JP2016029199A - Method and apparatus for producing chemical by electrochemical process - Google Patents

Method and apparatus for producing chemical by electrochemical process Download PDF

Info

Publication number
JP2016029199A
JP2016029199A JP2014151704A JP2014151704A JP2016029199A JP 2016029199 A JP2016029199 A JP 2016029199A JP 2014151704 A JP2014151704 A JP 2014151704A JP 2014151704 A JP2014151704 A JP 2014151704A JP 2016029199 A JP2016029199 A JP 2016029199A
Authority
JP
Japan
Prior art keywords
exchange membrane
aqueous solution
electrode side
anode electrode
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014151704A
Other languages
Japanese (ja)
Other versions
JP6345524B2 (en
Inventor
佐山 和弘
Kazuhiro Sayama
和弘 佐山
雄悟 三石
Yugo Mitsuishi
雄悟 三石
康二郎 福
Kojiro Fuku
康二郎 福
ニイニイ ワン
Nini Wang
ニイニイ ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014151704A priority Critical patent/JP6345524B2/en
Publication of JP2016029199A publication Critical patent/JP2016029199A/en
Application granted granted Critical
Publication of JP6345524B2 publication Critical patent/JP6345524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing a voltage in the synthesis of acidic and basic chemicals by a photocatalytic reaction of an oxidation-reduction medium (redox medium) and by an electrochemical process using an ion exchange membrane, and a reaction apparatus employing the above method.SOLUTION: In an electrochemical process of using an aqueous solution of a metal salt as a raw material and moving cations of the raw material metal via a cation exchange membrane to a cathode electrode side so as to produce a basic aqueous solution and an acidic aqueous solution on an anode electrode side and the cathode electrode side, respectively, an electrolytic voltage is reduced by incorporating a solution containing a reductant of a redox medium produced by a photocatalytic reaction into an aqueous solution of the metal salt on the anode electrode side.SELECTED DRAWING: Figure 1

Description

本発明は、イオン交換膜を用いた電気化学プロセスによる酸性および塩基性の化学品合成に関し、特に、酸化還元媒体(レドックス媒体)の光触媒反応を用いた低電圧化の方法、並びに当該方法を用いた装置に関する。   The present invention relates to acidic and basic chemical synthesis by an electrochemical process using an ion exchange membrane, and in particular, a method for lowering voltage using a photocatalytic reaction of a redox medium (redox medium), and the method is used. Related to the device.

人類社会は経済活動(物質・人・金・情報)の流動の中で様々な価値を創造しているが、その流動は膨大なエネルギー消費によって生み出されている。持続可能社会の構築のためには省エネルギーおよび再生可能エネルギーの両方の推進が不可欠である。再生可能エネルギーの中で最も膨大な太陽エネルギーを積極的に利用する方法として、太陽光発電による一次エネルギーとしての利用だけでは無く、その光エネルギーを様々な化学反応プロセスに組み込むことができれば、創エネと省エネを同時に達成できるためにまさに理想的である。   The human society creates various values in the flow of economic activities (materials, people, money, information), but the flow is generated by enormous energy consumption. In order to build a sustainable society, it is essential to promote both energy conservation and renewable energy. As a method of positively utilizing the vast amount of solar energy among renewable energies, if it can be incorporated into various chemical reaction processes as well as being used as primary energy by photovoltaic power generation, It is ideal for achieving energy savings at the same time.

太陽エネルギーを化学物質に変換する技術として、半導体光触媒や光電極を利用した人工光合成技術がある。水を水素と酸素に分解するソーラー水素製造や炭酸ガスを有機物に変換するソーラー燃料技術などが世界中で研究されている。しかし、このような反応だけで無く、この技術形態や反応の種類には植物のようにもっと多様性が有って良い。早期の実用化を目指すためには、多くの新規反応と新規技術を開発する必要がある。   As a technique for converting solar energy into a chemical substance, there is an artificial photosynthesis technique using a semiconductor photocatalyst or a photoelectrode. Solar hydrogen production that decomposes water into hydrogen and oxygen and solar fuel technology that converts carbon dioxide into organic matter are being studied around the world. However, not only such reactions, but also the technology forms and types of reactions may be more diverse like plants. In order to achieve early commercialization, it is necessary to develop many new reactions and new technologies.

発明者らは以前、レドックス反応を進行する光触媒と水分解水素製造を組み合わせた光触媒−電解ハイブリッドシステムを考案している(特許文献1−3、非特許文献1)。例えば、Fe3+水溶液からFe2+を生成しながら水を酸化して酸素を発生させる。このレドックス反応は光エネルギーを蓄積するアップヒル反応である。Fe2+イオンのままではエネルギーを利用しにくいので、カチオン交換膜で仕切った2室型の水電解装置のアノード電極でFe2+をFe3+に酸化しながらカソード電極で水素を製造する。カチオン交換膜ではプロトン(H+)が移動する。トータルでは水を水素と酸素に分解するソーラー水素製造が進行できる。必要な理論電圧はレドックス反応と水素発生の酸化還元準位の差になる。 The inventors have previously devised a photocatalyst-electrolytic hybrid system combining a photocatalyst that proceeds with a redox reaction and water-splitting hydrogen production (Patent Documents 1-3 and Non-Patent Document 1). For example, oxygen is generated by oxidizing water while producing Fe 2+ from an Fe 3+ aqueous solution. This redox reaction is an uphill reaction that accumulates light energy. Since it is difficult to use energy as it is with Fe 2+ ions, hydrogen is produced at the cathode electrode while oxidizing Fe 2+ to Fe 3+ at the anode electrode of a two-chamber water electrolysis apparatus partitioned by a cation exchange membrane. In the cation exchange membrane, protons (H + ) move. In total, solar hydrogen production that decomposes water into hydrogen and oxygen can proceed. The required theoretical voltage is the difference between the redox reaction and the redox level of hydrogen evolution.

しかし、現状では大規模な水素製造の需要は少なく、このような新エネルギーの未来技術の実用化は進んでいない。光触媒のレドックス反応で蓄えられたエネルギーを現実の社会に役立てるためには、その蓄えられたエネルギーの活用技術を新規に開発する必要がある。発明者らは、光触媒のレドックス反応で蓄えられたエネルギーを応用できる技術を模索した結果、本発明を考案した。   However, at present, there is little demand for large-scale hydrogen production, and the practical application of such new energy future technology is not progressing. In order to use the energy stored by the redox reaction of the photocatalyst for the real society, it is necessary to develop a technology for utilizing the stored energy. The inventors devised the present invention as a result of searching for a technique that can apply the energy stored in the redox reaction of the photocatalyst.

実用化されている電気化学プロセスにはいくつかの種類かある。例えば、苛性ソーダ(NaOH)電解合成(日本で年産400万トン)に適応し、レドックス媒体を用いた半導体光触媒を組み込めれば省エネ化に貢献できる可能性がある。日本の電解ソーダ工業の年間電力消費量は約110億kWhで、化学工業全体の約17%を占めるほど膨大である。従来技術では海水を電解してカソード側でNaOHと水素を製造するとともにアノード側で塩素(Cl-/Cl2=+1.36V)が生成する。理論電解電圧は2.19Vであるが、実際は過電圧により約3Vで稼働している。この電解電圧を少しでも低下できれば非常に大きな省エネにつながる。例えば、単純計算でNaOH製造の2割に適応するだけで4億kWh分に相当する省エネ効果がある。また、電解を利用して様々なイオンを含む溶液から酸や塩基を製造するプロセスも工業的に稼働しているが、その電圧を低下できれば大きな省エネになる。 There are several types of electrochemical processes in practical use. For example, adapting to caustic soda (NaOH) electrolytic synthesis (annual production of 4 million tons in Japan) and incorporating a semiconductor photocatalyst using a redox medium may contribute to energy saving. The annual power consumption of the Japanese electrolytic soda industry is about 11 billion kWh, which is so large that it accounts for about 17% of the entire chemical industry. In the prior art, seawater is electrolyzed to produce NaOH and hydrogen on the cathode side, and chlorine (Cl / Cl 2 = + 1.36 V) is generated on the anode side. The theoretical electrolysis voltage is 2.19V, but it is actually operating at about 3V due to overvoltage. If this electrolysis voltage can be reduced as much as possible, it will lead to significant energy savings. For example, there is an energy saving effect equivalent to 400 million kWh just by adapting to 20% of NaOH production by simple calculation. In addition, a process for producing acids and bases from a solution containing various ions using electrolysis is also industrially operated. However, if the voltage can be lowered, a great energy saving can be achieved.

