JP2016024366A - Fixation device - Google Patents

Fixation device Download PDF

Info

Publication number
JP2016024366A
JP2016024366A JP2014148883A JP2014148883A JP2016024366A JP 2016024366 A JP2016024366 A JP 2016024366A JP 2014148883 A JP2014148883 A JP 2014148883A JP 2014148883 A JP2014148883 A JP 2014148883A JP 2016024366 A JP2016024366 A JP 2016024366A
Authority
JP
Japan
Prior art keywords
fixing device
temperature
rotating body
recording material
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014148883A
Other languages
Japanese (ja)
Other versions
JP6562598B2 (en
Inventor
雅俊 伊藤
Masatoshi Ito
雅俊 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014148883A priority Critical patent/JP6562598B2/en
Publication of JP2016024366A publication Critical patent/JP2016024366A/en
Application granted granted Critical
Publication of JP6562598B2 publication Critical patent/JP6562598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fixation device of an electromagnetic induction heating system, which facilitates temperature control of an area of a rotor, through which a recording material passes, while forming heat generation distribution according to the size of the recording material.SOLUTION: A fixation device includes: a converter driving a resonance circuit; a switch member controlling electric power supplied to the converter; a frequency control unit setting the drive frequency of the converter according to at least one of the size of a recording material and the temperature of the paper non-passing part of a rotor; and an electric power control unit controlling the switch member according to the temperature of the paper passing part of the rotor, and controlling electric power supplied to the converter.SELECTED DRAWING: Figure 5

Description

本発明は、電子写真方式の複写機やプリンタ等の画像形成装置に搭載される定着装置に関する。   The present invention relates to a fixing device mounted on an image forming apparatus such as an electrophotographic copying machine or a printer.

電子写真方式の複写機やプリンタ等の画像形成装置に搭載される定着装置は、加熱回転体と、それに接触する加圧ローラと、で形成されたニップ部で未定着トナー像を担持した記録材を搬送しながら加熱してトナー像を記録材に定着するものが一般的である。   A fixing device mounted on an image forming apparatus such as an electrophotographic copying machine or a printer is a recording material that carries an unfixed toner image at a nip formed by a heating rotator and a pressure roller that contacts the heating rotator. In general, a toner image is fixed on a recording material by heating while conveying the toner.

近年、加熱回転体の導電層を発熱させることができる電磁誘導加熱方式の定着装置が開発され実用化されている。電磁誘導加熱方式の定着装置は、ウォームアップ時間が短いという利点がある。   In recent years, an electromagnetic induction heating type fixing device capable of generating heat in a conductive layer of a heating rotator has been developed and put into practical use. The electromagnetic induction heating type fixing device has an advantage that the warm-up time is short.

特許文献1には、導電層の厚みや導電層の材質の制約が小さい定着装置が開示されている。   Patent Document 1 discloses a fixing device in which the restrictions on the thickness of the conductive layer and the material of the conductive layer are small.

特開2014−026267号公報JP 2014-026267 A

特許文献1に開示された定着装置においても、小サイズの記録材を定着処理する際の非通紙部昇温が課題となる。   Also in the fixing device disclosed in Japanese Patent Application Laid-Open No. 2004-133620, the temperature rise of the non-sheet passing portion when fixing a small size recording material becomes a problem.

本発明は、記録材のサイズに応じた発熱分布を形成しつつ、回転体の記録材が通過する領域の温度制御が容易な定着装置を提供することを目的とする。   An object of the present invention is to provide a fixing device that can easily control the temperature of a region through which a recording material of a rotating body passes while forming a heat generation distribution according to the size of the recording material.

上述の課題を解決するための本発明は、導電層を有する筒状の回転体と、前記回転体の内部に配置され螺旋軸が前記回転体の母線方向と略平行であるコイルと、共振コンデンサと、を有する共振回路と、前記共振回路を駆動するコンバータと、を有し、前記コイルにより発生する磁束により前記導電層を電磁誘導発熱させ、前記回転体の熱により記録材に形成された画像を記録材に定着する定着装置において、前記コンバータに供給する電力を制御するためのスイッチ部材と、記録材のサイズと前記回転体の非通紙部の温度の少なくとも一方に応じて前記コンバータの駆動周波数を設定する周波数制御部と、前記回転体の通紙部の温度に応じて前記スイッチ部材を制御し、前記コンバータに供給する電力を制御する電力制御部と、を有することを特徴とする。   The present invention for solving the above-described problems includes a cylindrical rotating body having a conductive layer, a coil disposed inside the rotating body and having a helical axis substantially parallel to the generatrix direction of the rotating body, and a resonant capacitor An image formed on the recording material by the heat of the rotating body, wherein the conductive layer causes electromagnetic induction heat generation by the magnetic flux generated by the coil. In the fixing device for fixing the recording material to the recording material, a switch member for controlling the power supplied to the converter, and driving of the converter according to at least one of the size of the recording material and the temperature of the non-sheet passing portion of the rotating body A frequency control unit that sets a frequency, and a power control unit that controls the switch member in accordance with the temperature of the sheet passing portion of the rotating body and controls the power supplied to the converter. The features.

記録材のサイズに応じた発熱分布を形成しつつ、回転体の記録材が通過する領域の温度制御が容易な定着装置を提供できる。   It is possible to provide a fixing device that can easily control the temperature of a region through which a recording material of a rotating body passes while forming a heat generation distribution according to the size of the recording material.

画像形成装置の概略断面図Schematic sectional view of the image forming apparatus 定着ユニットの断面図Cross section of fixing unit 定着ユニットの正面図Front view of fixing unit 定着ユニットに設けたコイルユニットの斜視図Perspective view of coil unit provided in fixing unit 実施例1のコイルユニット駆動回路図Example 1 Coil unit drive circuit diagram 駆動周波数と定着スリーブの発熱分布との関係を示す図Diagram showing the relationship between the drive frequency and the heat distribution of the fixing sleeve トライアック電圧波形を説明する図Diagram explaining TRIAC voltage waveform 実施例1のフローチャートFlow chart of the first embodiment 実施例2のコイルユニット駆動回路図Example 2 Coil unit drive circuit diagram FET電圧波形を説明する図Diagram explaining FET voltage waveform 実施例2のフローチャートFlow chart of embodiment 2

以下、図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状それらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものである。すなわち、この発明の範囲を以下の実施の形態に限定する趣旨のものではない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments for carrying out the invention will be exemplarily described in detail with reference to the drawings. However, the dimensions, materials, shapes, and relative arrangements of the components described in this embodiment should be appropriately changed according to the configuration of the apparatus to which the invention is applied and various conditions. That is, it is not intended to limit the scope of the present invention to the following embodiments.

(実施例1)
図1は本実施例に従う画像形成装置100の概略構成図である。本実施例の画像形成装置100は、電子写真プロセス利用のレーザビームプリンタである。
Example 1
FIG. 1 is a schematic configuration diagram of an image forming apparatus 100 according to the present embodiment. The image forming apparatus 100 of this embodiment is a laser beam printer using an electrophotographic process.

