し、第2表面9dの温度変化を測定することで、熱伝導率可変材料1の熱伝導率を求める。   The thermal conductivity measuring device 3 measures the thermal conductivity of the variable thermal conductivity material 1 when a voltage is applied, based on a laser flash method. At this time, the thermal conductivity measuring device 3 has a thermal conductivity caused by a current generated by applying a voltage to the thermal conductivity variable material 1 and a difference in resistivity between the first material 11 and the second material 12. The second surface 9 d is heated by the adjustment heating unit 5 so as to eliminate the temperature gradient in the variable material 1. And the thermal conductivity measuring apparatus 3 calculates | requires the thermal conductivity of the thermal conductivity variable material 1 by heating the 1st surface 9u by the heating part 6 for a measurement, and measuring the temperature change of the 2nd surface 9d.

[計測方法]
次に、熱伝導率測定装置3が実行する熱伝導率の計測方法について説明する。概略的には、熱伝導率測定装置3は、熱伝導率可変材料1への電圧印加時に生じる温度勾配を検出する処理(「温度勾配検出処理」とも呼ぶ。)、検出した温度勾配をなくすように調整用加熱部5により熱伝導率可変材料1を加熱する処理(「温度勾配調整処理」とも呼ぶ。)、及びレーザフラッシュ法により熱伝導率可変材料1の熱伝導率を計測する処理(「熱伝導率計測処理」とも呼ぶ。)を順に実行する。これにより、熱伝導率測定装置3は、電場又は磁場の作用により変化した熱伝導率可変材料1の熱伝導率を的確に計測する。
[Measurement method]
Next, the measurement method of the heat conductivity which the heat conductivity measuring apparatus 3 performs is demonstrated. Schematically, the thermal conductivity measurement device 3 detects a temperature gradient that occurs when a voltage is applied to the thermal conductivity variable material 1 (also referred to as “temperature gradient detection process”), and eliminates the detected temperature gradient. The process of heating the thermal conductivity variable material 1 by the adjustment heating unit 5 (also referred to as “temperature gradient adjustment process”) and the process of measuring the thermal conductivity of the thermal conductivity variable material 1 by the laser flash method (“ Also referred to as “thermal conductivity measurement process”). Thereby, the thermal conductivity measuring device 3 accurately measures the thermal conductivity of the variable thermal conductivity material 1 changed by the action of an electric field or a magnetic field.

(1)温度勾配検出処理
図2(A)は、温度勾配検出処理の概要を示す図である。図2(A)に示すように、放射温度計4は、放射側温により、第1表面9uでの温度「Tu」、境界面9mでの温度「Tm」、第2表面9dでの温度「Td」をそれぞれ取得し、熱伝導率測定装置3へ供給する。
(1) Temperature gradient detection process FIG. 2A is a diagram showing an outline of the temperature gradient detection process. As shown in FIG. 2A, the radiation thermometer 4 has a temperature “Tu” at the first surface 9u, a temperature “Tm” at the boundary surface 9m, and a temperature “Tm” at the second surface 9d, depending on the radiation side temperature. Td ”is acquired and supplied to the thermal conductivity measuring device 3.

図2(B)は、放射温度計4の検出値に基づく熱伝導率可変材料1内の温度の推定値を示す。なお、図2(B)に示すグラフの縦軸「距離」は、第2表面9dの垂直方向を基準とした場合の第2表面9dから熱伝導率可変材料1内の各位置までの距離を示す。また、計測点21は、第2表面9dを放射側温した場合の計測結果を示し、計測点22は、境界面9mを放射側温した場合の計測結果を示し、計測点23は、第1表面9uを放射側温した場合の計測結果を示す。   FIG. 2B shows an estimated value of the temperature in the thermal conductivity variable material 1 based on the detection value of the radiation thermometer 4. The vertical axis “distance” in the graph shown in FIG. 2B represents the distance from the second surface 9d to each position in the thermal conductivity variable material 1 when the vertical direction of the second surface 9d is used as a reference. Show. Moreover, the measurement point 21 shows the measurement result when the second surface 9d is radiated side temperature, the measurement point 22 shows the measurement result when the boundary surface 9m is radiated side temperature, and the measurement point 23 is the first point. The measurement result when the surface 9u is subjected to radiation side temperature is shown.

