JP2016026983A - Carbon nanotube dispersion liquid comprising conductive polymer, carbon material and method for producing the dispersion liquid - Google Patents

Carbon nanotube dispersion liquid comprising conductive polymer, carbon material and method for producing the dispersion liquid Download PDF

Info

Publication number
JP2016026983A
JP2016026983A JP2015098446A JP2015098446A JP2016026983A JP 2016026983 A JP2016026983 A JP 2016026983A JP 2015098446 A JP2015098446 A JP 2015098446A JP 2015098446 A JP2015098446 A JP 2015098446A JP 2016026983 A JP2016026983 A JP 2016026983A
Authority
JP
Japan
Prior art keywords
carbon
carbon nanotubes
dispersion
dispersion liquid
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015098446A
Other languages
Japanese (ja)
Other versions
JP6427464B2 (en
Inventor
門田 隆二
Ryuji Kadota
隆二 門田
健三 塙
Kenzo Hanawa
健三 塙
丈智 西方
Taketomo Nishikata
丈智 西方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2015098446A priority Critical patent/JP6427464B2/en
Publication of JP2016026983A publication Critical patent/JP2016026983A/en
Application granted granted Critical
Publication of JP6427464B2 publication Critical patent/JP6427464B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon nanotube dispersion liquid having excellent dispersibility and a method for producing the same.SOLUTION: In an aqueous solution of a conductive polymer comprising a thiophene skeleton with a sulfo group, carbon nanotubes with a number average fiber diameter of 100 nm or more and carbon nanotubes with a number average fiber diameter of 30 nm or less are mixed with a wet jet mill, to obtain a carbon nanotube dispersion liquid having both carbon nanotubes dispersed in the aqueous solution.SELECTED DRAWING: None

Description

本発明は、導電性高分子を含むカーボンナノチューブの分散液、炭素材料及び該分散液の製造方法に関する。   The present invention relates to a dispersion of carbon nanotubes containing a conductive polymer, a carbon material, and a method for producing the dispersion.

特許文献1(特開2011−178878号公報)には、カーボンナノチューブ自体の特性を損なうことなく、外観上、及び/または性能上、欠陥や異物の少ない導電層を簡便な方法で得ることができる長期安定性に優れたカーボンナノチューブ組成物を得るために、カーボンナノチューブと、導電性ポリマーと、溶剤とを含有するカーボンナノチューブ含有組成物であって、動的光散乱法で測定した粒径分布において、1nm以上1μm未満の累計散乱強度(I)と1μm以上100μm未満の累計散乱強度(II)の比((I)/(II))が3.0以上であるカーボンナノチューブ含有組成物が開示されている。更にカーボンナノチューブ含有組成物を、基材に塗布した後、常温または加熱により乾燥して形成したカーボンナノチューブ含有導電層が開示されている。   In Patent Document 1 (Japanese Patent Laid-Open No. 2011-178878), a conductive layer with few defects and foreign matters can be obtained by a simple method in terms of appearance and / or performance without impairing the characteristics of the carbon nanotube itself. In order to obtain a carbon nanotube composition having excellent long-term stability, a carbon nanotube-containing composition containing a carbon nanotube, a conductive polymer, and a solvent, and having a particle size distribution measured by a dynamic light scattering method Disclosed is a carbon nanotube-containing composition having a ratio ((I) / (II)) of 3.0 or more of a cumulative scattering intensity (I) of 1 nm or more and less than 1 μm and a cumulative scattering intensity (II) of 1 μm or more and less than 100 μm. ing. Furthermore, a carbon nanotube-containing conductive layer formed by applying a carbon nanotube-containing composition to a substrate and then drying it at room temperature or by heating is disclosed.

特開2011−178878号公報JP 2011-178878 A

しかしながら、凝集粒子として得られたカーボンナノチューブは十分な分散性を発揮しないという課題があった。また、十分に分散していない組成物は、基材上に塗布して導電層を得ることはできるが、凝集粒子間の引力がないので、基材が無い状態で導電層を形成することは困難であった。
本発明は、上記事情に鑑みてなされたものであって、分散性の良好なカーボンナノチューブの分散液、炭素材料及びその製造方法を提供することを目的とする。
However, there has been a problem that the carbon nanotubes obtained as aggregated particles do not exhibit sufficient dispersibility. In addition, a composition that is not sufficiently dispersed can be applied on a substrate to obtain a conductive layer, but since there is no attractive force between aggregated particles, it is not possible to form a conductive layer without a substrate. It was difficult.
This invention is made | formed in view of the said situation, Comprising: It aims at providing the dispersion liquid of a carbon nanotube with favorable dispersibility, a carbon material, and its manufacturing method.

本発明は下記(1)〜(6)を含む。   The present invention includes the following (1) to (6).

(1) スルホ基を有するチオフェン骨格を含む導電性高分子の水溶液中に、数平均繊維径100nm以上であるカーボンナノチューブAと、数平均繊維径30nm以下であるカーボンナノチューブBと、が分散していることを特徴とするカーボンナノチューブの分散液。
(2) 前記カーボンナノチューブA:100質量部に対し、前記カーボンナノチューブBが1〜100質量部含有される(1)に記載の分散液。
(3) 前記カーボンナノチューブA及びBを合計0.01〜10質量%含有する(1)または(2)に記載の分散液。
(4) 前記導電性高分子を前記カーボンナノチューブA及びBの合計量100質量部に対して0.1〜50質量部含有する(1)〜(3)のいずれか一項に記載の分散液。
(5)(1)〜(4)のいずれか一項に記載の分散液から水を除去して得られる炭素材料であって、前記カーボンナノチューブAの表面に複数の前記カーボンナノチューブBが付着し、該カーボンナノチューブBが複数の該カーボンナノチューブAの間に跨った構造を有する炭素材料。
(6) 前記導電性高分子の水溶液に、前記カーボンナノチューブA及びBを、湿式ジェットミルを用いて混合することを特徴とする(1)〜(4)のいずれか一項に記載のカーボンナノチューブの分散液の製造方法。
(1) Carbon nanotubes A having a number average fiber diameter of 100 nm or more and carbon nanotubes B having a number average fiber diameter of 30 nm or less are dispersed in an aqueous solution of a conductive polymer containing a thiophene skeleton having a sulfo group. A dispersion of carbon nanotubes characterized by comprising:
(2) The dispersion liquid according to (1), wherein 1 to 100 parts by mass of the carbon nanotube B is contained with respect to 100 parts by mass of the carbon nanotube A.
(3) The dispersion liquid according to (1) or (2), containing a total of 0.01 to 10% by mass of the carbon nanotubes A and B.
(4) The dispersion according to any one of (1) to (3), wherein the conductive polymer is contained in an amount of 0.1 to 50 parts by mass with respect to 100 parts by mass of the total amount of the carbon nanotubes A and B. .
(5) A carbon material obtained by removing water from the dispersion liquid according to any one of (1) to (4), wherein a plurality of the carbon nanotubes B adhere to the surface of the carbon nanotubes A. A carbon material having a structure in which the carbon nanotubes B straddle a plurality of the carbon nanotubes A.
(6) The carbon nanotubes according to any one of (1) to (4), wherein the carbon nanotubes A and B are mixed in an aqueous solution of the conductive polymer using a wet jet mill. A method for producing a dispersion liquid.