31は画像形成装置の制御部であるコントローラであり、ROM32a、RAM32b、タイマ32c等を具備したCPU(中央演算処理装置)32、及び各種入出力制御回路(不図示)等で構成されている。101は像担持体としての回転ドラム型の電子写真感光体(以下、感光体ドラムと記す)であり、矢示の時計方向に所定の周速度にて回転駆動される。感光体ドラム101はその回転過程で接触帯電ローラ102により所定の極性・電位に一様に帯電処理される。103はレーザビームスキャナであり、不図示のイメージスキャナやコンピュータ等の外部機器から入力する画像情報に対応してオン/オフ変調したレーザ光Lを出力する。このレーザ光Lにより感光体ドラム101の帯電処理面が露光され、感光体ドラム101表面に画像情報に対応した静電潜像が形成される。104は現像装置であり、現像ローラ104aから感光体ドラム101表面に現像剤(トナー)を供給し感光体ドラム101表面の静電潜像をトナー像として現像する。105は給紙カセットであり、記録材Pが収納させている。107はレジストローラであり、感光体ドラムに形成されたトナー像の先端と記録材の所定位置が合うように記録材Pを搬送するものである。給紙スタート信号が入力すると給紙ローラ106が駆動され、給紙カセット105内の記録材Pを一枚ずつ給紙する。給紙された記録材は、レジストローラ107で搬送タイミングを調整された後、感光体ドラム101と転写ローラ108とが当接する転写部位108Tに導入される。転写部位108Tで記録材Pを挟持搬送する間、転写ローラ8には不図示の電源から転写バイアスが印加される。転写ローラ108に、トナーの帯電極性と逆極性の転写バイアスが印加されることで、感光体ドラム101上のトナー像が記録材Pに転写される。その後、トナー像が転写された記録材Pは、感光体ドラム101表面から分離され、搬送ガイド109を通って定着ユニットAに導入される。記録材上のトナー像は定着ユニットで加熱され記録材に定着される。定着ユニットを通過した記録材Pは、排紙口111を介して排紙トレイ112上に排出される。一方、記録材Pが分離した後の感光体ドラム101表面はクリーニング部110でクリーニングされる。   A controller 31 is a control unit of the image forming apparatus, and includes a CPU (Central Processing Unit) 32 having a ROM 32a, a RAM 32b, a timer 32c and the like, various input / output control circuits (not shown), and the like. Reference numeral 101 denotes a rotating drum type electrophotographic photosensitive member (hereinafter referred to as a photosensitive drum) serving as an image carrier, which is rotationally driven in a clockwise direction indicated by an arrow at a predetermined peripheral speed. The photosensitive drum 101 is uniformly charged to a predetermined polarity and potential by the contact charging roller 102 during the rotation process. Reference numeral 103 denotes a laser beam scanner, which outputs laser light L that is on / off modulated in accordance with image information input from an external device such as an image scanner or a computer (not shown). The charged surface of the photosensitive drum 101 is exposed by the laser light L, and an electrostatic latent image corresponding to image information is formed on the surface of the photosensitive drum 101. A developing device 104 supplies developer (toner) to the surface of the photosensitive drum 101 from the developing roller 104a, and develops the electrostatic latent image on the surface of the photosensitive drum 101 as a toner image. Reference numeral 105 denotes a paper feed cassette in which the recording material P is stored. A registration roller 107 conveys the recording material P so that the leading end of the toner image formed on the photosensitive drum and a predetermined position of the recording material are aligned. When a paper feed start signal is input, the paper feed roller 106 is driven to feed the recording material P in the paper feed cassette 105 one by one. The fed recording material is adjusted in conveyance timing by a registration roller 107 and then introduced into a transfer portion 108T where the photosensitive drum 101 and the transfer roller 108 abut. While the recording material P is nipped and conveyed at the transfer site 108T, a transfer bias is applied to the transfer roller 8 from a power source (not shown). The transfer roller 108 is applied with a transfer bias having a polarity opposite to the charging polarity of the toner, whereby the toner image on the photosensitive drum 101 is transferred to the recording material P. Thereafter, the recording material P onto which the toner image has been transferred is separated from the surface of the photosensitive drum 101 and is introduced into the fixing unit A through the conveyance guide 109. The toner image on the recording material is heated by the fixing unit and fixed on the recording material. The recording material P that has passed through the fixing unit is discharged onto the paper discharge tray 112 through the paper discharge port 111. On the other hand, the surface of the photosensitive drum 101 after the recording material P is separated is cleaned by the cleaning unit 110.

定着ユニットAは電磁誘導加熱方式の定着装置である。具体的には、コイルにより発生する磁束により回転体の導電層を電磁誘導発熱させ、回転体の熱により記録材に形成された画像を記録材に定着する定着装置である。図2は定着ユニットの断面図、図3は定着ユニットの正面図、図4は定着ユニットに設けたコイルユニットの斜視図である。定着ユニットAは、後述する定着スリーブ1やコイルユニットを有する加熱ユニットと、加圧部材8を有し、加熱ユニットと加圧部材の間に未定着トナー像を担持する記録材Pを挟持搬送する定着ニップ部Nを形成している。   The fixing unit A is an electromagnetic induction heating type fixing device. Specifically, the fixing device fixes the image formed on the recording material to the recording material by the electromagnetic induction heat generation of the conductive layer of the rotating material by the magnetic flux generated by the coil. 2 is a cross-sectional view of the fixing unit, FIG. 3 is a front view of the fixing unit, and FIG. 4 is a perspective view of a coil unit provided in the fixing unit. The fixing unit A includes a heating unit having a fixing sleeve 1 and a coil unit, which will be described later, and a pressure member 8, and sandwiches and conveys a recording material P carrying an unfixed toner image between the heating unit and the pressure member. A fixing nip N is formed.

加圧部材としての加圧ローラ8は、芯金8aと、シリコーンゴム等で形成された弾性層8bと、フッ素樹脂等で形成された離型層8cを有する。芯金8aの両端部は、定着ユニットの不図示の装置シャーシ間に軸受けを介して回転自由に保持されている。また、図3に示す加圧用ステイ(金属製の補強部材)5の両端部と装置シャーシ側のバネ受け部材18a、18bとの間にそれぞれ加圧バネ(本例では圧縮バネ)17a、17bを設けることで加圧用ステイ5に押し下げ力を作用させている。なお、本実施例の定着ユニットAでは、総圧約100N〜250N(約10kgf〜約25kgf)の押圧力を与えている。これにより、耐熱性樹脂(PPS等)で構成されたスリーブガイド部材6の下面と加圧ローラ8とが定着スリーブ1を挟んで圧接して定着ニップ部Nが形成される。加圧ローラ8は不図示の駆動手段により矢示の方向に駆動されており、定着スリーブ1は加圧ローラの回転に従動して回転する。12a、12bは定着スリーブの回転に従動して回転するフランジ部材である。フランジ部材は、スリーブガイド6の長手方向端部に回転自在に配置されている。定着スリーブが回転中に母線方向に寄り移動するとフランジ部材に突き当たり、定着スリーブに押されたフランジ部材は規制部材13a(13b)に突き当たる。これにより、定着スリーブの寄り移動が規制部材によって規制される。フランジ部材は、LCP(Liquid Crystal Polymer:液晶ポリマー)等の耐熱性の良い材料で形成されている。   The pressure roller 8 as a pressure member includes a cored bar 8a, an elastic layer 8b formed of silicone rubber or the like, and a release layer 8c formed of fluorine resin or the like. Both ends of the cored bar 8a are rotatably held via bearings between device chassis (not shown) of the fixing unit. Also, pressure springs (compression springs in this example) 17a and 17b are provided between both ends of the pressure stay (metal reinforcing member) 5 shown in FIG. 3 and the spring receiving members 18a and 18b on the apparatus chassis side, respectively. By providing, a pressing force is applied to the pressurizing stay 5. In the fixing unit A of this embodiment, a total pressure of about 100 N to 250 N (about 10 kgf to about 25 kgf) is applied. As a result, the lower surface of the sleeve guide member 6 made of a heat resistant resin (PPS or the like) and the pressure roller 8 are pressed against each other with the fixing sleeve 1 interposed therebetween to form the fixing nip portion N. The pressure roller 8 is driven in a direction indicated by an arrow by a driving unit (not shown), and the fixing sleeve 1 rotates following the rotation of the pressure roller. Reference numerals 12a and 12b denote flange members that rotate following the rotation of the fixing sleeve. The flange member is rotatably disposed at the longitudinal end portion of the sleeve guide 6. When the fixing sleeve moves toward the generatrix while rotating, it abuts against the flange member, and the flange member pushed by the fixing sleeve abuts against the regulating member 13a (13b). Thereby, the shift movement of the fixing sleeve is regulated by the regulating member. The flange member is formed of a material having good heat resistance such as LCP (Liquid Crystal Polymer).

