JP2016028374A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2016028374A
JP2016028374A JP2012280105A JP2012280105A JP2016028374A JP 2016028374 A JP2016028374 A JP 2016028374A JP 2012280105 A JP2012280105 A JP 2012280105A JP 2012280105 A JP2012280105 A JP 2012280105A JP 2016028374 A JP2016028374 A JP 2016028374A
Authority
JP
Japan
Prior art keywords
active material
battery
material layer
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012280105A
Other languages
Japanese (ja)
Inventor
亨 永浦
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAURA ATSUKO
NAGAURA CHIEKO
Original Assignee
NAGAURA ATSUKO
NAGAURA CHIEKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAURA ATSUKO, NAGAURA CHIEKO filed Critical NAGAURA ATSUKO
Priority to JP2012280105A priority Critical patent/JP2016028374A/en
Priority to PCT/JP2013/081895 priority patent/WO2014087895A1/en
Publication of JP2016028374A publication Critical patent/JP2016028374A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To overcome the problem in which an organic electrolyte secondary battery is arranged by using an oxide or the like as a negative electrode active material and achieving high safety, while such an organic electrolyte secondary battery is low in output density because of its low battery voltage so it cannot satisfy the criteria for installation on a hybrid vehicle (HV).SOLUTION: In a power storage device according to the present invention, at least one of active material layers of opposing positive and negative electrodes has an electrically non-conducting property; and the other active material layer is put in close contact therewith at an opposite surface with no separator interposed therebetween, which shortens the distance between the electrodes. In addition, reducing the electrodes in thickness, a power storage device of a high output density can be achieved. This is because the area of the electrodes rises in inverse proportion to the electrode thickness efficiently. Therefore, applying the present invention, even an organic electrolyte secondary battery arranged so as to use an oxide or the like as a negative electrode active material will meet the performance criteria as a battery for installation on HV, and will make a safe and inexpensive next-generation battery of high output density for installation on HV.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電装置に関し、特に、蓄電装置の電極構造に関するものである。   The present invention relates to a power storage device, and more particularly to an electrode structure of a power storage device.

近年我が国では、モーター駆動とエンジン駆動を組み合わせたハイブリッド車(以下、HVという。)がその優れた環境性能と燃費性能の実績から急速に普及拡大している。一方、リチウムイオン電池の出現によって100%モーター駆動の電気自動車(以下、EVという。)も実用化されて、一般ユーザー向けに市販され始めた。   In recent years, hybrid vehicles combining motor drive and engine drive (hereinafter referred to as HV) are rapidly spreading in Japan due to their excellent environmental performance and fuel efficiency performance. On the other hand, with the advent of lithium-ion batteries, 100% motor-driven electric vehicles (hereinafter referred to as EVs) have been put into practical use and started to be marketed for general users.

EVは確かにCOの排出量や燃費性能や静粛性においては申し分ないが、一回の充電で走行できる距離(充電走行距離)が限定的であるため、長距離ドライブには不向きである。 Although EV is certainly satisfactory in terms of CO 2 emissions, fuel efficiency and quietness, EV is unsuitable for long-distance driving because the distance that can be traveled by one charge (charging travel distance) is limited.

一方、HVはCOの排出量や燃費性能ではガソリン車をはるかに凌ぎ、航続距離においてもガソリン車と同じであり、長距離ドライブにも全く心配がない。従って、理論的には世界中の全てのガソリン車はHVに移行可能であり、地球温暖化防止の観点からは一刻も早く全てのガソリン車をHVに移行すべきである。 On the other hand, HV far surpasses gasoline vehicles in terms of CO 2 emissions and fuel efficiency, and is the same as gasoline vehicles in terms of cruising distance, so there is no worry about long-distance driving. Therefore, theoretically, all gasoline vehicles in the world can be transferred to HV, and from the viewpoint of preventing global warming, all gasoline vehicles should be transferred to HV as soon as possible.

HVでは発進時や低速走行時や急加速時にはモーター駆動がエンジン駆動をアシストしてエンジンの稼動効率を高めるものであり、モーターへの電力供給能力が高ければ、基本的にはエンジンの稼動効率が高まる。従って、HVには出来るだけ出力の高い蓄電装置の搭載が望ましいが、同時に搭載される蓄電装置には価格と搭載スペースも限られるので、次世代型HV搭載用蓄電装置にはより高い出力密度(W/L)が求められる。   In HV, when starting, running at low speed, or suddenly accelerating, the motor drive assists the engine driving to increase the engine operating efficiency. If the power supply capacity to the motor is high, the engine operating efficiency is basically increased. Rise. Therefore, it is desirable to mount a power storage device with as high an output as possible in HV, but since the power storage device mounted at the same time is limited in price and mounting space, the next-generation HV mounting power storage device has a higher output density ( W / L).

HV搭載用の蓄電装置にはこれまでは専らニッケル水素電池が使用されてきたが、次世代型HV搭載用蓄電装置としては、EVと同様にリチウムイオン電池がその第一候補と考えられているようである。   Until now, nickel-metal hydride batteries have been exclusively used for HV-mounted power storage devices. However, as next-generation HV-mounted power storage devices, lithium-ion batteries are considered to be the first candidate, similar to EVs. It seems.

リチウムイオン電池は本発明者等が世界に先駆けて実用化に成功した有機電解液二次電池であり、本発明者は1990年3月に米国フロリダで開催された第3回二次電池セミナーで初めてリチウムイオン電池の性能を世の中に紹介し、その内容はバッテリー専門雑誌にも投稿している(非特許文献1参照)。その後、リチウムイオン電池は瞬く間にその優れた性能が認識され、多くの電子機器の電源に採用されていった。   The lithium ion battery is an organic electrolyte secondary battery that the inventors have succeeded in practical use for the first time in the world, and the present inventor at the 3rd secondary battery seminar held in Florida, USA in March 1990. For the first time, the performance of lithium-ion batteries has been introduced to the world, and the contents have also been posted in battery-specialized magazines (see Non-Patent Document 1). After that, lithium ion batteries were recognized for their superior performance in an instant and were adopted as power sources for many electronic devices.

しかし、リチウムイオン電池では、リチウムイオンがドープされたカーボン負極は電位的には金属リチウムにかなり近いので、有機電解液を還元する能力が十分にある。従って、何かの原因(電池の内部ショート、外部短絡、過充電等)で電池温度が60℃以上に上昇すれば、負極のカーボンと電解液の反応が激しくなり、電池が熱暴走して異常な発熱や発火事故に繋がる可能性がある。そのため、リチウムイオン電池は上限を60℃として、電池温度が厳しく管理されなければならない。   However, in a lithium ion battery, the carbon negative electrode doped with lithium ions is sufficiently close to metallic lithium in terms of potential, and therefore has a sufficient ability to reduce the organic electrolyte. Therefore, if the battery temperature rises to 60 ° C or higher due to some cause (battery internal short circuit, external short circuit, overcharge, etc.), the reaction between the carbon of the negative electrode and the electrolyte will become intense, and the battery will run out of heat and become abnormal. May lead to excessive fever and fire. For this reason, the upper limit of the lithium ion battery must be 60 ° C., and the battery temperature must be strictly controlled.

携帯電話やノートパソコン等の多くの電子機器の電源として使用されているリチウムイオン電池に比べて、EVやHVに搭載されるリチウムイオン電池は大きな出力が求められる分、電池温度のコントロールは難しくなる。特に、HVに搭載されるリチウムイオン電池は、電池容積当たりの放電出力(W/L)が更に大きいため、電池容積当たりの発熱量(J/L)も大きく、電池温度も上昇しやすい。従って例えば、リチウムイオン電池を搭載する某社のHVでは電池を5°前下がりに搭載し、導入した風を当てることで冷却効果を高めるなどの工夫がなされている。   Compared to lithium-ion batteries that are used as power sources for many electronic devices such as mobile phones and notebook computers, lithium-ion batteries mounted on EVs and HVs require higher output, making it difficult to control battery temperature. . In particular, since the lithium ion battery mounted on the HV has a larger discharge output (W / L) per battery volume, the calorific value (J / L) per battery volume is large and the battery temperature is likely to rise. Therefore, for example, in the HV of a certain company equipped with a lithium ion battery, the battery is mounted 5 ° forward and the cooling effect is enhanced by applying the introduced wind.

次世代型HV搭載用蓄電装置には、より高い“最大出力密度(W/L)”が求められることになるが、リチウムイオン電池の出力密度(W/L)をさらに高めれば、電池温度を60℃以下に保つ更なる工夫も必要であり、安全性の確保は一段と難しくなる。従って安全性の確保の観点からは、次世代型HV搭載用蓄電装置としては、他の蓄電システムの選択肢も検討する必要がある。   Next-generation HV-equipped power storage devices are required to have a higher “maximum output density (W / L)”, but if the output density (W / L) of a lithium ion battery is further increased, the battery temperature will be reduced. Further ingenuity to keep the temperature at 60 ° C. or lower is also necessary, and it becomes more difficult to ensure safety. Therefore, from the viewpoint of ensuring safety, it is necessary to consider other power storage system options as the next-generation HV-mounted power storage device.

“最大出力密度(W/L)”とは蓄電装置の容積当たりの最大の出力を意味するが、最大の出力は持続可能な時間によって異なる。例えば10秒間だけ放電持続可能な最大出力は、120秒間放電持続可能な最大出力よりも当然大きい。従って、本明細書ではHV搭載を前提として、120秒間放電持続可能な最大出力を蓄電装置の体積で除した値をもって“最大出力密度(W/L)”と定義しておく。   “Maximum output density (W / L)” means the maximum output per volume of the power storage device, but the maximum output depends on the sustainable time. For example, the maximum output sustainable for 10 seconds is naturally greater than the maximum sustainable output for 120 seconds. Therefore, in this specification, on the premise of HV mounting, a value obtained by dividing the maximum output sustainable for 120 seconds by the volume of the power storage device is defined as “maximum output density (W / L)”.

具体的な最大出力密度(W/L)のHV搭載基準は、現在HVに搭載されているリチウムイオン電池の性能から判断すれば、素電池ベースで凡そ2500W/L程度である。120秒間放電持続可能な最大出力密度が2500W/Lであれば、最大出力時の放電容量密度は83Wh/L以上ということになる。   The specific HV mounting standard of the maximum power density (W / L) is about 2500 W / L on the basis of the unit cell, judging from the performance of the lithium ion battery currently mounted on the HV. If the maximum power density sustainable for 120 seconds is 2500 W / L, the discharge capacity density at the maximum output is 83 Wh / L or more.

高い出力密度(W/L)を有する蓄電装置としては二次電池の他にはキャパシタもあるが、一般にキャパシタは、出力密度(W/L)は高いが最大出力時の放電容量密度が低い。従って、キャパシタをHV搭載用の蓄電装置として使用するためには、容量密度(Wh/L)を高める必要がある。逆に二次電池は出力密度(W/L)が低いので、HV搭載用の蓄電装置として使用するためには出力密度(W/L)を高める必要がある。   As a power storage device having a high output density (W / L), there is a capacitor in addition to a secondary battery. Generally, a capacitor has a high output density (W / L) but a low discharge capacity density at the maximum output. Therefore, in order to use the capacitor as an HV-mounted power storage device, it is necessary to increase the capacity density (Wh / L). Conversely, since the secondary battery has a low output density (W / L), it is necessary to increase the output density (W / L) in order to use it as an HV-mounted power storage device.

近年、キャパシタの容量密度(Wh/L)を高めるために、負極活物質にはTiOやLiTi12などの電気化学的な酸化還元反応に基づく活物質を使用するものや、充電によって電解液中のマイナスイオンが電気化学的にインタカレートする黒鉛を正極活物質とするキャパシタ等が盛んに研究され、出力密度は7000W/Lで容量密度は20Wh/Lを達成したとの報告(非特許文献2〜3参照)もあるが、出力密度では申し分ないが、容量密度はHV搭載用のレベルではない。 In recent years, in order to increase the capacitance density (Wh / L) of a capacitor, an active material based on an electrochemical oxidation-reduction reaction such as TiO 2 or Li 4 Ti 5 O 12 is used as a negative electrode active material. Has been actively researched on capacitors with positive electrode active material such as graphite, in which negative ions in the electrolyte are electrochemically intercalated, and reported that the output density was 7000 W / L and the capacity density was 20 Wh / L. (See Non-Patent Documents 2 to 3), but the output density is satisfactory, but the capacity density is not at the level for HV mounting.

なお、キャパシタも容量密度(Wh/L)を高めるために、二次電池と同じく電気化学的な酸化還元反応に基づく活物質を使用するようになり、キャパシタと二次電池の区別が難しくなっているが、本明細書では、電気化学的な酸化還元反応に基づく活物質を正極と負極のいずれにも使用する蓄電装置は二次電池に分類し、電気化学的な酸化還元反応に基づく活物質を正極か負極のいずれか一方にだけ使用する蓄電装置はキャパシタに分類する。   In addition, in order to increase the capacity density (Wh / L), the capacitor also uses an active material based on an electrochemical oxidation-reduction reaction like the secondary battery, making it difficult to distinguish between the capacitor and the secondary battery. However, in this specification, power storage devices that use an active material based on an electrochemical redox reaction for both the positive electrode and the negative electrode are classified as secondary batteries, and an active material based on an electrochemical redox reaction. A power storage device that uses only the positive electrode or the negative electrode is classified as a capacitor.

一方、安全性の高い有機電解液二次電池としては、電解液を還元する能力のない物質(例えば金属酸化物や硫化物)を負極活物質とする二次電池が考えられる。本明細書では、斯かる有機電解液を還元する能力のない物質、即ち酸化還元電位の貴な(高い)物質を負極活物質とする有機電解液二次電池を、以後、“貴負極電位型二次電池”と呼ぶこととする。   On the other hand, as a highly safe organic electrolyte secondary battery, a secondary battery using a negative electrode active material that is not capable of reducing the electrolyte (for example, a metal oxide or sulfide) can be considered. In the present specification, an organic electrolyte secondary battery using a substance having no ability to reduce such an organic electrolyte solution, that is, a noble (high) substance having a redox potential as a negative electrode active material, is hereinafter referred to as “noble negative electrode potential type”. It will be called “secondary battery”.

貴負極電位型二次電池はこれまでにも数多く提案されている(特許文献1〜4参照)。しかしながら、貴負極電位型二次電池は負極活物質の酸化還元電位が貴である(高い)分、放電電圧はリチウムイオン電池よりかなり低くなり、容量密度(Wh/L)は放電電圧に比例するためにリチウムイオン電池より相当低くなる。   Many noble negative electrode potential type secondary batteries have been proposed so far (see Patent Documents 1 to 4). However, in the noble negative electrode type secondary battery, the discharge voltage is considerably lower than the lithium ion battery because the redox potential of the negative electrode active material is noble (high), and the capacity density (Wh / L) is proportional to the discharge voltage. Therefore, it is considerably lower than the lithium ion battery.

これまでの二次電池の用途では、主として容量密度(Wh/L)の高い電池(長時間使用)が求められてきたため、貴負極電位型二次電池はなかなか容量密度(Wh/L)ではリチウムイオン電池のレベル(素電池ベースで250Wh/L程度)には達し難く、実用化には至っていない。   In the use of secondary batteries so far, a battery having a high capacity density (Wh / L) (use for a long time) has been demanded. Therefore, noble negative electrode potential type secondary batteries have a capacity density (Wh / L) of lithium. It is difficult to reach the level of an ion battery (about 250 Wh / L on a unit cell basis), and it has not been put into practical use.

因みにニッケル水素二次電池は、セル電圧ではリチウムイオン電池の1/3程度であるが、容量密度は250Wh/Lを超えているため、リチウムイオン電池と並んで多くの電子機器等にも使用されている。   Incidentally, the nickel-metal hydride secondary battery is about 1/3 of the lithium ion battery in terms of cell voltage, but since the capacity density exceeds 250 Wh / L, it is used in many electronic devices along with the lithium ion battery. ing.