光エネルギーによって電解電圧を低下させる技術としては光電極反応があるが、通常はレドックス媒体を用いない。半導体膜を導電性基板に成膜し、対極とともに用いる技術である(非特許文献2)。しかし、大面積化においては、導電性基板や配線を用いる光電極よりも光触媒の方が優れている。レドックス媒体を介在することで、昼間だけでなく、安い夜間電力を使えるメリットおよび変動の激しい再生可能エネルギー由来の電力変動を吸収するメリットがある。   As a technique for reducing the electrolysis voltage by light energy, there is a photoelectrode reaction, but usually a redox medium is not used. This is a technique of forming a semiconductor film on a conductive substrate and using it together with a counter electrode (Non-patent Document 2). However, in increasing the area, the photocatalyst is superior to the photoelectrode using a conductive substrate or wiring. By using a redox medium, there are advantages that not only daytime but also cheap nighttime electric power can be used and that electric power fluctuations derived from renewable energy that is fluctuating rapidly can be absorbed.

特願平9-325708、登録3198298、光触媒−電解ハイブリッドシステムによる水素の製造方法,佐山 和弘,荒川 裕則,岡部 清美,草間 仁,工業技術院、1997/11/27Japanese Patent Application No. 9-325708, Registration 3198298, Hydrogen production method using photocatalyst-electrolytic hybrid system, Kazuhiro Sayama, Hironori Arakawa, Kiyomi Okabe, Hitoshi Kusama, Institute of Industrial Technology, 1997/11/27 特願2003-051854、水素及び酸素の製造方法及びその装置、佐山和弘、荒川裕則、阿部竜、産総研、2003/02/27Patent application 2003-051854, hydrogen and oxygen production method and apparatus, Kazuhiro Sayama, Hironori Arakawa, Ryu Abe, AIST, 2003/02/27 特願2000-391356、登録3455779、半導体光触媒反応装置及び電解装置からなる水素の製造装置,佐山 和弘,荒川 裕則,岡部 清美,草間 仁,産総研、2000/12/22Patent application 2000-391356, Registration 345779, Hydrogen production equipment consisting of semiconductor photocatalytic reactor and electrolyzer, Kazuhiro Sayama, Hironori Arakawa, Kiyomi Okabe, Hitoshi Kusama, AIST, 2000/12/22

三石 雄悟、草間 仁、杉原 秀樹、佐山 和弘,Cs-Modified WO3 Photocatalyst Showing Efficient Solar Energy Conversion for O2 Production and Fe (III) Ion Reduction under Visible Light, The Journal of Physical Chemistry Letters,1-8,pp.1196-1200、2010。Yugo Mitsuishi, Hitoshi Kusama, Hideki Sugihara, Kazuhiro Sayama, Cs-Modified WO3 Photocatalyst Showing Efficient Solar Energy Conversion for O2 Production and Fe (III) Ion Reduction under Visible Light, The Journal of Physical Chemistry Letters, 1-8, pp. 1196-1200, 2010. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37-38 (1972).A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37-38 (1972).

以上のような背景から、本発明は、原料塩水溶液から酸性または塩基性の化学品合成を行うイオン交換膜を用いた電気化学プロセスにおいて、光触媒のレドックス反応で蓄えられたエネルギーを適応して電解電圧を低下できる技術を提供することを課題としている。   From the background as described above, the present invention adapts the energy stored in the redox reaction of the photocatalyst in an electrochemical process using an ion exchange membrane that synthesizes an acidic or basic chemical product from a raw salt aqueous solution. An object is to provide a technology capable of reducing the voltage.

本発明者らは、原料塩水溶液から酸性または塩基性の化学品合成を行うイオン交換膜を用いた電気化学プロセスに、光触媒のレドックス反応で蓄えられたエネルギーを適応して電解電圧を低下できる技術を鋭意検討し、本発明を完成するに至った。   The present inventors have been able to reduce the electrolysis voltage by adapting the energy stored in the redox reaction of the photocatalyst to an electrochemical process using an ion exchange membrane that performs acidic or basic chemical synthesis from a raw salt aqueous solution. As a result, the present invention has been completed.