本発明によれば、カーボンナノチューブが微分散し、分散性が向上した分散液を得ることができる。
さらに、本発明のカーボンナノチューブの分散液を用いることによりカーボンナノチューブをより均一に含む炭素材料を形成しやすくなり、例えば、電子部品等として使用することができる。
According to the present invention, a dispersion in which carbon nanotubes are finely dispersed and dispersibility is improved can be obtained.
Furthermore, by using the carbon nanotube dispersion of the present invention, it becomes easy to form a carbon material containing carbon nanotubes more uniformly, and can be used as, for example, an electronic component.

実施例13で得られた粉末の走査型電子顕微鏡写真(倍率:50000倍)Scanning electron micrograph of the powder obtained in Example 13 (magnification: 50000 times)

本発明の分散液は、スルホ基を有するチオフェン骨格を含む導電性高分子の水溶液中に、数平均繊維径100nm以上であるカーボンナノチューブAと、数平均繊維径30nm以下であるカーボンナノチューブBとが分散している。また、本発明の分散液は、スルホ基を有するチオフェン骨格を含む導電性高分子の水溶液中に、カーボンナノチューブA及びBを、湿式ジェットミルを用いて混合することにより得ることができる。
なお、本発明において分散しているとは、分散液を1週間以上静置しても沈降物が観察されない状態を示す。
The dispersion of the present invention comprises a carbon nanotube A having a number average fiber diameter of 100 nm or more and a carbon nanotube B having a number average fiber diameter of 30 nm or less in an aqueous solution of a conductive polymer containing a thiophene skeleton having a sulfo group. Is distributed. The dispersion of the present invention can be obtained by mixing the carbon nanotubes A and B in an aqueous solution of a conductive polymer containing a thiophene skeleton having a sulfo group using a wet jet mill.
In the present invention, “dispersed” refers to a state in which no precipitate is observed even when the dispersion is allowed to stand for one week or longer.

本発明のカーボンナノチューブの分散液においては、スルホ基を有するチオフェン骨格を含む導電性高分子を添加剤として添加する。スルホ基を有するチオフェン骨格を含む導電性高分子を添加剤として使用することによりカーボンナノチューブを分散させる。   In the carbon nanotube dispersion of the present invention, a conductive polymer containing a thiophene skeleton having a sulfo group is added as an additive. Carbon nanotubes are dispersed by using a conductive polymer containing a thiophene skeleton having a sulfo group as an additive.

本発明の導電性高分子としては、スルホ基を有するチオフェン骨格を含む導電性高分子を使用する。この導電性高分子は、水溶性導電性高分子であることが好ましい。特に、下記一般式(1)及び(2)で表されるモノマー単位を有する高分子であることが好適である。一般式(1)及び(2)のうち、一般式(1)はさらにより好ましい。
(式中、R1、およびRは、それぞれ独立して、水素原子、炭素数1〜20の直鎖状もしくは分岐状のアルキル基、炭素数1〜20の直鎖状もしくは分岐状のアルコキシ基、炭素数2〜20の直鎖状もしくは分岐状のアルケニル基、炭素数2〜20の直鎖状もしくは分岐状のアルケニルオキシ基、水酸基、ハロゲン原子、ニトロ基、シアノ基、トリハロメチル基、フェニル基、または−SO 基(Mは、水素イオン、アルカリ金属イオン、または第4級アンモニウムイオンを表す。)を表す。nは、1〜20の整数を表す。)
As the conductive polymer of the present invention, a conductive polymer containing a thiophene skeleton having a sulfo group is used. This conductive polymer is preferably a water-soluble conductive polymer. In particular, the polymer is preferably a polymer having monomer units represented by the following general formulas (1) and (2). Of the general formulas (1) and (2), the general formula (1) is even more preferable.
Wherein R 1, R 2 and R 3 are each independently a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, or a linear or branched structure having 1 to 20 carbon atoms. Alkoxy group, linear or branched alkenyl group having 2 to 20 carbon atoms, linear or branched alkenyloxy group having 2 to 20 carbon atoms, hydroxyl group, halogen atom, nitro group, cyano group, trihalomethyl group, a phenyl group or -SO 3, - M + group (. M + is representing a hydrogen ion, an alkali metal ion or a quaternary ammonium ion,) .n representing the represents an integer of 1 to 20).

スルホ基を有するチオフェン骨格を含む導電性高分子としては、ポリアルキルジオキシチオフェン誘導体またはポリイソチアナフテン誘導体があげられ、特にポリ(3,4−エチレンジオキシチオフェン)、ポリイソチアナフテンスルホン酸がより好ましい。ポリ(3,4−エチレンジオキシチオフェン)はポリスチレンスルホン酸をドーパントとして添加することが好ましい。ポリイソチアナフテンスルホン酸は自己ドープ型導電性高分子であるため、より好適に用いられる。   Examples of the conductive polymer containing a thiophene skeleton having a sulfo group include polyalkyldioxythiophene derivatives and polyisothianaphthene derivatives, and in particular, poly (3,4-ethylenedioxythiophene) and polyisothianaphthenesulfonic acid. Is more preferable. Poly (3,4-ethylenedioxythiophene) is preferably added with polystyrene sulfonic acid as a dopant. Since polyisothianaphthenesulfonic acid is a self-doped conductive polymer, it is more preferably used.