ところが、HV搭載用電池としての用途ではリチウムイオン電池においても出力密度(W/L)を大きくするために、容量密度(Wh/L)は犠牲となって、120〜150Wh/L程度にまで低減している。つまり、HV搭載用電池としては、最大出力密度(W/L)が基準を満たせば容量密度(Wh/L)は本来のリチウムイオン電池の半分程度でも十分HVへの搭載が可能であることを示唆している。   However, in applications as HV-mounted batteries, the capacity density (Wh / L) is sacrificed and reduced to about 120 to 150 Wh / L in order to increase the output density (W / L) even in lithium ion batteries. doing. In other words, if the maximum output density (W / L) satisfies the standard, the capacity density (Wh / L) can be mounted on the HV sufficiently even if it is about half that of the original lithium ion battery. Suggests.

従って、HV搭載用電池に限定して考えてみれば、安全性の高い貴負極電位型二次電池も、最大出力密度(W/L)さえ基準を満たせば、次世代型HV搭載用電池の有力な候補となりうる。   Therefore, if limited to HV-equipped batteries, highly safe noble negative potential type secondary batteries can be used for next-generation HV-equipped batteries as long as the maximum output density (W / L) is met. Can be a strong candidate.

米国特許第4983476号明細書US Pat. No. 4,983,476 特開平08−022841号公報Japanese Patent Laid-Open No. 08-022841 特開平08−024117号公報Japanese Patent Application Laid-Open No. 08-024117 特開平08−236115号公報Japanese Patent Laid-Open No. 08-236115

”Progress in Batteries and Solar Cells”, 1990, Vol.9, p.209“Progress in Batteries and Solar Cells”, 1990, Vol.9, p.209 ”Journal of Power Sources”, 2007, Vol.169, p375“Journal of Power Sources”, 2007, Vol.169, p375 ”Journal of Power Sources”, 2010, Vol.195, p6250“Journal of Power Sources”, 2010, Vol.195, p6250

しかしながら、リチウムイオン電池に比べて電圧の低い貴負極電位型二次電池は、電圧の低さが最大出力密度(W/L)には更に大きく関係する。即ち、開路電圧がVで内部抵抗がrの電池の最大出力(Wmax)はWmax=V /(4×r)の関係にあり、最大出力は開路電圧の二乗に比例するからである。ただし、ここでは電池の内部抵抗rは正極と負極間の単なる交流インピーダンスではなく、電解液の抵抗分極や濃度分極や電極の活性化分極等、全ての分極を放電電流で除した値である。 However, in a noble negative potential type secondary battery having a lower voltage than that of a lithium ion battery, the lower voltage is more related to the maximum output density (W / L). That is, the maximum output (Wmax) of a battery having an open circuit voltage of V 0 and an internal resistance of r has a relationship of Wmax = V 0 2 / (4 × r), and the maximum output is proportional to the square of the open circuit voltage. . However, here, the internal resistance r of the battery is not a simple AC impedance between the positive electrode and the negative electrode, but a value obtained by dividing all the polarizations such as the resistance polarization, concentration polarization, and activation polarization of the electrolyte by the discharge current.

如何なる電池も電池サイズを大きくすれば最大出力は大きくなるが、HVでは電池の搭載スペースが車の座席数や荷物室のスペース等に大きく関係してくるので、HV搭載用電池には小さな電池サイズで大きな出力を有することが求められる。つまり、HV搭載用電池には大きな最大出力密度(W/L)が求められる。   Although the maximum output of any battery increases as the battery size increases, in HV the battery mounting space is greatly related to the number of seats in the car, the space in the luggage compartment, etc. It is required to have a large output. That is, a large maximum power density (W / L) is required for the HV-mounted battery.

貴負極電位型二次電池の開路電圧Vが仮にリチウムイオン電池の2/3程度であれば、リチウムイオン電池と同じく従来の電極構造で作製した場合には、容量密度(Wh/L)ではリチウムイオン電池の67%程度が期待できるが、最大出力密度(W/L)は開路電圧Vの二乗に比例するので、リチウムイオン電池の45%程度にも達し得ないことになる。 If the open circuit voltage V 0 of the noble negative potential type secondary battery is about 2/3 of that of a lithium ion battery, the capacity density (Wh / L) in the case of manufacturing with a conventional electrode structure similar to the lithium ion battery About 67% of the lithium ion battery can be expected, but the maximum power density (W / L) is proportional to the square of the open circuit voltage V 0 , and cannot reach about 45% of the lithium ion battery.

従って、貴負極電位型二次電池の最大出力密度(W/L)をHV搭載用電池の基準(2500W/L程度)に引き上げるためには、リチウムイオン電池と同じ従来の電極構造では非常に困難である。   Therefore, in order to raise the maximum output density (W / L) of the noble negative potential type secondary battery to the standard of the HV-mounted battery (about 2500 W / L), it is very difficult with the same conventional electrode structure as the lithium ion battery. It is.

本発明は、以上の課題に鑑みて成されたものであり、その目的は蓄電素子からセパレーターを取り除くことを可能とし、それによって電極面積を増加させ、電極間距離をも縮めて、電圧の低い有機電解液二次電池においても高い出力密度を得ることが出来る新しい電極構造を提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to make it possible to remove the separator from the power storage element, thereby increasing the electrode area, reducing the distance between the electrodes, and reducing the voltage. An object of the present invention is to provide a new electrode structure capable of obtaining a high output density even in an organic electrolyte secondary battery.

上記課題を解決するため蓄電装置は、正極と負極の活物質層が対向してなる蓄電装置において、前記正極と前記負極はそれぞれの活物質層が集電体に密着して形成されており、対向する前記正極の活物質層と前記負極の活物質層とは対向面で密着していることを特徴とする。   In order to solve the above problem, the power storage device is a power storage device in which an active material layer of a positive electrode and a negative electrode is opposed to each other, and each of the positive electrode and the negative electrode is formed in close contact with a current collector, The active material layer of the positive electrode and the active material layer of the negative electrode facing each other are in close contact with each other on the opposing surface.

本発明による電極構造の蓄電装置は、対向する活物質層は対向面で密着しているので電極間距離が短くなり、また従来の電極構造で使用されるセパレーター相当分が電極充填量の増加となって電極面積も増えるので、出力密度が高くなる。   In the power storage device with an electrode structure according to the present invention, since the opposing active material layers are in close contact with each other on the opposing surface, the distance between the electrodes is shortened, and the amount corresponding to the separator used in the conventional electrode structure is increased. As a result, the electrode area increases, and the output density increases.

上記した以外の課題やその解決手段と効果は、以下の実施の形態の説明により更に詳細に説明する。   Problems other than those described above and solutions and effects thereof will be described in more detail with reference to the following embodiments.

本発明の実施に係る蓄電素子の正極タブ接続部と電極の配列状態を示す断面図である。It is sectional drawing which shows the positive electrode tab connection part of the electrical storage element which concerns on implementation of this invention, and the arrangement | sequence state of an electrode. 本発明の実施に係る蓄電素子の負極タブ接続部と電極の配列状態を示す断面図である。It is sectional drawing which shows the negative electrode tab connection part of the electrical storage element which concerns on implementation of this invention, and the arrangement | sequence state of an electrode. 本発明の実施に係る蓄電装置の断面図である。It is sectional drawing of the electrical storage apparatus which concerns on implementation of this invention. 従来型電池における蓄電素子の電極タブ接続部と電極の配列状態を示す断面図である。It is sectional drawing which shows the electrode tab connection part of the electrical storage element in a conventional battery, and the arrangement | sequence state of an electrode. 本発明の実施に係る蓄電素子の活物質層の厚さと電極積層枚数の関係を従来との比較で示す図である。It is a figure which shows the relationship between the thickness of the active material layer of the electrical storage element which concerns on implementation of this invention, and the number of electrode lamination by comparison with the past. 本発明の実施に係る電池の初回充電時において、活物質に確保される電子伝導経路とイオン電導経路を示す模式図である。It is a schematic diagram which shows the electron conduction path | route and ion conduction path which are ensured by the active material at the time of the first charge of the battery which concerns on implementation of this invention. 本発明による電池の初回の充電メカニズムを示した電極模式図である。It is the electrode schematic diagram which showed the first charging mechanism of the battery by this invention. 本発明による電池の初回の充電メカニズムを示した電極模式図である。It is the electrode schematic diagram which showed the first charging mechanism of the battery by this invention. 本発明による電池の初回の充電メカニズムを示した電極模式図である。It is the electrode schematic diagram which showed the first charging mechanism of the battery by this invention. 有機電解液電池の電解液濃度差の発生メカニズムを示した模式図である。It is the schematic diagram which showed the generation | occurrence | production mechanism of the electrolyte solution concentration difference of an organic electrolyte battery. 本発明の実施に係る電池と従来型電池の4A定電流放電時の放電カーブを示す図である。It is a figure which shows the discharge curve at the time of 4A constant current discharge of the battery which concerns on implementation of this invention, and a conventional battery. 本発明の実施に係る電池と従来型電池の最大出力時の放電カーブを示す図である。It is a figure which shows the discharge curve at the time of the maximum output of the battery concerning implementation of this invention, and a conventional battery.

以下、本発明の実施の形態を図面に基づきさらに詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.

図1は、本発明の実施に係る蓄電素子の正極タブ接続部と電極の配列状態を示す断面図である。図2は、本発明の実施に係る蓄電素子の負極タブ接続部と電極の配列状態を示す断面図である。図3は、本発明の実施に係る蓄電装置を示す断面図である。   FIG. 1 is a cross-sectional view showing an arrangement state of positive electrode tab connection portions and electrodes of a power storage device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view illustrating an arrangement state of the negative electrode tab connection portion and the electrode of the energy storage device according to the embodiment of the present invention. FIG. 3 is a cross-sectional view showing a power storage device according to the embodiment of the present invention.

図1〜3は、高い出力密度を有する二次電池やキャパシタを得るために、電極厚さを限界近くまで薄くして本発明を実施した場合の蓄電装置100(図3)とその蓄電素子10(図1、2)を断面図で示した。蓄電素子10においては正極31と負極32はそれぞれの活物質層2(以下、「正極活物質層2」ともいう。)および活物質層1(以下、「負極活物質層1」ともいう。)が集電体4(以下、「正極集電体4」ともいう。)および集電体3(以下、「負極集電体3」ともいう。)に密着して形成された電極であり、正極活物質層2と負極活物質層1とが対向して構成され、対向する活物質層2、1は対向面33で密着していることが特徴である。   1 to 3 show a power storage device 100 (FIG. 3) and the power storage element 10 when the present invention is carried out with the electrode thickness reduced to near the limit in order to obtain a secondary battery or capacitor having a high output density. (FIG. 1, 2) was shown with sectional drawing. In the power storage element 10, the positive electrode 31 and the negative electrode 32 are each active material layer 2 (hereinafter also referred to as “positive electrode active material layer 2”) and active material layer 1 (hereinafter also referred to as “negative electrode active material layer 1”). Is an electrode formed in close contact with the current collector 4 (hereinafter also referred to as “positive electrode current collector 4”) and the current collector 3 (hereinafter also referred to as “negative electrode current collector 3”). The active material layer 2 and the negative electrode active material layer 1 are configured to face each other, and the facing active material layers 2 and 1 are in close contact with each other at the facing surface 33.

図1および2は電極厚さを限界近くまで薄くして実施する場合であり、具体的には正極31と負極32はそれぞれ厚さ10μm程度の集電体4、3に厚さ20μm程度以下の活物質層2、1を両面又は片面に形成した電極を使用し、正極活物質層2と負極活物質層1を対向させて重ね合わせ、蓄電素子10は電極の積層体として構成し、当該蓄電素子10は図3に示すように、有機電解液(不図示)を含浸せしめてアルミニウムとポリプロピレンのラミネートシート11と絞り加工したラミネートシート12の間に納めて周囲を熱融着して密封すれば、本発明による電極構造の蓄電装置100が完成する。   FIGS. 1 and 2 show the case where the electrode thickness is reduced to near the limit. Specifically, the positive electrode 31 and the negative electrode 32 are formed on the current collectors 4 and 3 having a thickness of about 10 μm, respectively, and the thickness is about 20 μm or less. An electrode in which the active material layers 2 and 1 are formed on both sides or one side is used, the positive electrode active material layer 2 and the negative electrode active material layer 1 are overlapped to face each other, and the power storage element 10 is configured as a laminated body of electrodes. As shown in FIG. 3, the element 10 is impregnated with an organic electrolyte solution (not shown), placed between an aluminum / polypropylene laminate sheet 11 and a drawn laminate sheet 12, and sealed by heat-sealing the surroundings. The power storage device 100 having an electrode structure according to the present invention is completed.

図1は蓄電素子10における、特に正極集電体4を取りまとめて正極タブ7に接続した部分と電極の配列状態を拡大して示し、図2は蓄電素子10における、負極集電体3を取りまとめて負極タブ6に接続した部分と電極の配列状態を拡大して示している。図1に示すように、蓄電素子10ではそれぞれ対向する正極活物質層2と負極活物質層1は密着し、正極集電体4はいずれも正極タブ7にまとめられて溶接され、正極タブ7にはプラスチックテープ9が巻かれ、蓄電素子10が図3に示すように、ラミネートシート11、12で密封されるとき、当該プラスチックテープ9がラミネートシート11、12と一体化して熱融着するので、蓄電素子10の密封を妨げることなく、正極タブ7は外部に取り出されて正極の外部端子14となる。同じように図2に示すように、負極集電体3もまとめられて負極タブ6に溶接され、負極タブ6は外部に取り出されて負極の外部端子13となる。   FIG. 1 is an enlarged view of the arrangement of the electrode and the portion of the electricity storage element 10, particularly the portion where the positive electrode current collector 4 is connected and connected to the positive electrode tab 7, and FIG. 2 shows the arrangement of the negative electrode current collector 3 in the electricity storage element 10. Thus, the portion connected to the negative electrode tab 6 and the arrangement state of the electrodes are shown enlarged. As shown in FIG. 1, the positive electrode active material layer 2 and the negative electrode active material layer 1 that face each other in the power storage element 10 are in close contact with each other, and the positive electrode current collector 4 is joined together and welded to the positive electrode tab 7. Is wrapped with plastic tape 9, and when the storage element 10 is sealed with the laminate sheets 11 and 12, as shown in FIG. 3, the plastic tape 9 is integrated with the laminate sheets 11 and 12 and heat-sealed. The positive electrode tab 7 is taken out to the external terminal 14 of the positive electrode without disturbing the sealing of the electric storage element 10. Similarly, as shown in FIG. 2, the negative electrode current collector 3 is also collected and welded to the negative electrode tab 6, and the negative electrode tab 6 is taken out to become an external terminal 13 of the negative electrode.

図4は、従来型電池における蓄電素子の電極タブ接続部と電極の配列状態を示す断面図である。なお、図4における各構成要素1A、2A、3A、4A、6A、7A、10Aは、それぞれ図1〜3における各構成要素1、2、3、4、6、7、10に相当する。 FIG. 4 is a cross-sectional view showing an arrangement state of electrode tab connection portions and electrodes of a storage element in a conventional battery. In addition, each component 1A, 2A, 3A, 4A, 6A, 7A, 10A in FIG. 4 is equivalent to each component 1, 2, 3, 4, 6, 7, 10 in FIGS.

一方、図4は高い出力密度を有する二次電池やキャパシタを得るために、電極厚さを限界近くまで薄くして実施する場合の従来型の電極構造による蓄電素子10Aを断面図で示した。図4には集電体4A、3Aを取りまとめて電極タブ7A、6Aに接続した部分と電極の配列状態を正極タブ7A側と負極タブ6A側を左半分と右半分にそれぞれ拡大して示している。   On the other hand, FIG. 4 shows a cross-sectional view of a power storage device 10A having a conventional electrode structure in the case where the electrode thickness is reduced to the limit in order to obtain a secondary battery or a capacitor having a high output density. In FIG. 4, the current collectors 4A and 3A are combined and connected to the electrode tabs 7A and 6A, and the arrangement state of the electrodes is shown by enlarging the positive electrode tab 7A side and the negative electrode tab 6A side to the left half and the right half, respectively. Yes.

図4に示す蓄電素子10Aは、図1および2に示した蓄電素子10と同じ厚さの電極を使用し、積層体の厚みも同じとすることを前提に示した図である。図4においても電極厚さを限界近くまで薄くして実施する場合であり、具体的には正極31Aと負極32Aはそれぞれ厚さ10μm程度の集電体4A、3Aに厚さ20μm程度以下の活物質層2A、1Aを両面又は片面に形成した電極を使用し、厚さ25μm程度のセパレーター5を使用する。セパレーター5の機械的強度や機能を考慮すると25μmはほぼ薄さの限界である。   The power storage element 10A shown in FIG. 4 is a view shown on the assumption that an electrode having the same thickness as that of the power storage element 10 shown in FIGS. 1 and 2 is used and the thickness of the stacked body is also the same. FIG. 4 also shows a case where the electrode thickness is reduced to near the limit. Specifically, the positive electrode 31A and the negative electrode 32A are respectively provided on the current collectors 4A and 3A having a thickness of about 10 μm and the active thickness of about 20 μm or less. An electrode in which the material layers 2A and 1A are formed on both sides or one side is used, and a separator 5 having a thickness of about 25 μm is used. Considering the mechanical strength and function of the separator 5, 25 μm is almost the limit of thinness.

従来型の電極構造(図4)では、本発明の電極構造(図1、2)と比較して、電極積層体の体積が同じであればセパレーター5の量に相当する分だけ電極の量は少なくなり、同じ厚さの電極を使用すれば電極面積はその分だけ少なくなる。   In the conventional electrode structure (FIG. 4), as compared with the electrode structure of the present invention (FIGS. 1 and 2), if the volume of the electrode laminate is the same, the amount of the electrode is equivalent to the amount of the separator 5. If the electrodes having the same thickness are used, the electrode area is reduced accordingly.

図5は、本発明の実施に係る蓄電素子の活物質層の厚さと電極積層枚数の関係を従来との比較で示す図である。   FIG. 5 is a diagram showing the relationship between the thickness of the active material layer and the number of stacked electrodes of the electricity storage device according to the embodiment of the present invention in comparison with the conventional art.

図5には厚さ10μmの集電体に活物質層を形成して電極とする場合の活物質層の厚さと電極積層枚数との関係を、厚さ25μmのセパレーターを使用する電極構造とセパレーターを使用しない電極構造の場合について示した。   FIG. 5 shows the relationship between the thickness of the active material layer and the number of stacked electrodes when an active material layer is formed on a 10 μm-thick current collector, and the electrode structure and separator using a 25 μm-thick separator. It showed about the case of the electrode structure which does not use.

図5に示されるように、セパレーターを使用する電極構造では、特に活物質層の厚さがセパレーターの厚さ(25μm)以下の場合においては、活物質層の厚さを薄くしてもセパレーターの比率が高くなるため、電極積層枚数が効率よく増えない。一方セパレーターを使用しない電極構造では、特に活物質層の厚さが25μm以下の場合においては、電極積層枚数が効率よく増える。   As shown in FIG. 5, in the electrode structure using the separator, particularly when the thickness of the active material layer is less than the thickness of the separator (25 μm), the thickness of the active material layer can be reduced. Since the ratio becomes high, the number of stacked electrodes does not increase efficiently. On the other hand, in an electrode structure that does not use a separator, the number of stacked electrodes increases efficiently, particularly when the thickness of the active material layer is 25 μm or less.

二次電池のこれまでの用途では高い容量密度の電池が求められてきた。高い容量密度の電池であれば、従来型の電池構造でも活物質層の厚さは十分に厚く(80〜100μm)して設計されるため、図5に示されるようにセパレーターの有無による違いは少なく、セパレーターは高い容量密度を得るための大きな障害にはなってはいない。   A battery having a high capacity density has been demanded in the past applications of the secondary battery. In the case of a battery having a high capacity density, the thickness of the active material layer is designed to be sufficiently thick (80 to 100 μm) even in the conventional battery structure. Therefore, as shown in FIG. Few separators are a major obstacle to obtaining high capacity density.

しかし、高い出力密度の二次電池を得る場合には、電極厚さを薄くして電極面積を大きくする必要があり、従来型の電池構造では活物質層の厚さがセパレーターの厚さに接近すれば、蓄電素子に占めるセパレーターの比率は極めて大きくなり、逆に蓄電素子に占める電極の比率は大きく低減するので、電極面積が効率よくは増えない。従って、従来型の電池構造ではセパレーターが高い出力密度を得るための障害になっている。   However, in order to obtain a secondary battery with high power density, it is necessary to reduce the electrode thickness and increase the electrode area. In the conventional battery structure, the thickness of the active material layer approaches the thickness of the separator. If so, the ratio of the separator to the power storage element becomes extremely large, and conversely, the ratio of the electrode to the power storage element is greatly reduced, so that the electrode area does not increase efficiently. Therefore, in the conventional battery structure, the separator is an obstacle to obtaining a high output density.

HVに搭載されるリチウムイオン電池では、EV搭載電池に比べて、最大出力密度(W/L)は約3〜4倍程度にアップしている。現在EVに搭載されるリチウムイオン電池では正極活物質層の厚さは比較的厚く、片面で100μm程度と推定されるが、図5に示す活物質層の厚さと電極枚数の関係から判断して、HVに搭載されるリチウムイオン電池では活物質層の厚さを20μm以下とすることで電極面積を3〜4倍程度に増加して最大出力密度(W/L)がHVへの搭載基準に到達しているものと推定される。   In the lithium ion battery mounted on the HV, the maximum power density (W / L) is increased by about 3 to 4 times as compared with the EV mounted battery. In the lithium ion battery currently mounted on the EV, the thickness of the positive electrode active material layer is relatively thick and is estimated to be about 100 μm on one side. However, judging from the relationship between the thickness of the active material layer and the number of electrodes shown in FIG. In a lithium ion battery mounted on HV, the active material layer thickness is set to 20 μm or less, so that the electrode area is increased about 3 to 4 times, and the maximum output density (W / L) becomes the standard for mounting on HV. Presumed to have been reached.

しかし、図5から明らかなように、電極厚さを限界近くまで薄くしても、従来型の電極構造(図4)では電極面積が効率よく増えないが、本発明の電極構造(図1、2)では電極面積が効率よく増える。   However, as is apparent from FIG. 5, even if the electrode thickness is reduced to the limit, the electrode area is not increased efficiently in the conventional electrode structure (FIG. 4), but the electrode structure of the present invention (FIG. 1, In 2), the electrode area increases efficiently.

また、例えば活物質層の厚さが20μmであれば、図1の電極構造では最大の電極間距離(d)は40μmとなるが、図4に示す従来型の電極構造では最大の電極間距離(d)は65μmであり、本発明による電極構造では最大の電極間距離が従来型に比べて約1/1.6となり、更に活物質層の厚さを10μm(ほぼ限界)まで薄くする場合には、約1/2.25となる。 For example, if the thickness of the active material layer is 20 μm, the maximum inter-electrode distance (d 1 ) is 40 μm in the electrode structure of FIG. 1, but the maximum inter-electrode distance in the conventional electrode structure shown in FIG. The distance (d 2 ) is 65 μm, and in the electrode structure according to the present invention, the maximum inter-electrode distance is about 1 / 1.6 compared with the conventional type, and the thickness of the active material layer is reduced to 10 μm (almost the limit). In this case, it is about 1 / 2.25.

以上のように電極厚さを限界近くまで薄くして実施する場合には、本発明の電極構造によれば、従来型の電極構造よりも電極対向面積が大幅に増えるので高い出力密度の二次電池やキャパシタを得るために有効であり、且つ電極間距離が短くなるので特に高い出力密度の二次電池を得るためには極めて有効である。   As described above, when the electrode thickness is reduced to near the limit, according to the electrode structure of the present invention, the electrode facing area is significantly increased as compared with the conventional electrode structure. This is effective for obtaining a battery and a capacitor, and is extremely effective for obtaining a secondary battery having a particularly high output density because the distance between the electrodes is shortened.

図3に示した蓄電装置100では、図1および2に示すように、正極31と負極32はそれぞれの活物質層2、1が集電体4、3に密着して形成された電極であり、少なくとも正極活物質層2と負極活物質層1のいずれか一方は電気化学的な酸化還元反応に基づく活物質で構成され、当該活物質は充電方向に電気化学的に酸化または還元されるまでは非電子伝導性である物質の中から選択し、当該活物質には充電方向に電気化学的に酸化または還元される前に既に電子伝導性であるような物質はいっさい混ぜずに活物質層を形成するので、当該活物質層は未充電の状態では非電子伝導性である。   In the power storage device 100 shown in FIG. 3, as shown in FIGS. 1 and 2, the positive electrode 31 and the negative electrode 32 are electrodes formed by bringing the active material layers 2 and 1 into close contact with the current collectors 4 and 3. At least one of the positive electrode active material layer 2 and the negative electrode active material layer 1 is composed of an active material based on an electrochemical redox reaction, and the active material is electrochemically oxidized or reduced in the charging direction. Is selected from materials that are non-electron conductive, and the active material layer does not contain any material that is already electron conductive before being oxidized or reduced electrochemically in the charging direction. Therefore, the active material layer is non-electron conductive in an uncharged state.

従って本発明による蓄電装置100は、少なくとも正極活物質層2か負極活物質層1の何れかは未充電の状態では非電子伝導性であり、対向する正極活物質層2と負極活物質層1は接触しても電子的導通は断たれるので、セパレーターを介することなく対向面33で密着させることが出来る。   Therefore, in the power storage device 100 according to the present invention, at least one of the positive electrode active material layer 2 and the negative electrode active material layer 1 is non-electron conductive in an uncharged state, and the positive electrode active material layer 2 and the negative electrode active material layer 1 facing each other. Since the electronic continuity is interrupted even if they contact, they can be brought into close contact with the opposing surface 33 without using a separator.

なお、本明細書においては“非電子伝導性”とは殆ど電子伝導性がないことを意味し、更に詳しくは、室温における電子伝導に基づく電気伝導率が一般的に絶縁体に区分される10−10S/cm未満であることを意味するものである。電気伝導の機構には、物質中で電気を運ぶ担体が電子である場合の電子伝導と、電気を運ぶ担体がイオンである場合のイオン電導(イオン伝導と言い換えてもよい)があるが、“非電子伝導性”ではイオン電導性の有無は問わない。 In this specification, “non-electron conductivity” means that there is almost no electron conductivity, and more specifically, electrical conductivity based on electron conduction at room temperature is generally classified as an insulator. It means less than −10 S / cm. The mechanism of electrical conduction includes electronic conduction when the carrier carrying electricity in the substance is an electron, and ionic conduction when the carrier carrying electricity is an ion (may be referred to as ionic conduction). “Non-electron conductivity” does not matter whether ion conductivity is present.

また、図1および2に示す蓄電素子10は、負極活物質層1(または正極活物質層2)を未充電の状態で非電子伝導性とする場合には、正極活物質層2(または負極活物質層1)は電子伝導性でもかまわないし、当該正極活物質層2(または負極活物質層1)を電気化学的な酸化還元反応に基づく活物質で構成すれば、正極31と負極32はともに電気化学的な酸化還元反応に基づく活物質で構成されるので二次電池の蓄電素子である。ここで正極活物質層2(または負極活物質層1)を電気化学的な酸化還元反応に基づかない活物質、例えば活性炭等で構成すれば、キャパシタの蓄電素子ということになる。   1 and 2 has the positive electrode active material layer 2 (or the negative electrode) when the negative electrode active material layer 1 (or the positive electrode active material layer 2) is non-electron conductive in an uncharged state. The active material layer 1) may be electronically conductive. If the positive electrode active material layer 2 (or the negative electrode active material layer 1) is composed of an active material based on an electrochemical redox reaction, the positive electrode 31 and the negative electrode 32 are Since both are made of an active material based on an electrochemical oxidation-reduction reaction, they are power storage elements of a secondary battery. Here, if the positive electrode active material layer 2 (or the negative electrode active material layer 1) is made of an active material that is not based on an electrochemical redox reaction, such as activated carbon, it is a capacitor storage element.

ただし、前述したようにキャパシタは既に出力密度(W/L)は高いので、更に出力密度(W/L)が高いキャパシタが必要とされる用途には本発明による電極構造がキャパシタにも有効となる。   However, as described above, since the output density (W / L) of the capacitor is already high, the electrode structure according to the present invention is also effective for the capacitor in applications where a capacitor with a higher output density (W / L) is required. Become.

活物質の電気化学的な酸化還元反応(充放電反応)は電子とイオンが関与するため、電池活物質には集電体との間の電子伝導と対極活物質との間のイオン電導が確保されなければならない。   Since the electrochemical redox reaction (charge / discharge reaction) of the active material involves electrons and ions, the battery active material secures electron conduction between the current collector and ionic conduction between the counter active material. It must be.

通常、電極の活物質層には電解液を保持できる空孔が存在するため、当該空孔に電解液を保持させておけば、活物質間のイオン電導は当該電解液で確保される。また従来の電池では、電極の活物質層には伝導補助剤が混ぜられるので、活物質と集電体との間の電子伝導は伝導補助剤によって確保される。   Usually, since there is a hole capable of holding the electrolytic solution in the active material layer of the electrode, if the electrolytic solution is held in the hole, ion conduction between the active materials is ensured by the electrolytic solution. Further, in the conventional battery, since the conductive auxiliary agent is mixed in the active material layer of the electrode, electronic conduction between the active material and the current collector is ensured by the conductive auxiliary agent.

ところが、本発明による電池では少なくとも活物質層の一方は非電子伝導性であり、当該非電子伝導性の活物質層では集電体との間で電子伝導が確保される活物質は集電体に密着する活物質粒子(2次粒子)に限られる。しかし、本発明は活物質層の厚さを薄くすることが前提であり、活物質層の厚さが活物質粒子(2次粒子)の径に近似する場合には、活物質層中の大半の活物質粒子(2次粒子)は集電体と密着するので、活物質の大半は集電体との電子伝導が確保される。   However, in the battery according to the present invention, at least one of the active material layers is non-electron conductive, and in the non-electron conductive active material layer, the active material that ensures electron conduction with the current collector is the current collector. It is limited to active material particles (secondary particles) that adhere to the surface. However, the present invention is based on the premise that the thickness of the active material layer is reduced, and when the thickness of the active material layer approximates the diameter of the active material particles (secondary particles), most of the active material layer Since the active material particles (secondary particles) are in close contact with the current collector, the majority of the active material ensures electron conduction with the current collector.

図6は、本発明の実施に係る電池の初回充電時において、活物質に確保される電子伝導経路とイオン電導経路を示す模式図である。   FIG. 6 is a schematic diagram showing an electron conduction path and an ion conduction path ensured in the active material when the battery according to the embodiment of the present invention is charged for the first time.

図6には、初回充電時で負極活物質Aと正極活物質Cに確保される電子伝導経路とイオン電導経路を模式図で示した。負極活物質Aは、負極活物質層1を構成する活物質である。一方、正極活物質Cは、正極活物質層2を構成する活物質である。図6では、負極活物質Aと正極活物質Cとのイオン電導は従来と同じく活物質層に保持される電解液で確保されており、負極活物質Aは負極集電体3と直接接触し、また正極活物質Cも正極集電体4と直接接触しているので、活物質粒子と集電体との電子伝導の確保には伝導補助剤は必ずしも必要ではない。   In FIG. 6, the electron conduction path | route and ion conduction path | route ensured by the negative electrode active material A and the positive electrode active material C at the time of first time charge were shown with the schematic diagram. The negative electrode active material A is an active material constituting the negative electrode active material layer 1. On the other hand, the positive electrode active material C is an active material constituting the positive electrode active material layer 2. In FIG. 6, the ionic conduction between the negative electrode active material A and the positive electrode active material C is ensured by the electrolytic solution held in the active material layer as in the conventional case, and the negative electrode active material A is in direct contact with the negative electrode current collector 3. In addition, since the positive electrode active material C is also in direct contact with the positive electrode current collector 4, a conduction aid is not necessarily required to ensure electronic conduction between the active material particles and the current collector.

つまり、活物質層の厚さが活物質粒子(2次粒子)径と同じ程度の場合では伝導補助剤を混ぜる必要性はなくなる。ただし、図6では負極活物質層1が非電子伝導性である場合について示しているので、正極活物質層2は伝導補助剤を混ぜて形成されていてもかまわない。   That is, when the thickness of the active material layer is about the same as the diameter of the active material particles (secondary particles), there is no need to mix a conduction aid. However, since FIG. 6 shows the case where the negative electrode active material layer 1 is non-electron conductive, the positive electrode active material layer 2 may be formed by mixing a conduction aid.

あらためて図1および2に示す蓄電素子10についてみてみれば、電極厚さを薄くして実施することが前提であり、少なくとも正極活物質層2と負極活物質層1のいずれか一方は非電子伝導性であるが、非電子伝導性の活物質層中の大半の活物質粒子(2次粒子)は集電体と密着するので、活物質の大半は集電体との電子伝導が確保されている。また正極活物質層2と負極活物質層1が対向面33で密着していても、正極31と負極32は電子伝導による導通はなく、図3に示す電池においては、蓄電素子10は有機電解液を含浸しているので、正極活物質と負極活物質はイオン電導では導通している。従って、正極端子14と負極端子13に充電電圧を付加すれば正極活物質層2中の正極活物質と負極活物質層1中の負極活物質は充電されることになる。   Looking back at the storage element 10 shown in FIGS. 1 and 2, it is assumed that the electrode thickness is reduced, and at least one of the positive electrode active material layer 2 and the negative electrode active material layer 1 is non-electron conductive. Although most active material particles (secondary particles) in the non-electron conductive active material layer are in close contact with the current collector, most of the active material is ensured to conduct electrons with the current collector. Yes. Further, even if the positive electrode active material layer 2 and the negative electrode active material layer 1 are in close contact with each other at the facing surface 33, the positive electrode 31 and the negative electrode 32 are not electrically connected by electronic conduction. In the battery shown in FIG. Since the liquid is impregnated, the positive electrode active material and the negative electrode active material are conductive by ion conduction. Therefore, if a charging voltage is applied to the positive electrode terminal 14 and the negative electrode terminal 13, the positive electrode active material in the positive electrode active material layer 2 and the negative electrode active material in the negative electrode active material layer 1 are charged.

非電子伝導性の活物質でも集電体に密着する粒子は集電体との電子の授受が可能であるため充電反応が進行し、非電子伝導性の活物質層では集電体に密着する活物質1次粒子から充電されて電子伝導性の活物質に変わり、集電体に直接密着していない活物質1次粒子も充電状態の活物質を介して電子の授受が可能となるため、順次充電されることになる。   Particles that adhere to the current collector even with non-electron conductive active materials can exchange electrons with the current collector, so the charging reaction proceeds, and the non-electron conductive active material layer adheres to the current collector. Since the active material primary particles are charged to change into an electron conductive active material, and the active material primary particles that are not directly adhered to the current collector can also exchange electrons through the charged active material, It will be charged sequentially.

因みに、従来の電池においても非電子伝導性の活物質を使用する電池は珍しいものではない。例えば、一次電池においては銀電池の正極活物質のAgO、水銀電池の正極活物質のHgO、フッ化黒鉛リチウム電池の正極活物質の(CF)nなどは、いずれも非電子伝導性の活物質であり、二次電池においても鉛電池の放電状態の正極活物質PbSOもニッケル水素電池の未充電状態の正極活物質Ni(OH)も、いずれも非電子伝導性の活物質である。 Incidentally, a battery using a non-electron conductive active material is not uncommon even in a conventional battery. For example, in a primary battery, Ag 2 O as a positive electrode active material of a silver battery, HgO as a positive electrode active material of a mercury battery, (CF) n of a positive electrode active material of a graphite fluoride lithium battery are all non-electron conductive. Both of the positive active material PbSO 4 in the discharged state of the lead battery and the uncharged positive active material Ni (OH) 2 of the nickel metal hydride battery in the secondary battery are non-electron conductive active materials. is there.

これらの非電子伝導性の活物質は全て、電気化学的に還元又は酸化された場合には導電性に変化する。つまり、電気化学的に酸化還元反応が起こりうる非電子伝導性の物質は、電子の授受が可能な1次粒子から酸化還元反応が起こって電子伝導性の物質に変わり、これを仲介して他の1次粒子にも電子の授受が可能となるため、順次酸化還元反応が進行するものと理解できる。   All of these non-electron conductive active materials change to electrical conductivity when electrochemically reduced or oxidized. In other words, a non-electron conductive substance that can undergo an oxidation-reduction reaction electrochemically changes from a primary particle capable of transferring electrons to an electron-conducting substance through an oxidation-reduction reaction that mediates this. It can be understood that the redox reaction proceeds in sequence since electrons can be transferred to and from the primary particles.

なお、活物質粒子は一般に1次粒子が集まって2次粒子を形成しているので、伝導補助剤で電子伝導が確保できるのはあくまでも集電体と2次粒子の間であり、より具体的には集電体と2次粒子を形成する1次粒子の一部との間である。従って伝導補助剤で電子伝導が確保される場合でも伝導補助剤に密着する活物質1次粒子から順次他の粒子へと連鎖的に充電されることに変わりはない。従来型電池では活物質層にカーボンなどの伝導補助剤を混ぜることによって活物質(2次粒子)と集電体との間の良好な電子伝導を確保している。従って、従来の電池では非電子伝導性の活物質を使用する場合であっても、正極も負極も両方とも活物質層は電子伝導性であり、そのためセパレーターが不可欠である。   In addition, since the active material particles generally collect primary particles to form secondary particles, it is only between the current collector and the secondary particles that electronic conduction can be ensured by the conduction auxiliary agent. Is between the current collector and a portion of the primary particles forming the secondary particles. Therefore, even when electronic conduction is ensured by the conduction auxiliary agent, the active material primary particles that are in close contact with the conduction auxiliary agent are successively charged in a chain manner to other particles. In the conventional battery, good conduction of electrons between the active material (secondary particles) and the current collector is ensured by mixing a conductive additive such as carbon in the active material layer. Accordingly, even when a non-electron conductive active material is used in a conventional battery, the active material layer of both the positive electrode and the negative electrode is electron conductive, and therefore a separator is indispensable.

図6で示したように、活物質層の厚さが活物質粒子(2次粒子)径と同じ程度の場合では伝導補助剤を混ぜる必要性はなくなるが、従来型電池では活物質層に伝導補助剤を混ぜて活物質と集電体との間の良好な電子伝導を確保することは長年の常識であり、ましてや高い出力密度の電池を得ようとする場合には、活物質層から伝導補助剤を取り除く一見逆とも思われるその発想はこれまでにはなかった。   As shown in FIG. 6, when the thickness of the active material layer is about the same as the diameter of the active material particles (secondary particles), it is not necessary to mix a conductive auxiliary agent. It has long been common knowledge to ensure good electron conduction between the active material and the current collector by mixing auxiliary agents. There has never been an idea that seems to be the opposite of removing an adjuvant.

以上のように、従来型の電池においては、例え非電子伝導性活物質を使用する場合でも、カーボン等の伝導補助剤を混ぜることによって、正極も負極もいずれも良好な電子伝導性の活物質層を形成して電極とするため、正極と負極の電子的導通を断つためには正極と負極の間にはセパレーターを介在させる必要がある。   As described above, in a conventional battery, even when a non-electron conductive active material is used, by mixing a conductive auxiliary agent such as carbon, both a positive electrode and a negative electrode have a good electron conductive active material. Since an electrode is formed by forming a layer, it is necessary to interpose a separator between the positive electrode and the negative electrode in order to cut off the electronic conduction between the positive electrode and the negative electrode.

通常活物質粒子は1次粒子が集まった2次粒子であり、電気化学的な酸化還元反応に基づく充放電反応では、1次粒子の連鎖的な充放電反応によって充放電が進行する。   Usually, active material particles are secondary particles in which primary particles are gathered. In a charge / discharge reaction based on an electrochemical oxidation-reduction reaction, charge / discharge proceeds by a chain charge / discharge reaction of the primary particles.

図7A〜図7Cは、本発明による電池の初回の充電メカニズムを示した電極模式図である。   7A to 7C are schematic electrode diagrams illustrating an initial charging mechanism of a battery according to the present invention.

図7A〜図7Cは図1および2に示す蓄電素子10において対向する電極を更に拡大して、本発明による電池の初回の充電のメカニズムを示したものである。なお、図7A〜図7Cに示す活物質層21、22、集電体23、24は、それぞれ図1に示す活物質層2、1、集電体4、3に対応するものとするが、それぞれ同図に示す活物質層1、2、集電体3、4に対応してもよい。図7Aは初回の充電を行う前であり、対向する活物質層21、22は密着しているが、一方の活物質層21は非電子伝導性のため、集電体23、24は電子的には導通しない。また活物質層21、22は空孔に電解液を保持しているため、イオン電導では導通しているので集電体23、24に充電電圧を付加すれば充電が始まる。   7A to 7C further illustrate the mechanism of the initial charging of the battery according to the present invention by further enlarging the opposing electrodes in the electricity storage device 10 shown in FIGS. 1 and 2. The active material layers 21 and 22 and the current collectors 23 and 24 shown in FIGS. 7A to 7C correspond to the active material layers 2 and 1 and the current collectors 4 and 3 shown in FIG. The active material layers 1 and 2 and the current collectors 3 and 4 shown in FIG. FIG. 7A shows a state before the first charge, and the active material layers 21 and 22 facing each other are in close contact, but one of the active material layers 21 is non-electron conductive, so that the current collectors 23 and 24 are electronic. Does not conduct. Further, since the active material layers 21 and 22 hold the electrolyte solution in the pores and are conductive by ion conduction, charging starts when a charging voltage is applied to the current collectors 23 and 24.

充電においては、非電子伝導性の活物質層21に含まれる活物質は集電体23に密着する活物質(1次粒子)から充電され始め、充電された活物質(1次粒子)は電子伝導性になり、順次連鎖的に集電体から離れた活物質(1次粒子)も充電されて、図7Bに示すように、非電子伝導性の活物質層は充電状態の活物質層21aと未充電状態の活物質層21に分かれる。   In charging, the active material contained in the non-electron conductive active material layer 21 starts to be charged from the active material (primary particles) in close contact with the current collector 23, and the charged active material (primary particles) is an electron. The active material (primary particles) that become conductive and sequentially separated from the current collector is also charged in sequence, and as shown in FIG. 7B, the non-electron conductive active material layer is the active material layer 21a in a charged state. And the active material layer 21 in an uncharged state.

充電が完了しても、図7Cに示すように充電状態の活物質層21a、22aの間には未充電状態の活物質層21が残れば、常に未充電の非電子伝導性の活物質層21がセパレーターの役割を果たして充電状態の活物質層21a、22aは電子的に導通することはないので、蓄電される。   Even if the charging is completed, as shown in FIG. 7C, if the uncharged active material layer 21 remains between the charged active material layers 21a and 22a, the uncharged non-electron conductive active material layer always remains. Since the active material layers 21a and 22a in the charged state 21 do not function electronically as a separator, they are charged.

図7Aにおいて非電子伝導性の活物質層21の充電可能な容量が対向する活物質層22の充電可能な容量よりも大きく設計することによって、図7Cに示すようにセパレーターの役割を果たす未充電状態の活物質層21を確実に必要なだけ残すことが出来る。   7A, the chargeable capacity of the non-electron conductive active material layer 21 is designed to be larger than the chargeable capacity of the opposite active material layer 22, thereby uncharged as a separator as shown in FIG. 7C. It is possible to reliably leave the active material layer 21 in a state as necessary.

このように本発明による電池では非電子伝導性の活物質層では、約70〜90%程度の活物質(1次粒子)が集電体に近いものから順次充電され、初回の充電以降は、一度充電された当該活物質は常に充放電に寄与する役割を担い、集電体から離れて位置する残りの約10〜30%程度の非電子伝導性の活物質(1次粒子)は未充電のまま、非電子伝導性のままで、引き続き正極と負極の電子的導通を阻止する役割(セパレーターの役割)を担う。本発明による電池ではあえてセパレーターを使用する必要がない。   As described above, in the battery according to the present invention, in the non-electron conductive active material layer, about 70 to 90% of the active material (primary particles) is sequentially charged from the one close to the current collector, and after the first charge, The active material once charged always plays a role of contributing to charge / discharge, and the remaining non-electron conductive active material (primary particles) of about 10 to 30% located away from the current collector is not charged. As it is, it remains non-electron conductive, and continues to play a role of preventing electronic conduction between the positive electrode and the negative electrode (separator role). The battery according to the present invention does not require the use of a separator.

仮にセパレーターの役割を担う未充電状態の活物質層を30%残すとすれば、非電子伝導性の活物質層の最初の厚さが10μm程度では、セパレーターの役割を担う活物質層は厚さ3μm程度で残ることになる。3μm程度のセパレーターの役割を担う活物質層は、従来の電池におけるセパレーター(厚さ25〜35μm)に比べて約1/10程度の厚さであり、正・負極間の距離が大幅に短くなり、正・負電極間のイオンの拡散速度は速くなり、出力性能が高くなる。   Assuming that 30% of the uncharged active material layer that plays the role of the separator remains, if the initial thickness of the non-electron conductive active material layer is about 10 μm, the active material layer that plays the role of the separator is thick. It will remain at about 3 μm. The active material layer that plays the role of a separator of about 3 μm is about 1/10 of the thickness of a conventional battery separator (thickness of 25 to 35 μm), and the distance between the positive and negative electrodes is greatly reduced. The diffusion rate of ions between the positive and negative electrodes increases, and the output performance increases.

二次電池の充電量(Ah)は正極と負極の充電可能容量の少ないほうに規制されるので、正極と負極の充電可能容量を等しくするのが理想的ではあるが、各電池の充電特性を揃えるためには正極か負極か何れかの充電可能容量を大きくして、負極容量規制か正極容量規制のいずれかにするのが一般的である。因みに既存のリチウムイオン電池であれば負極容量が正極容量の1.4倍程度、ニッケル水素電池では同じく1.2倍程度で、ともに正極容量規制で設計されている。   The amount of charge (Ah) of the secondary battery is restricted to the smaller chargeable capacity of the positive electrode and the negative electrode, so it is ideal to make the chargeable capacity of the positive electrode and the negative electrode equal, but the charge characteristics of each battery In order to make it uniform, it is common to increase the chargeable capacity of either the positive electrode or the negative electrode to be either negative electrode capacity regulation or positive electrode capacity regulation. By the way, in the case of existing lithium ion batteries, the negative electrode capacity is about 1.4 times the positive electrode capacity, and in the nickel metal hydride battery, it is also about 1.2 times.

従って本発明において、非電子伝導性の活物質層の充電可能容量を対極活物質層の充電可能容量よりも1.3倍程度に大きく設計しても、正極容量と負極容量のバランスにおいては従来の二次電池の設計と大きく変わるものではない。   Therefore, in the present invention, even when the chargeable capacity of the non-electron conductive active material layer is designed to be about 1.3 times larger than the chargeable capacity of the counter electrode active material layer, the conventional method has a balance between the positive electrode capacity and the negative electrode capacity. This is not much different from the secondary battery design.