すなわち、この本発明は以下のことを特徴としている。
[1]金属塩の水溶液を原料とし、カチオン交換膜で原料金属のカチオンをカソード電極側に移動させて、カソード電極側で塩基性の水溶液を製造し、アノード電極側で酸性の水溶液を製造する電気化学プロセスにおいて、
光触媒反応で生じたレドックス媒体の還元体を、アノード電極に接触させることにより電解電圧を低下させることを特徴とする光エネルギーを利用した化学品製造方法。
[2]前記レドックス媒体は、その標準酸化還元準位が、酸素発生準位(O2/H2O=+1.23V、NHE、pH=0)よりも負側にあることを特徴とする請求項1に記載の光エネルギーを利用した化学品製造方法。
[3]前記レドックス媒体が、鉄イオンであることを特徴とする[1]又は[2]に記載の光エネルギーを利用した化学品製造方法。
[4]前記カチオン交換膜に接触する反応溶液において、金属カチオン濃度がプロトン濃度より高い条件で反応を行うことを特徴とする[1]〜[3]のいずれかに記載の光エネルギーを利用した化学品製造方法。
[5]前記カチオン交換膜に、アノード電極側にアニオンを移動させるアニオン交換膜を組み合わせて用いることを特徴とする[1]〜[4]のいずれかに記載の光エネルギーを利用した化学品製造方法。
[6]前記アノード電極と前記カソード電極の間に、プロトン選択性カチオン交換膜およびアニオン交換膜、カチオン交換膜をこの順に設置することを特徴とする[1]〜[5]のいずれかに記載の光エネルギーを利用した化学品製造方法。
[7]前記塩基性の水溶液が、アルカリ金属の水酸化物水溶液であることを特徴とする[1]〜[6]のいずれかに記載の光エネルギーを利用した化学品製造方法。
[8]前記アノード電極側で生成する酸性の水溶液が、塩酸、硫酸、硝酸、過塩素酸又は有機酸の水溶液であることを特徴とする[1]〜[7]のいずれかに記載の光エネルギーを利用した化学品製造方法。
[9]前記カソード電極での反応が、酸素還元反応であることを特徴とする[1]〜[8]のいずれかに記載の光エネルギーを利用した化学品製造方法。
[10]金属塩の水溶液を原料とし、電気化学反応により塩基性の水溶液及び酸性の水溶液を製造する化学品製造装置であって、
内部にアノード電極及びカソード電極並びに両電極間に配置されたカチオン交換膜を備えた電解槽と、光触媒を備えた光触媒反応槽とを有し、
該光触媒反応槽で生成されたレドックス媒体の還元体を含む溶液を、前記アノード電極側の電解槽に導入する手段を設けたことを特徴とする化学品製造装置。
[11][10]に記載の化学品製造装において、前記電解槽内の前記アノード電極と前記カチオン交換膜の間にさらにアニオン交換膜を備え、
前記光触媒反応槽で生成されたレドックス媒体の還元体を含む溶液を、前記アノード電極側の電解槽に導入する手段と、
前記金属塩の水溶液を、前記アニオン交換膜とカチオン交換膜の間の電解槽に導入する手段とを設けたことを特徴とする化学品製造装置。
[12][11]に記載の化学品製造装置において、前記電解槽内の前記アノード電極と前記アニオン交換膜の間にさらにH選択性カチオン交換膜を備えたことを特徴とする化学品製造装置。
That is, the present invention is characterized by the following.
[1] Using an aqueous solution of a metal salt as a raw material, a cation of a raw material metal is moved to the cathode electrode side by a cation exchange membrane, a basic aqueous solution is produced on the cathode electrode side, and an acidic aqueous solution is produced on the anode electrode side In electrochemical processes,
A chemical production method using light energy, characterized in that an electrolysis voltage is lowered by bringing a reduced form of a redox medium generated by a photocatalytic reaction into contact with an anode electrode.
[2] The redox medium has a standard redox level on the negative side of an oxygen generation level (O 2 / H 2 O = + 1.23 V, NHE, pH = 0). Item 10. A chemical production method using light energy according to Item 1.
[3] The chemical production method using light energy according to [1] or [2], wherein the redox medium is an iron ion.
[4] The light energy as described in any one of [1] to [3], wherein the reaction solution in contact with the cation exchange membrane is reacted under a condition in which a metal cation concentration is higher than a proton concentration. Chemical manufacturing method.
[5] The chemical production using light energy according to any one of [1] to [4], wherein the cation exchange membrane is used in combination with an anion exchange membrane that moves anions to the anode electrode side Method.
[6] The proton selective cation exchange membrane, the anion exchange membrane, and the cation exchange membrane are disposed in this order between the anode electrode and the cathode electrode, according to any one of [1] to [5] Chemical manufacturing method using light energy of
[7] The chemical production method using light energy according to any one of [1] to [6], wherein the basic aqueous solution is an alkali metal hydroxide aqueous solution.
[8] The light according to any one of [1] to [7], wherein the acidic aqueous solution generated on the anode electrode side is an aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, or an organic acid. A chemical manufacturing method using energy.
[9] The chemical production method using light energy according to any one of [1] to [8], wherein the reaction at the cathode electrode is an oxygen reduction reaction.
[10] A chemical production apparatus for producing a basic aqueous solution and an acidic aqueous solution by an electrochemical reaction using an aqueous solution of a metal salt as a raw material,
It has an electrolytic cell provided with a cation exchange membrane disposed between an anode and a cathode and both electrodes inside, and a photocatalytic reaction vessel equipped with a photocatalyst,
An apparatus for producing a chemical product, comprising means for introducing a solution containing a reductant of a redox medium produced in the photocatalytic reaction tank into the electrolytic cell on the anode electrode side.
[11] In the chemical manufacturing equipment according to [10], further comprising an anion exchange membrane between the anode electrode and the cation exchange membrane in the electrolytic cell,
Means for introducing a solution containing a reductant of the redox medium generated in the photocatalytic reaction tank into the electrolytic cell on the anode electrode side;
An apparatus for producing a chemical product, comprising means for introducing an aqueous solution of the metal salt into an electrolytic cell between the anion exchange membrane and the cation exchange membrane.
[12] The chemical production apparatus according to [11], further comprising an H + selective cation exchange membrane between the anode electrode and the anion exchange membrane in the electrolytic cell. apparatus.

本発明によれば、原料塩水溶液から酸性または塩基性の化学品合成を行うイオン交換膜を用いた電気化学プロセスに、光触媒のレドックス反応で蓄えられたエネルギーを適応することにより、電解電圧を低下させることができる。   According to the present invention, the electrolysis voltage is reduced by adapting the energy stored in the redox reaction of the photocatalyst to an electrochemical process using an ion exchange membrane that performs acidic or basic chemical synthesis from a raw salt aqueous solution. Can be made.

本発明の、2室型電解槽を用いた化学品製造プロセス及び装置を模式的に示す図。The figure which shows typically the chemical product manufacturing process and apparatus using the two-chamber type electrolytic cell of this invention. 本発明の、3室型電解槽を用いた化学品製造プロセス及び装置を模式的に示す図。The figure which shows typically the chemical product manufacturing process and apparatus using the three-chamber type electrolytic cell of this invention. 本発明の、4室型電解槽を用いた化学品製造プロセス及び装置を模式的に示す図。The figure which shows typically the chemical product manufacturing process and apparatus using the four-chamber type electrolytic cell of this invention.

本発明の光エネルギーを利用した化学品製造方法は、金属塩の水溶液を原料とし、カチオン交換膜で原料金属のカチオンをカソード電極側に移動させて、カソード電極側で塩基性の水溶液を製造し、アノード電極側で酸性の水溶液を製造する電気化学プロセスにおいて、光触媒反応で生じたレドックス媒体の還元体を、アノード電極に接触させることにより電解電圧を低下させることを特徴とする。
以下、本発明について、図面を用いて説明する。
The method for producing a chemical product using light energy of the present invention uses a metal salt aqueous solution as a raw material, moves a cation of the raw metal to the cathode electrode side by a cation exchange membrane, and produces a basic aqueous solution on the cathode electrode side. In the electrochemical process for producing an acidic aqueous solution on the anode electrode side, the electrolysis voltage is lowered by bringing the reduced form of the redox medium generated by the photocatalytic reaction into contact with the anode electrode.
Hereinafter, the present invention will be described with reference to the drawings.

図1は、本発明の1実施形態を模式的に示す図であり、化学品の原料の塩(MX)の溶解した水溶液から塩基性化学品(MOH)高濃度溶液及び酸性化学品(HX)高濃度溶液を製造する電気化学プロセスを模式的に示している。
図1に示すとおり、本発明の該実施形態における電気化学プロセスは、2室型の電解槽内にそれぞれアノード電極及びカソード電極が配置されており、両室間に設けられたカチオン交換膜により、カチオンをアノード電極側からカソード電極側に移動させて、アノード電極側及びカソード電極側のそれぞれに、酸性の水溶液及び塩基性の水溶液を製造するものである。すなわち、カソード電極側の電解槽は塩基性化学品の濃度が高くなることで強い塩基性水溶液となり、アノード電極側の電解槽は酸性化学品の濃度が高くなることで強い酸性水溶液となる。
FIG. 1 is a diagram schematically showing an embodiment of the present invention, in which a basic chemical (MOH) high-concentration solution and an acidic chemical (HX) are dissolved from an aqueous solution in which a chemical raw material salt (MX) is dissolved. 1 schematically shows an electrochemical process for producing a high concentration solution.
As shown in FIG. 1, the electrochemical process in this embodiment of the present invention has an anode electrode and a cathode electrode arranged in a two-chamber electrolytic cell, respectively, and a cation exchange membrane provided between both chambers. The cation is moved from the anode electrode side to the cathode electrode side to produce an acidic aqueous solution and a basic aqueous solution on each of the anode electrode side and the cathode electrode side. That is, the electrolytic cell on the cathode electrode side becomes a strong basic aqueous solution by increasing the concentration of the basic chemical product, and the electrolytic cell on the anode electrode side becomes a strong acidic aqueous solution by increasing the concentration of the acidic chemical product.