図2(B)に示すように、第1材料11が第2材料12よりも抵抗率が高く、発熱量が多いため、第2材料12から遠い第1材料11側の第1表面9uに近付くほど計測温度は高くなり、第1材料11から遠い第2材料12側の第2表面9dに近付くほど計測温度は低くなる。そして、この場合、熱伝導率測定装置3は、計測点21〜23に基づき、温度と距離Lとの関係を示す直線(即ち一次式)を認識し、当該直線のグラフの傾き「θ」を、電圧印加時に生じる熱伝導率可変材料1の温度勾配として認識する。   As shown in FIG. 2B, the first material 11 has a higher resistivity and a larger amount of heat generation than the second material 12, and therefore approaches the first surface 9u on the first material 11 side far from the second material 12. The measured temperature becomes higher, and the measured temperature becomes lower as it approaches the second surface 9d on the second material 12 side far from the first material 11. In this case, the thermal conductivity measuring device 3 recognizes a straight line (that is, a linear expression) indicating the relationship between the temperature and the distance L on the basis of the measurement points 21 to 23, and determines the slope “θ” of the graph of the straight line. This is recognized as a temperature gradient of the thermal conductivity variable material 1 generated when a voltage is applied.

(2)温度勾配調整処理
図3(A)は、温度勾配調整処理の概要を示す図である。図3(A)に示すように、温度勾配調整処理では、熱伝導率測定装置3は、調整用加熱部5により、温度が低い側の第2表面9dから熱伝導率可変材料1を加熱する。この場合、熱伝導率測定装置3は、調整用加熱部5の出力を、温度勾配検出処理により検出した傾きθが大きいほど大きくする。具体的には、熱伝導率測定装置3は、想定される傾きθごとに、当該傾きθの温度勾配をキャンセルするのに必要な調整用加熱部5の出力値を示すマップ又は式を、予めメモリ等に記憶し、当該マップ等を参照して調整用加熱部5の出力を決定する。
(2) Temperature gradient adjustment process FIG. 3A is a diagram showing an outline of the temperature gradient adjustment process. As shown in FIG. 3A, in the temperature gradient adjustment process, the thermal conductivity measuring device 3 heats the thermal conductivity variable material 1 from the second surface 9d on the low temperature side by the adjustment heating unit 5. . In this case, the thermal conductivity measurement device 3 increases the output of the adjustment heating unit 5 as the inclination θ detected by the temperature gradient detection process increases. Specifically, the thermal conductivity measuring device 3 preliminarily displays a map or an expression indicating the output value of the adjustment heating unit 5 necessary for canceling the temperature gradient of the inclination θ for each assumed inclination θ. It memorize | stores in memory etc. and the output of the heating part 5 for adjustment is determined with reference to the said map.

図3(B)は、調整用加熱部5による加熱時での熱伝導率可変材料1内の温度を示す。ここで、計測点21Aは、第2表面9dを放射側温した場合の計測結果を示し、計測点22Aは、境界面9mを放射側温した場合の計測結果を示し、計測点23Aは、第1表面9uを放射側温した場合の計測結果を示す。   FIG. 3B shows the temperature in the thermal conductivity variable material 1 during heating by the adjustment heating unit 5. Here, the measurement point 21A shows the measurement result when the second surface 9d is radiated side temperature, the measurement point 22A shows the measurement result when the boundary surface 9m is radiated side temperature, and the measurement point 23A is The measurement result when one surface 9u is subjected to radiation side temperature is shown.

図3(B)に示すように、この場合、温度が低い側の第2表面9dが調整用加熱部5により傾きθに応じて加熱された結果、第2表面9dでの計測温度Tdと、境界面9mでの計測温度Tmと、第1表面9uでの計測温度Tuとがそれぞれ等しくなり、熱伝導率可変材料1内での温度勾配がなくなっている。   As shown in FIG. 3B, in this case, as a result of the second surface 9d on the lower temperature side being heated according to the inclination θ by the adjustment heating unit 5, the measured temperature Td on the second surface 9d, The measured temperature Tm at the boundary surface 9m and the measured temperature Tu at the first surface 9u are equal to each other, and the temperature gradient in the thermal conductivity variable material 1 is eliminated.

