JP2016024232A - Optical control member and building component member including optical control member - Google Patents

Optical control member and building component member including optical control member Download PDF

Info

Publication number
JP2016024232A
JP2016024232A JP2014146155A JP2014146155A JP2016024232A JP 2016024232 A JP2016024232 A JP 2016024232A JP 2014146155 A JP2014146155 A JP 2014146155A JP 2014146155 A JP2014146155 A JP 2014146155A JP 2016024232 A JP2016024232 A JP 2016024232A
Authority
JP
Japan
Prior art keywords
optical control
control member
control layer
region
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014146155A
Other languages
Japanese (ja)
Inventor
信雄 川村
Nobuo Kawamura
信雄 川村
千草 尚
Hisashi Chigusa
尚 千草
大川 猛
Takeshi Okawa
猛 大川
横田 昌広
Masahiro Yokota
昌広 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014146155A priority Critical patent/JP2016024232A/en
Publication of JP2016024232A publication Critical patent/JP2016024232A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical control member capable of ensuring visibility in a certain direction even in a light shielding state as well as ensuring the visibility in all directions when no light shielding is required.SOLUTION: The optical control member includes: an optical control layer formed in a pattern including plural first regions 32 and plural second regions 34; and a control layer 40 containing a photochromic dye, which is disposed facing the optical control layer 30 being interposed by a predetermined distance therefrom. The first region 32 has higher optical transmissivity than that of the second region 34.SELECTED DRAWING: Figure 1

Description

この発明の実施形態は、光学制御部材および光学制御部材を備えた建築用部材に関する。   Embodiments described herein relate generally to an optical control member and a building member including the optical control member.

近年、室内に取り入れる太陽光の量を調節する光学制御部材として、フォトクロミック色素を含む遮光帯を備える光学制御部材が知られている。フォトクロミック色素とは、通常の分子構造では可視光を吸収しないが、太陽光に含まれる紫外線等の短波長の光が照射されると、色素の分子構造が変化して、すなわち、着色して、可視光を吸収し、短波長の光の照射が止むと、元の分子構造に戻る化学物質である。上記光学制御部材は、可視光を吸収する物質が遮光材として機能することを利用したものである。   In recent years, as an optical control member that adjusts the amount of sunlight that is taken into a room, an optical control member that includes a light shielding band containing a photochromic dye is known. The photochromic dye does not absorb visible light in the normal molecular structure, but when irradiated with light of short wavelengths such as ultraviolet rays contained in sunlight, the molecular structure of the dye changes, that is, it is colored, It is a chemical that absorbs visible light and returns to its original molecular structure when irradiation with short-wavelength light stops. The optical control member utilizes the fact that a substance that absorbs visible light functions as a light shielding material.

特開2012−163905号公報JP 2012-163905 A 特開2012−230219号公報JP 2012-230219 A

しかしながら、上記の光学制御部材は、フォトクロミック色素が着色した場合、全ての方向の視野が低下し、フォトクロミック色素が着色していない場合、ある一定方向しか視野が確保できないという問題があった。   However, the optical control member has a problem that when the photochromic dye is colored, the field of view in all directions is lowered, and when the photochromic dye is not colored, the field of view can be secured only in a certain direction.

本発明が解決しようとする課題は、遮光状態においてもある方向の視認性を確保し、遮光する必要がない場合は、全方向の視認性を確保できる光学制御部材を提供することである。   The problem to be solved by the present invention is to provide an optical control member that can ensure visibility in a certain direction even in a light-shielded state and can ensure visibility in all directions when it is not necessary to shield light.

実施形態の光学制御部材は、パターンで形成された、複数の第1領域および複数の第2領域を有する光学制御層と、前記光学制御層と所定の間隔を置いて対向配置されたフォトクロミック色素を含む制御層と、を備え、前記第1領域は、前記第2領域と比較して光の透過性が高い。   An optical control member according to an embodiment includes an optical control layer having a plurality of first regions and a plurality of second regions formed in a pattern, and a photochromic dye disposed opposite to the optical control layer at a predetermined interval. The first region has higher light transmittance than the second region.

図1は、実施形態に係る光学制御部材の断面図。FIG. 1 is a cross-sectional view of an optical control member according to an embodiment. 図2は、実施形態に係る光学制御部材の基材表面に対して、法線方向から太陽光が入射したときの様子を示す断面図。FIG. 2 is a cross-sectional view showing a state when sunlight is incident from the normal direction on the substrate surface of the optical control member according to the embodiment. 図3は、実施形態に係る光学制御部材の基材表面に対して、斜め方向から太陽光が入射したときの様子を示す断面図。FIG. 3 is a cross-sectional view illustrating a state when sunlight is incident from an oblique direction with respect to the substrate surface of the optical control member according to the embodiment. 図4は、実施形態に係る光学制御部材の基材表面に対して、法線方向から太陽光が入射したときの、室内側からの観測角度に応じた透過率を相対的に表したグラフを示した図。FIG. 4 is a graph that relatively represents the transmittance according to the observation angle from the indoor side when sunlight is incident from the normal direction with respect to the substrate surface of the optical control member according to the embodiment. The figure shown. 図5は、実施形態に係る光学制御部材の基材表面に対して、斜め方向から太陽光が入射したときの、室内側からの観測角度に応じた透過率を相対的に表したグラフを示した図。FIG. 5: shows the graph which relatively represented the transmittance | permeability according to the observation angle from the indoor side when sunlight injects from the diagonal direction with respect to the base-material surface of the optical control member which concerns on embodiment. Figure. 図6は、実施形態に係る光学制御部材の変形例の断面図。FIG. 6 is a cross-sectional view of a modification of the optical control member according to the embodiment. 図7は、実施形態に係る光学制御部材の変形例の断面図。FIG. 7 is a cross-sectional view of a modification of the optical control member according to the embodiment. 図8は、実施形態に係る光学制御部材の変形例の断面図。FIG. 8 is a cross-sectional view of a modification of the optical control member according to the embodiment. 図9は、実施形態に係る光学制御部材の変形例の断面図。FIG. 9 is a cross-sectional view of a modification of the optical control member according to the embodiment. 図10は、実施形態に係る光学制御部材の変形例の断面図。FIG. 10 is a cross-sectional view of a modified example of the optical control member according to the embodiment. 図11は、光学制御層の異なるパターンを例示した平面図。FIG. 11 is a plan view illustrating different patterns of the optical control layer. 図12は、光学制御層の異なるパターンを例示した平面図。FIG. 12 is a plan view illustrating different patterns of the optical control layer. 図13は、光学制御層の異なるパターンを例示した平面図。FIG. 13 is a plan view illustrating different patterns of the optical control layer.