本発明においては、前記のカチオン交換膜で金属カチオンを移動させる点に加え、光触媒反応で生じたレドックス媒体を含む水溶液を、上記のアノード電極側の電解槽に流入させることにより、還元体(A−Red)をアノード電極側に接触させる点に特徴を有するものである。
すなわち、図1に図示する「光触媒反応槽」では、光触媒及びレドックス媒体の酸化体(A−Ox)が存在する水溶液に光照射することにより、レドックス媒体の酸化体(A−Ox)をレドックス媒体の還元体(A−Red)に変化させる還元反応が進行する。該A−Ox/A−Redの対としては、標準酸化還元準位として、酸素発生準位(O2/H2O=+1.23V、NHE、pH=0)よりも負側の酸化還元準位の反応種が利用できる。特に好ましくはFe3+/Fe2+(+0.77V)である。
本発明においては、この還元体(A−Red)を含んだ水溶液を、電気化学プロセスのアノード電極側の電解槽に流入させることにより、還元体(A−Red)をアノード電極側に接触させて電解電圧を低下させるものである。
In the present invention, in addition to the point of moving metal cations by the cation exchange membrane, an aqueous solution containing a redox medium generated by the photocatalytic reaction is allowed to flow into the electrolytic cell on the anode electrode side, thereby reducing the reductant (A -Red) is characterized in that it contacts the anode electrode side.
That is, in the “photocatalyst reaction tank” illustrated in FIG. 1, the redox medium oxide (A-Ox) is applied to the redox medium by irradiating an aqueous solution containing the photocatalyst and the redox medium oxide (A-Ox). The reductive reaction for changing to the reduced form (A-Red) of the compound proceeds. The A-Ox / A-Red pair includes, as a standard redox level, a redox level that is more negative than the oxygen generation level (O 2 / H 2 O = + 1.23 V, NHE, pH = 0). Reactive species can be used. Particularly preferred is Fe 3+ / Fe 2+ (+0.77 V).
In the present invention, the reducing agent (A-Red) is brought into contact with the anode electrode side by flowing the aqueous solution containing the reducing agent (A-Red) into an electrolytic cell on the anode electrode side of the electrochemical process. The electrolytic voltage is lowered.

化学品の原料の塩(MX)(カチオン(M+)とアニオン(X-)からなる塩)における「カチオン」としては、様々なプラス電荷のイオンが用いられるが、アルカリ金属イオン、アルカリ土類金属イオン、有機金属イオンなどであるが、好ましくはアルカリ金属イオンである。特にNa+イオンが好ましい。金属イオンだけで無くアンモニウムイオンなどのカチオンも利用できる。
また、化学品の原料の塩(MX)における「アニオン」としては、塩化物イオン、硫酸イオン、硝酸イオン、リン酸イオン、ホウ酸イオン、過塩素酸イオン、有機酸イオンなどであ。特に塩化物イオンと硫酸イオン、過塩素酸イオンが好ましい。
本発明の電気化学プロセスにおける生成物は、カチオン(M+)の水酸化物(MOH)(塩基性化学品)の高濃度溶液及びアニオン(X-)の酸(HX)(酸性化学品)の高濃度溶液である。
Various positively charged ions are used as the “cation” in the chemical raw material salt (MX) (a salt comprising a cation (M + ) and an anion (X )), and alkali metal ions and alkaline earths are used. Although it is a metal ion, an organic metal ion, etc., Preferably it is an alkali metal ion. Na + ions are particularly preferable. Not only metal ions but also cations such as ammonium ions can be used.
The “anion” in the chemical raw material salt (MX) includes chloride ion, sulfate ion, nitrate ion, phosphate ion, borate ion, perchlorate ion, organic acid ion, and the like. Particularly preferred are chloride ion, sulfate ion and perchlorate ion.
The products in the electrochemical process of the present invention include a high concentration solution of hydroxide (MOH) (basic chemical) of cation (M + ) and acid (HX) (acidic chemical) of anion (X ). High concentration solution.

アノード電極上では、レドックス媒体の還元体(A−Red)が酸化体(A−Ox)になる酸化反応が進行する。この時の反応はそのA−Ox/A−Redの標準酸化還元準位付近で進行する。つまり、酸素発生や塩素発生よりも進行しやすい。
カソード電極上では、ある酸化体(C−Ox)が還元体(C−Red)になる還元反応が進行する。主な反応としては、水からの水素製造や酸素の還元反応がある。電圧低下の観点からは、好ましくは酸素の還元反応である。
On the anode electrode, an oxidation reaction in which the reduced form (A-Red) of the redox medium becomes an oxidant (A-Ox) proceeds. The reaction at this time proceeds in the vicinity of the standard redox level of A-Ox / A-Red. That is, it proceeds more easily than oxygen generation or chlorine generation.
On the cathode electrode, a reduction reaction in which an oxidant (C-Ox) becomes a reductant (C-Red) proceeds. The main reactions include hydrogen production from water and oxygen reduction reaction. From the viewpoint of voltage reduction, oxygen reduction reaction is preferable.

カチオン交換膜では、塩(MX)のカチオン(M+)がプロトンよりも優先して透過する条件で反応を行うことが好ましい。その膜の両側を弱酸性や特に、中性付近から塩基性で反応を行うと、塩(MX)のカチオン(M+)がカソード電極側に移動するので、その水酸化物(MOH)の高濃度溶液が得られる。その高濃度溶液はカソード電極槽から流出し、その後脱水することで塩基性の化学品(MOH)が得られる。特に、金属カチオン濃度がプロトン濃度より高い条件での反応が良い。カチオン交換膜付近を強い酸性にするとプロトンが優先的にカソード側に透過して好ましくないので、その場合は酸を別途回収(透析、蒸留、イオン交換など)することが好ましい。 In the cation exchange membrane, the reaction is preferably carried out under the condition that the cation (M + ) of the salt (MX) permeates preferentially over the proton. When the reaction is carried out on the both sides of the membrane with weak acidity, in particular, from near neutral to basic, the cation (M + ) of the salt (MX) moves to the cathode electrode side, so that the hydroxide (MOH) A concentrated solution is obtained. The high-concentration solution flows out from the cathode electrode tank and is then dehydrated to obtain a basic chemical (MOH). In particular, the reaction is good under conditions where the metal cation concentration is higher than the proton concentration. If the vicinity of the cation exchange membrane is made strongly acidic, protons preferentially permeate to the cathode side, which is not preferable. In this case, it is preferable to collect the acid separately (dialysis, distillation, ion exchange, etc.).

カソード電極槽に流入する溶液は、初期は純水でも良いが、好ましくは水酸化物(MOH)の低濃度溶液または支持電解質を初期に入れることが良い。   The solution flowing into the cathode electrode tank may be initially pure water, but preferably a low concentration solution of hydroxide (MOH) or a supporting electrolyte is initially added.

本発明においては、上記の電気化学プロセスに、アニオン交換膜とカチオン交換膜をそれぞれ1枚以上組み合わせると塩(MX)や生成する酸(HX)を分離することができる。   In the present invention, when one or more anion exchange membranes and cation exchange membranes are combined in the above electrochemical process, the salt (MX) and the acid (HX) produced can be separated.

図2は、その1つの実施形態を模式的に示す図であり、アニオン交換膜とカチオン交換膜をそれぞれ1枚組み合わせた、3室型電解槽を用いた場合を示している。
図2に示すように、アニオン交換膜をアノード電極とカチオン交換膜の間に配置した3室型とすることにより、塩(MX)のカチオンはアノード電極槽に移動しない。また、レドックス媒体がカチオンまたはアニオンの場合、それぞれアニオン交換膜とカチオン交換膜を透過できないので、生成物の分離が容易になる。水溶液の移動に妨げにならない範囲で、イオン交換膜同士の間隔は狭いほど過電圧は小さくなるので好ましい。電解質が十分に高濃度であれば導電性は確保できる。
FIG. 2 is a diagram schematically showing one embodiment, and shows a case where a three-chamber electrolytic cell in which one anion exchange membrane and one cation exchange membrane are combined is used.
As shown in FIG. 2, by using a three-chamber type anion exchange membrane disposed between the anode electrode and the cation exchange membrane, salt (MX) cations do not move to the anode electrode tank. In addition, when the redox medium is a cation or an anion, the product can be easily separated because it cannot permeate the anion exchange membrane and the cation exchange membrane, respectively. As the distance between the ion exchange membranes is narrow, the overvoltage becomes smaller as long as the movement of the aqueous solution is not hindered. If the electrolyte has a sufficiently high concentration, conductivity can be ensured.