(3)熱伝導率計測処理
図4は、熱伝導率計測処理の概要を示す図である。図4に示すように、熱伝導率測定装置3は、熱伝導率測定処理では、勾配検出処理に基づき調整用加熱部5により第2表面9dを加熱した状態で、熱伝導率可変材料1の熱伝導率の計測を行う。図4の例では、熱伝導率測定装置3は、レーザフラッシュ法により熱伝導率可変材料1の熱伝導率を算出するため、測定用加熱部6により第1表面9uから熱伝導率可変材料1を加熱し、放射温度計4により第2表面9dの温度Tdを計測する。そして、熱伝導率測定装置3は、温度Tdの変化に基づき熱伝導率を算出する。この場合、熱伝導率可変材料1内の温度勾配は調整用加熱部5の加熱によりキャンセルされているため、熱伝導率測定装置3は、電圧が印加された熱伝導率可変材料1の熱伝導率を正確に計測することができる。
(3) Thermal conductivity measurement process FIG. 4 is a diagram showing an outline of the thermal conductivity measurement process. As shown in FIG. 4, in the thermal conductivity measurement process, the thermal conductivity measurement device 3 is configured such that the second surface 9 d is heated by the adjustment heating unit 5 based on the gradient detection process, and the thermal conductivity variable material 1 is heated. Measure the thermal conductivity. In the example of FIG. 4, the thermal conductivity measuring device 3 calculates the thermal conductivity of the thermal conductivity variable material 1 by the laser flash method, and therefore the thermal conductivity variable material 1 from the first surface 9 u by the measurement heating unit 6. And the temperature Td of the second surface 9d is measured by the radiation thermometer 4. And the thermal conductivity measuring apparatus 3 calculates thermal conductivity based on the change of temperature Td. In this case, since the temperature gradient in the thermal conductivity variable material 1 is canceled by the heating of the adjustment heating unit 5, the thermal conductivity measuring device 3 performs the thermal conduction of the thermal conductivity variable material 1 to which a voltage is applied. The rate can be measured accurately.

[変形例]
次に、上述の実施形態に好適な変形例について説明する。
[Modification]
Next, a modified example suitable for the above-described embodiment will be described.

(変形例1)
熱伝導率可変材料1は、図1に示すように複層構造であるものに限定されず、抵抗率に変動がある単層構造であってもよい。この場合であっても、熱伝導率測定装置3は、熱伝導率可変材料1内の温度勾配を、熱伝導率可変材料1の複数地点での温度を計測することにより検出する。そして、熱伝導率測定装置3は、温度が低い側の表面から熱伝導率可変材料1を調整用加熱部5により加熱することで、温度勾配をキャンセルした状態で熱伝導率計測処理を行う。
(Modification 1)
The thermal conductivity variable material 1 is not limited to a multilayer structure as shown in FIG. 1, and may have a single layer structure in which the resistivity varies. Even in this case, the thermal conductivity measuring device 3 detects the temperature gradient in the thermal conductivity variable material 1 by measuring the temperature at a plurality of points of the thermal conductivity variable material 1. And the thermal conductivity measuring apparatus 3 performs the thermal conductivity measurement process in the state which canceled the temperature gradient by heating the thermal conductivity variable material 1 with the heating part 5 for adjustment from the surface of the low temperature side.

(変形例2)
熱伝導率測定装置3は、温度が低い側の第2表面9dから熱伝導率可変材料1を加熱する場合に代えて、温度が高い側の第1表面9uから熱伝導率可変材料1を冷却してもよい。この場合、熱伝導率測定システムは、調整用加熱部5に代えて、熱伝導率可変材料1を冷却するための冷却部を有し、熱伝導率測定装置3は、温度勾配調整処理では、温度が低い側の第1表面9uから熱伝導率可変材料1を当該冷却部により冷却することで熱伝導率可変材料1内の温度勾配をなくす。
(Modification 2)
The thermal conductivity measuring device 3 cools the thermal conductivity variable material 1 from the first surface 9u on the higher temperature side instead of heating the thermal conductivity variable material 1 from the second surface 9d on the lower temperature side. May be. In this case, the thermal conductivity measurement system has a cooling unit for cooling the thermal conductivity variable material 1 instead of the adjustment heating unit 5, and the thermal conductivity measurement device 3 is used in the temperature gradient adjustment process. The temperature gradient in the heat conductivity variable material 1 is eliminated by cooling the heat conductivity variable material 1 from the first surface 9u on the low temperature side by the cooling unit.

(変形例3)
熱伝導率測定装置3は、熱伝導計測処理においてレーザフラッシュ法に基づき、熱伝導率を算出したが、これに限定されず、パルス加熱法、周期加熱法、ステップ加熱法、定常法などの種々の方法により熱伝導率を算出してもよい。
(Modification 3)
The thermal conductivity measuring device 3 calculates the thermal conductivity based on the laser flash method in the thermal conductivity measurement process, but is not limited to this, and various methods such as a pulse heating method, a periodic heating method, a step heating method, and a steady method are used. The thermal conductivity may be calculated by this method.