以下、図面を参照しながら、本発明の実施形態に係る光学制御部材について詳細に説明する。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更であって容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。   Hereinafter, an optical control member according to an embodiment of the present invention will be described in detail with reference to the drawings. It should be noted that the disclosure is merely an example, and those skilled in the art can appropriately modify the gist of the invention and can be easily conceived, and are naturally included in the scope of the present invention. In addition, the drawings may be schematically represented with respect to the width, thickness, shape, and the like of each part in comparison with actual aspects for the sake of clarity of explanation, but are merely examples, and the interpretation of the present invention is not limited. It is not limited. In addition, in the present specification and each drawing, elements similar to those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description may be omitted as appropriate.

(第1の実施形態)
図1は、第1の実施形態に係る光学制御部材の断面図である。図1に示すように、光学制御部材10は、光透過性を有するシート状の基材20を備えている。基材20としては、例えば、厚さ1mmのポリエチレンテレフタレート(PET)製の透明な樹脂シートを用いることができる。基材20は、ガラス、ポリカーボネイトまたはアクリルを含む樹脂部材群から選ばれる材料で形成されていてもよい。基材20は、無色または着色されている板材もしくはフィルム材である。
(First embodiment)
FIG. 1 is a cross-sectional view of the optical control member according to the first embodiment. As shown in FIG. 1, the optical control member 10 includes a sheet-like base material 20 having light transmittance. As the base material 20, for example, a transparent resin sheet made of polyethylene terephthalate (PET) having a thickness of 1 mm can be used. The base material 20 may be formed of a material selected from a resin member group including glass, polycarbonate, or acrylic. The substrate 20 is a plate or film material that is colorless or colored.

基材20は、互いに対向する平坦な矩形状の第1面(室内側に向いた面)20aおよび第2面(室外側に向いた面)20bを有している。光学制御部材10は、第1面20aの全面に設けられた光学制御層30と、光学制御層30と所定の間隔を置いて対向配置した第2面20bの全面に設けられたフォトクロミック色素を含む制御層40と、を有している。   The base material 20 has a flat rectangular first surface (a surface facing the indoor side) 20a and a second surface (a surface facing the outdoor side) 20b facing each other. The optical control member 10 includes an optical control layer 30 provided on the entire surface of the first surface 20a, and a photochromic dye provided on the entire surface of the second surface 20b disposed to face the optical control layer 30 at a predetermined interval. And a control layer 40.

光学制御層30は、交互に並設された複数の帯状あるいはストライプ状の第1領域32と複数の帯状あるいはストライプ状の第2領域34とを有し、各第1領域32は第2領域34よりも光を透過する特性を有している。第1領域32および第2領域34は、互いに平行に延び、また、第1面20aの一端縁(ここでは、上端縁)から他端縁(ここでは、下端縁)まで直線的に延在している。すなわち、第1領域32および第2領域34は、第1面20aの全域に渡り均質で繰り返し性を持って設けられている。   The optical control layer 30 includes a plurality of strip-shaped or stripe-shaped first regions 32 and a plurality of strip-shaped or strip-shaped second regions 34 that are alternately arranged in parallel, and each first region 32 is a second region 34. It has a characteristic of transmitting light more than that. The first region 32 and the second region 34 extend in parallel with each other, and extend linearly from one end edge (here, the upper end edge) of the first surface 20a to the other end edge (here, the lower end edge). ing. In other words, the first region 32 and the second region 34 are provided with uniformity and repeatability over the entire area of the first surface 20a.

各第2領域34は、主に光を吸収する遮光層として形成されている。本実施形態では、第2領域34は、太陽光の紫外線から赤外線に至る光線を吸収する材料、例えば、カーボンブラックインクで形成している。各第2領域34は、光を完全に遮光できるように、(即ち、光の透過率が0%となるように)カーボンブラックの含有量と膜厚が調整されている。第1領域は、各第1領域32は、光透過層として形成されている。本実施形態では、第1領域32は、帯状の開口パターンであり、基材20の第1面20aにより形成されている。   Each second region 34 is formed as a light shielding layer that mainly absorbs light. In the present embodiment, the second region 34 is formed of a material that absorbs light from ultraviolet rays of sunlight to infrared rays, for example, carbon black ink. The content and film thickness of carbon black are adjusted in each second region 34 so that light can be completely blocked (that is, the light transmittance is 0%). In the first region, each first region 32 is formed as a light transmission layer. In the present embodiment, the first region 32 is a band-shaped opening pattern, and is formed by the first surface 20 a of the substrate 20.

本実施形態において、第1領域32の幅(帯の幅方向の幅)は、1mmに形成され、同様に第2領域34の幅(帯の幅方向の幅)も、1mmに形成されている。つまり、第1領域32と第2領域34とを交互に並設する方向(帯の短手方向)に沿った、複数の第1領域32の並設ピッチは、1mmに設定されている。なお、光学制御層30は、複数の層を積層して形成されていてもよい。   In the present embodiment, the width of the first region 32 (the width in the width direction of the band) is formed to 1 mm, and the width of the second region 34 (the width in the width direction of the band) is also formed to 1 mm. . That is, the juxtaposition pitch of the plurality of first regions 32 along the direction in which the first regions 32 and the second regions 34 are alternately juxtaposed (the width direction of the band) is set to 1 mm. The optical control layer 30 may be formed by stacking a plurality of layers.

制御層40は、通常は光透過性を有し、太陽光が照射されると着色し光を吸収する光学的特性を有している。制御層40は、太陽光が照射されて着色した際に、光を完全に遮光(吸収)できるように、(即ち、光の透過率がほぼ0%となるように)フォトクロミック色素の含有量と膜厚が調整されている。また、制御層40は、コンクリートまたは白い壁等から反射した太陽光が入射してきた場合、視認性を妨げない程度の着色度合となるように、フォトクロミック色素の含有量と膜厚が調整されている。制御層40は、異なる色に着色する複数種類のフォトクロミック色素を混ぜて使用し、紫外線等の短波長の光が照射された場合、黒色に着色するように調整されている。フォトクロミック色素は、例えば、スピロラン系化合物やスピロオキサジン系化合物等、公知のものを使用することができる。なお、制御層40は、それぞれフォトクロミック色素を含有する複数の層を積層して構成してもよい。また、光学制御部材10の少なくとも片面に保護層や粘着層を設けてもよい。   The control layer 40 is usually light transmissive and has an optical property of being colored and absorbing light when irradiated with sunlight. When the control layer 40 is colored by being irradiated with sunlight, the control layer 40 is capable of completely blocking (absorbing) light (that is, so that the light transmittance is approximately 0%) The film thickness is adjusted. Further, in the control layer 40, when sunlight reflected from concrete or a white wall is incident, the content and film thickness of the photochromic dye are adjusted so that the degree of coloring does not hinder the visibility. . The control layer 40 is mixed and used with a plurality of types of photochromic dyes that are colored in different colors, and is adjusted to be colored black when irradiated with light having a short wavelength such as ultraviolet rays. As the photochromic dye, for example, known ones such as spirolane compounds and spirooxazine compounds can be used. The control layer 40 may be configured by laminating a plurality of layers each containing a photochromic dye. Further, a protective layer or an adhesive layer may be provided on at least one surface of the optical control member 10.