回転可能な筒状回転体としての定着スリーブ1は直径10〜50mmが好ましく、基層となる発熱層(導電層)1aと、その外面に積層した弾性層1bと、スリーブ表面の離型層1cを有する。発熱層1aは金属フィルム(本例のスリーブの材質はステンレス)であり、膜厚は10〜50μmが好ましい。弾性層1bはシリコーンゴムで形成されており、硬度20度(JIS−A、1kg加重)程度、厚みは0.1mm〜0.3mmが好ましい。離型層はフッ素樹脂のチューブであり、厚みは10〜50μmが好ましい。発熱層1aには後述する交番磁束の作用で誘導電流が発生する。この誘導電流で発熱層が発熱し、この熱が弾性層1b及び離型層1cに伝達し、定着スリーブ1の周方向全体が加熱される。尚、定着スリーブの温度を検出する温度検出素子9、10、11については後述する。   The fixing sleeve 1 as a rotatable cylindrical rotating body preferably has a diameter of 10 to 50 mm, and includes a heat generating layer (conductive layer) 1a as a base layer, an elastic layer 1b laminated on the outer surface, and a release layer 1c on the sleeve surface. Have. The heat generating layer 1a is a metal film (the material of the sleeve in this example is stainless steel), and the film thickness is preferably 10 to 50 μm. The elastic layer 1b is made of silicone rubber, and preferably has a hardness of about 20 degrees (JIS-A, 1 kg load) and a thickness of 0.1 mm to 0.3 mm. The release layer is a fluororesin tube, and the thickness is preferably 10 to 50 μm. An induced current is generated in the heat generating layer 1a by the action of an alternating magnetic flux described later. The heat generation layer generates heat by this induced current, and this heat is transmitted to the elastic layer 1b and the release layer 1c, and the entire circumferential direction of the fixing sleeve 1 is heated. The temperature detection elements 9, 10, and 11 for detecting the temperature of the fixing sleeve will be described later.

次に、発熱層1aに誘導電流を発生させる機構について詳述する。図4は加熱ユニットに設けたコイルユニットの斜視図である。コイルユニットは、回転体(定着スリーブ)の内部に配置され螺旋軸が回転体の母線方向と略平行である螺旋形状部を有し、回転体の導電層を電磁誘導発熱させるための交番磁界を形成するコイル3を有する。更に、螺旋形状部の中に配置され、磁束を誘導するためのコア2を備えている。磁性芯材としての磁性コア2は、不図示の固定手段で定着スリーブ1の中空部を貫通して配置させてある。NP及びSPはコア2の磁極を示している。コア2は有端形状であり、コイルにより発生する磁束は開磁路を形成する。コアの材質は、ヒステリシス損が小さく比透磁率の高い材料、例えば、焼成フェライト、フェライト樹脂、非晶質合金(アモルファス合金)、パーマロイ等の高透磁率の酸化物、合金等、で構成される強磁性体が好ましい。本例においては、比透磁率1800の焼成フェライトを用いている。本例のコアは円柱形状であり、直径は5〜30mmが好ましい。A4プリンタに搭載する定着装置である場合、コアの長さは240mm程度が好ましい。なお、コイル3を巻いたコア2は樹脂製のカバー4で覆われている。   Next, a mechanism for generating an induced current in the heat generating layer 1a will be described in detail. FIG. 4 is a perspective view of a coil unit provided in the heating unit. The coil unit has a spiral-shaped portion that is disposed inside the rotating body (fixing sleeve) and has a spiral axis that is substantially parallel to the generatrix direction of the rotating body, and generates an alternating magnetic field for causing the conductive layer of the rotating body to generate electromagnetic induction heat. It has a coil 3 to be formed. Furthermore, the core 2 for arrange | positioning in a spiral shape part and guide | inducing a magnetic flux is provided. The magnetic core 2 as a magnetic core material is disposed through the hollow portion of the fixing sleeve 1 by fixing means (not shown). NP and SP indicate the magnetic poles of the core 2. The core 2 has an end shape, and the magnetic flux generated by the coil forms an open magnetic path. The material of the core is composed of a material having a small hysteresis loss and a high relative magnetic permeability, for example, a sintered ferrite, a ferrite resin, an amorphous alloy (amorphous alloy), a high permeability oxide such as permalloy, an alloy, or the like. Ferromagnetic materials are preferred. In this example, sintered ferrite having a relative magnetic permeability of 1800 is used. The core of this example has a cylindrical shape, and the diameter is preferably 5 to 30 mm. In the case of a fixing device mounted on an A4 printer, the length of the core is preferably about 240 mm. The core 2 around which the coil 3 is wound is covered with a resin cover 4.

励磁コイル3は、単一導線を定着スリーブ1の中空部において、磁性コア2に螺旋状に巻き回して形成される。その際、コア中央部よりも端部において間隔が密になるように巻かれている。長手寸法240mmの磁性コア2に対し、励磁コイル3は18回巻きつけている。その巻間隔は端部において10mm、中央部において20mm、その中間において15mmとなっている。このように、コイルはコアの軸線Xに交差する方向に巻き回されている。   The exciting coil 3 is formed by spirally winding a single conducting wire around the magnetic core 2 in the hollow portion of the fixing sleeve 1. In that case, it winds so that a space | interval may become denser in an edge part rather than a core center part. The exciting coil 3 is wound 18 times around the magnetic core 2 having a longitudinal dimension of 240 mm. The winding interval is 10 mm at the end, 20 mm at the center, and 15 mm in the middle. Thus, the coil is wound in a direction intersecting the axis X of the core.

給電接点部3a,3bを介して高周波コンバータにより励磁コイル3に高周波電流を流すと、磁束が発生する。本例の装置は、コア2の端部から出る磁束の殆ど(70%以上、好ましくは90%以上、更に好ましくは94%以上)が、定着スリーブの発熱層よりも外を通ってコアの他端に戻るように設計されている。このため、スリーブの外を通る磁束を打ち消す磁束が発生するように、定着スリーブの発熱層には周方向に流れる誘導電流が発生する。これにより、発熱層の周方向全体が発熱する。このように、定着スリーブの周方向に誘導電流が流れる構成にすると、定着スリーブの周方向全域が発熱するので、定着装置を定着可能な温度までウォームアップする時間を短くできるというメリットがある。また、コア2を有端形状とし、開磁路により、磁束の殆どが発熱層の外を通るように構成している。このため、コアをループ形状として閉磁路を形成する構成の装置よりも小型化できるというメリットもある。   When a high frequency current is passed through the exciting coil 3 by the high frequency converter through the power supply contact portions 3a and 3b, a magnetic flux is generated. In the apparatus of this example, most of the magnetic flux that emerges from the end of the core 2 (70% or more, preferably 90% or more, more preferably 94% or more) passes outside of the heat generation layer of the fixing sleeve and other than the core. Designed to return to the edge. For this reason, an induced current flowing in the circumferential direction is generated in the heat generating layer of the fixing sleeve so that a magnetic flux that cancels the magnetic flux passing outside the sleeve is generated. Thereby, the whole circumferential direction of the heat generating layer generates heat. As described above, the configuration in which the induced current flows in the circumferential direction of the fixing sleeve generates heat in the entire circumferential direction of the fixing sleeve, so that there is an advantage that the time for warming up the fixing device to a temperature at which fixing can be performed can be shortened. Further, the core 2 is formed in an end shape, so that most of the magnetic flux passes through the outside of the heat generating layer by an open magnetic path. For this reason, there is also an advantage that the size can be reduced as compared with an apparatus having a configuration in which the core is formed in a loop shape to form a closed magnetic circuit.

定着ユニットAの温度検出素子9、10、11は、図2に示すように定着ニップ部Nよりも定着スリーブ回転方向上流側に配置され、定着スリーブの表面温度を検出する。また、定着ユニット長手方向において、図3に示すように、定着スリーブの中央および両端部の温度を検出する。温度検出素子9、10、11はサーミスタ等によって構成される。中央部の温度検出素子9の検出温度が定着に適した制御目標温度を維持するように、コイルへの給電が制御される。また、定着スリーブ1の端部付近に配設された温度検出素子10、11は、小サイズ記録材Pを連続プリントした時の定着スリーブの非通紙域の昇温具合を検知することができる。尚、温度検出素子10及び11は、加圧ローラ8の軸方向端部に配置し、小サイズ記録材Pを連続プリントした時の加圧ローラの非通紙域の昇温具合を検知してもよい。   As shown in FIG. 2, the temperature detection elements 9, 10, and 11 of the fixing unit A are disposed upstream of the fixing nip portion N in the fixing sleeve rotation direction and detect the surface temperature of the fixing sleeve. Further, in the longitudinal direction of the fixing unit, as shown in FIG. 3, the temperatures of the center and both ends of the fixing sleeve are detected. The temperature detection elements 9, 10, and 11 are configured by a thermistor or the like. The power supply to the coil is controlled so that the temperature detected by the temperature detecting element 9 at the center maintains a control target temperature suitable for fixing. Further, the temperature detection elements 10 and 11 disposed near the end of the fixing sleeve 1 can detect the temperature rise in the non-sheet passing area of the fixing sleeve when the small size recording material P is continuously printed. . The temperature detecting elements 10 and 11 are arranged at the end of the pressure roller 8 in the axial direction to detect the temperature rise in the non-sheet passing area of the pressure roller when the small size recording material P is continuously printed. Also good.