スルホ基を有するチオフェン骨格を含む導電性高分子の具体例としては、昭和電工株式会社製のエスペイサー(登録商標)♯100、エスペイサー♯300、ヘレウス株式会社のClevios(商標)、荒川化学工業株式会社のビームセット 1700CP、信越化学株式会社製のセプルジーダ(商標)(SEPLEGYDA(登録商標)、綜研化学株式会社のベラゾール(登録商標)、ポリチオフェンBaytron Pを用いることが好ましく、エスペイサー♯100、エスペイサー♯300、Clevios、Baytron Pがより好ましく、エスペイサー♯100、エスペイサー♯300、Cleviosがさらに好ましく、エスペイサーがもっとも好ましい。なお、エスペイサー♯100は上記一般式(2)で表わされる構造を含む。エスペイサー♯300は上記一般式(1)で表わされる構造を含む。   Specific examples of the conductive polymer containing a thiophene skeleton having a sulfo group include Espacer (registered trademark) # 100, Espacer # 300 manufactured by Showa Denko KK, Clevios (trademark) manufactured by Heraeus Co., Ltd., and Arakawa Chemical Industries, Ltd. Beamset 1700CP of Shin-Etsu Chemical Co., Ltd. (SEPLEGYDA (registered trademark), Sozo Chemical Co., Ltd. Verazol (registered trademark), polythiophene Baytron P) is preferably used, and Spacer # 100, Spacer # 300, Clevios and Baytron P are more preferable, Espacer # 100, Espacer # 300, and Clevios are more preferable, and Espacer is most preferable, where Espacer # 100 is a structure represented by the general formula (2). Including. Esupeisa ♯300 comprises a structure represented by the above general formula (1).

本発明のカーボンナノチューブの分散液においては、分散媒として水を使用する。本発明においては、添加剤としてスルホ基を有するチオフェン骨格を含む導電性高分子を使用することで、カーボンナノチューブが水に分散される効果を高めていると考えられる。   In the carbon nanotube dispersion of the present invention, water is used as a dispersion medium. In the present invention, it is considered that the effect of dispersing carbon nanotubes in water is enhanced by using a conductive polymer containing a thiophene skeleton having a sulfo group as an additive.

本発明に用いるカーボンナノチューブAは、数平均繊維径が100nm以上であり、好ましくは100〜1000nm、より好ましくは100〜300nmである。長さとしては、好ましくは0.2〜20μm 、より好ましくは0.5〜15μm、さらに好ましくは0.5〜13μmである。このようなカーボンナノチューブの市販品としては、昭和電工株式会社製のVGCF(登録商標)−H(数平均繊維径150nm、数平均繊維長:10〜20μm、直線的形状)、保土ヶ谷化学工業株式会社製のCT−12(平均繊維径:110nm)、CT−25(平均繊維径:150nm)等が挙げられる。   The carbon nanotubes A used in the present invention have a number average fiber diameter of 100 nm or more, preferably 100 to 1000 nm, more preferably 100 to 300 nm. The length is preferably 0.2 to 20 μm, more preferably 0.5 to 15 μm, and still more preferably 0.5 to 13 μm. Examples of such commercially available carbon nanotubes include VGCF (registered trademark) -H (number average fiber diameter 150 nm, number average fiber length: 10 to 20 μm, linear shape) manufactured by Showa Denko KK, Hodogaya Chemical Co., Ltd. Examples thereof include CT-12 (average fiber diameter: 110 nm), CT-25 (average fiber diameter: 150 nm), and the like.

本発明に用いるカーボンナノチューブBは、数平均繊維径が30nm以下であり、好ましくは1〜30nm、より好ましくは5〜20nmである。長さとしては、好ましくは0.1〜10μm、より好ましくは0.2〜8μm、さらに好ましくは0.2〜5μmである。このようなカーボンナノチューブAの市販品としては、昭和電工株式会社製のVGCF(登録商標)−X(数平均繊維径15nm、非直線的形状)、ナノシル社製のNC2100、NC2101、NC1100、株式会社名城ナノカーボン製のMWNT MTC(繊維径10−40nm)等が挙げられる。   The carbon nanotubes B used in the present invention have a number average fiber diameter of 30 nm or less, preferably 1 to 30 nm, more preferably 5 to 20 nm. The length is preferably 0.1 to 10 μm, more preferably 0.2 to 8 μm, and still more preferably 0.2 to 5 μm. Examples of such commercially available carbon nanotubes A include VGCF (registered trademark) -X (number average fiber diameter 15 nm, non-linear shape) manufactured by Showa Denko KK, NC2100, NC2101, NC1100 manufactured by Nanosil Co., Ltd. Examples include MWNT MTC (fiber diameter 10-40 nm) manufactured by Meijo Nanocarbon.

なお、数平均繊維径は、カーボンナノチューブAおよびBいずれにおいても、透過型電子顕微鏡(TEM)で観察される繊維100個の数平均値である。これは、100本の繊維を撮影して画像処理によって二値化して求めた値を平均して計算することができる。また、カーボンナノチューブAにおいて数平均繊維長は、透過型電子顕微鏡(TEM)で観察される繊維100個の数平均値である。これは、100本の繊維を撮影して画像処理によって二値化して求めた値を平均して計算することができる。   The number average fiber diameter is the number average value of 100 fibers observed with a transmission electron microscope (TEM) in both the carbon nanotubes A and B. This can be calculated by averaging the values obtained by photographing 100 fibers and binarizing them by image processing. In the carbon nanotube A, the number average fiber length is a number average value of 100 fibers observed with a transmission electron microscope (TEM). This can be calculated by averaging the values obtained by photographing 100 fibers and binarizing them by image processing.

本発明の分散液中、カーボンナノチューブA:100質量部に対し、カーボンナノチューブBは1〜100質量部含有されることが好ましい。カーボンナノチューブBの含有量は、本発明の分散液を用いて構成される電極材料の導電性をより向上させるためには4〜30質量部であることがより好ましく、8〜14質量部であることがさらに好ましい。   It is preferable that 1-100 mass parts of carbon nanotubes B are contained with respect to 100 mass parts of carbon nanotubes A in the dispersion liquid of the present invention. The content of the carbon nanotube B is more preferably 4 to 30 parts by mass, and more preferably 8 to 14 parts by mass in order to further improve the conductivity of the electrode material configured using the dispersion liquid of the present invention. More preferably.