続いて、光学制御部材10の第1面20a側から太陽光が入射した場合の、制御層40の変化を、図2および図3を参照しながら説明する。図2は、光学制御部材10の基材20の第1面20aに対して、法線方向(90度の方向)から太陽光が入射したときの様子を示す断面図であり、図3は、光学制御部材10の基材20の第1面20aに対して、斜め方向(45度の方向)から太陽光が入射したときの様子を概略的に示す断面図である。図2および図3において、矢印の方向が太陽光の入射方向である。   Next, a change in the control layer 40 when sunlight enters from the first surface 20a side of the optical control member 10 will be described with reference to FIGS. FIG. 2 is a cross-sectional view showing a state when sunlight is incident on the first surface 20a of the base material 20 of the optical control member 10 from the normal direction (direction of 90 degrees), and FIG. 4 is a cross-sectional view schematically showing a state in which sunlight is incident on the first surface 20a of the base member 20 of the optical control member 10 from an oblique direction (a direction of 45 degrees). FIG. 2 and 3, the direction of the arrow is the incident direction of sunlight.

図2に示すように、太陽光が基材20の第1面20aに対して垂直に入射する場合、太陽光の一部は、光学制御層30の第2領域34により遮光され、他の一部は、第1領域(開口部)32を通って基材20に入射し、更に、基材20を透過して制御層40に入射する。これにより、制御層40の内、それぞれ光学制御層30の第1領域32と対向する領域は、太陽光が照射されて着色し、複数の着色領域40aを形成する。各着色領域40aは、入射する太陽光を吸収し遮光する。また、制御層40の内、それぞれ光学制御層30の第2領域34と対向する領域は、太陽光が照射されず、着色することなく非着色領域40bを形成する。   As shown in FIG. 2, when sunlight enters perpendicularly to the first surface 20 a of the substrate 20, a part of the sunlight is shielded by the second region 34 of the optical control layer 30 and the other one is The part enters the base material 20 through the first region (opening) 32, and further passes through the base material 20 and enters the control layer 40. Thereby, each area | region which opposes the 1st area | region 32 of the optical control layer 30 among the control layers 40 is irradiated with sunlight, and is colored, and forms the several colored area | region 40a. Each colored region 40a absorbs and blocks incident sunlight. Moreover, each area | region which opposes the 2nd area | region 34 of the optical control layer 30 among the control layers 40 is not irradiated with sunlight, and forms the non-colored area | region 40b, without coloring.

従って、基材20の第2面20b側から垂直に光学制御部材10を観察した場合、第1面20a側の遮光層(第2領域34)と第2面20b側に形成された制御層40の非着色領域40bとが、ほぼ重なって見え、かつ、第1面20a側に形成された開口部(第1領域32)と第2面20b側に形成された制御層40の着色領域40aとが、ほぼ重なって見える。基材20の第1面20a側または第2面20b側から垂直に光学制御部材10を観察した場合、第2領域34(遮光層)と制御層40の着色領域40aとが、帯状に交互にならんだパターンが観察される。すなわち、太陽光は光学制御部材10の全面で遮光され、光学制御部材10の全面が黒く見える。これにより、光学制御部材10の背景側の景色を観察することができない。   Therefore, when the optical control member 10 is observed perpendicularly from the second surface 20b side of the substrate 20, the light shielding layer (second region 34) on the first surface 20a side and the control layer 40 formed on the second surface 20b side. And the non-colored region 40b of the control layer 40 formed on the second surface 20b side and the opening (first region 32) formed on the first surface 20a side. However, they appear to overlap. When the optical control member 10 is observed perpendicularly from the first surface 20a side or the second surface 20b side of the base material 20, the second regions 34 (light-shielding layers) and the colored regions 40a of the control layer 40 are alternately formed in a strip shape. A random pattern is observed. That is, sunlight is shielded by the entire surface of the optical control member 10, and the entire surface of the optical control member 10 appears black. Thereby, the scenery of the background side of the optical control member 10 cannot be observed.

一方、基材の第1面側または第2面側から斜めに光学制御部材10を観察した場合、第1面20a側の遮光層(第2領域34)と第2面20b側に形成された制御層40の着色領域40aとが、ほぼ重なって見え、かつ、第1面20a側に形成された開口部(第1領域32)と第2面20b側の非着色領域40bとが、ほぼ重なって見える。従って、基材20の第2面20b側から斜めに光学制御部材10を観察した場合、非着色領域40b、基材20、第1領域(開口部)32を通して、光学制御部材10の背景側の景色を視認することができる。すなわち、基材20の第1面20aに対して斜めに入射する光を観察することができる。この観察できる光は、フォトクロミック色素の化学構造を変化させない波長領域の光である。このように、光学制御部材10は、遮光状態においても、ある方向の視認性を確保することができる。   On the other hand, when the optical control member 10 is observed obliquely from the first surface side or the second surface side of the base material, the light shielding layer (second region 34) on the first surface 20a side and the second surface 20b side are formed. The colored region 40a of the control layer 40 appears to substantially overlap, and the opening (first region 32) formed on the first surface 20a side and the non-colored region 40b on the second surface 20b side substantially overlap. Looks. Therefore, when the optical control member 10 is observed obliquely from the second surface 20b side of the substrate 20, the background side of the optical control member 10 passes through the non-colored region 40b, the substrate 20, and the first region (opening) 32. You can see the scenery. That is, light incident obliquely on the first surface 20a of the substrate 20 can be observed. This observable light is light in a wavelength region that does not change the chemical structure of the photochromic dye. Thus, the optical control member 10 can ensure visibility in a certain direction even in a light-shielded state.

図3に示している通り、太陽光が基材20の第1面20aに対して斜めに(例えば、法線方向に対して45度傾斜した方向)入射する場合、太陽光の一部は、光学制御層30の第2領域34により遮光され、他の一部は、第1領域(開口部)32を斜めに通って基材20に入射し、更に、基材20を透過して制御層40に入射する。これにより、制御層40の内、それぞれ光学制御層30の第2領域(遮光層)34とほぼ垂直に対向する領域は、太陽光が照射されて着色し、複数の着色領域40aを形成する。各着色領域40aは、入射する太陽光を吸収し遮光する。また、制御層40の内、それぞれ光学制御層30の第1領域(開口部)32と対向する領域は、太陽光が照射されず、着色することなく非着色領域40bを形成する。   As shown in FIG. 3, when sunlight is incident on the first surface 20 a of the substrate 20 obliquely (for example, a direction inclined by 45 degrees with respect to the normal direction), a part of the sunlight is The second region 34 of the optical control layer 30 is shielded from light, and another part of the optical control layer 30 enters the substrate 20 obliquely through the first region (opening) 32 and further passes through the substrate 20 to be transmitted through the control layer. 40 is incident. As a result, areas of the control layer 40 that are substantially perpendicular to the second area (light-shielding layer) 34 of the optical control layer 30 are colored by being irradiated with sunlight, thereby forming a plurality of colored areas 40a. Each colored region 40a absorbs and blocks incident sunlight. Moreover, the area | region which opposes the 1st area | region (opening part) 32 of the optical control layer 30 among the control layers 40 is not irradiated with sunlight, and forms the non-colored area | region 40b, without coloring.