図4はプリンタ制御を行なう制御手段であるCPU32、プリンタコントローラ41、及びホストコンピュータの関係を示すブロック図である。プリンタコントローラ41は後述するホストコンピュータ42との間で通信と画像データの受信、及び受け取った画像データを画像形成装置100が印字可能な情報に展開する。更に、エンジン制御部43との間で信号のやり取り及びシリアル通信を行う。エンジン制御部43はプリンタコントローラ41との間で信号のやり取りを行い、さらに、シリアル通信を介して画像形成装置100の各ユニット44〜46の制御を行う。定着温度制御部44は温度検出素子9、10、11によって検出された温度を基に定着ユニットAの温度制御を行うと共に、定着ユニットAの異常検出等を行う。周波数制御手段としての周波数制御部45は高周波コンバータ16の駆動周波数の制御を、電力制御部46は、高周波コンバータ16の駆動をON・OFFして高周波コンバータ16の電力の制御を行う。具体的は、温度検出素子9の検出温度が制御目標温度を維持するように高周波コンバータ16の駆動をON・OFFする。ホストコンピュータ42はプリンタコントローラ41に画像データを転送したり、ユーザからの要求に応じてプリンタコントローラ41に記録材Pのサイズ等、様々なプリント条件を設定する。   FIG. 4 is a block diagram showing the relationship among the CPU 32, the printer controller 41, and the host computer which are control means for performing printer control. The printer controller 41 communicates with the host computer 42 described later, receives image data, and develops the received image data into information that can be printed by the image forming apparatus 100. Furthermore, signal exchange and serial communication are performed with the engine control unit 43. The engine control unit 43 exchanges signals with the printer controller 41, and further controls the units 44 to 46 of the image forming apparatus 100 through serial communication. The fixing temperature control unit 44 controls the temperature of the fixing unit A based on the temperatures detected by the temperature detecting elements 9, 10, 11, and detects abnormality of the fixing unit A. The frequency control unit 45 as a frequency control means controls the driving frequency of the high-frequency converter 16, and the power control unit 46 controls the power of the high-frequency converter 16 by turning on / off the driving of the high-frequency converter 16. Specifically, the drive of the high-frequency converter 16 is turned ON / OFF so that the detected temperature of the temperature detecting element 9 maintains the control target temperature. The host computer 42 transfers image data to the printer controller 41 and sets various printing conditions such as the size of the recording material P in the printer controller 41 in response to a request from the user.

図5は、本実施例における高周波コンバータ16を含む駆動回路を説明するための回路図である。商用電源50は、画像形成装置100を接続する商用電源(交流電源)であり、インレット51を介して画像形成装置100に交流電力を供給する。本回路は、商用電源50と直接接続された一次側と、商用電源50と非接触に接続された二次側とで構成されている。商用電源50の波形は、横軸を時間、縦軸を電圧としたとき波形1のような波形である。商用電源50から入力された電力は、インレット51、ACフィルタ52、スイッチ部材の一例であるトライアック161を介し、整流部の一例であるダイオードブリッジ81〜84に入力され整流される。整流された電圧は、コンデンサ85に充電される。続いて、FET86、87と電圧共振用コンデンサ88から成る高周波コンバータ(電流共振制御回路)16に入力される。これにより、定着ユニットAの等価インダクタンスL及び等価抵抗R、共振コンデンサ89から成る共振回路(電流共振回路)191に電力供給される。   FIG. 5 is a circuit diagram for explaining a drive circuit including the high-frequency converter 16 in the present embodiment. The commercial power source 50 is a commercial power source (AC power source) that connects the image forming apparatus 100, and supplies AC power to the image forming apparatus 100 via the inlet 51. This circuit includes a primary side directly connected to the commercial power source 50 and a secondary side connected to the commercial power source 50 in a non-contact manner. The waveform of the commercial power supply 50 is a waveform like waveform 1 when the horizontal axis is time and the vertical axis is voltage. The electric power input from the commercial power supply 50 is input and rectified to the diode bridges 81 to 84 as an example of the rectification unit via the inlet 51, the AC filter 52, and the triac 161 as an example of the switch member. The rectified voltage is charged in the capacitor 85. Subsequently, the signal is input to a high frequency converter (current resonance control circuit) 16 including FETs 86 and 87 and a voltage resonance capacitor 88. As a result, power is supplied to a resonance circuit (current resonance circuit) 191 including the equivalent inductance L and equivalent resistance R of the fixing unit A and the resonance capacitor 89.

71は、電源装置(電源部)であり、商用電源50の電力がACフィルタ52を介して入力され、不図示の二次側の負荷(モータ等)に所定の電圧を出力している。また、CPU32は、高周波コンバータ16の動作にも使用され、各入出力ポートとROM32a及びRAM32bなどから構成される。高周波コンバータ16、共振回路191、及び二次側に電力を供給するための電源装置(電源部)71内のトランスの一次巻線より手前は、商用電源50と直接接続されており、電気的に一次側回路となっている。また、電源装置71内のトランスの二次巻線以降、例えば、感光体ドラム101を回転させる不図示のモータ、レーザスキャナ103、等の画像形成時に動作するモータやユニットは、商用電源50と非接触に接続されており、電気的に二次側回路となっている。   Reference numeral 71 denotes a power supply device (power supply unit), which receives power from the commercial power supply 50 via the AC filter 52 and outputs a predetermined voltage to a secondary load (such as a motor) not shown. The CPU 32 is also used for the operation of the high-frequency converter 16, and is composed of input / output ports, ROM 32a, RAM 32b, and the like. The power supply device (power supply unit) 71 for supplying power to the high-frequency converter 16, the resonance circuit 191, and the secondary side is directly connected to the commercial power supply 50 before the primary winding of the transformer. It is a primary circuit. Further, after the secondary winding of the transformer in the power supply device 71, for example, a motor or unit that operates during image formation, such as a motor (not shown) that rotates the photosensitive drum 101, a laser scanner 103, etc. It is connected to the contact and is an electrical secondary circuit.

一方、商用電源50の電力は、ACフィルタ52を介してZEROX生成回路75に入力される。ZEROX生成回路75は、商用電源電圧が0V近辺のある閾値電圧以下の電圧になっているときにHighレベル(又はLowレベル)の信号を出力し、それ以外の場合にLowレベル(又はHighレベル)の信号を出力する構成となっている。そして、CPU32の入力ポートPA1には、抵抗76を介して商用電源電圧の周期とほぼ等しい周期のパルス信号が入力される。CPU32は、ZEROX信号のHigh→LowまたはLow→Highに変化するエッジを検出し、これを後述する駆動回路160の駆動のトリガとして利用する。   On the other hand, the electric power of the commercial power supply 50 is input to the ZEROX generation circuit 75 via the AC filter 52. The ZEROX generation circuit 75 outputs a high level (or low level) signal when the commercial power supply voltage is equal to or lower than a certain threshold voltage near 0 V, and otherwise, the low level (or high level). The signal is output. A pulse signal having a cycle substantially equal to the cycle of the commercial power supply voltage is input to the input port PA1 of the CPU 32 via the resistor 76. The CPU 32 detects an edge of the ZEROX signal that changes from High → Low or Low → High, and uses this as a trigger for driving the drive circuit 160 described later.

次に、電力制御用の駆動回路160を説明する。駆動回路160はCPU32の電力制御部46(図4参照)により制御される。CPU32により決定されたタイミングで出力ポートPA2がHighレベルとなると、ベース抵抗67を介したトランジスタ165がオンする。トランジスタ165がオンするとフォトトライアックカプラ162がオンする。なお、フォトトライアックカプラ162は、一次側回路と二次側回路の沿面距離を確保するためのデバイスである。抵抗166はフォトトライアックカプラ162内の発光ダイオードに流れる電流を制限するための抵抗である。   Next, the power control drive circuit 160 will be described. The drive circuit 160 is controlled by the power control unit 46 (see FIG. 4) of the CPU 32. When the output port PA2 becomes high level at the timing determined by the CPU 32, the transistor 165 via the base resistor 67 is turned on. When the transistor 165 is turned on, the phototriac coupler 162 is turned on. The phototriac coupler 162 is a device for securing a creepage distance between the primary side circuit and the secondary side circuit. The resistor 166 is a resistor for limiting the current flowing through the light emitting diode in the phototriac coupler 162.

抵抗163、164はトライアック(スイッチ部材)161のためのバイアス抵抗で、フォトトライアックカプラ162がオンすることによりトライアック161がオンする。トライアック161は、一旦オンすると商用電源50の次のZEROXポイントになるまでオン状態を保持する素子であるので、オンタイミングに応じた電力が高周波コンバータ16を介して定着ユニットAに投入される。   Resistors 163 and 164 are bias resistors for the triac (switch member) 161, and the triac 161 is turned on when the phototriac coupler 162 is turned on. Since the triac 161 is an element that keeps the ON state until it reaches the next ZEROX point of the commercial power supply 50 once it is turned ON, power corresponding to the ON timing is input to the fixing unit A via the high-frequency converter 16.

次に、高周波コンバータ16について説明する。CPU32が出力ポートPA3から後述する周波数のパルス信号をHi−gate駆動回路77に向けて出力すると、Hi−gate駆動回路77はスイッチング素子86に向けてゲート波形を出力する。スイッチング素子86は、ゲート波形がHiの期間、ドレインソース間をONし、Loの期間OFFする。同様にして、Hi−gate駆動回路77へのパルス信号と同じ周波数のパルス信号をCPU32が出力ポートPA4からLo−gate駆動回路78に向けて出力すると、Lo−gate駆動回路78はスイッチング素子87に向けてゲート波形を出力する。スイッチング素子87は、ゲート波形がHiの期間、ドレインソース間をONし、Loの期間OFFする。スイッチング素子86とスイッチング素子87はパルス信号の周波数で交互にONし、共振回路191に方形波を供給する。これにより、定着ユニットAの等価インダクタンスLと共振コンデンサ61が共振し、定着ユニットAの回転体1が発熱する。なお、Hi−gate駆動回路77へのパルス信号のONデューティ比(パルス信号1サイクルあたりのON時間比率)と、Lo−gate駆動回路78へのパルス信号のONデューティ比は、パルス信号の周波数に拘らず約50%に設定されている。スイッチング素子86とスイッチング素子87へのパルス信号が停止すると定着ユニットAの発熱は停止される。   Next, the high frequency converter 16 will be described. When the CPU 32 outputs a pulse signal having a frequency described later from the output port PA 3 to the Hi-gate drive circuit 77, the Hi-gate drive circuit 77 outputs a gate waveform to the switching element 86. The switching element 86 is turned on between the drain and source while the gate waveform is Hi, and is turned off during the Lo period. Similarly, when the CPU 32 outputs a pulse signal having the same frequency as the pulse signal to the Hi-gate drive circuit 77 from the output port PA 4 to the Lo-gate drive circuit 78, the Lo-gate drive circuit 78 supplies the switching element 87. Output the gate waveform. The switching element 87 turns on between the drain and the source while the gate waveform is Hi, and turns off during the Lo period. The switching element 86 and the switching element 87 are alternately turned ON at the frequency of the pulse signal, and supply a square wave to the resonance circuit 191. As a result, the equivalent inductance L of the fixing unit A and the resonance capacitor 61 resonate, and the rotating body 1 of the fixing unit A generates heat. Note that the ON duty ratio of the pulse signal to the Hi-gate drive circuit 77 (the ON time ratio per one cycle of the pulse signal) and the ON duty ratio of the pulse signal to the Lo-gate drive circuit 78 are determined by the frequency of the pulse signal. Regardless, it is set to about 50%. When the pulse signal to the switching element 86 and the switching element 87 stops, the heat generation of the fixing unit A is stopped.

定着ユニットAに配置された温度検出素子9は、一端をグランド、他端を抵抗73を介して電源Vcc1に接続されており、さらに抵抗74を介してCPU32のアナログ入力ポートAN0に接続されている。なお、定着ユニットの端部の温度を検出する温度検出素子10、11の出力も、温度検出素子9と同様に、CPU32のアナログ入力ポートに入力している(図5では不図示)。温度検出素子9として使用されているサーミスタは高温になると抵抗値が低下する特性を持っている。CPU32は、固定抵抗73との分圧電圧を、予め設定された温度テーブル(不図示)によって温度に変換することにより、定着ユニットAの温度(正確には定着スリーブの温度)を検出する。後述するが、CPU32は、定着処理中、定着ユニットAの温度(温度検出素子9の検出温度)が所定の温度(制御目標温度)を維持するように、駆動回路160を制御する。   The temperature detecting element 9 arranged in the fixing unit A has one end connected to the power supply Vcc1 through the ground and the other end connected through the resistor 73, and further connected to the analog input port AN0 of the CPU 32 through the resistor 74. . Note that the outputs of the temperature detection elements 10 and 11 for detecting the temperature at the end of the fixing unit are also input to the analog input port of the CPU 32 (not shown in FIG. 5), similarly to the temperature detection element 9. The thermistor used as the temperature detecting element 9 has a characteristic that the resistance value decreases at a high temperature. The CPU 32 detects the temperature of the fixing unit A (more precisely, the temperature of the fixing sleeve) by converting the divided voltage with the fixed resistor 73 into a temperature by a preset temperature table (not shown). As will be described later, the CPU 32 controls the drive circuit 160 so that the temperature of the fixing unit A (detected temperature of the temperature detecting element 9) maintains a predetermined temperature (control target temperature) during the fixing process.

ところで、スリーブの導電層に、スリーブ周方向に流れる誘導電流が発生するように、コアの端部から出る磁束の殆どが定着スリーブの発熱層よりも外を通ってコアの他端に戻るように設計した定着装置では、以下に示すような課題があることが判明した。   By the way, in order to generate an induced current flowing in the sleeve circumferential direction in the conductive layer of the sleeve, most of the magnetic flux emitted from the end of the core passes outside the heat generation layer of the fixing sleeve and returns to the other end of the core. The designed fixing device has been found to have the following problems.

一般的な電磁誘導方式の定着装置では、コイルを含む共振回路を駆動する高周波コンバータが設けられる。そして、コイルにより発生する磁束を回転体の導電層に結合させ、導電層に渦電流を発生させて発熱させる方式の定着装置では、スリーブの温度を一定に保つため、高周波コンバータの駆動周波数(上述したパルス信号の周波数)を調整し、発熱量を調整する。   A general electromagnetic induction type fixing device is provided with a high-frequency converter that drives a resonance circuit including a coil. In a fixing device that couples the magnetic flux generated by the coil to the conductive layer of the rotor and generates heat by generating an eddy current in the conductive layer, the driving frequency of the high-frequency converter (described above) is used to keep the sleeve temperature constant. Adjust the pulse signal frequency) to adjust the amount of heat generation.

しかしながら、本例のような、スリーブ周方向に流れる誘導電流が発生する定着装置では、高周波コンバータの駆動周波数を変えると、スリーブの母線方向における発熱分布が変化してしまうことが判明した。図6は、回転体(スリーブ)の母線方向(長手方向)中央が200℃を維持するように高周波コンバータの駆動周波数を21kHz〜50kHzの範囲で変化させた場合のスリーブの温度分布を示している。駆動周波数を下げるほどスリーブ両端の発熱量が低下していることが判る。したがって、例えば、中央部の温度を200℃に保つために駆動周波数を21kHzに設定しなければならないケースでは、スリーブ両端の発熱量が不足する。その結果、大サイズの記録材を定着処理する際、スリーブ両端部に対応する記録材上の画像は定着不足が生じる。   However, in a fixing device that generates an induced current that flows in the circumferential direction of the sleeve as in this example, it has been found that when the drive frequency of the high-frequency converter is changed, the heat generation distribution in the direction of the bus of the sleeve changes. FIG. 6 shows the temperature distribution of the sleeve when the drive frequency of the high-frequency converter is changed in the range of 21 kHz to 50 kHz so that the center of the rotor body (sleeve) in the busbar direction (longitudinal direction) is maintained at 200 ° C. . It can be seen that the lower the drive frequency, the lower the amount of heat generated at both ends of the sleeve. Therefore, for example, in a case where the drive frequency must be set to 21 kHz in order to keep the temperature of the central portion at 200 ° C., the amount of heat generated at both ends of the sleeve is insufficient. As a result, when fixing a large size recording material, the image on the recording material corresponding to both ends of the sleeve is insufficiently fixed.

そこで本実施例では、定着スリーブの中央部の温度に応じて駆動周波数を設定するのではなく、記録材Pのサイズや定着スリーブ1の非通紙領域の温度に応じて駆動周波数(以下、駆動周波数fkとする)を設定する。非通紙領域とは、装置で利用可能な最大サイズの記録材は通過するが最大サイズより小さなサイズの記録材は通過しない領域のことである。このように駆動周波数fkを設定することにより、大サイズの記録材を定着処理する時は、定着スリーブ1の長手方向全域を均一に発熱させ、小サイズの記録材を定着処理する時は、スリーブ端部の発熱量を抑えるというような発熱分布の設定ができる。更に、定着スリーブの中央部の温度に応じて上述した駆動回路160を制御することで高周波コンバータ16に供給する電力を制御し、定着スリーブの中央部の温度が制御目標温度を維持するようにしている。   In this embodiment, therefore, the driving frequency is not set according to the temperature of the central portion of the fixing sleeve, but is driven according to the size of the recording material P and the temperature of the non-sheet passing region of the fixing sleeve 1 (hereinafter referred to as driving). Frequency fk). The non-sheet passing area is an area through which a recording material having a maximum size that can be used by the apparatus passes but does not pass a recording material having a size smaller than the maximum size. By setting the drive frequency fk in this way, when fixing a large size recording material, the entire length of the fixing sleeve 1 is uniformly heated, and when fixing a small size recording material, the sleeve It is possible to set a heat generation distribution that suppresses the heat generation amount at the end. Further, the power supplied to the high-frequency converter 16 is controlled by controlling the drive circuit 160 described above according to the temperature of the central portion of the fixing sleeve so that the temperature of the central portion of the fixing sleeve maintains the control target temperature. Yes.

図7を用いて、電力を50%投入する場合の商用電源電圧の4サイクル間の各動作波形を説明する。本実施例のCPU32は、商用電源電圧の4サイクルを1制御周期として、1制御周期毎に温度検出素子9の検出温度に応じた電力を設定する。   With reference to FIG. 7, each operation waveform for four cycles of the commercial power supply voltage when 50% of power is input will be described. The CPU 32 of the present embodiment sets power corresponding to the detected temperature of the temperature detecting element 9 for each control period, with four cycles of the commercial power supply voltage as one control period.

図7には、商用電源50の電圧701、ZEROX信号波形702、トライアック161の電圧波形703、スイッチング素子86のゲート波形704、スイッチング素子87のゲート波形705がそれぞれ横軸を時間として表記されている。商用電源50から電圧701が入力されるとZEROX生成回路75にてZEROX信号702が生成されCPU32に入力される。スイッチング素子86、87は、紙サイズや非通紙部の昇温具合に応じて定められた駆動周波数fkで、ゲート波形704、705で示されるように交互にスイッチングをしている。   In FIG. 7, the voltage 701 of the commercial power supply 50, the ZEROX signal waveform 702, the voltage waveform 703 of the triac 161, the gate waveform 704 of the switching element 86, and the gate waveform 705 of the switching element 87 are shown with time on the horizontal axis. . When a voltage 701 is input from the commercial power supply 50, a ZEROX signal 702 is generated by the ZEROX generation circuit 75 and input to the CPU 32. The switching elements 86 and 87 are alternately switched as shown by the gate waveforms 704 and 705 at a driving frequency fk determined according to the paper size and the temperature rise degree of the non-sheet passing portion.

電力を50%投入する場合、CPU32は、4サイクルの平均投入電力が50%になるように半波毎の投入電力を決定する。図7において、トライアック161の投入電力パターンは、全半波において50%の投入電力となっている。   When power is input by 50%, the CPU 32 determines the input power for each half wave so that the average power input for four cycles is 50%. In FIG. 7, the input power pattern of the triac 161 is 50% input power in the entire half-wave.

CPU32内のROM32aには、投入電力比に応じた位相制御の点灯タイミング係数のテーブルが格納されている。CPU32は、そのテーブルとZEROX信号702と温度検出素子9の情報を用いて点灯タイミングを算出する。テーブルは例えば表1に表されるようなものである。点灯タイミング係数の0は、商用電源50の電圧波形701の位相が0°の時であり、1は、180°の時である。   A ROM 32a in the CPU 32 stores a table of lighting timing coefficients for phase control corresponding to the input power ratio. The CPU 32 calculates the lighting timing using the table, the ZEROX signal 702, and the information of the temperature detection element 9. The table is, for example, as shown in Table 1. The lighting timing coefficient 0 is when the phase of the voltage waveform 701 of the commercial power supply 50 is 0 °, and 1 is 180 °.

CPU32は、温度検出素子9の検出温度、及び表1のテーブルを用いて、駆動回路160をONするタイミングを決定する。例えば50Hzの商用電源50である場合、50%の電力を投入するためのトライアック161のONタイミングは、ゼロクロス信号波形702の立下りエッジ(又は立上りエッジ)から5.0ms(=20ms/2×0.50)後と算出される。図7に示す奇数番目の波形D1、D3、D5、D7の場合、CPU32は、ZEROX信号702がHigh→Lowに変化した時間から5ms後に出力ポートPA2にHighレベルを出力することで、50%の電力を供給することになる。これにより、整流回路81〜84へ、商用電源電圧4サイクルで50%の投入電力することができる。本実施例においては、4サイクルを1制御周期とし、4サイクル毎に位相制御を用いて電力制御するパターンで説明しているが、1制御周期は4サイクル以外でもよい。また、制御波形も、波数制御や、位相制御と波数制御を組み合わせた制御等、位相制御以外の制御波形であっても構わない。   The CPU 32 determines the timing for turning on the drive circuit 160 using the detected temperature of the temperature detecting element 9 and the table in Table 1. For example, in the case of a commercial power supply 50 at 50 Hz, the ON timing of the triac 161 for turning on 50% of power is 5.0 ms (= 20 ms / 2 × 0) from the falling edge (or rising edge) of the zero cross signal waveform 702. .50) after. In the case of odd-numbered waveforms D1, D3, D5, and D7 shown in FIG. 7, the CPU 32 outputs 50% by outputting a High level to the output port PA2 after 5 ms from the time when the ZEROX signal 702 changes from High to Low. Power will be supplied. As a result, 50% input power can be supplied to the rectifier circuits 81 to 84 in 4 cycles of the commercial power supply voltage. In this embodiment, four cycles are defined as one control cycle, and power control is performed using phase control every four cycles. However, one control cycle may be other than four cycles. The control waveform may also be a control waveform other than phase control, such as wave number control or control combining phase control and wave number control.

CPU32による電力投入シーケンスのフローを図8のフローチャートを用いて説明する。まず電力投入シーケンスが開始されるとS101にて温度検出素子9の検出値と制御目標温度からトライアック61による投入電力デューティ比Dを決定する。次に、S102にて記録材Pのサイズとスリーブ1の端部温度の少なくとも一方に応じてスイッチング素子86、87の駆動周波数fkを決定する。続いて、S103にてカウンタk(商用電源電圧の半サイクルの回数)を初期設定(k=1)し、S104でZEROX信号702の立ち上がり又は立下りエッジを監視する。ZEROX信号702の立ち上がり又は立下りエッジを検出したタイミングでカウンタkをインクリメントし(S105)、トライアック161により、定着ユニットAに対して、位相角D%で半波電力を投入する(S106)。S107にてカウンタkが8未満の場合には、1制御周期(4サイクル)に到達していないので、継続してS104〜S106を繰り返す。一方、S107にてカウンタkが8に達した場合には、1制御周期における電力投入が終了する。S108にて電力投入の終了を判断するまでの間は、S101〜S107を繰り返し、4サイクル毎に電力投入デューティ比を切り替えながら電力投入が行われる。   The flow of the power input sequence by the CPU 32 will be described with reference to the flowchart of FIG. First, when the power input sequence is started, the input power duty ratio D by the triac 61 is determined from the detected value of the temperature detecting element 9 and the control target temperature in S101. Next, in S102, the drive frequency fk of the switching elements 86 and 87 is determined according to at least one of the size of the recording material P and the end temperature of the sleeve 1. Subsequently, a counter k (the number of half cycles of the commercial power supply voltage) is initialized (k = 1) in S103, and the rising or falling edge of the ZEROX signal 702 is monitored in S104. The counter k is incremented at the timing when the rising or falling edge of the ZEROX signal 702 is detected (S105), and half-wave power is input to the fixing unit A at the phase angle D% by the triac 161 (S106). If the counter k is less than 8 in S107, since one control period (four cycles) has not been reached, S104 to S106 are continuously repeated. On the other hand, when the counter k reaches 8 in S107, the power input in one control cycle is completed. Until S <b> 108 determines the end of power-on, steps S <b> 101 to S <b> 107 are repeated and power-on is performed while switching the power-on duty ratio every four cycles.

以上のようにダイオードブリッジ81〜84の前段にトライアック161を配置し、トライアック161によって後段の回路に入力する実効電圧を調整することで、スイッチング素子86、87の駆動周波数fkを変えずに、投入電力を調整することが可能になる。本実施例では、電力制御用のスイッチ部材としてトライアック161をダイオードブリッジ81〜84の前段に配置した例について説明した。しかしながら、スイッチ部材は、FETやIGBTやリレー等、スイッチング可能な部品であればよく、トライアックに限定されるものではない。   As described above, the triac 161 is disposed in front of the diode bridges 81 to 84, and the effective voltage input to the subsequent circuit is adjusted by the triac 161, so that the driving frequency fk of the switching elements 86 and 87 is not changed. It becomes possible to adjust the power. In the present embodiment, an example in which the triac 161 is disposed in front of the diode bridges 81 to 84 as a power control switch member has been described. However, the switch member only needs to be a switchable component such as an FET, IGBT, or relay, and is not limited to a triac.

(実施例2)
本実施例においては、ダイオードブリッジ81〜84の後段にFETを配置し、FETのON−OFFによって電力制御する例について説明する。以下では、本実施例について、実施例1と異なる点を主として説明し、共通する構成については、同一符号を付けて説明を省略する。
(Example 2)
In the present embodiment, an example will be described in which an FET is arranged in the subsequent stage of the diode bridges 81 to 84 and the power is controlled by turning the FET on and off. In the following, the present embodiment will be described mainly with respect to differences from the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.

図9は、本実施例における高周波コンバータ16を含む回路図である。整流回路81〜84の後段であって、且つ高周波コンバータ16の前段に配置されたスイッチ部材の一例であるFET93をON−OFFすることで、高周波コンバータ16に入力する入力実効電圧を調整する。CPU32が出力ポートPA5からFETをONする信号を出力すると、FET駆動回路95はFET93に向けてゲート波形を出力する。このような構成をとることでスイッチング素子86、87の駆動周波数を変えなくても電力調整が可能になる。   FIG. 9 is a circuit diagram including the high-frequency converter 16 in the present embodiment. The effective input voltage to be input to the high-frequency converter 16 is adjusted by turning on and off the FET 93 which is an example of a switch member arranged after the rectifier circuits 81 to 84 and before the high-frequency converter 16. When the CPU 32 outputs a signal for turning on the FET from the output port PA5, the FET drive circuit 95 outputs a gate waveform toward the FET 93. By adopting such a configuration, the power can be adjusted without changing the drive frequency of the switching elements 86 and 87.

図10には、商用電源50の電圧701、ZEROX信号波形702、FET93の電圧波形1001、スイッチング素子86のゲート波形704、スイッチング素子87のゲート波形705がそれぞれ横軸を時間として表記されている。商用電源50から電圧701が入力されるとZEROX生成回路75にてZEROX信号702が生成されCPU32に入力される。スイッチング素子86、87は、紙サイズや非通紙部の昇温具合に応じた駆動周波数fkで、ゲート波形704、705で示されるように交互にスイッチングをしている。   In FIG. 10, the voltage 701 of the commercial power supply 50, the ZEROX signal waveform 702, the voltage waveform 1001 of the FET 93, the gate waveform 704 of the switching element 86, and the gate waveform 705 of the switching element 87 are shown with time on the horizontal axis. When a voltage 701 is input from the commercial power supply 50, a ZEROX signal 702 is generated by the ZEROX generation circuit 75 and input to the CPU 32. The switching elements 86 and 87 are alternately switched as indicated by the gate waveforms 704 and 705 at the drive frequency fk corresponding to the paper size and the temperature rise in the non-sheet passing portion.

電力を50%投入する場合、CPU32は、4サイクルの平均投入電力が50%になるように半波毎の投入電力を決定する。図10の例の場合、FET93により、1半波目から順に100%⇒0%⇒0%⇒100%⇒100%⇒0%⇒0%⇒100%という順番で半波ごとに電力投入される。これにより、1制御周期(4サイクル)の平均投入電力が50%になる。本実施例では、波数制御を用いて電力制御しているが、実施例1で説明した位相制御や、位相制御と波数制御が混ざった制御波形を用いても構わない。   When power is input by 50%, the CPU 32 determines the input power for each half wave so that the average power input for four cycles is 50%. In the case of the example in FIG. 10, the FET 93 sequentially turns on power for each half wave in the order of 100% → 0% → 0% → 100% → 100% → 0% → 0% → 100% from the first half wave. . As a result, the average input power in one control cycle (4 cycles) is 50%. In the present embodiment, power control is performed using wave number control, but the phase control described in the first embodiment or a control waveform in which phase control and wave number control are mixed may be used.

CPU32による電力投入シーケンスのフローを図11のフローチャートを用いて説明する。図8と同じところは、同一符号を付けて説明を省略する。検出温度に応じて決まる投入電力デューティ比Dと、あらかじめ用意された各投入電力デューティ比に応じた半波毎のON−OFFテーブルから半波毎のON−OFF(D1〜D8)を設定する(S201)。ZEROX信号702の立上がり又は立下りのエッジ検出後、S202にて半波毎のFET93のON−OFFの判断を行う。S201で設定された半波毎のON−OFF設定値に基づいてDk=ONの場合はS203にてFET93をONする。Dk=OFFの場合は、S204にてFET93をOFFする。S205にてカウンタkをインクリメントし、カウンタkが8になるまでS104〜S205を繰り返す。以上のようにダイオードブリッジ81〜84の後段にFET93を配置し、FET93によって後段の回路に入力する実効電圧を調整する。これにより、スイッチング素子86、87の駆動周波数を変えずに、投入電力を調整することが可能になる。本実施例では、スイッチ部材としてFET93を配置した例について説明したが、配置する部品は、IGBTやリレー等、ON−OFF可能な部品であればよく、本実施例に限定されるものではない。   The flow of the power-on sequence by the CPU 32 will be described using the flowchart of FIG. The same parts as those in FIG. A half-wave ON-OFF (D1 to D8) is set from the half-wave ON-OFF table corresponding to each input power duty ratio prepared in advance and the half-wave ON-OFF table corresponding to each input power duty ratio prepared in advance. S201). After detecting the rising or falling edge of the ZEROX signal 702, in step S202, it is determined whether the FET 93 is turned on or off for each half wave. If Dk = ON based on the ON / OFF set value for each half wave set in S201, the FET 93 is turned ON in S203. If Dk = OFF, the FET 93 is turned OFF in S204. The counter k is incremented in S205, and S104 to S205 are repeated until the counter k reaches 8. As described above, the FET 93 is disposed in the subsequent stage of the diode bridges 81 to 84, and the effective voltage input to the subsequent circuit is adjusted by the FET 93. As a result, the input power can be adjusted without changing the drive frequency of the switching elements 86 and 87. In the present embodiment, the example in which the FET 93 is disposed as the switch member has been described. However, the disposed component may be any component that can be turned on and off, such as an IGBT and a relay, and is not limited to the present embodiment.

実施例1では、位相制御、実施例2では、波数制御を用いて電力制御している。しかしながら、実施例1の構成、実施例2の構成共に、位相制御、波数制御、及び位相制御と端数制御が混ざった制御パターンの何れも適用できるものであり、実施例1及び実施例2に限定されるものではない。   In the first embodiment, power control is performed using phase control, and in the second embodiment, wave number control is used. However, both the configuration of the first embodiment and the configuration of the second embodiment can apply any of the phase control, the wave number control, and the control pattern in which the phase control and the fractional control are mixed, and are limited to the first and second embodiments. Is not to be done.