本発明の分散液中のカーボンナノチューブA及びBの合計の含有量は、0.01〜10質量%であることが好ましい。より好ましくは0.05〜7質量%、さらに好ましくは0.1〜5質量%である。   The total content of carbon nanotubes A and B in the dispersion of the present invention is preferably 0.01 to 10% by mass. More preferably, it is 0.05-7 mass%, More preferably, it is 0.1-5 mass%.

本発明の分散液中のスルホ基を有するチオフェン骨格を含む導電性高分子の含有量は、カーボンナノチューブA及びBの合計量100質量部に対して0.1〜50質量部であることが好ましく、0.5〜10質量部であることがより好ましく、0.5〜2質量部であることがさらに好ましい。   The content of the conductive polymer containing a thiophene skeleton having a sulfo group in the dispersion of the present invention is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the total amount of carbon nanotubes A and B. 0.5 to 10 parts by mass is more preferable, and 0.5 to 2 parts by mass is even more preferable.

本発明の分散液から水を除去した炭素材料は、カーボンナノチューブAの表面に複数のカーボンナノチューブBが付着し、カーボンナノチューブBが複数のカーボンナノチューブAの間に跨った構造を有することが好ましい。なお、炭素材料の構造は、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)による観察等で確認することができる。   The carbon material from which water has been removed from the dispersion of the present invention preferably has a structure in which a plurality of carbon nanotubes B adhere to the surface of the carbon nanotubes A and the carbon nanotubes B straddle the plurality of carbon nanotubes A. The structure of the carbon material can be confirmed by observation with a transmission electron microscope (TEM), a scanning electron microscope (SEM), or the like.

本発明の分散液は、例えば、スルホ基を有するチオフェン骨格を含む導電性高分子の水溶液に、カーボンナノチューブA及びBを、湿式ジェットミルを用いて混合することにより得ることができる。   The dispersion of the present invention can be obtained, for example, by mixing carbon nanotubes A and B with an aqueous solution of a conductive polymer containing a thiophene skeleton having a sulfo group using a wet jet mill.

湿式ジェットミルとしては、株式会社常光製ナノジェットパル(登録商標)、アドバンストナノテクノロジー社製ナノメーカー、ナノマイザー株式会社製ナノマイザー(登録商標)、スギノマシン社製スターバースト(登録商標)、吉田工業株式会社製超高圧湿式微粒子化装置等が使用できる。
湿式ジェットミルによる混合時の圧力は、好ましくは100MPa以上、より好ましくは150〜250MPaである。
As a wet jet mill, Nanojet Pal (registered trademark) manufactured by Joko, Nanomaker manufactured by Advanced Nanotechnology, Nanomizer (registered trademark) manufactured by Nanomizer, Starburst (registered trademark) manufactured by Sugino Machine, Yoshida Kogyo Co., Ltd. A company-made ultra-high pressure wet micronizer can be used.
The pressure during mixing by the wet jet mill is preferably 100 MPa or more, and more preferably 150 to 250 MPa.

上記の方法で、平均径の異なるカーボンナノチューブA及びカーボンナノチューブBを混合することにより、凝集しているカーボンナノチューブBがほぐれて分散される。
好ましくは、後述する分散液中の粒子の平均粒径(D50)が、カーボンナノチューブAの平均繊維長の2倍以下、好ましくは1倍以下になるまで上述の方法で混合すると、得られる炭素材料の導電性がより良好になる。
By mixing the carbon nanotubes A and B having different average diameters by the above method, the aggregated carbon nanotubes B are loosened and dispersed.
Preferably, the carbon material obtained by mixing by the above-described method until the average particle diameter (D50) of the particles in the dispersion described later is 2 times or less, preferably 1 time or less, of the average fiber length of the carbon nanotube A The conductivity becomes better.

なお、ミキサーやボールミル等で混合すると、混合エネルギーが小さい場合は凝集塊のほぐれ具合が少なく、混合エネルギーが大きい場合は繊維にせん断力がかかりすぎるため繊維が切断されるといった問題がある。その点上記の湿式ジェットミルによる方法を用いるとカーボンナノチューブAやBの凝集塊に適度な混合エネルギーを与えることが出来るため、凝集塊をほぐすことが出来る。   When mixing with a mixer, ball mill, or the like, there is a problem that when the mixing energy is small, the degree of loosening of the agglomerates is small, and when the mixing energy is large, the fiber is cut because too much shearing force is applied to the fiber. In that respect, when the above-described wet jet mill method is used, an appropriate mixing energy can be given to the aggregates of the carbon nanotubes A and B, so that the aggregates can be loosened.

このようにして得られた本発明の分散液は、複合材料・帯電防止剤・樹脂添加剤・金属添加剤・アルミニウム(箔を含む)の表面塗布、蒸着、圧着の際に用いることができる。
分散液そのものを潤滑剤として使用することもできる。
The dispersion of the present invention thus obtained can be used for surface coating, vapor deposition and pressure bonding of composite materials, antistatic agents, resin additives, metal additives, and aluminum (including foil).
The dispersion itself can also be used as a lubricant.

上記のようにして得られた本発明の分散液は、常法により脱水しシート状に成形することが出来る。
脱水方法としては、濾過(好ましくは吸引濾過や遠心濾過)、紙漉き、加圧等の方法を用いることが出来る。これらの方法を用いて脱水して得られた炭素材料は、必要に応じて加圧圧縮しても良く、さらに炭素材料に残留した水を常温あるいは加熱乾燥、真空乾燥することにより除去しても良い。ここで炭素材料とは本発明の分散液から水を除去した構造体を指す。この時、導電性高分子は炭素材料に残存していても良いし、水と共に除去しても良い。
The dispersion of the present invention obtained as described above can be dehydrated and formed into a sheet by a conventional method.
As the dehydration method, filtration (preferably suction filtration or centrifugal filtration), paper making, pressurization, or the like can be used. The carbon material obtained by dehydration using these methods may be compressed under pressure as necessary, and water remaining in the carbon material may be removed by drying at room temperature or by heating and vacuum drying. good. Here, the carbon material refers to a structure obtained by removing water from the dispersion of the present invention. At this time, the conductive polymer may remain in the carbon material or may be removed together with water.