従って、基材20の第2面20b側から斜めに光学制御部材10を観察した場合、第1面20a側の遮光層(第2領域34)と第2面20b側に形成された制御層40の非着色領域40bとが、ほぼ重なって見え、かつ、第1面20a側に形成された開口部(第1領域32)と第2面20b側に形成された制御層40の着色領域40aとが、ほぼ重なって見える。これにより、基材20の第2面20側から斜めに光学制御部材10を観察した場合、第2領域(遮光層)34と着色領域40aとが、帯状に交互にならんだパターンが観察される。すなわち、太陽光は光学制御部材10の全面で遮光され、光学制御部材10の全面が黒く見える。これにより、光学制御部材10の背景側の景色を観察することができない。   Therefore, when the optical control member 10 is observed obliquely from the second surface 20b side of the substrate 20, the light shielding layer (second region 34) on the first surface 20a side and the control layer 40 formed on the second surface 20b side. And the non-colored region 40b of the control layer 40 formed on the second surface 20b side and the opening (first region 32) formed on the first surface 20a side. However, they appear to overlap. Thereby, when the optical control member 10 is observed obliquely from the second surface 20 side of the substrate 20, a pattern in which the second regions (light-shielding layers) 34 and the colored regions 40a are alternately arranged in a band shape is observed. . That is, sunlight is shielded by the entire surface of the optical control member 10, and the entire surface of the optical control member 10 appears black. Thereby, the scenery of the background side of the optical control member 10 cannot be observed.

一方、基材20の第1面20a側または第2面20b側から垂直に光学制御部材10を観察した場合、第1面20a側の遮光層(第2領域34)と第2面20b側に形成された着色領域40aとが、ほぼ重なって見え、かつ、第1面20a側に形成された開口部(第1領域32)と第2面20b側に形成された非着色領域40bとが、ほぼ重なって見える。従って、基材20の第2面20b側から垂直に光学制御部材10を観察した場合、非着色領域40b、基材20、第1領域(開口部)32を通して、光学制御部材10の背景側の景色を視認することができる。すなわち、基材20の第1面20aに対して垂直に入射する光を観察することができる。この観察できる光は、フォトクロミック色素の化学構造を変化させない波長領域の光である。このように、光学制御部材10は、遮光状態においても、ある方向の視認性を確保することができる。   On the other hand, when the optical control member 10 is observed vertically from the first surface 20a side or the second surface 20b side of the substrate 20, the light shielding layer (second region 34) on the first surface 20a side and the second surface 20b side are arranged. The formed colored region 40a appears to substantially overlap, and the opening (first region 32) formed on the first surface 20a side and the non-colored region 40b formed on the second surface 20b side, It looks almost overlapping. Accordingly, when the optical control member 10 is observed perpendicularly from the second surface 20b side of the base material 20, the background side of the optical control member 10 passes through the non-colored region 40b, the base material 20, and the first region (opening) 32. You can see the scenery. That is, light incident perpendicularly to the first surface 20a of the substrate 20 can be observed. This observable light is light in a wavelength region that does not change the chemical structure of the photochromic dye. Thus, the optical control member 10 can ensure visibility in a certain direction even in a light-shielded state.

すなわち、光学制御部材10によれば、太陽光の紫外線成分を活用して、太陽光がどの角度から照射されたとしても太陽光を全て遮光し、かつ、太陽光の入射方向と異なる観測角度では景色を見通すことが可能になる。   In other words, according to the optical control member 10, the ultraviolet component of sunlight is utilized to block all sunlight regardless of the angle from which sunlight is irradiated, and at an observation angle different from the incident direction of sunlight. It becomes possible to see through the scenery.

上で説明した観察方向と景色の視認性との関係を、グラフを参照しながら更に説明する。   The relationship between the observation direction described above and the visibility of the scenery will be further described with reference to a graph.

図4および図5は、観測角度(観察方向)と透過率の関係を示すグラフであり、室内側(第2面側)からみた場合の景色の視認性を表している。グラフの縦軸は、光学制御部材10を透過する光の最大透過率を100とした場合の相対透過率である。グラフの横軸は、観測角度であり、0度または180度の観測角度は、観察方向が光学制御部材10の第2面20bと平行な方向であることを示し、観測角度90度は、観察方向が光学制御部材10の第2面20bに対して垂直方向であることを示している。   4 and 5 are graphs showing the relationship between the observation angle (observation direction) and the transmittance, and represent the visibility of the scenery when viewed from the indoor side (second surface side). The vertical axis of the graph represents the relative transmittance when the maximum transmittance of light transmitted through the optical control member 10 is 100. The horizontal axis of the graph is the observation angle. The observation angle of 0 degree or 180 degrees indicates that the observation direction is parallel to the second surface 20b of the optical control member 10, and the observation angle of 90 degrees is the observation angle. The direction is perpendicular to the second surface 20 b of the optical control member 10.

図4は、太陽光が基材20の第1面20aに対して垂直に入射する場合の観測角度と透過率との関係を示している。上で説明したとおり、太陽光が基材20の第1面20aに対して垂直に入射する場合、基材20の第2面20b側から垂直方向に光学制御部材10を観察すると、相対透過率はゼロとなり、光学制御部材10の背景側の景色を観察することができないことが分かる。基材20の第2面20b側から斜め方向に光学制御部材10を観察すると、光学制御部材10の背景側の景色を観察することができる。光学制御部材10に対して並行な方向(0、180度)では透過率が急激に零に変化しているが、これは光学制御部材10のフレネル反射(屈折率の異なる界面では低角度で入射した光は反射されてしまう)の効果によるものである。基本的には実施例の設計では、観察方向を基材20の第2面20bと平行な方向(0度)から垂直方向(90度)へ変えるに従い、入射光の相対透過率が100から0へ変化する。また、観察方向を基材20の第2面20bに垂直な方向(90度)から平行な方向(180度)へ変えるに従い、入射光の相対透過率が0から100へ変化する。   FIG. 4 shows the relationship between the observation angle and the transmittance when sunlight enters perpendicularly to the first surface 20a of the substrate 20. As described above, when sunlight is incident on the first surface 20a of the substrate 20 perpendicularly, when the optical control member 10 is observed in the vertical direction from the second surface 20b side of the substrate 20, the relative transmittance is obtained. Becomes zero, and it is understood that the scenery on the background side of the optical control member 10 cannot be observed. When the optical control member 10 is observed in an oblique direction from the second surface 20b side of the base material 20, a background on the background side of the optical control member 10 can be observed. In the direction parallel to the optical control member 10 (0, 180 degrees), the transmittance suddenly changes to zero, but this is caused by Fresnel reflection of the optical control member 10 (incident at a low angle at the interface with different refractive indexes). The light is reflected). Basically, in the design of the embodiment, as the observation direction is changed from the direction parallel to the second surface 20b of the substrate 20 (0 degree) to the vertical direction (90 degrees), the relative transmittance of incident light is 100 to 0. To change. Further, as the observation direction is changed from the direction perpendicular to the second surface 20b of the substrate 20 (90 degrees) to the parallel direction (180 degrees), the relative transmittance of incident light changes from 0 to 100.

図5は、太陽光が基材20の第1面20aに対して斜め方向(45度)に入射する場合の観測角度と相対透過率との関係を示している。上で説明したとおり、太陽光が基材20の第1面20aに対して斜め方向に入射する場合、基材20の第2面20b側から垂直方向に光学制御部材10を観察すると、光学制御部材10の背景側の景色を観察することができ、基材20の第2面20b側から斜め方向に光学制御部材10を観察すると、光学制御部材10の背景側の景色を観察することができない。図5に示すように、観測方向を基材20の第2面20bと平行な方向(0度)から垂直方向(90度)へ変えるに従い、入射光の相対透過率が0から100へ変化する。また、観測方向を基材20の第2面20bに垂直な方向(90度)から平行な方向(180度)へ変えるに従い、入射光の相対透過率が100から0へ変化する。   FIG. 5 shows the relationship between the observation angle and the relative transmittance when sunlight enters the first surface 20a of the substrate 20 in an oblique direction (45 degrees). As described above, when sunlight is incident on the first surface 20a of the base material 20 in an oblique direction, when the optical control member 10 is observed in the vertical direction from the second surface 20b side of the base material 20, optical control is performed. The background on the background side of the member 10 can be observed, and when the optical control member 10 is observed obliquely from the second surface 20b side of the base member 20, the background on the optical control member 10 cannot be observed. . As shown in FIG. 5, the relative transmittance of incident light changes from 0 to 100 as the observation direction is changed from the direction parallel to the second surface 20 b of the substrate 20 (0 degree) to the vertical direction (90 degrees). . Further, as the observation direction is changed from the direction perpendicular to the second surface 20b of the substrate 20 (90 degrees) to the parallel direction (180 degrees), the relative transmittance of incident light changes from 100 to 0.

なお、光学制御部材10の厚さと光学制御層30のパターンピッチを適時変えることによって、太陽光に対する透視可能角度を変えることができる。たとえば、光学制御層30のパターン幅を変えずに光学制御部材10の厚さを2倍にするか、あるいは、光学制御部材10の厚さを変えずに光学制御部材の第1領域および第2領域を0.5mmにすることにより、太陽光の入射角度に対してわずかに変位した角度(45度程度)で相対透過率を最大とすることができる。   In addition, by changing the thickness of the optical control member 10 and the pattern pitch of the optical control layer 30 as appropriate, the seeable angle with respect to sunlight can be changed. For example, the thickness of the optical control member 10 is doubled without changing the pattern width of the optical control layer 30, or the first region and the second region of the optical control member 10 are not changed without changing the thickness of the optical control member 10. By setting the area to 0.5 mm, the relative transmittance can be maximized at an angle slightly displaced from the incident angle of sunlight (about 45 degrees).

なお、図1に示すように、光学制御部材10により太陽光を遮光する必要がない場合、例えば、夜間のように太陽光が照射されていない場合、制御層40は、着色することなく全域が非着色領域となっている。そのため、光学制御部材10の第2面20b側から、制御層40、基材20、第2領域(開口部)32を通して、全方向の視認性を確保することができる。   In addition, as shown in FIG. 1, when it is not necessary to block sunlight with the optical control member 10, for example, when sunlight is not irradiated like nighttime, the control layer 40 does not color, but the whole area | region is colored. It is a non-colored area. Therefore, visibility in all directions can be ensured from the second surface 20 b side of the optical control member 10 through the control layer 40, the base material 20, and the second region (opening) 32.

以下に実施形態に係る光学制御部材10を使用した場合に奏する効果または利点について説明する。
実施形態に係る光学制御部材10によれば、基材20の第2面全面にフォトクロミック色素を有する制御層40が設けられ、第1面20a上に形成された光学制御層30で遮られなかった太陽光は、制御層40の着色領域によって遮光される。つまり、太陽光は、入射角度にかかわらず、常に光学制御部材10によって遮光される。換言すると、実施形態に係る光学制御部材10は、制御層40のうち着色される着色領域(太陽光を遮光する領域)が、太陽高度の変化に追従して自動的に変位する。一方で、上に説明したとおり、太陽光の入射角度にかかわらず、制御層40非着色領域と光学制御層30の開口部(第1領域32)とを通して、光学制御部材10の背景側の景色を視認可能である。従って、実施形態に係る光学制御部材10は、太陽高度の時間変化に関係なく、一定の視野を確保しながら、太陽光を遮光および遮断することができる。
Hereinafter, effects or advantages obtained when the optical control member 10 according to the embodiment is used will be described.
According to the optical control member 10 according to the embodiment, the control layer 40 having the photochromic dye is provided on the entire second surface of the substrate 20 and is not blocked by the optical control layer 30 formed on the first surface 20a. Sunlight is blocked by the colored region of the control layer 40. That is, sunlight is always shielded by the optical control member 10 regardless of the incident angle. In other words, in the optical control member 10 according to the embodiment, the colored region (region that blocks sunlight) of the control layer 40 is automatically displaced following the change in solar altitude. On the other hand, as described above, the scenery on the background side of the optical control member 10 passes through the non-colored region of the control layer 40 and the opening (first region 32) of the optical control layer 30 regardless of the incident angle of sunlight. Is visible. Therefore, the optical control member 10 according to the embodiment can block and block sunlight while ensuring a constant field of view regardless of changes in solar altitude with time.

また、光学制御部材10の制御層40は、基材20の第2面20b全面に一様に形成し、パターン状に形成しない。従って、基材20の両面に遮光層をパターニングする従来の光学制御部材と異なり、基材20の第1面20aに形成した光学制御層30と第2面20bに形成した制御層40との位置合わせが不要となる。光学制御層30は、例えば、スクリーン印刷などで容易に形成することができる。   In addition, the control layer 40 of the optical control member 10 is uniformly formed on the entire second surface 20b of the substrate 20 and is not formed in a pattern. Therefore, unlike the conventional optical control member that patterns the light shielding layers on both surfaces of the substrate 20, the positions of the optical control layer 30 formed on the first surface 20a of the substrate 20 and the control layer 40 formed on the second surface 20b. Matching becomes unnecessary. The optical control layer 30 can be easily formed by, for example, screen printing.

太陽高度の変化に自動的に追従して遮光する機能を有する光学制御部材は、建築用の窓のみならず、時間とともに場所を移動する自動車、船または飛行機等の後方側または側面側ウィンドウに使用することによって、視野を確保しながら、最大限の省エネルギー効果を得ることが可能である。また、太陽光がない夜間では、可視光は、基材の第1面に設けられた遮光層に遮られるのみであり、基材の第2面に対してどの方向から観察しても景色を視認可能である。   Optical control members with the function of automatically following the changes in the sun's altitude and blocking light are used not only for architectural windows but also for rear or side windows of automobiles, ships or airplanes that move from place to place over time. By doing so, it is possible to obtain the maximum energy saving effect while securing the field of view. Also, at night when there is no sunlight, visible light is only blocked by the light-shielding layer provided on the first surface of the base material. Visible.

次に、他の実施形態あるいは変形例に係る光学制御部材について説明する。以下に述べる他の実施形態あるいは変形例において、前述した第1の実施形態と同一の部分には、同一の参照符号を付してその詳細な説明を省略し、異なる構成を中心に説明する。   Next, optical control members according to other embodiments or modifications will be described. In other embodiments or modifications described below, the same reference numerals are given to the same portions as those of the first embodiment described above, and detailed description thereof will be omitted, and different configurations will be mainly described.

前述した第1の実施形態に係る光学制御部材10では、光学制御層30とフォトクロミック色素を含む制御層40は、共通の基材の両面に形成されているが、これに限定されることはない。   In the optical control member 10 according to the first embodiment described above, the optical control layer 30 and the control layer 40 including the photochromic dye are formed on both surfaces of a common base material, but the present invention is not limited to this. .

(第2の実施形態)
図6は、第2の実施形態に係る光学制御部材を示す断面図である。図6に示すように、本実施形態によれば、光学制御部材10は、2つの基材20、50を備え、光学制御層30および制御層40は、別々の基材に形成されている。
(Second Embodiment)
FIG. 6 is a cross-sectional view showing an optical control member according to the second embodiment. As shown in FIG. 6, according to this embodiment, the optical control member 10 includes two base materials 20 and 50, and the optical control layer 30 and the control layer 40 are formed on separate base materials.

光透過性を有する基材20は、例えば、板状に形成され、隙間を置いて互いに対向する第1面20aおよび第2面20bを有している。同様に、光透過性を有する基材50は、例えば、板状に形成され、隙間を置いて互いに対向する第1面50aおよび第2面50bを有している。基材50は、その第1面50aが基材20の第2面20bと所定の隙間を置いて平行に対向するように配設されている。基材20、50は、それぞれ可視光およびフォトクロミック色素の分子構造を変化させる短波長の光を透過する。   The light-transmitting substrate 20 is formed in, for example, a plate shape, and has a first surface 20a and a second surface 20b that face each other with a gap. Similarly, the light-transmitting substrate 50 is formed in, for example, a plate shape, and has a first surface 50a and a second surface 50b that face each other with a gap. The base material 50 is disposed such that the first surface 50a faces the second surface 20b of the base material 20 in parallel with a predetermined gap. The base materials 20 and 50 transmit visible light and light having a short wavelength that changes the molecular structure of the photochromic dye, respectively.

基材20の第2面20b上に第1領域32および第2領域34を有する光学制御層30が形成されている。フォトクロミック色素を含む制御層40は、基材50の第1面50aの全面に亘って形成され、光学制御層30と隙間を置いて対向している。   An optical control layer 30 having a first region 32 and a second region 34 is formed on the second surface 20 b of the substrate 20. The control layer 40 containing a photochromic dye is formed over the entire first surface 50a of the substrate 50 and faces the optical control layer 30 with a gap.

このように構成された光学制御部材10の場合も、光学制御層30とフォトクロミック色素を含む制御層40との距離およびそれぞれの層の膜厚、光学制御層30が備える第1領域32および第2領域34の幅ならびにピッチ等を適宜調節することによって、第1の実施形態に係る光学制御部材と同等の作用効果が得られる。   Also in the case of the optical control member 10 configured as described above, the distance between the optical control layer 30 and the control layer 40 containing the photochromic dye, the thickness of each layer, the first region 32 and the second region included in the optical control layer 30. By appropriately adjusting the width, pitch, and the like of the region 34, the same effects as those of the optical control member according to the first embodiment can be obtained.

(変形例)
図7、図8、図9は、第1、第2、第3の変形例に係る光学制御部材をそれぞれ示す断面図である。
図7に示すように、第1の変形例によれば、光学制御層30は、基材20の第1面20aに設けられ、フォトクロミック色素を含む制御層40は、基材50の第2面20b上に設けられている。
図8に示すように、第2の変形例によれば、光学制御層30は、基材20の第1面20aに設けられ、フォトクロミック色素を含む制御層40は、基材50の第1面20a上に設けられている。
(Modification)
7, 8, and 9 are cross-sectional views showing optical control members according to first, second, and third modifications, respectively.
As shown in FIG. 7, according to the first modification, the optical control layer 30 is provided on the first surface 20 a of the substrate 20, and the control layer 40 including the photochromic dye is formed on the second surface of the substrate 50. 20b is provided.
As shown in FIG. 8, according to the second modification, the optical control layer 30 is provided on the first surface 20 a of the substrate 20, and the control layer 40 including the photochromic dye is formed on the first surface of the substrate 50. 20a is provided.

図9に示すように、第3の変形例によれば、光学制御層30は、基材20の第2面20bに設けられ、フォトクロミック色素を含む制御層40は、基材50の第2面20b上に設けられている。   As shown in FIG. 9, according to the third modification, the optical control layer 30 is provided on the second surface 20 b of the substrate 20, and the control layer 40 including the photochromic dye is formed on the second surface of the substrate 50. 20b is provided.

いずれの変形例においても、光学制御層30と制御層40との距離およびそれぞれの層の膜厚、光学制御層30が備える第1領域32および第2領域34の幅ならびにピッチ等を適宜調節することによって、第1の実施形態に係る光学制御部材と同等の作用効果が得られる。   In any of the modifications, the distance between the optical control layer 30 and the control layer 40, the thickness of each layer, the widths and pitches of the first region 32 and the second region 34 included in the optical control layer 30, and the like are appropriately adjusted. Thus, the same effect as that of the optical control member according to the first embodiment can be obtained.