図3は、もう1つの実施形態を模式的に示す図であり、H+選択性カチオン交換膜と、アニオン交換膜と、カチオン交換膜とを、それぞれ1枚組み合わせた、4室型電解槽を用いた場合を示している。
図に示すように、H+選択性アニオン交換膜をアノード電極とアニオン交換膜の間に配置した4室型とすることにより、塩(MX)自体はアノード電極槽に移動しない。また、生成した酸(HX)もアノード電極槽に移動しないので、光触媒用のA−Ox/A−Redを含んだ水溶液を分離することができる。特にMXに塩化物(X=Cl-)を用いた場合は、塩素として回収するよりも塩酸として回収する方が、そのXの回収は容易であるが、特に、図3に示す実施形態では、分離も容易になる。
+選択性カチオン交換膜とアニオン交換膜に挟まれた部分に流入する溶液は、初期は純水でも良いが、好ましくは酸(HX)の低濃度溶液であるか、または、支持電解質を初期に入れることが良い。
FIG. 3 is a diagram schematically showing another embodiment. A four-chamber electrolytic cell in which one H + selective cation exchange membrane, one anion exchange membrane, and one cation exchange membrane are combined is shown. The case where it is used is shown.
As shown in the figure, the salt (MX) itself does not move to the anode electrode tank by adopting a four-chamber type in which the H + selective anion exchange membrane is disposed between the anode electrode and the anion exchange membrane. Further, since the generated acid (HX) does not move to the anode electrode tank, an aqueous solution containing A-Ox / A-Red for photocatalyst can be separated. In particular, when chloride (X = Cl ) is used for MX, it is easier to recover X as hydrochloric acid than to recover it as chlorine. In particular, in the embodiment shown in FIG. Separation is also facilitated.
The solution flowing into the portion sandwiched between the H + selective cation exchange membrane and the anion exchange membrane may be initially pure water, but is preferably a low-concentration solution of acid (HX), or the supporting electrolyte is initially Good to put in.

電解に必要な理論上の電圧は、pH補正した後のA−Ox/A−RedとC−Ox/C−Redの酸化還元準位の差である。A−Ox/A−Redとして、酸素発生(+1.23V)や塩素発生(+1.36V)よりも負のA−Ox/A−Red準位の還元体がアノード電極槽に流入すれば、電解電圧は低下できる。   The theoretical voltage required for electrolysis is the difference between the redox levels of A-Ox / A-Red and C-Ox / C-Red after pH correction. As A-Ox / A-Red, if a reductant having a negative A-Ox / A-Red level than oxygen generation (+1.23 V) or chlorine generation (+1.36 V) flows into the anode electrode tank, electrolysis will occur. The voltage can be lowered.

光触媒反応槽では、酸化体(A−Ox)が還元体(A−Red)になる還元反応が進行させるが、特に、酸素発生反応に優れた光触媒が利用できる。光触媒の半導体としては、その伝導帯準位がA−Ox/A−Redの準位よりも負であり、その価電子帯準位が酸素発生準位よりも正である材料が利用できる。具体的には、TiO2、WO3、BiVO4、Fe23、TaON、Ta35などがある。
光励起により生成した電子はA−Redを生成する。光励起により生成した正孔は水を酸化して酸素を生成しても良いし、また有機物などの還元し易い物質を添加してそれを酸化分解しても良い。
In the photocatalyst reaction tank, a reduction reaction in which the oxidant (A-Ox) becomes a reductant (A-Red) proceeds. In particular, a photocatalyst excellent in oxygen generation reaction can be used. As the semiconductor of the photocatalyst, a material whose conduction band level is more negative than the A-Ox / A-Red level and whose valence band level is more positive than the oxygen generation level can be used. Specifically, there are TiO 2 , WO 3 , BiVO 4 , Fe 2 O 3 , TaON, Ta 3 N 5 and the like.
Electrons generated by photoexcitation generate A-Red. Holes generated by photoexcitation may oxidize water to generate oxygen, or may add an easily reducing substance such as an organic substance and oxidatively decompose it.

光触媒は粉末状でも良いが、基板に固定して膜状にすることが好ましい。導電性基板に固定しても良い。助触媒を利用する場合、は半導体表面に付けても、導電性基板の一部に付けても良い。導電性基板の一面に半導体を成膜し、裏面に導通して助触媒を付けても良い。逆反応を防ぐために、半導体と助触媒をイオン交換膜で空間的に分離することもできる。   The photocatalyst may be in the form of a powder, but is preferably fixed to a substrate to form a film. You may fix to an electroconductive board | substrate. When a cocatalyst is used, it may be attached to the semiconductor surface or a part of the conductive substrate. A semiconductor may be formed on one surface of the conductive substrate, and the promoter may be attached to the back surface by conducting. In order to prevent the reverse reaction, the semiconductor and the cocatalyst can be spatially separated by an ion exchange membrane.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1、比較例1)
電気化学プロセスとして、ポテンショスタットおよび図1に図示する1枚のカチオン交換膜を付けた2室型電解槽を用いた。アノード電極とカソード電極にはPt網とPtワイヤーを用いた。
実施例1として、光触媒反応後の溶液を想定し、アノード電極側にはNa2SO4(0.1M)とH2SO4(0.02M)およびFeSO4(0.01M)の混合液を流入した。カソード電極側にはNa2SO4(0.1M)とNaOH(0.04M)の混合液を流入した。生成した化合物の量を滴定で正確に測定することと、伝導度を高めるために、Na2SO4を最初にどちらの電極槽の溶液に入れているが、実際の反応では、目的の酸性と塩基性の化合物を入れておくことが望ましい。アノード電極側にFe2+が存在しており、1mA一定で、0.5時間の平均で0.8Vの電解電圧であった。カソード電極側には電解効率97%でNaOHが生成していることを滴定実験で確認した。
比較例1として、アノード電極側にFe2+が存在しない場合、1mA一定で、0.5時間の平均で1.6Vの電解電圧が必要であり、実施例1よりも高い電解電圧であった。カソード電極側には電解効率97%でNaOHが生成していることを滴定実験で確認した。
(Example 1, Comparative Example 1)
As the electrochemical process, a two-chamber electrolytic cell with a potentiostat and one cation exchange membrane shown in FIG. 1 was used. Pt nets and Pt wires were used for the anode electrode and the cathode electrode.
As Example 1, a solution after the photocatalytic reaction is assumed, and a mixed solution of Na 2 SO 4 (0.1M), H 2 SO 4 (0.02M) and FeSO 4 (0.01M) is provided on the anode electrode side. It flowed in. A mixed solution of Na 2 SO 4 (0.1M) and NaOH (0.04M) was introduced into the cathode electrode side. In order to accurately measure the amount of the compound formed by titration and increase the conductivity, Na 2 SO 4 is initially placed in the solution of either electrode tank. It is desirable to add a basic compound. Fe 2+ was present on the anode electrode side, the current was constant at 1 mA, and the electrolysis voltage was 0.8 V on average for 0.5 hours. It was confirmed by a titration experiment that NaOH was generated at an electrolysis efficiency of 97% on the cathode electrode side.
As Comparative Example 1, when no Fe 2+ was present on the anode electrode side, an electrolytic voltage of 1.6 V was required on average at 0.5 mA and 0.5 hours on average, which was higher than that of Example 1. . It was confirmed by a titration experiment that NaOH was generated at an electrolysis efficiency of 97% on the cathode electrode side.

(実施例2、比較例2)
電気化学プロセスとして、ポテンショスタットおよび図2に図示する1枚のカチオン交換膜と1枚のアニオン交換膜を付けた3室型電解槽を用いた。アノード電極とカソード電極にはPt網とPtワイヤーを用いた。各イオン交換膜の間隔は2mmである。
実施例2として、光触媒反応後の溶液を想定し、アノード電極側にはNa2SO4(0.1M)とH2SO4(0.02M)およびFeSO4(0.01M)の混合液を流入した。カソード電極側にはNa2SO4(0.1M)とNaOH(0.04M)の混合液を流入した。カチオン交換膜とアニオン交換膜の間にはNa2SO4(0.3M)を流入した。
生成した化合物の量を滴定で正確に測定することと、伝導度を高めるために、Na2SO4を最初にどの電極槽の溶液に入れているが、実際の反応では、目的の酸性と塩基性の化合物を入れておくことが望ましい。アノード電極側にFe2+が存在しており、1mA一定で、0.5時間の平均で1.7Vの電解電圧であった。カソード電極側には電解効率97%でNaOHが生成していることを滴定実験で確認した。
比較例2として、アノード電極側にFe2+が存在しない場合、1mA一定で、0.5時間の平均で2.5Vの電解電圧が必要であり、実施例2よりも高い電解電圧であった。カソード電極側には電解効率97%でNaOHが生成していることを滴定実験で確認した。
(Example 2, comparative example 2)
As the electrochemical process, a potentiostat and a three-chamber electrolytic cell with one cation exchange membrane and one anion exchange membrane shown in FIG. 2 were used. Pt nets and Pt wires were used for the anode electrode and the cathode electrode. The interval between the ion exchange membranes is 2 mm.
As Example 2, a solution after the photocatalytic reaction is assumed, and a mixed solution of Na 2 SO 4 (0.1M), H 2 SO 4 (0.02M) and FeSO 4 (0.01M) is provided on the anode electrode side. It flowed in. A mixed solution of Na 2 SO 4 (0.1M) and NaOH (0.04M) was introduced into the cathode electrode side. Na 2 SO 4 (0.3M) was allowed to flow between the cation exchange membrane and the anion exchange membrane.
In order to accurately measure the amount of the compound formed and to increase the conductivity, Na 2 SO 4 is initially placed in any electrode bath solution. It is desirable to store a sex compound. Fe 2+ was present on the anode electrode side, the current was constant at 1 mA, and the electrolysis voltage was 1.7 V on average for 0.5 hours. It was confirmed by a titration experiment that NaOH was generated at an electrolysis efficiency of 97% on the cathode electrode side.
As Comparative Example 2, when Fe 2+ was not present on the anode electrode side, an electrolytic voltage of 2.5 V was required on average at 0.5 mA for 0.5 hours, which was higher than that of Example 2. . It was confirmed by a titration experiment that NaOH was generated at an electrolysis efficiency of 97% on the cathode electrode side.

(実施例3、比較例3)
実施例3として、図2の1枚のカチオン交換膜と1枚のアニオン交換膜を付けた3室セルを用い、光触媒反応後の反応溶液をアノード電極側に流入した。
光触媒反応としては、Cs表面処理したWO3粉末光触媒を懸濁した0.1M−HClO4および0.01M−Fe(ClO4)3の混合水溶液に光照射を行い、Fe2+を生成させた。上澄みの光触媒反応後の反応溶液をアノード電極側に流入した。カソード電極側にはNaCl(0.1M)の水溶液を流入した。カチオン交換膜とアニオン交換膜の間にはNaCl(0.3M)を流入した。各イオン交換膜の間隔は2mmである。
アノード電極側にFe2+が存在しており、3mA一定で、0.5時間の平均で2.3Vの電解電圧であった。カソード電極側には電解効率78%でNaOHが生成していることを滴定実験で確認した。
比較例3として、アノード電極側に光照射を行わない光反応前の溶液を用い、Fe2+が存在しない場合、1mA一定で、0.5時間の平均で2.9Vの電解電圧が必要であり、実施例3よりも高い電解電圧であった。カソード電極側には電解効率72%でNaOHが生成していることを滴定実験で確認した。
(Example 3, Comparative Example 3)
As Example 3, a three-chamber cell with one cation exchange membrane and one anion exchange membrane in FIG. 2 was used, and the reaction solution after the photocatalytic reaction was flowed to the anode electrode side.
As the photocatalytic reaction, a mixed aqueous solution of 0.1M-HClO 4 and 0.01M-Fe (ClO 4 ) 3 in which a Cs surface-treated WO 3 powder photocatalyst was suspended was irradiated with light to generate Fe 2+ . . The reaction solution after the photocatalytic reaction of the supernatant flowed into the anode electrode side. An aqueous solution of NaCl (0.1 M) was flowed into the cathode electrode side. NaCl (0.3M) was allowed to flow between the cation exchange membrane and the anion exchange membrane. The interval between the ion exchange membranes is 2 mm.
Fe 2+ was present on the anode electrode side, the current was constant at 3 mA, and the electrolysis voltage was 2.3 V on average for 0.5 hours. It was confirmed by a titration experiment that NaOH was generated at an electrolytic efficiency of 78% on the cathode electrode side.
As Comparative Example 3, when a solution before photoreaction that does not irradiate light on the anode electrode side is used and Fe 2+ is not present, an electrolytic voltage of 2.9 V is required at an average of 0.5 mA at a constant 1 mA. Yes, the electrolysis voltage was higher than in Example 3. It was confirmed by a titration experiment that NaOH was generated at an electrolytic efficiency of 72% on the cathode electrode side.

(実施例4、比較例4)
実施例4として、図3に図示する、1枚のカチオン交換膜と、1枚のアニオン交換膜と、1枚のH+選択性カチオン交換膜とを付けた4室型電解槽を用い、光触媒反応後の反応溶液をアノード電極側に流入した。
光触媒反応としては、Cs表面処理したWO3粉末光触媒を懸濁した0.1M−HClO4および0.01M−Fe(ClO4)3の混合水溶液に光照射を行い、Fe2+を生成させた。上澄みの光触媒反応後の反応溶液をアノード電極側に流入した。カソード電極側にはNaCl(0.1M)の水溶液を流入した。カチオン交換膜とアニオン交換膜の間にはNaCl(0.3M)を流入した。アニオン交換膜とH+選択性カチオン交換膜の間にはNaCl(0.1M)を流入した。各イオン交換膜の間隔は2mmである。
アノード電極側にFe2+が存在しており、3mA一定で、0.5時間の平均で2.4Vの電解電圧であった。カソード電極側には電解効率77%でNaOHが生成していることを滴定実験で確認した。
比較例4として、アノード電極側に光照射を行わない光反応前の溶液を用い、Fe2+が存在しない場合、1mA一定で、0.5時間の平均で3Vの電解電圧が必要であり、実施例4よりも高い電解電圧であった。カソード電極側には電解効率76%でNaOHが生成していることを滴定実験で確認した。
(Example 4, comparative example 4)
As Example 4, a photocatalyst was used using a four-chamber electrolytic cell provided with one cation exchange membrane, one anion exchange membrane, and one H + selective cation exchange membrane shown in FIG. The reaction solution after the reaction flowed into the anode electrode side.
As the photocatalytic reaction, a mixed aqueous solution of 0.1M-HClO 4 and 0.01M-Fe (ClO 4 ) 3 in which a Cs surface-treated WO 3 powder photocatalyst was suspended was irradiated with light to generate Fe 2+ . . The reaction solution after the photocatalytic reaction of the supernatant flowed into the anode electrode side. An aqueous solution of NaCl (0.1 M) was flowed into the cathode electrode side. NaCl (0.3M) was allowed to flow between the cation exchange membrane and the anion exchange membrane. NaCl (0.1 M) was allowed to flow between the anion exchange membrane and the H + selective cation exchange membrane. The interval between the ion exchange membranes is 2 mm.
Fe 2+ was present on the anode electrode side, the current was constant at 3 mA, and the electrolysis voltage was 2.4 V on average for 0.5 hours. It was confirmed by a titration experiment that NaOH was generated at an electrolysis efficiency of 77% on the cathode electrode side.
As Comparative Example 4, when a solution before photoreaction that does not irradiate light on the anode electrode side is used and Fe 2+ is not present, an electrolytic voltage of 3 V is necessary at an average of 0.5 hours at a constant 1 mA, The electrolysis voltage was higher than that in Example 4. It was confirmed by a titration experiment that NaOH was generated at an electrolytic efficiency of 76% on the cathode electrode side.

(実施例5、比較例5)
実施例5として、各イオン交換膜の間隔を50mmに広げた、前記の4室型電気反応槽を用いて、酸性および塩基性の化学品の定量を行った。光触媒反応としては、Cs表面処理したWO3粉末光触媒を懸濁した0.1M−HClO4および0.01M−Fe(ClO4)3の混合水溶液に光照射を行い、Fe2+を生成させた。上澄みの光触媒反応後の反応溶液をアノード電極側に流入した。カソード電極側にはNaCl(0.1M)水溶液を流入した。カチオン交換膜とアニオン交換膜の間にはNaCl(0.3M)を流入した。アニオン交換膜とH+択性カチオン交換膜の間にはNaCl(0.1M)を流入した。アノード電極側にFe2+が存在しており、3mA一定で、3.55Vの電解電圧であった。カソード電極側には電解効率89%でNaOHが生成していることを滴定実験で確認した。アニオン交換膜とH+選択性カチオン交換膜の間には、電解効率89%でHClが生成していることを滴定実験で確認した。
比較例5として、アノード電極側に光照射を行わない光反応前の溶液を用い、Fe2+が存在しない場合、3mA一定で、3.8Vの電解電圧が必要であり、実施例5よりも高い電解電圧であった。カソード電極側には電解効率92%でNaOHが生成していることを滴定実験で確認した。アニオン交換膜とH+選択性カチオン交換膜の間には、電解効率92%でHClが生成していることを滴定実験で確認した。
(Example 5, Comparative Example 5)
As Example 5, acidic and basic chemicals were quantified using the above-described four-chamber electric reaction tank in which the interval between each ion exchange membrane was increased to 50 mm. As the photocatalytic reaction, a mixed aqueous solution of 0.1M-HClO 4 and 0.01M-Fe (ClO 4 ) 3 in which a Cs surface-treated WO 3 powder photocatalyst was suspended was irradiated with light to generate Fe 2+ . . The reaction solution after the photocatalytic reaction of the supernatant flowed into the anode electrode side. A NaCl (0.1 M) aqueous solution was allowed to flow into the cathode electrode side. NaCl (0.3M) was allowed to flow between the cation exchange membrane and the anion exchange membrane. NaCl (0.1 M) was allowed to flow between the anion exchange membrane and the H + selective cation exchange membrane. Fe 2+ was present on the anode electrode side, and the electrolytic voltage was 3.55 V at a constant 3 mA. It was confirmed by a titration experiment that NaOH was generated at an electrolysis efficiency of 89% on the cathode electrode side. It was confirmed by a titration experiment that HCl was generated at an electrolysis efficiency of 89% between the anion exchange membrane and the H + selective cation exchange membrane.
As Comparative Example 5, when a solution before photoreaction that does not irradiate light on the anode electrode side is used, and Fe 2+ is not present, an electrolytic voltage of 3.8 V is required at a constant 3 mA, which is higher than that in Example 5. The electrolysis voltage was high. It was confirmed by a titration experiment that NaOH was generated at an electrolysis efficiency of 92% on the cathode electrode side. It was confirmed by a titration experiment that HCl was generated at an electrolysis efficiency of 92% between the anion exchange membrane and the H + selective cation exchange membrane.

以上のように、アノード電極槽に光触媒反応で生成したレドックス媒体の還元体を流入させると、金属塩水素溶液から塩基性および酸性の化学品を合成のための電解電圧が低下できることがわかった。   As described above, it was found that when the reduced form of the redox medium produced by the photocatalytic reaction was allowed to flow into the anode electrode tank, the electrolysis voltage for synthesizing basic and acidic chemicals from the metal salt hydrogen solution could be reduced.

本発明は、酸化還元媒体(レドックス媒体)の光触媒反応と、イオン交換膜を用いた電気化学プロセスによる酸性および塩基性の化学品合成の低電圧化の方法、並びに当該方法を用いた反応装置に関するものであるが、それだけではなく脱塩やメッキなど様々な電気化学プロセスの省エネにも応用できる。   The present invention relates to a photocatalytic reaction of a redox medium (redox medium), a method for lowering the voltage of acidic and basic chemical synthesis by an electrochemical process using an ion exchange membrane, and a reaction apparatus using the method. However, it can also be applied to energy saving in various electrochemical processes such as desalting and plating.

Claims (12)