得られた炭素材料は、ほぐれたカーボンナノチューブの繊維が他のカーボン繊維と絡まり、繊維径の細いカーボンナノチューブBが複数のカーボンナノチューブAに跨った構造を有する。その結果、成形した炭素材料はその後の取り扱いの際にも問題なく形を維持することが出来、目的とする用途での使用に耐えるものを作ることが出来る。   The obtained carbon material has a structure in which loose carbon nanotube fibers are entangled with other carbon fibers, and carbon nanotubes B having a small fiber diameter straddle a plurality of carbon nanotubes A. As a result, the shaped carbon material can maintain its shape without problems during subsequent handling, and can be made to withstand use in the intended application.

形を維持するために更に炭素繊維を加えても良い。特に大きな形状の炭素材料を形成する場合、炭素材料の強度が強くなり有効である。加える炭素繊維としては、数平均繊維径が1〜100μmであり、好ましくは3〜50μm、より好ましくは5〜30μmである。特に、炭素材料の形状が板状である場合、炭素繊維の数平均繊維長は、炭素材料の最大面の最大内包円の直径Dに対し、好ましくは1mm〜0.9*D、より好ましくは2〜0.5*D、さらに好ましくは3〜0.3*Dである。このような炭素繊維は市販品より選別し用いることが出来る。   Carbon fibers may be added to maintain the shape. In particular, when a carbon material having a large shape is formed, the strength of the carbon material is increased and effective. The carbon fiber to be added has a number average fiber diameter of 1 to 100 μm, preferably 3 to 50 μm, more preferably 5 to 30 μm. In particular, when the shape of the carbon material is plate-like, the number average fiber length of the carbon fibers is preferably 1 mm to 0.9 * D, more preferably, relative to the diameter D of the maximum inner circle of the maximum surface of the carbon material. It is 2-0.5 * D, More preferably, it is 3-0.3 * D. Such carbon fibers can be selected from commercially available products.

炭素繊維の数平均繊維径が1μm以上あるいは数平均繊維長が1mm以上の場合、炭素材料の強度補強性能が良好で、炭素繊維の数平均繊維径が100μm以下あるいは数平均繊維長がD*0.9以下の場合は均一膜を形成しやすく壊れにくくなる。   When the number average fiber diameter of the carbon fiber is 1 μm or more or the number average fiber length is 1 mm or more, the strength reinforcing performance of the carbon material is good, and the number average fiber diameter of the carbon fiber is 100 μm or less or the number average fiber length is D * 0. In the case of .9 or less, it is easy to form a uniform film and hardly break.

炭素繊維の含有量は、カーボンナノチューブA及びBの合計量100質量部に対して0.1〜50質量部であることが好ましく、1〜30質量部であることがより好ましく、3〜15質量部であることがさらに好ましい。
炭素繊維はカーボンナノチューブを混合する際、同時に加えても良いが、ジェットミルで効率的に混合するために、カーボンナノチューブAとBとをジェットミルで混合した後の分散液に添加し、混合するのが好ましい。混合方法は一般的な方法を用いることが出来、例えば超音波、ホモジナイザー、スパイラルミキサー、プラネタリーミキサー、ディスパーサー、ハイブリットミキサーなどの撹拌または混練装置が用いることができる。
上記の範囲の炭素繊維は成形された炭素材料の強度を強くし、取り扱いを容易にする働きがある。
The carbon fiber content is preferably 0.1 to 50 parts by mass, more preferably 1 to 30 parts by mass, and 3 to 15 parts by mass with respect to 100 parts by mass of the total amount of carbon nanotubes A and B. More preferably, it is a part.
Carbon fibers may be added at the same time as mixing the carbon nanotubes, but in order to mix them efficiently with a jet mill, the carbon nanotubes A and B are added to the dispersion after mixing with the jet mill and mixed. Is preferred. As a mixing method, a general method can be used. For example, a stirring or kneading apparatus such as an ultrasonic wave, a homogenizer, a spiral mixer, a planetary mixer, a disperser, or a hybrid mixer can be used.
The carbon fiber in the above range functions to increase the strength of the formed carbon material and facilitate handling.

また、本発明の分散液から水を除去してなる炭素材料は、医薬・医療・バイオ、大型輸送機分野、環境分野、電気・電子分野、スポーツ・レジャー、産業資材、触媒、摺動・潤滑材、磁性材料として好適に用いることができる。具体的には、電池の電極として特に炭素電極の代わりに用いることが出来、例えばLi電池・Li−空気電池・金属−空気電池等の電極や、燃料電池触媒・光触媒等の触媒、電気二重層コンデンサ・固体コンデンサの電極材料、平面蛍光管・冷陰極管等の光学機器の陰極材料、タッチパネルや太陽電池等の透明電極の材料、水素吸蔵剤等に使用できる。電極や触媒に使用する場合は、導電性を高くするため圧縮成形することが好ましい。これにより隣接するカーボンナノチューブの繊維間に接触点が増え好適な導電パスを形成することが出来る。一方繊維径の異なるカーボンナノチューブを分散させているため適度な隙間が形成されるため、炭素材料は電解質や反応ガスのような反応媒体が容易に通過できる空隙を有することが出来る。導電パスの接触点数や反応媒体が通過する空隙数は、例えば混合するカーボンナノチューブ種や上記の圧縮成形条件で好適に制御することが出来る。   In addition, the carbon material obtained by removing water from the dispersion of the present invention can be used in medicine / medical / biotechnology, large transport field, environment field, electrical / electronic field, sports / leisure field, industrial material, catalyst, sliding / lubrication. It can be suitably used as a material or a magnetic material. Specifically, it can be used as a battery electrode, in particular, in place of a carbon electrode, for example, an electrode such as a Li battery, a Li-air battery, a metal-air battery, a catalyst such as a fuel cell catalyst or a photocatalyst, an electric double layer It can be used for electrode materials for capacitors and solid capacitors, cathode materials for optical devices such as flat fluorescent tubes and cold cathode tubes, transparent electrode materials such as touch panels and solar cells, and hydrogen storage agents. When it is used for an electrode or a catalyst, it is preferable to perform compression molding in order to increase conductivity. Thereby, a contact point increases between the fibers of adjacent carbon nanotubes, and a suitable conductive path can be formed. On the other hand, since carbon nanotubes having different fiber diameters are dispersed to form appropriate gaps, the carbon material can have voids through which a reaction medium such as an electrolyte or a reaction gas can easily pass. The number of contact points of the conductive path and the number of voids through which the reaction medium passes can be suitably controlled by, for example, the types of carbon nanotubes to be mixed and the above compression molding conditions.