(第3の実施形態)
図10は、第3の実施形態に係る光学制御部材を示す断面図である。フォトクロミック色素を含む制御層40は、必ずしも透明な基材20の表面に形成されている必要はない。本実施形態によれば、光学制御部材10は、2つの基材20、50を備えている。光透過性を有する基材20は、例えば、板状に形成され、隙間を置いて互いに対向する第1面20aおよび第2面20bを有している。同様に、光透過性を有する基材50は、例えば、板状に形成され、隙間を置いて互いに対向する第1面50aおよび第2面50bを有している。基材50は、その第1面50aが基材20の第2面20bと所定の隙間を置いて平行に対向するように配設されている。基材20、50は、それぞれ可視光およびフォトクロミック色素の分子構造を変化させる短波長の光を透過する。
(Third embodiment)
FIG. 10 is a cross-sectional view showing an optical control member according to the third embodiment. The control layer 40 containing a photochromic dye need not necessarily be formed on the surface of the transparent substrate 20. According to this embodiment, the optical control member 10 includes two base materials 20 and 50. The light-transmitting substrate 20 is formed in, for example, a plate shape, and has a first surface 20a and a second surface 20b that face each other with a gap. Similarly, the light-transmitting substrate 50 is formed in, for example, a plate shape, and has a first surface 50a and a second surface 50b that face each other with a gap. The base material 50 is disposed such that the first surface 50a faces the second surface 20b of the base material 20 in parallel with a predetermined gap. The base materials 20 and 50 transmit visible light and light having a short wavelength that changes the molecular structure of the photochromic dye, respectively.

基材20の第2面20b上に第1領域32および第2領域34を有する光学制御層30が形成されている。基材50は、フォトクロミック色素を含み、制御層40を構成している。その場合、例えば、透明樹脂にフォトクロミック色素を加えて混練し、基材50を形成する。   An optical control layer 30 having a first region 32 and a second region 34 is formed on the second surface 20 b of the substrate 20. The base material 50 includes a photochromic dye and constitutes the control layer 40. In that case, for example, the photochromic dye is added to the transparent resin and kneaded to form the base material 50.

基材50がフォトクロミック色素を含んでいる光学制御部材10においても、光学制御層30とフォトクロミック色素を含む基材50との距離およびそれぞれの層の厚さ、光学制御層30が備える第1領域32および第2領域34の幅ならびにピッチ等を適宜調節することによって、第1の実施形態に係る光学制御部材と同等の作用効果が得られる。   Also in the optical control member 10 in which the base material 50 contains a photochromic dye, the distance between the optical control layer 30 and the base material 50 containing the photochromic dye, the thickness of each layer, and the first region 32 provided in the optical control layer 30. By appropriately adjusting the width and pitch of the second region 34 and the like, the same effects as those of the optical control member according to the first embodiment can be obtained.

本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

上記の実施形態に係る光学制御部材10において、光学制御層30が備える第1領域32および第2領域34のパターンは帯状であった。しかしながら、光学制御層30が備える第1領域32および第2領域34のパターンは、必ずしも帯状に形成されている必要はない。例えば、図11〜13に示すように、光学制御層30はドット状のパターンであってもよい。   In the optical control member 10 according to the above-described embodiment, the pattern of the first region 32 and the second region 34 included in the optical control layer 30 has a band shape. However, the pattern of the 1st field 32 and the 2nd field 34 with which optical control layer 30 is provided does not necessarily need to be formed in strip shape. For example, as shown in FIGS. 11 to 13, the optical control layer 30 may be a dot-like pattern.

図11および図12は、紙面の左右(X軸)方向と上下(Y軸)方向の2方向に遮光性を発揮するパターン例を示している。この場合、X、Y軸に対して45度傾いた方向は、X、Y軸よりも遮光性が弱まる。図11に示すパターンと図12に示すパターンとでは、第1領域32の開口率が異なっており、光学制御部材10全体の透過率と45度方向の遮光性能の設定を調整している。   FIG. 11 and FIG. 12 show examples of patterns that exhibit light shielding properties in two directions, the left and right (X axis) direction and the up and down (Y axis) direction of the paper. In this case, the direction inclined by 45 degrees with respect to the X and Y axes is less light-shielding than the X and Y axes. The pattern shown in FIG. 11 and the pattern shown in FIG. 12 have different aperture ratios in the first region 32, and the settings of the transmittance of the entire optical control member 10 and the light shielding performance in the 45 degree direction are adjusted.

図13は、全方向の遮光性を発揮するパターン例を示している。遮光性能は全方位で発揮される一方で、第1領域32の開口率が最も小さくなるため、光学制御部材10全体の透過率も一番小さくなる。   FIG. 13 shows an example of a pattern that exhibits light shielding properties in all directions. While the light shielding performance is exhibited in all directions, the aperture ratio of the first region 32 is the smallest, so that the transmittance of the entire optical control member 10 is also the smallest.

以上のように、光学制御層30の第1領域32と第2領域34とのパターンは、用途に応じて柔軟に設計が可能である。   As described above, the pattern of the first region 32 and the second region 34 of the optical control layer 30 can be designed flexibly according to the application.

また、制御層40は、黒色以外の色に着色させるように複数種類のフォトクロミック色素が配合されていてもよい。また、制御層40に用いるフォトクロミック色素は、可視光によって着色する色素であってもよい。光学制御部材10に、可視光によって着色するフォトクロミック色素を用いた場合、光学制御部材10は室内灯の明かり漏れを防ぐ目隠し機能(プライベート防止機能)を発揮する。   Moreover, the control layer 40 may be blended with a plurality of types of photochromic dyes so as to be colored in a color other than black. Further, the photochromic dye used for the control layer 40 may be a dye that is colored by visible light. When a photochromic pigment that is colored by visible light is used for the optical control member 10, the optical control member 10 exhibits a blinding function (private prevention function) that prevents light leakage of the room light.

また、実施形態に係る光学制御部材10が備える透明基材20の形状は、曲面状であってもよい。上記のとおり、実施形態に係る光学制御部材10が備える制御層40は、透明基材の一方の面に一様に形成されているため、光学制御層30との位置合わせが不要である。したがって、実施形態に係る光学制御部材10は、透明基材20の形状が曲面状であっても、所望の遮光効果を得るための光学制御層30の設計が容易である。また、透明基材20の形状が曲面状であっても、制御層40の形成自体が容易である。   Further, the shape of the transparent substrate 20 included in the optical control member 10 according to the embodiment may be a curved surface. As described above, since the control layer 40 included in the optical control member 10 according to the embodiment is uniformly formed on one surface of the transparent substrate, alignment with the optical control layer 30 is unnecessary. Therefore, in the optical control member 10 according to the embodiment, it is easy to design the optical control layer 30 for obtaining a desired light-shielding effect even if the shape of the transparent substrate 20 is a curved surface. Moreover, even if the shape of the transparent substrate 20 is a curved surface, the formation of the control layer 40 is easy.