金属塩の水溶液を原料とし、カチオン交換膜で原料金属のカチオンをカソード電極側に移動させて、カソード電極側で塩基性の水溶液を製造し、アノード電極側で酸性の水溶液を製造する電気化学プロセスにおいて、
光触媒反応で生じたレドックス媒体の還元体を、アノード電極に接触させることにより電解電圧を低下させることを特徴とする光エネルギーを利用した化学品製造方法。
An electrochemical process that uses an aqueous solution of a metal salt as a raw material, moves a cation of the raw material metal to the cathode electrode side with a cation exchange membrane, produces a basic aqueous solution on the cathode electrode side, and produces an acidic aqueous solution on the anode electrode side In
A chemical production method using light energy, characterized in that an electrolysis voltage is lowered by bringing a reduced form of a redox medium generated by a photocatalytic reaction into contact with an anode electrode.
前記レドックス媒体は、その標準酸化還元準位が、酸素発生準位(O2/H2O=+1.23V、NHE、pH=0)よりも負側にあることを特徴とする請求項1に記載の光エネルギーを利用した化学品製造方法。 2. The redox medium according to claim 1, wherein a standard redox level of the redox medium is more negative than an oxygen generation level (O 2 / H 2 O = + 1.23 V, NHE, pH = 0). A chemical production method using the light energy described. 前記レドックス媒体が、鉄イオンであることを特徴とする請求項1又は2に記載の光エネルギーを利用した化学品製造方法。   The method for producing a chemical product using light energy according to claim 1, wherein the redox medium is an iron ion. 前記カチオン交換膜に接触する反応溶液において、金属カチオン濃度がプロトン濃度より高い条件で反応を行うことを特徴とする請求項1〜3のいずれか1項に記載の光エネルギーを利用した化学品製造方法。   The chemical production using light energy according to any one of claims 1 to 3, wherein the reaction is performed under a condition in which the metal cation concentration is higher than the proton concentration in the reaction solution in contact with the cation exchange membrane. Method. 前記カチオン交換膜に、アノード電極側にアニオンを移動させるアニオン交換膜を組み合わせて用いることを特徴とする請求項1〜4のいずれか1項に記載の光エネルギーを利用した化学品製造方法。   The method for producing a chemical product using light energy according to any one of claims 1 to 4, wherein the cation exchange membrane is used in combination with an anion exchange membrane that moves anions to the anode electrode side. 前記アノード電極と前記カソード電極の間に、プロトン選択性カチオン交換膜およびアニオン交換膜、カチオン交換膜をこの順に設置することを特徴とする請求項1〜5のいずれか1項に記載の光エネルギーを利用した化学品製造方法。   The light energy according to any one of claims 1 to 5, wherein a proton selective cation exchange membrane, an anion exchange membrane, and a cation exchange membrane are disposed in this order between the anode electrode and the cathode electrode. Chemical manufacturing method using 前記塩基性の水溶液が、アルカリ金属の水酸化物水溶液であることを特徴とする請求項1〜6のいずれか1項に記載の光エネルギーを利用した化学品製造方法。   The method for producing a chemical product using light energy according to any one of claims 1 to 6, wherein the basic aqueous solution is an alkali metal hydroxide aqueous solution. 前記アノード電極側で生成する酸性の水溶液が、塩酸、硫酸、硝酸、過塩素酸又は有機酸の水溶液であることを特徴とする請求項1〜7のいずれか1項に記載の光エネルギーを利用した化学品製造方法。   8. The light energy according to claim 1, wherein the acidic aqueous solution generated on the anode electrode side is an aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, or an organic acid. Chemical manufacturing method. 前記カソード電極での反応が、酸素還元反応であることを特徴とする請求項1〜8のいずれか1項に記載の光エネルギーを利用した化学品製造方法。   9. The method for producing a chemical product using light energy according to claim 1, wherein the reaction at the cathode electrode is an oxygen reduction reaction. 金属塩の水溶液を原料とし、電気化学反応により塩基性の水溶液及び酸性の水溶液を製造する化学品製造装置であって、
内部にアノード電極及びカソード電極並びに両電極間に配置されたカチオン交換膜を備えた電解槽と、光触媒を備えた光触媒反応槽とを有し、
該光触媒反応槽で生成されたレドックス媒体の還元体を含む溶液を、前記アノード電極側の電解槽に導入する手段を設けたことを特徴とする化学品製造装置。
A chemical production apparatus for producing a basic aqueous solution and an acidic aqueous solution by an electrochemical reaction using an aqueous solution of a metal salt as a raw material,
It has an electrolytic cell provided with a cation exchange membrane disposed between an anode and a cathode and both electrodes inside, and a photocatalytic reaction vessel equipped with a photocatalyst,
An apparatus for producing a chemical product, comprising means for introducing a solution containing a reductant of a redox medium produced in the photocatalytic reaction tank into the electrolytic cell on the anode electrode side.
請求項10に記載の化学品製造装において、前記電解槽内の前記アノード電極と前記カチオン交換膜の間にさらにアニオン交換膜を備え、
前記光触媒反応槽で生成されたレドックス媒体の還元体を含む溶液を、前記アノード電極側の電解槽に導入する手段と、
前記金属塩の水溶液を、前記アニオン交換膜とカチオン交換膜の間の電解槽に導入する手段とを設けたことを特徴とする化学品製造装置。
The chemical product manufacturing apparatus according to claim 10, further comprising an anion exchange membrane between the anode electrode and the cation exchange membrane in the electrolytic cell,
Means for introducing a solution containing a reductant of the redox medium generated in the photocatalytic reaction tank into the electrolytic cell on the anode electrode side;
An apparatus for producing a chemical product, comprising means for introducing an aqueous solution of the metal salt into an electrolytic cell between the anion exchange membrane and the cation exchange membrane.
請求項11に記載の化学品製造装置において、前記電解槽内の前記アノード電極と前記アニオン交換膜の間にさらにH+選択性カチオン交換膜を備えたことを特徴とする化学品製造装置。
12. The chemical production apparatus according to claim 11, further comprising an H + selective cation exchange membrane between the anode electrode and the anion exchange membrane in the electrolytic cell.
JP2014151704A 2014-07-25 2014-07-25 Method and apparatus for producing chemicals by electrochemical process Active JP6345524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014151704A JP6345524B2 (en) 2014-07-25 2014-07-25 Method and apparatus for producing chemicals by electrochemical process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014151704A JP6345524B2 (en) 2014-07-25 2014-07-25 Method and apparatus for producing chemicals by electrochemical process

Publications (2)

Publication Number Publication Date
JP2016029199A true JP2016029199A (en) 2016-03-03
JP6345524B2 JP6345524B2 (en) 2018-06-20

Family

ID=55435203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014151704A Active JP6345524B2 (en) 2014-07-25 2014-07-25 Method and apparatus for producing chemicals by electrochemical process

Country Status (1)

Country Link
JP (1) JP6345524B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180125750A (en) * 2017-05-16 2018-11-26 경북대학교 산학협력단 wastewater treatment, desalination and chemical production complex system
CN110904465A (en) * 2019-10-22 2020-03-24 新疆中泰创新技术研究院有限责任公司 Device and method for treating byproduct mirabilite of viscose factory

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188492A (en) * 1975-02-03 1976-08-03
JP2004256378A (en) * 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology Method and apparatus for manufacturing hydrogen and oxygen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188492A (en) * 1975-02-03 1976-08-03
JP2004256378A (en) * 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology Method and apparatus for manufacturing hydrogen and oxygen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180125750A (en) * 2017-05-16 2018-11-26 경북대학교 산학협력단 wastewater treatment, desalination and chemical production complex system
WO2018212513A3 (en) * 2017-05-16 2019-01-17 경북대학교 산학협력단 Complex system for water treatment, desalination, and chemical material production
KR101946029B1 (en) * 2017-05-16 2019-04-17 경북대학교 산학협력단 wastewater treatment, desalination and chemical production complex system
CN110636990A (en) * 2017-05-16 2019-12-31 庆北大学校产学协力团 Water treatment, desalination and chemical substance production combined system
US11629073B2 (en) 2017-05-16 2023-04-18 Kyungpook National University Industry-Academic Cooperation Foundation Hybrid system for water treatment, desalination, and chemical production
CN110904465A (en) * 2019-10-22 2020-03-24 新疆中泰创新技术研究院有限责任公司 Device and method for treating byproduct mirabilite of viscose factory

Also Published As

Publication number Publication date
JP6345524B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
Kumar et al. Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams
Rivera et al. The filter-press FM01-LC laboratory flow reactor and its applications
JP5604204B2 (en) Ammonia synthesis method
CN105821436B (en) A kind of double electrolytic cell two-step method chloric alkali electrolysis method and devices based on three-electrode system
Zhang et al. Electrochemical degradation of refractory pollutants using TiO2 single crystals exposed by high-energy {001} facets
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
KR20080043149A (en) A method of extraction of platinum group metals from the spent catalysts by electrochemical processes
JP6418906B2 (en) Light energy utilization method and light energy utilization apparatus
Ma et al. Assisted reverse electrodialysis for CO2 electrochemical conversion and treatment of wastewater: A new approach towards more eco-friendly processes using salinity gradients
CN102839389B (en) Novel production method of electro-depositing and refining metal chloride by membrane process
Grotheer et al. Industrial electrolysis and electrochemical engineering
KR101193142B1 (en) Manufacturing method of lithium by electrolysis of lithium phosphate aqueous solution
Peng et al. A solar cell driven electrochemical process for the concurrent reduction of carbon dioxide and degradation of azo dye in dilute KHCO3 electrolyte
Oh et al. Photoelectrochemical hydrogen production with concentrated natural seawater produced by membrane process
JP6345524B2 (en) Method and apparatus for producing chemicals by electrochemical process
CN103866344B (en) A kind of method of electrolytic preparation nitric acid
Zhang et al. Enhanced recovery of phosphorus from hypophosphite-laden wastewater via field-induced electro-Fenton coupled with anodic oxidation
Wang et al. Sustainable coproduction of two disinfectants via hydroxide-balanced modular electrochemical synthesis using a redox reservoir
EP3473750A1 (en) Electrolysis system and electrolysis method using same
CN102605383B (en) Method and device for hydrogen-circulating electrolysis and application of the method and device in production of aluminum oxide
CN105858828A (en) Asymmetric-flow electrode desalting plant
WO2015143560A1 (en) Process for the conversion of carbon dioxide to formic acid
CN102839383B (en) Method for preparing organic acid by electrolyzing organic acid salt on basis of chlor-alkali perfluor ion exchange membrane
Rahmaninezhad et al. Modeling and optimizing the photo-electro-catalytic degradation of methylene blue by response surface methodology
JP6388820B2 (en) Light energy utilization method and light energy utilization apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180523

R150 Certificate of patent or registration of utility model

Ref document number: 6345524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250