さらに、本発明の炭素材料を電極基板上に含有させた電界放出ディスプレイ(Field Emission Display)、本発明の炭素材を複合材として用いたハイパービルディング・大型橋梁用ケーブル・自動車・航空機・宇宙船等も活用例として考えられる。   Further, a field emission display including the carbon material of the present invention on an electrode substrate, a hyper building using the carbon material of the present invention as a composite material, a cable for a large bridge, an automobile, an aircraft, a spacecraft, etc. Is also considered as an example.

以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited only to a following example.

<実施例1>
(分散液の調製)
分散媒の水(100ml)に、添加剤としてポリイソチアナフテンスルホン酸であるエスペイサー(登録商標)#300(重量平均分子量(ゲルパーミエーションクロマトグラフィー法/ポリスチレンスルホン酸換算)12000、1質量%水溶液、3g)を溶解し、エスペイサー水溶液を得た。
この溶液に、カーボンナノチューブAとして昭和電工社製VGCF(登録商標)−H(数平均繊維径150nm、数平均繊維長10μm、1.80g)、カーボンナノチューブBとしてVGCF(登録商標)−X(数平均繊維径15nm、0.20g)を加えた。
次いで、圧力170MPaで10分間、湿式ジェットミルを用いて溶液を混合し、この混合操作を3回繰り返した。さらにこの溶液を、ナノマイザー(登録商標)を用いて分散させ、この分散操作を10回繰り返して、実施例1の分散液を得た。
(平均粒径測定)
得られた分散液の分散性を確認するために、分散液中の粒子の平均粒径(D50)を測定した。結果を表1に示す。
なお、平均粒径(D50)とは日機装製レーザー回析・散乱式粒度分布計(マイクロトラックMT3000)で測定した光の散乱パターンと同等な散乱パターンを示す球形粒子の集合体の粒度分布において体積分率50%の粒径を示す。
(走査型電子顕微鏡による観察)
分散状態を調べるため、得られた分散液を減圧濾過し、熱風乾燥器を用いて乾燥させた粉末を得た。この粉末を適切量採取して、走査型電子顕微鏡により観察した(図1)。
<Example 1>
(Preparation of dispersion)
In water (100 ml) of dispersion medium, Espacer (registered trademark) # 300 (weight average molecular weight (gel permeation chromatography method / polystyrene sulfonic acid conversion) 12000, 1% by mass aqueous solution, which is polyisothianaphthenesulfonic acid as an additive 3 g) was dissolved to obtain an Espacer aqueous solution.
To this solution, VGCF (registered trademark) -H (number average fiber diameter 150 nm, number average fiber length 10 μm, 1.80 g) manufactured by Showa Denko KK as carbon nanotube A and VGCF (registered trademark) -X (number) as carbon nanotube B Average fiber diameter 15 nm, 0.20 g) was added.
Next, the solution was mixed using a wet jet mill at a pressure of 170 MPa for 10 minutes, and this mixing operation was repeated three times. Furthermore, this solution was dispersed using Nanomizer (registered trademark), and this dispersion operation was repeated 10 times to obtain a dispersion of Example 1.
(Average particle size measurement)
In order to confirm the dispersibility of the obtained dispersion, the average particle diameter (D50) of the particles in the dispersion was measured. The results are shown in Table 1.
The average particle size (D50) is a volume in the particle size distribution of an aggregate of spherical particles showing a scattering pattern equivalent to the light scattering pattern measured with a Nikkiso laser diffraction / scattering particle size distribution meter (Microtrac MT3000). The particle size is 50% fraction.
(Observation with a scanning electron microscope)
In order to investigate the dispersion state, the obtained dispersion liquid was filtered under reduced pressure, and a dried powder was obtained using a hot air dryer. An appropriate amount of this powder was collected and observed with a scanning electron microscope (FIG. 1).

<実施例2〜12、比較例1〜3>
導電性高分子、カーボンナノチューブA、カーボンナノチューブBの種類や質量を表1のように変更したこと以外は実施例1と同様にしてそれぞれ分散液を得た。
得られた分散液の平均粒径(D50)を実施例1と同様に測定した。結果を表1に示す。
<Examples 2-12, Comparative Examples 1-3>
Dispersions were obtained in the same manner as in Example 1 except that the types and masses of the conductive polymer, carbon nanotube A, and carbon nanotube B were changed as shown in Table 1.
The average particle size (D50) of the obtained dispersion was measured in the same manner as in Example 1. The results are shown in Table 1.

表1より、平均粒径(D50)が、実施例1〜12では9.8〜18.5μmであるのに対し、比較例1〜3では27.3〜28.2μmである。実施例1〜12は比較例1〜3よりも分散液の分散性が高く、さらに、実施例1ではより分散性が高いことが確認された。このような結果が得られた要因としては、カーボンナノチューブの分散液において、カーボンナノチューブBの凝集塊が適度にほぐされたこと等が考えられる。   From Table 1, the average particle diameter (D50) is 9.8 to 18.5 μm in Examples 1 to 12, whereas it is 27.3 to 28.2 μm in Comparative Examples 1 to 3. In Examples 1 to 12, it was confirmed that the dispersibility of the dispersion was higher than those in Comparative Examples 1 to 3, and in Example 1, the dispersibility was higher. The reason why such a result was obtained may be that the aggregate of carbon nanotubes B was loosened moderately in the dispersion of carbon nanotubes.

<実施例13>
実施例1で得られた分散液に、カーボン短繊維(ドナカーボ・チョップS−232、大阪ガス社製)を100g添加して、ミキサー(IKA社製 ULTRA−TURRAX UTC 80)を用いて混合した。
カーボン短繊維を混合したこのスラリーを3リットル用いて、横210mm、縦300mmの長方形の濾過機に流し込み、吸引濾過してケーキを作製した。得られたケーキに総荷重20トンをかけて圧縮してから、重しを載せて200℃の乾燥器に入れて乾燥させた。乾燥した炭素材料の厚さは5mmで総重量は56gであった。この炭素材料の一部を切り出す等の形状を加工をしても割れが生じず、取り扱い性の良好な炭素材料を得ることが出来た。
<Example 13>
To the dispersion liquid obtained in Example 1, 100 g of carbon short fibers (Donna Carbo Chop S-232, manufactured by Osaka Gas Co., Ltd.) was added and mixed using a mixer (ULTRA-TURRAX UTC 80 manufactured by IKA Co., Ltd.).
Using 3 liters of this slurry mixed with carbon short fibers, the slurry was poured into a rectangular filter having a width of 210 mm and a length of 300 mm, and suction filtered to prepare a cake. The obtained cake was compressed by applying a total load of 20 tons, and a weight was placed on the cake and dried in a 200 ° C. drier. The dried carbon material had a thickness of 5 mm and a total weight of 56 g. Even if a shape such as a part of this carbon material was cut out, cracking did not occur, and a carbon material with good handleability could be obtained.