10…光学制御部材、20、50…基材、30…光学制御層30、
32…第1領域32、34…第2領域34、
40…制御層、
20a、50a…第1面、20b、50b…第2面
DESCRIPTION OF SYMBOLS 10 ... Optical control member, 20, 50 ... Base material, 30 ... Optical control layer 30,
32 ... 1st field 32, 34 ... 2nd field 34,
40 ... control layer,
20a, 50a ... first surface, 20b, 50b ... second surface

Claims (9)

パターンで形成された、複数の第1領域および複数の第2領域を有する光学制御層と、
前記光学制御層と所定の間隔を置いて対向配置されたフォトクロミック色素を含む制御層と、を備え、
前記第1領域は、前記第2領域と比較して光の透過性が高い光学制御部材。
An optical control layer having a plurality of first regions and a plurality of second regions formed in a pattern;
A control layer comprising a photochromic dye disposed opposite to the optical control layer at a predetermined interval; and
The first region is an optical control member having a higher light transmittance than the second region.
対向する第1面および第2面を有し、光透過性を有する基材を更に備え、
前記光学制御層は、前記第1面に設けられ、
前記制御層は、前記第2面に設けられている請求項1に記載の光学制御部材。
A base material having first and second surfaces facing each other and having light transmission properties;
The optical control layer is provided on the first surface,
The optical control member according to claim 1, wherein the control layer is provided on the second surface.
前記基材は、ガラス、ポリカーボネイト、ポリエチレンテレフタラートまたはアクリルを含む樹脂部材群から選ばれる材料で形成され、透明性を有し、無色または着色されている板材もしくはフィルム材である請求項2に記載の光学制御部材。   The said base material is a board | plate material or film material which is formed with the material chosen from the resin member group containing glass, a polycarbonate, a polyethylene terephthalate, or an acryl, and has transparency and is colorless or colored. Optical control member. 前記第1領域および前記第2領域とは、それぞれ、帯状に形成され、互いに交互に併設されている請求項1ないし3の何れか1項に記載の光学制御部材。   The optical control member according to any one of claims 1 to 3, wherein the first region and the second region are each formed in a band shape and are alternately arranged. 前記制御層は、2種類以上のフォトクロミック色素が混合されている請求項1ないし4の何れか1項に記載の光学制御部材。   5. The optical control member according to claim 1, wherein two or more kinds of photochromic dyes are mixed in the control layer. 前記制御層は、それぞれフォトクロミック色素を含む層を2層以上積層して形成されている請求項1ないし5の何れか1項に記載の光学制御部材。   The optical control member according to claim 1, wherein the control layer is formed by laminating two or more layers each containing a photochromic dye. 前記光学制御層および前記制御層の少なくとも一方の層の表面上に、保護膜が形成されている請求項1ないし6の何れか1項に記載の光学制御部材。   The optical control member according to any one of claims 1 to 6, wherein a protective film is formed on a surface of at least one of the optical control layer and the control layer. 前記光学制御層および前記制御層の少なくとも一方の層の表面上に、粘着膜が形成されている請求項1ないし7の何れか1項に記載の光学制御部材。   The optical control member according to any one of claims 1 to 7, wherein an adhesive film is formed on a surface of at least one of the optical control layer and the control layer. 請求項1ないし8の何れか1項に記載の光学制御部材を備えた建築用部材。   A building member comprising the optical control member according to claim 1.
JP2014146155A 2014-07-16 2014-07-16 Optical control member and building component member including optical control member Pending JP2016024232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014146155A JP2016024232A (en) 2014-07-16 2014-07-16 Optical control member and building component member including optical control member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146155A JP2016024232A (en) 2014-07-16 2014-07-16 Optical control member and building component member including optical control member

Publications (1)

Publication Number Publication Date
JP2016024232A true JP2016024232A (en) 2016-02-08

Family

ID=55271044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146155A Pending JP2016024232A (en) 2014-07-16 2014-07-16 Optical control member and building component member including optical control member

Country Status (1)

Country Link
JP (1) JP2016024232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180129345A (en) * 2017-05-26 2018-12-05 엘지디스플레이 주식회사 Viewing Angle Controlling Film, Backlight Unit using the same and Display Device using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118478A (en) * 1978-03-06 1979-09-13 Asahi Glass Co Ltd Photochromic laminate
US5012080A (en) * 1990-04-19 1991-04-30 Griscom Daniel T Directional particle filter
JPH05187175A (en) * 1992-01-10 1993-07-27 Hashimoto Forming Ind Co Ltd Scattered light collecting window and manufacture thereof
JP2001194626A (en) * 1990-09-21 2001-07-19 Seiko Epson Corp Optical device
JP2012163905A (en) * 2011-02-09 2012-08-30 Shin Etsu Polymer Co Ltd Light-shielding film with photochromic function
JP2012230219A (en) * 2011-04-26 2012-11-22 Shin Etsu Polymer Co Ltd Viewing angle control light-shielding film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118478A (en) * 1978-03-06 1979-09-13 Asahi Glass Co Ltd Photochromic laminate
US5012080A (en) * 1990-04-19 1991-04-30 Griscom Daniel T Directional particle filter
JP2001194626A (en) * 1990-09-21 2001-07-19 Seiko Epson Corp Optical device
JPH05187175A (en) * 1992-01-10 1993-07-27 Hashimoto Forming Ind Co Ltd Scattered light collecting window and manufacture thereof
JP2012163905A (en) * 2011-02-09 2012-08-30 Shin Etsu Polymer Co Ltd Light-shielding film with photochromic function
JP2012230219A (en) * 2011-04-26 2012-11-22 Shin Etsu Polymer Co Ltd Viewing angle control light-shielding film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180129345A (en) * 2017-05-26 2018-12-05 엘지디스플레이 주식회사 Viewing Angle Controlling Film, Backlight Unit using the same and Display Device using the same
KR102400334B1 (en) 2017-05-26 2022-05-19 엘지디스플레이 주식회사 Viewing Angle Controlling Film, Backlight Unit using the same and Display Device using the same

Similar Documents

Publication Publication Date Title
WO2014147793A1 (en) Lighting sheet, lighting panel, roll-up lighting screen, and method for manufacturing lighting sheet
TW201820647A (en) Light control film with varied viewing angle
EP2685045B1 (en) Slat blind having optically coated lamellae
CN105308483B (en) Daylighting film, glass pane, roller shutter and Lighting shutter
CN109445173B (en) Peep-proof film, manufacturing method thereof and display module
CN108269500A (en) A kind of display panel and its manufacturing method
JP2012163905A (en) Light-shielding film with photochromic function
CN207096671U (en) Orthographic projection printing opacity projection screen and optical projection system
JP2016024232A (en) Optical control member and building component member including optical control member
JP6311224B2 (en) Light control member
KR20190072429A (en) Optical isolating device
JP2014238511A (en) Light control member
JP6418488B2 (en) Light control device and method of installing the light control device
CN207133573U (en) Orthographic projection printing opacity projection screen and optical projection system
JP2020160111A (en) Optical filter for window
JP2015004183A (en) Blind and luminaire
CN101770043A (en) Lens unit and projection screen manufactured by using lens unit
KR101163687B1 (en) Film for improv ing contrast and led display device comprising thereof
JP6746944B2 (en) Curtain, light control sheet and light control method
JP2016038439A (en) Optical control member
KR20190044578A (en) Optical isolating device
JP2015135502A (en) Lighting sheet, lighting device, and building
WO2014147884A1 (en) Blind member and window material provided with blind member
CN219978691U (en) Household light-resistant projection curtain
KR20180040002A (en) Privacy film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204