86、87 スイッチング素子
89 共振コンデンサ
161 トライアック
81〜84 ダイオードブリッジ
93 FET
86, 87 Switching element 89 Resonant capacitor 161 Triac 81-84 Diode bridge 93 FET

Claims (9)

導電層を有する筒状の回転体と、前記回転体の内部に配置され螺旋軸が前記回転体の母線方向と略平行であるコイルと、共振コンデンサと、を有する共振回路と、
前記共振回路を駆動するコンバータと、
を有し、前記コイルにより発生する磁束により前記導電層を電磁誘導発熱させ、前記回転体の熱により記録材に形成された画像を記録材に定着する定着装置において、
前記コンバータに供給する電力を制御するためのスイッチ部材と、
記録材のサイズと前記回転体の非通紙部の温度の少なくとも一方に応じて前記コンバータの駆動周波数を設定する周波数制御部と、
前記回転体の通紙部の温度に応じて前記スイッチ部材を制御し、前記コンバータに供給する電力を制御する電力制御部と、
を有することを特徴とする定着装置。
A resonant circuit comprising: a cylindrical rotating body having a conductive layer; a coil disposed inside the rotating body and having a helical axis substantially parallel to a generatrix direction of the rotating body; and a resonant capacitor;
A converter for driving the resonant circuit;
In the fixing device for causing the conductive layer to generate electromagnetic induction heat by the magnetic flux generated by the coil and fixing the image formed on the recording material by the heat of the rotating body on the recording material,
A switch member for controlling the power supplied to the converter;
A frequency control unit that sets the drive frequency of the converter according to at least one of the size of the recording material and the temperature of the non-sheet passing portion of the rotating body;
A power control unit that controls the switch member according to the temperature of the sheet passing portion of the rotating body and controls the power supplied to the converter;
A fixing device.
前記電力制御部は、前記回転体の通紙部の温度が目標温度を維持するように前記スイッチ部材を制御することを特徴とする請求項1に記載の定着装置。   The fixing device according to claim 1, wherein the power control unit controls the switch member so that a temperature of a sheet passing portion of the rotating body maintains a target temperature. 前記共振回路は、電流共振回路であることを特徴とする請求項1又は2に記載の定着装置。   The fixing device according to claim 1, wherein the resonance circuit is a current resonance circuit. 商用電源電圧を整流する整流部を有し、前記スイッチ部材は前記整流部より前段に設けられていることを特徴とする請求項1〜3いずれか一項に記載の定着装置。   4. The fixing device according to claim 1, further comprising a rectifying unit configured to rectify a commercial power supply voltage, wherein the switch member is provided upstream of the rectifying unit. 前記スイッチ部材はトライアックであることを特徴とする請求項4に記載の定着装置。   The fixing device according to claim 4, wherein the switch member is a triac. 商用電源電圧を整流する整流部を有し、前記スイッチ部材は前記整流部と前記コンバータの間に設けられていることを特徴とする請求項1〜3いずれか一項に記載の定着装置。   The fixing device according to claim 1, further comprising a rectifying unit that rectifies a commercial power supply voltage, wherein the switch member is provided between the rectifying unit and the converter. 前記スイッチ部材はFET又はIGBTであることを特徴とする請求項6に記載の定着装置。   The fixing device according to claim 6, wherein the switch member is an FET or an IGBT. 前記コイルの螺旋形状部の中には、磁束を誘導するためのコアを有し、前記導電層には前記回転体の周方向に流れる誘導電流が発生することを特徴とする請求項1〜7いずれか一項に記載の定着装置。   The coil-shaped spiral part has a core for inducing magnetic flux, and an induced current flowing in the circumferential direction of the rotating body is generated in the conductive layer. The fixing device according to claim 1. 前記コアは有端形状であることを特徴とする請求項8に記載の定着装置。   The fixing device according to claim 8, wherein the core has an end shape.
JP2014148883A 2014-07-22 2014-07-22 Fixing device Active JP6562598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148883A JP6562598B2 (en) 2014-07-22 2014-07-22 Fixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148883A JP6562598B2 (en) 2014-07-22 2014-07-22 Fixing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019037679A Division JP6667694B2 (en) 2019-03-01 2019-03-01 Fixing device

Publications (2)

Publication Number Publication Date
JP2016024366A true JP2016024366A (en) 2016-02-08
JP6562598B2 JP6562598B2 (en) 2019-08-21

Family

ID=55271142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148883A Active JP6562598B2 (en) 2014-07-22 2014-07-22 Fixing device

Country Status (1)

Country Link
JP (1) JP6562598B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081806A (en) * 1998-09-03 2000-03-21 Matsushita Graphic Communication Systems Inc Fixing device
JP2004157503A (en) * 2002-09-11 2004-06-03 Konica Minolta Holdings Inc Image forming apparatus
JP2005208469A (en) * 2004-01-26 2005-08-04 Konica Minolta Business Technologies Inc Image forming device
JP2006114283A (en) * 2004-10-13 2006-04-27 Canon Inc Heating device, control method of heating device, and image forming device
JP2006293079A (en) * 2005-04-12 2006-10-26 Canon Inc Image heating device
JP2009145741A (en) * 2007-12-17 2009-07-02 Konica Minolta Business Technologies Inc Fixing device, image forming apparatus, heating roller and fixing control method
JP2012209055A (en) * 2011-03-29 2012-10-25 Kyocera Document Solutions Inc Induction heating device, fixing device and image forming device
WO2013191229A1 (en) * 2012-06-19 2013-12-27 Canon Kabushiki Kaisha Fixing device
JP2014044617A (en) * 2012-08-28 2014-03-13 Ricoh Co Ltd Fixing power supply device, image forming apparatus, and fixing power supply control method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081806A (en) * 1998-09-03 2000-03-21 Matsushita Graphic Communication Systems Inc Fixing device
JP2004157503A (en) * 2002-09-11 2004-06-03 Konica Minolta Holdings Inc Image forming apparatus
JP2005208469A (en) * 2004-01-26 2005-08-04 Konica Minolta Business Technologies Inc Image forming device
JP2006114283A (en) * 2004-10-13 2006-04-27 Canon Inc Heating device, control method of heating device, and image forming device
JP2006293079A (en) * 2005-04-12 2006-10-26 Canon Inc Image heating device
JP2009145741A (en) * 2007-12-17 2009-07-02 Konica Minolta Business Technologies Inc Fixing device, image forming apparatus, heating roller and fixing control method
JP2012209055A (en) * 2011-03-29 2012-10-25 Kyocera Document Solutions Inc Induction heating device, fixing device and image forming device
WO2013191229A1 (en) * 2012-06-19 2013-12-27 Canon Kabushiki Kaisha Fixing device
JP2014026267A (en) * 2012-06-19 2014-02-06 Canon Inc Fixation device
JP2014044617A (en) * 2012-08-28 2014-03-13 Ricoh Co Ltd Fixing power supply device, image forming apparatus, and fixing power supply control method

Also Published As

Publication number Publication date
JP6562598B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
US7228084B2 (en) Image forming apparatus and fixing device
JP6671871B2 (en) Fixing device
JP3814543B2 (en) Image heating device
JP5102079B2 (en) Fixing apparatus, image forming apparatus, and heating control method
US9606482B2 (en) Fixing apparatus
JP6562599B2 (en) Fixing device
JP2016024349A (en) Fixing device and image forming apparatus
JP2001312178A (en) Fixing device
JP2006337740A (en) Induction heating fixing device and image forming apparatus using it
JP6429532B2 (en) Power supply device, fixing device, and image forming apparatus provided with fixing device
JP6667694B2 (en) Fixing device
JP6562598B2 (en) Fixing device
JP2020052233A (en) Image heating device
JP2006114283A (en) Heating device, control method of heating device, and image forming device
JP6667695B2 (en) Fixing device
JP4717244B2 (en) Image forming apparatus and power supply control method
JP6957139B2 (en) An image forming apparatus including a fixing device and the fixing device.
JP6362491B2 (en) Fixing device
JP2018066807A (en) Fixing device, and image forming apparatus including the fixing device
JP2006163427A (en) Image forming apparatus and control method for fixing device
JP2018066808A (en) Fixing device, and image forming apparatus including the fixing device
JP5199158B2 (en) Electromagnetic induction heating inverter device, fixing device including the same, and image forming apparatus
JP2014228707A (en) Heating apparatus and image formation apparatus
JP2020030382A (en) Image heating device and image forming apparatus using the same
JP2002123113A (en) Fixing device and image forming device with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190723

R151 Written notification of patent or utility model registration

Ref document number: 6562598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370