<比較例4〜5>
比較例1、2の分散液にカーボン短繊維を加え、実施例13と同様にして炭素材料を得た。乾燥した炭素材料の厚さはいずれも5mmで、総重量はそれぞれ56g、55gであった。しかし、いずれも、得られた炭素材料を乾燥機から取り出した際、あるいは切り出す加工をする際に割れが発生してしまった。
<Comparative Examples 4-5>
Carbon short fibers were added to the dispersions of Comparative Examples 1 and 2, and a carbon material was obtained in the same manner as in Example 13. The thickness of the dried carbon material was 5 mm, and the total weight was 56 g and 55 g, respectively. However, in all cases, cracks occurred when the obtained carbon material was taken out of the dryer or when it was cut out.

本発明のカーボンナノチューブの分散液を用いることによりカーボンナノチューブをより均一に含む炭素材料を形成しやすくなり、例えば、電子部品等として使用することができる。   By using the carbon nanotube dispersion liquid of the present invention, it becomes easy to form a carbon material containing carbon nanotubes more uniformly, and can be used, for example, as an electronic component.

Claims (6)

スルホ基を有するチオフェン骨格を含む導電性高分子の水溶液中に、
数平均繊維径100nm以上であるカーボンナノチューブAと、
数平均繊維径30nm以下であるカーボンナノチューブBと、
が分散していることを特徴とするカーボンナノチューブの分散液。
In an aqueous solution of a conductive polymer containing a thiophene skeleton having a sulfo group,
A carbon nanotube A having a number average fiber diameter of 100 nm or more;
Carbon nanotubes B having a number average fiber diameter of 30 nm or less,
A dispersion of carbon nanotubes, characterized in that is dispersed.
前記カーボンナノチューブA:100質量部に対し、前記カーボンナノチューブBが1〜100質量部含有される請求項1に記載の分散液。 The dispersion liquid according to claim 1, wherein the carbon nanotube B is contained in an amount of 1 to 100 parts by mass with respect to 100 parts by mass of the carbon nanotube A. 前記カーボンナノチューブA及びBを合計0.01〜10質量%含有する請求項1または2に記載の分散液。 The dispersion liquid according to claim 1 or 2, comprising a total of 0.01 to 10 mass% of the carbon nanotubes A and B. 前記導電性高分子を前記カーボンナノチューブA及びBの合計量100質量部に対して0.1〜50質量部含有する請求項1〜3のいずれか一項に記載の分散液。 The dispersion liquid as described in any one of Claims 1-3 which contains the said conductive polymer 0.1-50 mass parts with respect to 100 mass parts of total amounts of the said carbon nanotubes A and B. 請求項1〜4のいずれか一項に記載の分散液から水を除去して得られる炭素材料であって、前記カーボンナノチューブAの表面に複数の前記カーボンナノチューブBが付着し、該カーボンナノチューブBが複数の該カーボンナノチューブAの間に跨った構造を有する炭素材料。 A carbon material obtained by removing water from the dispersion according to any one of claims 1 to 4, wherein a plurality of the carbon nanotubes B adhere to the surface of the carbon nanotubes A, and the carbon nanotubes B Is a carbon material having a structure straddling between the plurality of carbon nanotubes A. 前記導電性高分子の水溶液に、前記カーボンナノチューブA及びBを、湿式ジェットミルを用いて混合することを特徴とする請求項1〜4のいずれか一項に記載のカーボンナノチューブの分散液の製造方法。 5. The carbon nanotube dispersion according to claim 1, wherein the carbon nanotubes A and B are mixed with the aqueous conductive polymer solution using a wet jet mill. Method.
JP2015098446A 2014-06-30 2015-05-13 Dispersion liquid of carbon nanotube containing conductive polymer, carbon material, and method of producing the dispersion liquid Expired - Fee Related JP6427464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015098446A JP6427464B2 (en) 2014-06-30 2015-05-13 Dispersion liquid of carbon nanotube containing conductive polymer, carbon material, and method of producing the dispersion liquid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014134519 2014-06-30
JP2014134519 2014-06-30
JP2015098446A JP6427464B2 (en) 2014-06-30 2015-05-13 Dispersion liquid of carbon nanotube containing conductive polymer, carbon material, and method of producing the dispersion liquid

Publications (2)

Publication Number Publication Date
JP2016026983A true JP2016026983A (en) 2016-02-18
JP6427464B2 JP6427464B2 (en) 2018-11-21

Family

ID=55352578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015098446A Expired - Fee Related JP6427464B2 (en) 2014-06-30 2015-05-13 Dispersion liquid of carbon nanotube containing conductive polymer, carbon material, and method of producing the dispersion liquid

Country Status (1)