本発明による蓄電素子はセパレーターが介在しないので、蓄電素子の体積はそのまま電極の体積であり、電極面積と電極厚さの積に等しい。従って、本発明による蓄電素子は電極厚さを薄くすれば、一定体積の蓄電素子では電極厚さに反比例して電極面積が効率よく増えるので、高い出力密度を有する二次電池を得るためには極めて効果的である。   Since the electricity storage device according to the present invention does not include a separator, the volume of the electricity storage device is the volume of the electrode as it is, and is equal to the product of the electrode area and the electrode thickness. Accordingly, if the electrode thickness of the electricity storage device according to the present invention is reduced, the electrode area increases efficiently in inverse proportion to the electrode thickness in the electricity storage device having a constant volume. Therefore, in order to obtain a secondary battery having a high output density. It is extremely effective.

従来の電極構造では出力密度が低いため、HVへの搭載が難しいと考えられる貴負極電位型二次電池も、本発明を適用すれば高出力の有機電解液二次電池となるので、HVへの搭載基準を十分満足できる可能性がある。そこで、本発明を具体的に貴負極電位型二次電池に適用して実施する場合について更に詳しく説明する。   Since the output density is low in the conventional electrode structure, the noble negative potential type secondary battery, which is considered difficult to mount on HV, becomes a high output organic electrolyte secondary battery by applying the present invention. There is a possibility of satisfying the mounting standards. Therefore, the case where the present invention is specifically applied to a noble negative electrode potential type secondary battery will be described in more detail.

具体的には、負極活物質としてスピネル系リチウムチタン酸化物を選択し、正極活物質としてはスピネル系リチウムマンガン酸化物(LiMn)を選択して実施する場合について説明する。 Specifically, a case where spinel lithium titanium oxide is selected as the negative electrode active material and spinel lithium manganese oxide (LiMn 2 O 4 ) is selected as the positive electrode active material will be described.

スピネル系リチウムチタン酸化物(チタン酸リチウム)は、一般式Li3+xTi6−x12で示され、0≦x≦1の範囲で存在するが、x≒1ではチタン酸リチウムは非電子伝導性(電子伝導率は10−13S/cm程度)であり、本発明を実施するにあたっては、スピネル系リチウムチタン酸化物LiTi12(x=1)は適切な非電子伝導性の負極活物質である。 Spinel lithium titanium oxide (lithium titanate) is represented by the general formula Li 3 + x Ti 6-x O 12 and exists in the range of 0 ≦ x ≦ 1, but at x≈1, lithium titanate is non-electron conductive. sex is (electronic conductivity of about 10 -13 S / cm), carrying out the present invention, spinel type lithium-titanium oxide Li 4 Ti 5 O 12 (x = 1) is a suitable non-electron conductivity It is a negative electrode active material.

LiMnは有機電解液中で約4V(vs Li/Li)の電位で電気化学的な酸化還元反応が可逆的に可能であり、LiTi12は有機電解液中で約1.5V(vs Li/Li)の電位で電気化学的な還元および酸化反応が可逆的に可能である。従ってLiMnを正極活物質とし、LiTi12を負極活物質とする貴負極電位型二次電池の平均的な放電電圧は約2.5V程度である。 LiMn 2 O 4 can reversibly undergo an electrochemical redox reaction at a potential of about 4 V (vs Li / Li + ) in the organic electrolyte, and Li 4 Ti 5 O 12 can be about about 4 V in the organic electrolyte. Electrochemical reduction and oxidation reactions are reversibly possible at a potential of 1.5 V (vs Li / Li + ). Accordingly, the average discharge voltage of the noble negative electrode type secondary battery using LiMn 2 O 4 as the positive electrode active material and Li 4 Ti 5 O 12 as the negative electrode active material is about 2.5V.

スピネル系リチウムチタン酸化物(LiTi12)を負極活物質とし、スピネル系リチウムマンガン酸化物(LiMn)を正極活物質とする電池に本発明を適用する場合は、負極活物質とするLiTi12にはカーボンなどの伝導補助剤はいっさい混ぜずに結着剤で固めて負極集電体とする薄い金属箔上に非電子伝導性の負極活物質層を形成して負極とし、正極活物質とするLiMnにはカーボンなどの伝導補助剤を混ぜて結着剤で固めて正極集電体とする薄い金属箔上に電子伝導性の正極活物質層を形成して正極とする。これ等の正極と負極は図1、2に示すように、正極活物質層2と負極活物質層1を対向させて密着して蓄電素子10を構成し、有機電解液を含浸せしめて図3に示すように電池容器内に密封する。 When the present invention is applied to a battery using spinel lithium titanium oxide (Li 4 Ti 5 O 12 ) as a negative electrode active material and spinel lithium manganese oxide (LiMn 2 O 4 ) as a positive electrode active material, Li 4 Ti 5 O 12 used as a material is not mixed with a conductive auxiliary agent such as carbon, but is solidified with a binder to form a non-electroconductive negative electrode active material layer on a thin metal foil used as a negative electrode current collector LiMn 2 O 4 used as a negative electrode and a positive electrode active material is mixed with a conductive auxiliary agent such as carbon and solidified with a binder to form an electron conductive positive electrode active material layer on a thin metal foil used as a positive electrode current collector. To form a positive electrode. 1 and 2, the positive electrode active material layer 2 and the negative electrode active material layer 1 are opposed to each other so as to form a power storage element 10 and impregnated with an organic electrolyte, as shown in FIGS. As shown in FIG.

以上のように実施される本発明による貴負極電位型二次電池では、正極活物質層と負極活物質層は密着していても、負極活物質層は非電子伝導性であるため、正極と負極は電子伝導では導通しておらず、正極活物質層と負極活物質層は十分に有機電解液を含浸しているので、正極活物質と負極活物質はイオン電導では導通している。従って正極と負極に約3Vの充電電圧を付加すれば、正極活物質層と負極活物質層中のそれぞれの活物質は充電されることになる。   In the noble negative electrode potential type secondary battery according to the present invention implemented as described above, the negative electrode active material layer is non-electron conductive even if the positive electrode active material layer and the negative electrode active material layer are in close contact with each other. The negative electrode is not conductive in electronic conduction, and the positive electrode active material layer and the negative electrode active material layer are sufficiently impregnated with an organic electrolyte solution, so that the positive electrode active material and the negative electrode active material are conductive in ion conduction. Therefore, if a charging voltage of about 3 V is applied to the positive electrode and the negative electrode, the respective active materials in the positive electrode active material layer and the negative electrode active material layer are charged.

負極活物質中のLiTi12の粒子は負極集電体に密着する粒子から順次充電されて暗青色の電子伝導性のあるLiTi12へと変わる。LiTi12の結晶中ではチタンは全て4価(Ti4+)であるが、充電によって負極集電体を介して電子が供給され、電解液からはLiが供給されてLiTi12へと変われば、結晶中にはTi4+とTi3+が2:3の比率で混在することとなり、結晶中のTi4+とTi3+は自由に電子のやり取りが行えるので充電後のLiTi12は電子伝導性である。従って負極活物質層中の負極集電体に直接密着していないLiTi12の粒子も電子伝導性に変わったLiTi12を介して負極集電体とは電子伝導で導通するため、順次充電されることになる。 The particles of Li 4 Ti 5 O 12 in the negative electrode active material are sequentially charged from the particles adhering to the negative electrode current collector, and changed to dark blue electron-conductive Li 7 Ti 5 O 12 . In the crystal of Li 4 Ti 5 O 12 , titanium is all tetravalent (Ti 4+ ), but electrons are supplied through the negative electrode current collector by charging, and Li + is supplied from the electrolytic solution to form Li 7 Ti. If it is changed to 5 O 12 , Ti 4+ and Ti 3+ are mixed in a ratio of 2: 3 in the crystal, and Ti 4+ and Ti 3+ in the crystal can freely exchange electrons. 7 Ti 5 O 12 is electronically conductive. Therefore, the Li 4 Ti 5 O 12 particles that are not directly adhered to the negative electrode current collector in the negative electrode active material layer are also electrically conductive with the negative electrode current collector through the Li 7 Ti 5 O 12 changed to electron conductivity. Since it conducts, it will be charged sequentially.

また正極活物質層中ではLiMnが充電されて、λ―MnOに変わる。LiMnの結晶中にはMn4+とMn3+が1:1の比率で混在し、結晶中のMn4+とMn3+は自由に電子のやり取りが行えるので、LiMn自体が電子伝導性であり、加えて正極活物質層中にはカーボン等の伝導補助剤を混ぜておけば、正極活物質中のLiMn粒子はいずれも正極集電体と電子伝導で導通しており、いずれのLiMn粒子も充電反応に関与できるので、充電反応が進行中の負極活物質と電気化学的な対極として相応しいLiMnの粒子から順次充電されることになる。 In the positive electrode active material layer, LiMn 2 O 4 is charged and changed to λ-MnO 2 . Crystal of the LiMn 2 O 4 Mn 4+ and Mn 3+ is 1: 1 mixed at a ratio, since Mn 4+ and Mn 3+ in the crystal can be performed freely electronic exchange, LiMn 2 O 4 itself is electron conduction In addition, if a conductive auxiliary agent such as carbon is mixed in the positive electrode active material layer, all LiMn 2 O 4 particles in the positive electrode active material are electrically connected to the positive electrode current collector through electronic conduction. , since it involved in any of the charge reaction LiMn 2 O 4 particles, so that the charge reaction is sequentially charged from the negative electrode active material and suitable LiMn 2 O 4 particles as electrochemical counter ongoing.

負極活物質層中のLiTi12は実質充電可能容量で正極活物質層中のLiMnを上回るように設計しておけば、充電反応に関与できるLiMnが充電され尽くせば充電は終了する。充電終了時には負極活物質層中の未充電のLiTi12は集電体からは最も離れた対極活物質層との境界に未充電のまま残ることになる。 Li 4 Ti 5 O 12 of the negative electrode active material layer is if designed to exceed the LiMn 2 O 4 positive electrode active material layer in substantially the chargeable capacity, the LiMn 2 O 4 that can be involved in the charge reaction is charged If it runs out, the charging will end. At the end of charging, uncharged Li 4 Ti 5 O 12 in the negative electrode active material layer remains uncharged at the boundary with the counter electrode active material layer farthest from the current collector.

例えば実質充電可能容量で、負極活物質層中のLiTi12が正極活物質層中のLiMnの1.3倍程度で設計されていれば、充電終了時にはLiTi12の約3割が未充電の状態で対極活物質層との境界付近に残ることになり、充電開始前では勿論のこと、充電中でも充電終了後でも、正極と負極の活物質層の間には未充電状態の非電子伝導性活物質層が常に介在してセパレーターの役割を果たすので、正極と負極の活物質層の間にはセパレーターを介在させる必要がない。 For example, in substantially the chargeable capacity, if Li 4 Ti 5 O 12 of the negative electrode active material layer is only to be designed in 1.3 times the LiMn 2 O 4 in the positive electrode active material layer, Li 4 Ti 5 is at the end of charge About 30% of O 12 will remain in the vicinity of the boundary with the counter electrode active material layer in an uncharged state, and of course between the active material layer of the positive electrode and the negative electrode both before and after charging. Since the non-electron conductive active material layer in an uncharged state always acts as a separator, there is no need to interpose a separator between the positive electrode and negative electrode active material layers.

LiTi12を負極活物質とし、LiMnを正極活物質とするような貴負極電位型二次電池は安全性に優れており、次世代型のHV搭載用電池の有力候補であるが、電圧が低いために、セパレーターを介在させる従来型の電池構造では最大出力密度(W/L)がHVへの搭載基準には到底達し得ない。しかし、本発明による電極構造ではセパレーターを介在させないので、電極間距離が短くなるだけでなく、特に電極の厚さを薄くする場合には、確保できる電極面積が格段に大きくなるので、出力密度(W/L)の高い電池とする上で極めて効果的であり、本発明を適用すれば電圧が低い貴負極電位型二次電池も十分HVへの搭載基準を満たせる。 A noble negative potential type secondary battery using Li 4 Ti 5 O 12 as a negative electrode active material and LiMn 2 O 4 as a positive electrode active material is excellent in safety, and is a promising candidate for a next-generation HV-equipped battery. However, since the voltage is low, the maximum power density (W / L) cannot reach the mounting standard for HV in the conventional battery structure in which the separator is interposed. However, since the electrode structure according to the present invention does not include a separator, not only the distance between the electrodes is shortened, but particularly when the thickness of the electrodes is reduced, the electrode area that can be secured is greatly increased, so that the output density ( It is extremely effective in making a battery with a high (W / L), and if the present invention is applied, a noble negative potential type secondary battery having a low voltage can sufficiently satisfy the HV mounting standard.

本発明は出力密度(W/L)の高い電池を作る上で極めて効果的であるため、HV搭載用の貴負極電位型二次電池への適用が最も期待できる。本発明を貴負極電位型二次電池に適用する場合には、非電子伝導性の負極活物質としては上述のスピネル系リチウムチタン酸化物(LiTi12)の他にもチタン酸化物(TiO)やスピネル系リチウム鉄酸化物(LiFe)などを選択することが出来る。これ等はいずれも非電子伝導性の物質であるが負極活物質として充電されると電子伝導性に変化するので、本発明を実施する上では好ましい負極の活物質候補である。 Since the present invention is extremely effective in producing a battery having a high output density (W / L), it can be most expected to be applied to a noble negative electrode type secondary battery for HV mounting. When the present invention is applied to a noble negative electrode potential type secondary battery, the non-electron conductive negative electrode active material includes titanium oxide in addition to the above spinel lithium titanium oxide (Li 4 Ti 5 O 12 ). (TiO 2 ), spinel-based lithium iron oxide (LiFe 5 O 8 ), and the like can be selected. Although these are all non-electron conductive materials, they change to electronic conductivity when charged as a negative electrode active material, and thus are preferable negative electrode active material candidates in the practice of the present invention.

また、貴負極電位型二次電池の正極活物質にはスピネル系リチウムマンガン酸化物(LiMn)の他にもLiFePO4、LiCoO、LiNiO等を選択することが出来るが、基本的にはリチウムイオン電池の正極活物質として使用される物質はいずれも使用できる。 In addition to spinel lithium manganese oxide (LiMn 2 O 4 ), LiFePO 4, LiCoO 2 , LiNiO 2 and the like can be selected as the positive electrode active material of the noble negative potential type secondary battery. Any of the materials used as the positive electrode active material of the lithium ion battery can be used.

また、本発明による電極構造はキャパシタにも適用することが出来る。この場合、負極活物質だけは電気化学的な酸化還元反応に基づく活物質であり、充電方向に電気化学的に還元されるまでは非電子伝導性である物質(例えばLiTi12やTiOなど)から選択し、当該負極活物質で非電子伝導性の負極活物質層を構成し、当該負極活物質層は黒鉛や活性炭を正極活物質として構成する正極活物質層とセパレーターを介在させずに対向させる。従来型のキャパシタの電極構造は、従来型二次電池と同じで、正極活物質層と負極活物質層はいずれも電子伝導性であるため、セパレーターを介して対向させている。 The electrode structure according to the present invention can also be applied to a capacitor. In this case, only the negative electrode active material is an active material based on an electrochemical redox reaction, and is a material that is non-electron conductive until it is electrochemically reduced in the charging direction (for example, Li 4 Ti 5 O 12 or TiO 2 or the like), and the negative electrode active material constitutes a non-electron conductive negative electrode active material layer, and the negative electrode active material layer is interposed between a positive electrode active material layer comprising graphite or activated carbon as a positive electrode active material and a separator Make them face each other. The electrode structure of the conventional capacitor is the same as that of the conventional secondary battery, and the positive electrode active material layer and the negative electrode active material layer are both electronically conductive, so that they are opposed to each other via a separator.

更に本発明は非電子伝導性の正極活物質を選択して非電子伝導性の正極活物質層を構成すれば、リチウムイオンのドープ・脱ドープが可能なカーボンを負極とするリチウムイオン電池に適用することも出来る。   Furthermore, the present invention can be applied to a lithium ion battery having a negative electrode made of carbon that can be doped / undoped with lithium ions if a non-electron conductive positive electrode active material is selected to form a non-electron conductive positive electrode active material layer. You can also

出力密度(V・A=W/L)の大きな電池とは高い電圧を維持して大きな電流で放電できる電池であり、電池は一般に、大電流で放電を行えば正極と負極の間には放電電流密度に応じて電極反応に関与するイオンには濃度差が生じ、このイオン濃度の差に基づく濃度分極によって電池電圧が降下する。従って、斯かる濃度分極による電圧降下が少ない電池が出力密度の大きな電池である。   A battery with a large output density (V · A = W / L) is a battery that can be discharged with a large current while maintaining a high voltage. Generally, a battery is discharged between a positive electrode and a negative electrode when discharged with a large current. Depending on the current density, there is a concentration difference in the ions involved in the electrode reaction, and the battery voltage drops due to concentration polarization based on the difference in ion concentration. Therefore, a battery with a small voltage drop due to such concentration polarization is a battery with a high output density.

例えば、LiPFを溶解した電解液を使用する有機電解液電池の放電においては、負極では負極活物質からLiイオンが放出され、正極では正極活物質中にLiイオンが取り込まれるが、電池内では負極と正極の間はLiとPF によって電気が運ばれる。このときのLiとPF が電気を運ぶ割合、即ちイオンの輸率を各々t、tとするとt+t=1の関係にあり、負極側ではPF の輸率t(陰イオンの輸率)の分だけLiイオン濃度(電解液濃度)が高くなり、正極側では陰イオンの輸率の分だけLiイオン濃度(電解液濃度)がうすくなり、斯かる電解液濃度の差に基づく濃度分極が放電電圧を押し下げる。逆に充電では、負極側ではLiイオン濃度がうすくなり、正極側ではLiイオン濃度が高くなり、濃度分極は充電電圧を上昇させるので、充電されにくくなる。 For example, in the discharge of an organic electrolyte battery using an electrolyte solution in which LiPF 6 is dissolved, Li + ions are released from the negative electrode active material at the negative electrode, and Li + ions are taken into the positive electrode active material at the positive electrode. the inner between anode and cathode Li + and PF 6 - electricity carried by. At this time, when Li + and PF 6 carry electricity, that is, when the ion transport number is t + and t , respectively, the relationship is t + + t = 1, and on the negative electrode side, the transport number of PF 6 t - high amount corresponding Li + ion concentration (anion transference number of ions) (electrolyte concentration), an amount corresponding Li + ion concentration transport number of the anion (electrolyte concentration) is thin in the positive electrode side,斯Concentration polarization based on the difference in electrolyte concentration depresses the discharge voltage. Conversely, in charging, the Li + ion concentration is light on the negative electrode side, the Li + ion concentration is high on the positive electrode side, and the concentration polarization increases the charging voltage, so that it is difficult to charge.

図8は、有機電解液電池の電解液濃度差の発生メカニズムを示した模式図である。   FIG. 8 is a schematic diagram illustrating a mechanism of occurrence of a difference in electrolyte concentration in an organic electrolyte battery.

図8には、Liイオンの輸率を0.5と仮定した場合の有機電解液電池の放電における電解液濃度差の発生メカニズムを模式図で示した。図8に示すように、負極で8個のLiイオンが電解液に放出されると8個の電子(e)が外部回路を経由して正極に到達するが、同時に電池内では4個のLiイオンと4個のPF イオンが電気を運び、正極では電解液から8個のLiイオンが取り込まれる。 FIG. 8 is a schematic diagram showing the mechanism of the occurrence of a difference in electrolyte concentration in the discharge of the organic electrolyte battery when the transport number of Li + ions is assumed to be 0.5. As shown in FIG. 8, when eight Li + ions are released into the electrolyte at the negative electrode, eight electrons (e ) reach the positive electrode via an external circuit, but at the same time, four electrons in the battery Li + ions and four PF 6 ions carry electricity, and eight Li + ions are taken from the electrolyte in the positive electrode.

従って、この場合、負極近傍では4個のLiイオンと4個のPF イオンが増加し、正極近傍では4個のLiイオンと4個のPF イオンが減少することが分かる。即ちLiPF溶液を電解液とする有機電解液電池が放電すると、負極近傍ではLiPF濃度が高くなり、正極近傍ではLiPF濃度が低くなる。このことから、本発明者は有機電解液二次電池の大電流放電においては、放電電流密度i(A/cm)はi=2×F×D×C/(d×t)の関係にあるという理論式を導き出した。ここでFはファラデー定数(c/mol)、Dは拡散係数(cm/s)、Cは電池に使用する電解液の濃度(mol/cm)、dは電極間距離(cm)、tはマイナスイオンの輸率である。なお、説明の便宜上、長さを示す単位として“cm”を用いているが、もちろん“m”等のように他の単位でもよい。 Therefore, in this case, the negative electrode near the four Li + ions and four PF 6 - increased ion, four Li + ions and four PF 6 in vicinity of the positive electrode - it can be seen that ions is reduced. That is, when an organic electrolyte battery using the LiPF 6 solution as an electrolyte is discharged, the LiPF 6 concentration increases near the negative electrode, and the LiPF 6 concentration decreases near the positive electrode. From this, the present inventor has found that the discharge current density i (A / cm 2 ) is i = 2 × F × D × C * / (d × t ) in the large current discharge of the organic electrolyte secondary battery. The theoretical formula that it is related was derived. Where F is the Faraday constant (c / mol), D is the diffusion coefficient (cm 2 / s), C * is the concentration of the electrolyte used in the battery (mol / cm 3 ), d is the distance between electrodes (cm), t - is the transport number of negative ions. For convenience of explanation, “cm” is used as a unit indicating the length, but other units such as “m” may be used.

リチウム塩を溶解した有機電解液中ではLiイオンは溶媒和してイオン半径が大きくなっているために移動しにくく、一般的にはLiイオンの輸率は0.5以下で、陰イオンの輸率は0.5以上である。従って、有機電解液二次電池の充・放電においては負極側と正極側では前述のメカニズムによって充放電電流(電流密度)に応じて電解液濃度に差が生じ、電解液濃度の差による濃度分極が電池の充電電圧を押し上げ、放電電圧を押し下げる。従って出力密度の大きな電池とする上では電極面積を大きくして充放電における電流密度を下げることが有効な手段となる。 In an organic electrolyte solution in which a lithium salt is dissolved, Li + ions are solvated and have a large ion radius, so that they are difficult to move. Generally, the transport number of Li + ions is 0.5 or less, and an anion The transport number is 0.5 or more. Therefore, in the charge / discharge of the organic electrolyte secondary battery, the electrolyte concentration differs according to the charge / discharge current (current density) by the above-described mechanism between the negative electrode side and the positive electrode side, and the concentration polarization due to the difference in the electrolyte concentration Boosts the battery charge voltage and lowers the discharge voltage. Therefore, in order to obtain a battery with a large output density, it is an effective means to reduce the current density in charge / discharge by increasing the electrode area.

また、Liイオンの輸率によって生じる電解液の濃度差は電解液イオンの拡散によって緩和されるので、正極と負極の距離を近づけることも出力密度の大きな電池とする上では有効な手段となる。正極と負極の間の距離が短くなれば、濃度勾配が大きくなってイオンの拡散速度は速くなる。 In addition, since the difference in electrolyte concentration caused by the Li + ion transport number is alleviated by the diffusion of electrolyte ions, it is also effective to make the battery with a high output density close to the distance between the positive electrode and the negative electrode. . When the distance between the positive electrode and the negative electrode is shortened, the concentration gradient is increased and the ion diffusion rate is increased.

本発明による蓄電素子では正極と負極の間にはセパレーターが介在しないので、正・負極間の距離が極めて近くなり、正・負極間の電解液の濃度勾配が大きくなるのでイオンの拡散速度が速まり、出力密度の高い二次電池となる。   In the electricity storage device according to the present invention, since no separator is interposed between the positive electrode and the negative electrode, the distance between the positive electrode and the negative electrode is extremely close, and the concentration gradient of the electrolyte solution between the positive electrode and the negative electrode is increased, so that the ion diffusion rate is increased. That is, a secondary battery with high output density is obtained.

また、従来の電池では電極の厚さを大幅に薄くして電極面積を増やせば、セパレーターと集電体の量が電極面積に比例して増えるため、その分直接電池反応にあずかる活物質の量は減少し、容量密度(Wh/L)は大きく低下するが、本発明による電池ではセパレーターが介在しないので、電極面積に比例して増えるのは集電体のみであり、容量密度(Wh/L)の低下が少なくて済む。   Also, in conventional batteries, if the electrode area is increased by significantly reducing the electrode thickness, the amount of separator and current collector increases in proportion to the electrode area, so the amount of active material directly involved in the battery reaction However, since the separator according to the present invention does not intervene, only the current collector increases in proportion to the electrode area, and the capacity density (Wh / L) decreases. ).

本発明による蓄電装置では、電極は従来電池と同じく活物質を結着剤等で固めて集電体上に活物質層を形成してシート状で作ることが出来るが、本発明による蓄電装置の蓄電素子は正極と負極はセパレーターを介することなく活物質層を対向させて密着させ、対向する電極を複数重ね合わせて積層体として構成することが出来るし、シート状の帯状電極を、セパレーターを介することなく活物質層を対向させて密着し、渦巻状に巻回体として構成することも出来る。斯かる蓄電素子は電解液を含浸せしめて容器内に密封すれば、本発明による蓄電装置が完成する。   In the power storage device according to the present invention, the electrode can be made in the form of a sheet by solidifying the active material with a binder or the like and forming an active material layer on the current collector, as in the conventional battery. In the storage element, the positive electrode and the negative electrode can be formed by stacking a plurality of opposing electrodes so that the active material layers face each other without interposing a separator, and a sheet-like strip electrode is interposed via a separator. Alternatively, the active material layers may be opposed to each other and closely contacted to form a spiral wound body. If such a storage element is impregnated with an electrolytic solution and sealed in a container, the storage device according to the present invention is completed.

本発明の目的も大きな最大出力密度(W/L)を得るための新しい電極構造を提供することにあり、本発明における活物質層の厚さも図5の関係から見て片面0.030mm以下とすることが好ましく、0.020mm以下とすることがより好ましい。   An object of the present invention is to provide a new electrode structure for obtaining a large maximum power density (W / L), and the thickness of the active material layer in the present invention is 0.030 mm or less on one side as seen from the relationship of FIG. It is preferable to make it 0.020 mm or less.

本発明を貴負極電位型二次電池へ適用する場合には、酸化還元電位を0.5〜2.5V(vs Li/Li)の範囲にもつ物質で、且つ電気化学的に還元されるまでは非電子伝導性である物質の中から負極活物質を選択することが望ましい。 When the present invention is applied to a noble negative electrode potential type secondary battery, it is a substance having an oxidation-reduction potential in the range of 0.5 to 2.5 V (vs Li / Li + ) and is electrochemically reduced. Until then, it is desirable to select a negative electrode active material from materials that are non-electron conductive.

本発明において選択される非電子伝導性活物質は、充電状態では良好な電子伝導性であることが望ましいが、斯かる活物質の候補としては酸化チタンやリチウムチタン酸化物やリチウム鉄酸化物などがある。   The non-electron conductive active material selected in the present invention is desirably good electron conductivity in a charged state, but as a candidate for such an active material, titanium oxide, lithium titanium oxide, lithium iron oxide, etc. There is.

電池の出力密度(W/L)を高めるためには、電極間距離を短くすること、および電極面積を増やすことが有効な手段であるが、以上のように本発明による電極構造では、従来の電極構造に比べて、セパレーターを介在させないので、電極間距離が短くなるだけでなく、特に電極の厚さを薄くする場合には、確保できる電極面積が格段に大きくなるので、出力密度(W/L)の高い電池を作るうえで効果的である。且つ高価なセパレーターを使用しないので、特に電極面積を格段に大きくする場合にはセパレーターの増加に伴う材料コストの大幅なアップはなくなる。   In order to increase the output density (W / L) of a battery, it is an effective means to shorten the distance between electrodes and increase the electrode area. As described above, in the electrode structure according to the present invention, Compared to the electrode structure, since no separator is interposed, not only the distance between the electrodes is shortened, but particularly when the thickness of the electrode is reduced, the electrode area that can be secured is remarkably increased. It is effective in making a battery having a high L). In addition, since an expensive separator is not used, particularly when the electrode area is remarkably increased, there is no significant increase in material cost due to an increase in the number of separators.

以上のように、本発明によれば高い出力密度の有機電解液二次電池が安価に供給できるようになるため、特に高い出力密度(W/L)の電池が求められるHV搭載用には、安全で安価な二次電池が提供できるようになるのでその工業的価値は大である。   As described above, according to the present invention, an organic electrolyte secondary battery having a high output density can be supplied at low cost. Therefore, for HV mounting in which a battery having a particularly high output density (W / L) is required, Since a safe and inexpensive secondary battery can be provided, its industrial value is great.

以下実施例により本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

本実施例では正極活物質としてスピネル系リチウムマンガン酸化物(LiMn)を使用し、負極活物質としてはスピネル系リチウムチタン酸化物(LiTi12)を使用して、HV搭載用電池に合致する出力性能を有する貴負極電位型二次電池を作製した。 In this example, spinel lithium manganese oxide (LiMn 2 O 4 ) is used as the positive electrode active material, and spinel lithium titanium oxide (Li 4 Ti 5 O 12 ) is used as the negative electrode active material. A noble negative electrode potential type secondary battery having an output performance matching that of the battery for manufacturing was prepared.

LiMnは二酸化マンガンと炭酸リチウムの混合物を空気中850℃で焼成して、従来の合成法で調整した。ただしここで合成したLiMnはX線回折ではスピネル型LiMnの回折パターンとよく一致するものであるが、マンガンの価数分析から判断して、正確にはマンガンの一部がリチウムで置換されたLi1.05Mn1.95と考えられる。 LiMn 2 O 4 was prepared by calcining a mixture of manganese dioxide and lithium carbonate in air at 850 ° C., and adjusting by a conventional synthesis method. However, the LiMn 2 O 4 synthesized here agrees well with the diffraction pattern of spinel type LiMn 2 O 4 in X-ray diffraction. It is thought that Li 1.05 Mn 1.95 O 4 substituted with lithium.

合成したLiMnの90重量部をカーボンブラック3重量部とグラファイト4重量部および結合剤としてポリフッ化ビニリデン3重量部とともに溶剤であるN−メチルー2−ピロリドンと湿式混合してペースト状スラリーとする。このスラリーを集電体とする厚さ0.011mm、幅250mmのアルミニウム箔の片面に、両端に20mmの未塗布部を残して塗付幅210mmで均一に塗布して乾燥する。もう一方の面にも同じ仕様で塗布乾燥してアルミニウム箔の両面に活物質層を形成し、更にローラープレス機で加圧成形して活物質層と集電体を含めた厚さが0.031mmのシート状の電極とした。 90 parts by weight of the synthesized LiMn 2 O 4 was wet mixed with 3 parts by weight of carbon black, 4 parts by weight of graphite, and 3 parts by weight of polyvinylidene fluoride as a binder together with N-methyl-2-pyrrolidone as a solvent to obtain a paste-like slurry. To do. The slurry is applied uniformly to a coating width of 210 mm and dried on one side of an aluminum foil having a thickness of 0.011 mm and a width of 250 mm using the slurry as a current collector, leaving uncoated portions of 20 mm at both ends. The other surface is coated and dried with the same specifications to form an active material layer on both sides of the aluminum foil, and further pressed with a roller press to have a thickness including the active material layer and the current collector of 0.00. A 031 mm sheet-like electrode was obtained.

シート状の電極は、縦幅を130mmに、横幅は片方の端の20mmの未塗布部を含めて220mmに切り揃えて、活物質塗付部の寸法が横200mm、縦130mmの長方形の正極として用意した。用意した正極の片方の端の20mmの未塗布部には活物質塗付部に続けて10mm幅の絶縁テープを張っておく。   The sheet-like electrode has a vertical width of 130 mm and a horizontal width of 220 mm including the 20 mm uncoated part at one end, and the active material coated part has a dimension of 200 mm wide and 130 mm long as a rectangular positive electrode Prepared. An insulating tape with a width of 10 mm is stretched on the 20 mm uncoated portion at one end of the prepared positive electrode following the active material coated portion.

次に負極活物質とするスピネル系リチウムチタン酸化物(LiTi12)は水酸化リチウム(LiOH)と二酸化チタン(TiO)を4:5のモル比でよく混合し、ペレット状に加圧成形し、ニッケルフォイルを敷き詰めたアルミナの容器に入れ、ヘリウム雰囲気中800℃で焼成して合成した。合成物のXRDパターンには未反応のTiOはなく、LiTi12単層であった。また合成物のSEM写真(倍率6600)では0.2〜1μm程度の1次粒子が集まって3〜10μm程度の2次粒子を形成していることが確認できた。 Next, spinel-type lithium titanium oxide (Li 4 Ti 5 O 12 ) used as the negative electrode active material is well mixed with lithium hydroxide (LiOH) and titanium dioxide (TiO 2 ) in a molar ratio of 4: 5 to form a pellet. It was pressure-molded, put into an alumina container covered with nickel foil, and baked at 800 ° C. in a helium atmosphere for synthesis. The XRD pattern of the composite had no unreacted TiO 2 and was a Li 4 Ti 5 O 12 monolayer. Moreover, in the SEM photograph (magnification 6600) of the synthesized product, it was confirmed that primary particles of about 0.2 to 1 μm gathered to form secondary particles of about 3 to 10 μm.

合成したLiTi12はその97重量部を結合剤とするポリフッ化ビニリデン3重量部とともに溶剤であるN−メチルー2−ピロリドンと湿式混合してペースト状スラリーとした。このスラリーを集電体とする厚さ0.011mmのアルミニウム箔の片面に、両端に20mmの未塗布部を残して塗付幅210mmで均一に塗布して乾燥する。 The synthesized Li 4 Ti 5 O 12 was wet mixed with N-methyl-2-pyrrolidone as a solvent together with 3 parts by weight of polyvinylidene fluoride having 97 parts by weight of the binder as a paste slurry. The slurry is applied uniformly to a coated width of 210 mm on one side of an aluminum foil having a thickness of 0.011 mm using the slurry as a current collector, leaving uncoated portions of 20 mm at both ends, and dried.

その後もう一方の面にも同じ仕様で塗布して乾燥するが、一部は片面塗布のままローラープレス機に通して厚さを0.024mmに調整し、集電体の片面にだけ活物質層が形成されたシート状電極とし、両面に塗布して乾燥したものについては、ローラープレス機で厚さを0.037mmに調整し、集電体の両面に活物質層が形成されたシート状電極とした。   Then apply to the other side with the same specifications and dry, but with one part applied, pass through a roller press to adjust the thickness to 0.024 mm, and the active material layer only on one side of the current collector In the case of a sheet-like electrode formed on the both sides, the sheet-like electrode in which the thickness was adjusted to 0.037 mm with a roller press and the active material layer was formed on both sides of the current collector. It was.

活物質層が片面と両面に形成されたシート状電極はいずれも縦幅は140mmに、横幅は片方の端の20mmの未塗布部を含めて230mmに切り揃えて、活物質塗付部の寸法が横210mm、縦140mmの長方形のシート状負極として用意した。   The sheet-like electrode with the active material layer formed on one side and both sides is trimmed to 140 mm in length and 230 mm in width including the 20 mm uncoated part at one end. Was prepared as a rectangular sheet-like negative electrode having a width of 210 mm and a length of 140 mm.

用意した正極と負極は、先ず集電体の片面にだけ活物質層が形成された負極の活物質層の上に、集電体の未塗布部が負極と左右反対になるように、集電体の両面に活物質層を形成した正極の活物質層を密着させて重ねる。このとき、正極集電体の未塗布部に貼り付けた絶縁テープの中間位置に負極の端がくるように正極を重ねるので、負極集電体のほうに位置する正極端は負極の塗布部を5mm程度残す位置で重なる。また電極縦幅方向では負極の両端が5mmずつ正極端よりはみ出して重なる。次に正極の活物質層の上に、集電体の未塗布部が正極と左右反対になるように、また正極集電体の未塗布部に貼り付けた絶縁テープの中間位置に負極の端がくるように、集電体の両面に活物質層を形成した負極の活物質層を密着させて重ねる。   First, prepare the positive and negative electrodes so that the uncoated part of the current collector is opposite to the negative electrode on the active material layer of the negative electrode on which the active material layer is formed only on one side of the current collector. A positive electrode active material layer having an active material layer formed on both sides of the body is adhered and overlapped. At this time, the positive electrode is overlapped so that the end of the negative electrode comes to the middle position of the insulating tape affixed to the unapplied part of the positive electrode current collector. It overlaps at a position where about 5 mm is left. In the electrode longitudinal width direction, both ends of the negative electrode protrude from the positive electrode end by 5 mm and overlap. Next, on the active material layer of the positive electrode, the non-coated portion of the current collector is opposite to the positive electrode, and the end of the negative electrode is positioned in the middle of the insulating tape affixed to the non-coated portion of the positive electrode current collector. The negative electrode active material layer having the active material layer formed thereon is closely adhered and stacked on both sides of the current collector.

同じ要領で正極と負極を交互に重ねていき、44枚目の正極には再び片面にだけ活物質層を形成した負極を、活物質層同士を密着させて重ね、各電極の集電体の未塗布部は電極タブに溶接し、電極枚数は異なるが電極構造自体は図1および2に示す積層体と類似する電極素子を組み立てる。   In the same manner, the positive electrode and the negative electrode are alternately stacked, and the negative electrode in which the active material layer is formed on only one side is again stacked on the 44th positive electrode with the active material layers in close contact with each other. An uncoated portion is welded to an electrode tab, and an electrode element similar in structure to the laminate shown in FIGS.

組み立てた電極素子は十分乾燥した後、縦幅145mm、横幅240mm、深さ3.0mmで皿状に絞り加工したアルミニウムとポリプロピレンのラミネートシートに納めて同種類のラミネートシートを重ね、周囲は一箇所を残して熱融着する。   After the assembled electrode element is sufficiently dried, it is placed in a laminating sheet of aluminum and polypropylene that has been drawn into a dish shape with a vertical width of 145 mm, a horizontal width of 240 mm, and a depth of 3.0 mm, and the same kind of laminated sheet is stacked on the periphery. Heat-sealing leaving

各電極の集電体を溶接した電極タブは2枚のラミネートシートの間から外部に取り出されるが、電極タブには熱融着部に位置する部分には特殊テープが貼られていて、特殊テープが2枚のラミネートシートと一体化して熱融着される。   The electrode tab welded to the current collector of each electrode is taken out from between the two laminate sheets, but the electrode tab has a special tape affixed to the part located in the heat-sealed part. Is integrally heat-sealed with two laminate sheets.

電極素子にはラミネートシートの未融着部より、1モル/LのLiPFを溶解したエチレンカーボネイト(EC)とジエチルカーボネイト(DEC)の混合溶液を電解液として注入し、真空にして含浸せしめ、最後にラミネートシートの未融着部を熱融着すれば、図3に示す電池構造で、電池体積115ccの貴負極電位型二次電池が完成する。 In the electrode element, a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1 mol / L LiPF 6 is dissolved is injected as an electrolytic solution from an unfused portion of the laminate sheet, and impregnated with vacuum. Finally, if the unfused portion of the laminate sheet is thermally fused, a noble negative potential type secondary battery having a battery volume of 115 cc is completed with the battery structure shown in FIG.

比較例Comparative example

本比較例では実施例で作製した貴負極電位型二次電池を従来型の電極構造で作製して、本発明による電池との性能比較を行った。本比較例で作製する貴負極電位型二次電池は電極厚さも蓄電素子の体積も実施例と同じで作製した。   In this comparative example, the noble negative electrode potential type secondary battery produced in the example was produced with a conventional electrode structure, and the performance of the battery according to the present invention was compared. The noble negative electrode type secondary battery produced in this comparative example was produced with the same electrode thickness and the same volume of the electricity storage element as in the example.

従来型の電極構造ではセパレーターを使用するので、同じ体積の蓄電素子を同じ寸法の電極で構成する場合には電極枚数は前記実施例より少ない。本比較例では25μmのセパレーターを使用するので、正極と負極は各22.5枚の電極で構成すれば実施例とほぼ同じ体積となる。ただし0.5枚の電極は集電体の片面だけに活物質層が形成された電極を意味する。   Since the separator is used in the conventional electrode structure, the number of electrodes is smaller than that in the above embodiment when the same volume of the storage element is composed of the same size electrodes. Since a separator of 25 μm is used in this comparative example, if the positive electrode and the negative electrode are each composed of 22.5 electrodes, the volume is almost the same as in the example. However, the 0.5 electrode means an electrode in which an active material layer is formed only on one side of the current collector.

先ず、正極は実施例と同じ仕様で作製するが、集電体の両面に活物質層が形成された正極のほか集電体の片面だけに活物質層が形成された正極も用意する。本比較例ではセパレーターを使用するので、正極集電体の未塗布部に絶縁テープを張っておく必要はない。活物質塗付部の寸法は実施例と同じく横200mm、縦130mmのシート状正極を用意する。   First, the positive electrode is manufactured with the same specifications as in the examples, but in addition to the positive electrode in which the active material layer is formed on both sides of the current collector, a positive electrode in which the active material layer is formed only on one side of the current collector is also prepared. Since a separator is used in this comparative example, it is not necessary to put an insulating tape on the uncoated portion of the positive electrode current collector. As in the embodiment, a sheet-like positive electrode having a width of 200 mm and a length of 130 mm is prepared for the active material application portion.

負極活物質は実施例で合成したLiTi12を使用するが、本比較例ではセパレーターを使用するので負極活物質層は非電子伝導性である必要はない。むしろ出力性能の高い電池とするためには従来通り、負極活物質にも伝導補助剤を混ぜて電子伝導性の負極活物質層を形成する方が有利である。 As the negative electrode active material, Li 4 Ti 5 O 12 synthesized in the examples is used. However, since the separator is used in this comparative example, the negative electrode active material layer does not need to be non-electron conductive. On the contrary, in order to obtain a battery having high output performance, it is advantageous to form a negative electrode active material layer having an electron conductivity by mixing a conductive auxiliary agent with the negative electrode active material.

従って負極の作製においては、LiTi12の90重量部にカーボンブラック3重量部とグラファイト4重量部を加えてよく混合し、更に結合剤のポリフッ化ビニリデン3重量部とともに溶剤であるN−メチルー2−ピロリドンと湿式混合してペースト状スラリーとする。 Therefore, in the production of the negative electrode, 3 parts by weight of carbon black and 4 parts by weight of graphite are added to 90 parts by weight of Li 4 Ti 5 O 12 and mixed well, and further, N as a solvent together with 3 parts by weight of polyvinylidene fluoride as a binder. -Wet mixed with methyl-2-pyrrolidone to form a paste slurry.

このスラリーを集電体とする厚さ0.011mmのアルミニウム箔の片面に、両端に20mmの未塗布部を残して塗付幅210mmで均一に塗布して乾燥し、その後一部は片面電極のために残し、もう一方の面にも同じ仕様で塗布して乾燥する。   On one side of an aluminum foil having a thickness of 0.011 mm using this slurry as a current collector, it is uniformly applied with a coating width of 210 mm, leaving an uncoated part of 20 mm on both ends, and then dried, and then a part of the single-sided electrode For this reason, the other side is coated with the same specifications and dried.

集電体の片面にだけ活物質層が形成されたシート状電極はローラープレス機で厚さを0.024mmに調整し、活物質層が集電体の両面に形成されたシート状電極はローラープレス機で厚さを0.037mmに調整する。   The sheet-like electrode in which the active material layer is formed only on one side of the current collector is adjusted to a thickness of 0.024 mm with a roller press, and the sheet-like electrode in which the active material layer is formed on both sides of the current collector is a roller. The thickness is adjusted to 0.037 mm with a press.

活物質層が片面および両面に形成されたシート状電極はいずれも縦幅は130mmに、横幅は片方の端の20mmの未塗布部を含めて220mmに切り揃えて、活物質塗付部の寸法が横200mm、縦130mmの長方形のシート状負極を用意する。   The sheet-like electrode on which the active material layer is formed on one side and both sides has a vertical width of 130 mm and a horizontal width of 220 mm including the 20 mm uncoated part at one end, and the dimensions of the active material coated part. A rectangular sheet-like negative electrode having a width of 200 mm and a length of 130 mm is prepared.

以上で用意した正極と負極は、先ず集電体の片面に活物質層を形成した正極の活物質層の面に、厚さ25μmの多孔質ポリプロピレン製セパレーターを重ね更にその上に集電体の未塗布部が正極と左右反対になるように、集電体の両面に活物質層を形成した負極を重ねる。更に負極の活物質層面にも、厚さ25μmのセパレーターを重ね、その上に集電体の両面に活物質層を形成した正極を、集電体の未塗布部を他の正極と同じ側にそろえて重ねる。   The positive electrode and the negative electrode prepared as described above are obtained by first stacking a 25 μm-thick porous polypropylene separator on the surface of the active material layer of the positive electrode in which the active material layer is formed on one surface of the current collector, and further on the current collector. The negative electrode on which the active material layer is formed is overlapped on both sides of the current collector so that the uncoated portion is opposite to the left and right sides of the positive electrode. Furthermore, a positive electrode in which a separator having a thickness of 25 μm is stacked on the active material layer surface of the negative electrode, and an active material layer is formed on both sides of the current collector, and an uncoated portion of the current collector is placed on the same side as the other positive electrodes. Align and layer.

同じように25.5枚の正極と25.5枚の負極をセパレーターを挟んで交互に重ね、正極と負極の活物質層同士をセパレーターを挟んで対向させて重ねる。各電極の集電体の未塗布部は電極タブに溶接し、電極枚数は異なるが電極構造自体は図4に示す積層体と類似する電極素子を組み立てる。   Similarly, 25.5 positive electrodes and 25.5 negative electrodes are alternately stacked with a separator interposed therebetween, and active material layers of the positive electrode and the negative electrode are stacked to face each other with a separator interposed therebetween. The uncoated portion of the current collector of each electrode is welded to the electrode tab, and an electrode element similar to the laminate shown in FIG.

組み立てた電極素子は十分乾燥した後、縦幅145mm、横幅240mm、深さ3.0mmで皿状に絞り加工したアルミニウムとポリプロピレンのラミネートシートに納めて同種類のラミネートシートを重ね、周囲は一箇所を残して熱融着する。   After the assembled electrode element is sufficiently dried, it is placed in a laminating sheet of aluminum and polypropylene that has been drawn into a dish shape with a vertical width of 145 mm, a horizontal width of 240 mm, and a depth of 3.0 mm, and the same kind of laminated sheet is stacked on the periphery. Heat-sealing leaving

各電極の集電体を溶接した電極タブは実施例と同じ要領で2枚ラミネートシートの間から外部に取り出されて外部端子となる。   The electrode tab welded to the current collector of each electrode is taken out from between the two laminated sheets in the same manner as in the embodiment and becomes an external terminal.

電極素子にはラミネートシートの未融着部より、電解液として1モル/LのLiPFを溶解したエチレンカーボネイト(EC)とジエチルカーボネイト(DEC)の混合溶液を注入して真空にして含浸せしめ、最後にラミネートシートの未熱融着部を熱融着すれば、図3に示す電池と同じ構造で貴負極電位型二次電池が完成する。電池体積は実施例の電池と同じく115ccである。 A mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1 mol / L LiPF 6 is dissolved as an electrolytic solution is injected into the electrode element from an unfused portion of the laminate sheet, and impregnated in a vacuum. Finally, if the unheated portion of the laminate sheet is heat-sealed, a noble negative potential type secondary battery is completed with the same structure as the battery shown in FIG. The battery volume is 115 cc as in the battery of the example.

[性能評価試験]
実施例および比較例で作製した電池はいずれも電池内部の安定化を目的に24時間のエージング期間を経過させた後、1回目の充放電を行った。いずれの電池も充電上限電圧は3.0Vに設定し、8時間の充電を行い、放電は4Aの定電流放電にて終止電圧2.0Vまで行った。その結果は図9に示したが、放電時間は実施例の電池は94分、比較例の電池は53分であり、放電容量はそれぞれ6.3Ahと3.6Ahである。
[Performance evaluation test]
The batteries produced in the examples and comparative examples were each charged and discharged for the first time after passing an aging period of 24 hours for the purpose of stabilizing the inside of the battery. In any of the batteries, the charge upper limit voltage was set to 3.0V, the battery was charged for 8 hours, and the discharge was performed to a final voltage of 2.0V by 4A constant current discharge. The results are shown in FIG. 9, and the discharge time is 94 minutes for the battery of the example, 53 minutes for the battery of the comparative example, and the discharge capacities are 6.3 Ah and 3.6 Ah, respectively.

図9は、本発明の実施に係る電池と従来型電池の4A定電流放電時の放電カーブを示す図である。図10は、本発明の実施に係る電池と従来型電池の最大出力時の放電カーブを示す図である。   FIG. 9 is a diagram showing a discharge curve at the time of 4 A constant current discharge of the battery according to the embodiment of the present invention and the conventional battery. FIG. 10 is a diagram showing discharge curves at the maximum output of the battery according to the embodiment of the present invention and the conventional battery.

図9に示すように、平均放電電圧は約2.45Vであり、エネルギー密度は実施例の電池が134Wh/Lであるのに対して、比較例の電池は77Wh/Lである。   As shown in FIG. 9, the average discharge voltage is about 2.45 V, and the energy density of the battery of the example is 134 Wh / L, whereas the battery of the comparative example is 77 Wh / L.

続いて、いずれの電池も充電上限電圧は再び3.0Vに設定して、8時間の充電を行い、70Aの定電流放電にて終止電圧1.8Vまで行った結果、放電時間は実施例の電池は307秒であり、比較例の電池は110秒であった。   Subsequently, the charging upper limit voltage was set to 3.0 V again for all the batteries, charging was performed for 8 hours, and the battery was discharged at a constant current of 70 A up to a final voltage of 1.8 V. The battery was 307 seconds, and the battery of the comparative example was 110 seconds.

70Aの定電流放電では比較例の電池の平均放電電圧は約2.2Vであり、平均放電出力は154Wである。前述したように、素電池ベースで120秒間持続可能な最大出力を素電池体積で除した値をもって最大出力密度(W/L)と定義すれば、比較例の電池の最大出力密度(W/L)は154÷0.115以下、つまり1340W/L以下であり、図10に示したようにHV搭載基準のレベルには遥かにおよばない。   In the constant current discharge of 70 A, the average discharge voltage of the battery of the comparative example is about 2.2 V, and the average discharge output is 154 W. As described above, if the maximum output density (W / L) is defined as a value obtained by dividing the maximum output sustainable for 120 seconds by the unit cell volume by the unit cell volume, the maximum output density (W / L) of the battery of the comparative example is defined. ) Is 154 ÷ 0.115 or less, that is, 1340 W / L or less, which is far from the level of the HV mounting standard as shown in FIG.

一方、実施例の電池は満充電の状態から終止電圧1.8Vまでの放電試験を、更に放電電流値を上げて行った結果、160Aの定電流放電で放電時間が120秒となった。実施例の電池の160Aの定電流放電での平均放電電圧は約2.2Vであり、平均放電出力は352Wである。従って実施例の電池の最大出力密度(W/L)は352÷0.115、つまり3060W/Lであり、図10に示したようにHV搭載基準を十分に満足する。   On the other hand, the battery of the example was subjected to a discharge test from a fully charged state to a final voltage of 1.8 V, further increasing the discharge current value. As a result, the discharge time was 120 seconds with a constant current discharge of 160 A. The average discharge voltage in the constant current discharge of 160 A of the battery of the example is about 2.2 V, and the average discharge output is 352 W. Therefore, the maximum output density (W / L) of the battery of the example is 352 / 0.115, that is, 3060 W / L, and sufficiently satisfies the HV mounting standard as shown in FIG.

以上のように、本発明を貴負極電位型二次電池に適用すれば、エネルギー密度も134Wh/Lと、本来のリチウムイオン電池のエネルギー密度(250Wh/L)の50%以上が確保され、最大出力密度(W/L)もHV搭載基準(2500W/L)を十分に満足する。   As described above, when the present invention is applied to a noble negative electrode type secondary battery, the energy density is 134 Wh / L, which is 50% or more of the energy density (250 Wh / L) of the original lithium ion battery. The power density (W / L) also sufficiently satisfies the HV mounting standard (2500 W / L).

なお、既存の電池の中では、心臓ペースメーカー用の電池として実用化されているリチウムヨウ素電池(Li/i電池)が唯一、セパレーターが不要の電池である。Li/i電池は負極活物質には金属リチウム(Li)を、正極活物質にはヨウ素(i)をそれぞれ使用する固体電解質電池であるが、負極のLiと正極のiが接触すれば、その界面にはヨウ化リチウム(Lii)が生成され、正極と負極はLiiによってイオン電導では導通し、電子的導通は阻止されるので、電池として機能する。 Among existing batteries, a lithium iodine battery (Li / i 2 battery) that has been put to practical use as a battery for cardiac pacemakers is the only battery that does not require a separator. The Li / i 2 battery is a solid electrolyte battery that uses metallic lithium (Li) as the negative electrode active material and iodine (i 2 ) as the positive electrode active material, but the negative electrode Li and the positive electrode i 2 are in contact with each other. For example, lithium iodide (Lii) is generated at the interface, and the positive electrode and the negative electrode are made conductive by ionic conduction by Lii, and electronic conduction is blocked, so that the battery functions as a battery.

このようにLi/i電池もセパレーターが不要である点では本発明による電池と同じであるが、本発明による電池はLi/i電池とは次の点で根本的に異なる。 Thus, the Li / i 2 battery is the same as the battery according to the present invention in that a separator is unnecessary, but the battery according to the present invention is fundamentally different from the Li / i 2 battery in the following points.

先ずLi/i電池は固体電解質電池で、一次電池であり、電池が組み立てられた時点では未充電の活物質は存在しない。一方、本発明による蓄電装置は二次電池又はキャパシタであり、装置が組みあがった時点では全ての活物質は未充電の状態にある。従って、セパレーターに代わって正極と負極の電子的導通を阻止するものは、Li/i2電池では正極活物質と負極活物質との反応生成物であり、本発明による蓄電装置では未充電の非電子伝導性活物質層である。 First, the Li / i 2 battery is a solid electrolyte battery, which is a primary battery, and there is no uncharged active material when the battery is assembled. On the other hand, the power storage device according to the present invention is a secondary battery or a capacitor, and all active materials are in an uncharged state when the device is assembled. Therefore, what prevents electronic conduction between the positive electrode and the negative electrode in place of the separator is a reaction product of the positive electrode active material and the negative electrode active material in the Li / i 2 battery, and is not charged in the power storage device according to the present invention. It is an electron conductive active material layer.

非電子伝導性(絶縁性)の物質は多くの場合、いったん充電方向に酸化又は還元されると、電子のやり取りが可能な異なる価数の原子(例えばT+4とTi+3、Fe+3とFe+2)が結晶内に共存することとなり、電子伝導性に変化するものが多い。しかし、放電方向に還元又は酸化されても、全ての原子の価数が同じになるまで電気化学的に還元又は酸化されることは難しく、依然、異なる価数の原子が結晶内に共存することとなり、電子伝導性が維持されて元の非電子伝導性物質までは戻らないケースが多い。 Non-electron conductive (insulating) materials often have different valence atoms (eg, T +4 and Ti +3 , Fe +3 and Fe +2) that can exchange electrons once oxidized or reduced in the charge direction. ) Coexist in the crystal, and many of them change to electronic conductivity. However, even if reduced or oxidized in the discharge direction, it is difficult to electrochemically reduce or oxidize until all atoms have the same valence, and atoms with different valences still coexist in the crystal. Therefore, in many cases, the electron conductivity is maintained and the original non-electron conductive material does not return.

本発明では、むしろ一旦充電されて電子伝導性に変化した活物質は放電しても電子伝導性のままであること、即ち元の非電子伝導性物質まで戻らないことが有利に生かされる。つまり、本発明では初回の充電によって電子伝導性に変わる活物質は、その後は常に充放電に寄与する役割を担うので電子伝導性であることがプラスに働き、未充電の、非電子伝導性のままの活物質は常に正極と負極の電子的導通を阻止する役割(セパレーターの役割)を担うので非電子伝導性であることがプラスに働く。   In the present invention, it is rather advantageous that the active material once charged and changed to electronic conductivity remains electronically conductive even when discharged, that is, does not return to the original non-electron conductive material. In other words, in the present invention, the active material that changes to electronic conductivity by the first charge always plays a role of contributing to charge and discharge, so that it is positive that it is electron conductive, and is uncharged, non-electron conductive. The active material as it is always plays a role of preventing electronic conduction between the positive electrode and the negative electrode (separator role), so that non-electron conductivity works positively.

一般に有機電解液電池に使用するセパレーターは特殊の薄い多孔質膜で、価格が非常に高いが、特に電極対向面積を大きくした場合では、セパレーター価格が材料費を大きく引き上げてしまう。本発明による電池では斯かる特殊の多孔質膜をセパレーターに使用する必要がないため、安価な高出力の有機電解液二次電池が提供できる。   In general, a separator used in an organic electrolyte battery is a special thin porous membrane and is very expensive. However, especially when the electrode facing area is increased, the price of the separator greatly increases the material cost. Since the battery according to the present invention does not require the use of such a special porous membrane for the separator, an inexpensive high-power organic electrolyte secondary battery can be provided.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものであり、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。本発明の要旨を逸脱しない範囲において種々変更可能である。   As mentioned above, although embodiment of this invention was described, the said embodiment showed one of the application examples of this invention, and in the meaning which limits the technical scope of this invention to the specific structure of the said embodiment. Absent. Various modifications can be made without departing from the scope of the present invention.

1 負極活物質層
2 正極活物質層
3 負極集電体
4 正極集電体
5 セパレーター
6 負極タブ
7 正極タブ
8 絶縁テープ
9 プラスチックテープ
10 蓄電素子
11、12 ラミネートシート
13 負極外部端子
14 正極外部端子
31 負極
32 正極
33 対向面
DESCRIPTION OF SYMBOLS 1 Negative electrode active material layer 2 Positive electrode active material layer 3 Negative electrode current collector 4 Positive electrode current collector 5 Separator 6 Negative electrode tab 7 Positive electrode tab 8 Insulating tape 9 Plastic tape 10 Power storage element 11, 12 Laminate sheet 13 Negative electrode external terminal 14 Positive electrode external terminal 31 Negative electrode 32 Positive electrode 33 Opposite surface

Claims (5)

正極と負極の活物質層が対向してなる蓄電装置において、前記正極と前記負極はそれぞれの活物質層が集電体に密着して形成されており、対向する前記正極の活物質層と前記負極の活物質層とは対向面で密着していることを特徴とする蓄電装置。   In the power storage device in which the active material layers of the positive electrode and the negative electrode face each other, each of the positive electrode and the negative electrode is formed in close contact with a current collector, and the active material layer of the positive electrode facing the positive electrode and the negative electrode A power storage device, wherein the power storage device is in close contact with an active material layer of a negative electrode on an opposing surface. 対向面で密着している前記活物質層の少なくとも一方は、未充電状態では非電子伝導性であることを特徴とする請求項1記載の蓄電装置。   The power storage device according to claim 1, wherein at least one of the active material layers in close contact with each other on the opposite surface is non-electron conductive in an uncharged state. 未充電状態では非電子伝導性である前記活物質層は、電気化学的な酸化還元反応に基づく活物質で構成され、
当該活物質は、充電方向に電気化学的に酸化または還元されるまでは非電子伝導性である物質の中から選択されることを特徴とする請求項2記載の蓄電装置。
The active material layer that is non-electron conductive in an uncharged state is composed of an active material based on an electrochemical redox reaction,
The power storage device according to claim 2, wherein the active material is selected from materials that are non-electron conductive until electrochemically oxidized or reduced in a charging direction.
前記正極の活物質層と前記負極の活物質層とは、前記対向面に位置する未充電状態の非電子伝導性の活物質層によって電子的導通が断たれていることを特徴とする請求項1記載の蓄電装置。   The active material layer of the positive electrode and the active material layer of the negative electrode are cut off from electronic conduction by an uncharged non-electron conductive active material layer located on the opposing surface. The power storage device according to 1. 前記非電子伝導性の活物質層の充電可能な容量が、当該非電子伝導性の活物質層に対向する活物質層の充電可能な容量よりも大きいことを特徴とする請求項4記載の蓄電装置。   5. The power storage device according to claim 4, wherein a chargeable capacity of the non-electron conductive active material layer is larger than a chargeable capacity of an active material layer facing the non-electron conductive active material layer. apparatus.
JP2012280105A 2012-12-03 2012-12-21 Power storage device Pending JP2016028374A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012280105A JP2016028374A (en) 2012-12-21 2012-12-21 Power storage device
PCT/JP2013/081895 WO2014087895A1 (en) 2012-12-03 2013-11-27 Accumulation device, hybrid vehicle, and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012280105A JP2016028374A (en) 2012-12-21 2012-12-21 Power storage device

Publications (1)

Publication Number Publication Date
JP2016028374A true JP2016028374A (en) 2016-02-25

Family

ID=55360778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012280105A Pending JP2016028374A (en) 2012-12-03 2012-12-21 Power storage device

Country Status (1)

Country Link
JP (1) JP2016028374A (en)

Similar Documents

Publication Publication Date Title
JP6873767B2 (en) Rechargeable batteries, battery packs and vehicles
JP6672208B2 (en) Rechargeable batteries, battery packs and vehicles
US20140272558A1 (en) Electrode for a lithium-based secondary electrochemical device and method of forming same
JP5149926B2 (en) Positive electrode for lithium ion secondary battery, lithium ion secondary battery, vehicle equipped with the same, and power storage system
WO2013094358A1 (en) Positive electrode for lithium ion secondary batteries, lithium ion secondary battery, and vehicle and electrical energy storage system mounted with same
CN108598296A (en) Improve the secondary cell of energy density
JP2016509338A (en) Electrode assembly and electrochemical device including the same
US11380939B2 (en) Hybrid lithium ion capacitor battery having a carbon coated separate layer and method of making the same
JP2007048662A (en) Auxiliary power source device
KR102103378B1 (en) Battery Cell Comprising Electrode Lead Having Gas Adsorbent
JP2019053862A (en) Laminated electrode body and power storage element
CN109546196B (en) Electrode group, secondary battery, battery pack, and vehicle
JP6587157B2 (en) Electrode assembly and electrochemical device including the same
CN111430778A (en) Rechargeable lithium ion battery chemistry with fast charging capability and high energy density
JP2013093216A (en) Battery
JP2012156405A (en) Electricity storage device
TW201721941A (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
WO2014087895A1 (en) Accumulation device, hybrid vehicle, and electric vehicle
CN106025169B (en) Electric storage element
US20170005362A1 (en) Electrical device
JP2010062299A (en) Electricity storage device
JP2000090932A (en) Lithium secondary battery
WO2014175212A1 (en) Electricity storage device
KR20120020893A (en) Lithium ion capacitor
Loupe et al. Electrochemical energy storage: Current and emerging technologies