1…熱伝導率可変材料
2…電源
3…熱伝導率測定装置
4…放射温度計
5…調整用加熱部
6…測定用加熱部
11…第1材料
12…第2材料
DESCRIPTION OF SYMBOLS 1 ... Thermal conductivity variable material 2 ... Power supply 3 ... Thermal conductivity measuring device 4 ... Radiation thermometer 5 ... Heating part for adjustment 6 ... Heating part for measurement 11 ... 1st material 12 ... 2nd material

Claims (1)

試料の熱伝導率を計測する熱伝導率測定システムであって、
前記試料に電場又は磁場を与える電場/磁場印加手段と、
前記試料中の複数点で検出した温度に基づき、前記試料の内部での温度勾配を予測する温度勾配予測手段と、
前記電場/磁場印加手段によって電場又は磁場が印加されたときに、前記温度勾配予測手段が予測した温度勾配をなくすように、前記試料を加熱又は冷却する温度勾配調整手段と、
前記温度勾配調整手段により前記試料を加熱又は冷却した状態で前記試料の熱伝導率を計測する熱伝導率計測手段と、
を有することを特徴とする熱伝導率測定システム。
A thermal conductivity measurement system for measuring the thermal conductivity of a sample,
An electric field / magnetic field applying means for applying an electric field or a magnetic field to the sample;
A temperature gradient predicting means for predicting a temperature gradient inside the sample based on temperatures detected at a plurality of points in the sample;
A temperature gradient adjusting means for heating or cooling the sample so as to eliminate a temperature gradient predicted by the temperature gradient predicting means when an electric field or a magnetic field is applied by the electric field / magnetic field applying means;
Thermal conductivity measuring means for measuring the thermal conductivity of the sample in a state where the sample is heated or cooled by the temperature gradient adjusting means;
A thermal conductivity measurement system comprising:
JP2014154624A 2014-07-30 2014-07-30 Thermal conductivity measuring system Pending JP2016031330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154624A JP2016031330A (en) 2014-07-30 2014-07-30 Thermal conductivity measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154624A JP2016031330A (en) 2014-07-30 2014-07-30 Thermal conductivity measuring system

Publications (1)

Publication Number Publication Date
JP2016031330A true JP2016031330A (en) 2016-03-07

Family

ID=55441789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154624A Pending JP2016031330A (en) 2014-07-30 2014-07-30 Thermal conductivity measuring system

Country Status (1)

Country Link
JP (1) JP2016031330A (en)

Similar Documents

Publication Publication Date Title
TWI707141B (en) Sensor system and integrated heater-sensor for measuring and controlling performance of a heater system
KR102268968B1 (en) Induction heated roll apparatus and induction coil temperature detecting mechanism
JP6221408B2 (en) Thermal resistance measuring method and thermal resistance measuring device
CN103926953A (en) Heater Control Apparatus
US20220034829A1 (en) Thermal conductivity estimation method, thermal conductivity estimation apparatus, production method for semiconductor crystal product, thermal conductivity calculator, thermal conductivity calculation program, and, thermal conductivity calculation method
JP5413241B2 (en) Heat flux meter calibration device
CN110873730B (en) Measuring device for determining the thermal conductivity of a fluid
JP2014153168A (en) Emissivity measuring apparatus and emissivity measuring method
US10088439B2 (en) Thermophysical property measurement method and thermophysical property measurement apparatus
Ahmed et al. Measurement of radial thermal conductivity of a cylinder using a time-varying heat flux method
JP2015511398A5 (en)
TW201545607A (en) Induction heated roll apparatus
JP6607469B2 (en) Thermophysical property measuring method and thermophysical property measuring device
JP6127830B2 (en) Electric heating device
KR101889818B1 (en) Thermal conductivity mearsuring device and measuring method thereof
JP6384417B2 (en) Electric heating device and electric heating method
JP2016031330A (en) Thermal conductivity measuring system
KR101261627B1 (en) Apparutus and system for measuring heat flux
JP2017025361A (en) Electric conduction heating device (method)
JP7079471B2 (en) Thermophysical property measuring device and thermophysical property measuring method
KR20160064272A (en) Thermal properties measurement sensors for thermoelectric thin film in cross-plane direction
JP2015119599A (en) Power conversion device and method
JP2014178669A (en) Image forming apparatus
Xu et al. Investigation of the heat transfer in TEMHD driven swirling lithium flow
JP7109728B2 (en) Power control device and power control method