Country Link
JP (1) JP6427464B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107963622A (en) * 2017-12-14 2018-04-27 宁波埃氪新材料科技有限公司 A kind of carbon nanotubes dispersing apparatus
CN112341865A (en) * 2020-10-27 2021-02-09 华南理工大学 CNT (carbon nanotube), SNC (sodium stannate) and PEDOT (PEDOT-ethylene glycol terephthalate) ternary aqueous conductive ink and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265035A (en) * 2005-03-24 2006-10-05 National Institute Of Advanced Industrial & Technology Carbon nanotube-containing thin film, method for manufacturing the thin film, and photoelectric conversion material, photoelectric transducer, electroluminescent material and electroluminescence device equipped with the thin film
JP2009029695A (en) * 2007-06-29 2009-02-12 Toray Ind Inc Aggregate of carbon nanotubes, dispersion thereof and conductive film
JP2010238575A (en) * 2009-03-31 2010-10-21 Ube Ind Ltd Electrode for lithium ion battery and its manufacturing method
JP2011178878A (en) * 2010-03-01 2011-09-15 Mitsubishi Rayon Co Ltd Carbon nanotube-containing composition, production method of the same, and solid electrolytic capacitor having conductive layer obtained from the same
JP2012124107A (en) * 2010-12-10 2012-06-28 Sony Corp Method of manufacturing transparent conductive film, transparent conductive film, method of manufacturing conductive fiber, conductive fiber, carbon nanotube/conductive polymer composite dispersion liquid, method of manufacturing carbon nanotube/conductive polymer composite dispersion liquid, and electronic apparatus
JP2013091783A (en) * 2011-10-06 2013-05-16 Showa Denko Kk Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
JP2014012902A (en) * 2012-07-03 2014-01-23 Showa Denko Kk Manufacturing method of composite carbon fiber
WO2015072452A1 (en) * 2013-11-13 2015-05-21 昭和電工株式会社 Electrode material, redox flow battery electrode, redox flow battery, and method for producing electrode material
JP2015117150A (en) * 2013-12-18 2015-06-25 昭和電工株式会社 Dispersion of carbon nanotube and method for producing the same
JP2015145438A (en) * 2014-01-31 2015-08-13 日本ゼオン株式会社 Carbon nanotube dispersion and conductive film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265035A (en) * 2005-03-24 2006-10-05 National Institute Of Advanced Industrial & Technology Carbon nanotube-containing thin film, method for manufacturing the thin film, and photoelectric conversion material, photoelectric transducer, electroluminescent material and electroluminescence device equipped with the thin film
JP2009029695A (en) * 2007-06-29 2009-02-12 Toray Ind Inc Aggregate of carbon nanotubes, dispersion thereof and conductive film
JP2010238575A (en) * 2009-03-31 2010-10-21 Ube Ind Ltd Electrode for lithium ion battery and its manufacturing method
JP2011178878A (en) * 2010-03-01 2011-09-15 Mitsubishi Rayon Co Ltd Carbon nanotube-containing composition, production method of the same, and solid electrolytic capacitor having conductive layer obtained from the same
JP2012124107A (en) * 2010-12-10 2012-06-28 Sony Corp Method of manufacturing transparent conductive film, transparent conductive film, method of manufacturing conductive fiber, conductive fiber, carbon nanotube/conductive polymer composite dispersion liquid, method of manufacturing carbon nanotube/conductive polymer composite dispersion liquid, and electronic apparatus
JP2013091783A (en) * 2011-10-06 2013-05-16 Showa Denko Kk Electroconductive resin composition, and electroconductive coating and electroconductive adhesive using the same
JP2014012902A (en) * 2012-07-03 2014-01-23 Showa Denko Kk Manufacturing method of composite carbon fiber
WO2015072452A1 (en) * 2013-11-13 2015-05-21 昭和電工株式会社 Electrode material, redox flow battery electrode, redox flow battery, and method for producing electrode material
JP2015117150A (en) * 2013-12-18 2015-06-25 昭和電工株式会社 Dispersion of carbon nanotube and method for producing the same
JP2015145438A (en) * 2014-01-31 2015-08-13 日本ゼオン株式会社 Carbon nanotube dispersion and conductive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107963622A (en) * 2017-12-14 2018-04-27 宁波埃氪新材料科技有限公司 A kind of carbon nanotubes dispersing apparatus
CN112341865A (en) * 2020-10-27 2021-02-09 华南理工大学 CNT (carbon nanotube), SNC (sodium stannate) and PEDOT (PEDOT-ethylene glycol terephthalate) ternary aqueous conductive ink and preparation method thereof
CN112341865B (en) * 2020-10-27 2022-04-22 华南理工大学 CNT (carbon nanotube), SNC (sodium stannate) and PEDOT (PEDOT-ethylene glycol terephthalate) ternary aqueous conductive ink and preparation method thereof

Also Published As

Publication number Publication date
JP6427464B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
Wu et al. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors
Shi et al. Efficient lightweight supercapacitor with compression stability
KR102069281B1 (en) Binder composition for secondary battery electrodes, conductive material paste composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery
Yu et al. Antimonene engineered highly deformable freestanding electrode with extraordinarily improved energy storage performance
JP6857443B2 (en) Battery electrode composition and method for forming battery electrodes
CN108028352B (en) Graphene dispersing solution and its manufacturing method
Shan et al. Graphene oxides used as a new “dual role” binder for stabilizing silicon nanoparticles in lithium-ion battery
Wang et al. Three‐Dimensional Interconnected Network of Graphene‐Wrapped Silicon/Carbon Nanofiber Hybrids for Binder‐Free Anodes in Lithium‐Ion Batteries
Wang et al. A universal aqueous conductive binder for flexible electrodes
Wang et al. Constructing a “pizza‐like” MoS2/polypyrrole/polyaniline ternary architecture with high energy density and superior cycling stability for supercapacitors
Kwon et al. Toward uniformly dispersed battery electrode composite materials: characteristics and performance
KR20130132550A (en) Method for producing powdery polymer/carbon nanotube mixtures
US20110171364A1 (en) Carbon Nanotube Based Pastes
CN108698829A (en) It is surface-treated graphene, surface treatment graphene/dispersion in organic solvent, surface treatment graphene-electrode active material complex particles and electrode paste
JP2016028109A (en) Water dispersion of carboxymethylcellulose sodium containing multilayer carbon nanotube
CN105860064A (en) Preparation method of polyaniline/carboxylated graphene composite material
Cerbelaud et al. Numerical and experimental study of suspensions containing carbon blacks used as conductive additives in composite electrodes for lithium batteries
Zhou et al. Layer-by-layer engineered silicon-based sandwich nanomat as flexible anode for lithium-ion batteries
WO2013085498A1 (en) Carbon nanotube based pastes
WO2015072452A1 (en) Electrode material, redox flow battery electrode, redox flow battery, and method for producing electrode material
Deeraj et al. Electrospun ZrO2@ carbon nanofiber mats and their epoxy composites as effective EMI shields in Ku band
TW201840668A (en) Granular composite, negative electrode for lithium ion secondary battery, and method for manufacturing same
US9399719B2 (en) High carbon nanotube content fluids
JP2016191017A (en) Production method of nanocarbon-containing functional porous body
Zhuo et al. Simultaneous electrochemical exfoliation and chemical functionalization of graphene for supercapacitor electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R150 Certificate of patent or registration of utility model

Ref document number: 6427464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees