JP2016024147A - Crack detection sensor and measurement method - Google Patents

Crack detection sensor and measurement method Download PDF

Info

Publication number
JP2016024147A
JP2016024147A JP2014150444A JP2014150444A JP2016024147A JP 2016024147 A JP2016024147 A JP 2016024147A JP 2014150444 A JP2014150444 A JP 2014150444A JP 2014150444 A JP2014150444 A JP 2014150444A JP 2016024147 A JP2016024147 A JP 2016024147A
Authority
JP
Japan
Prior art keywords
terminal
detection sensor
crack detection
crack
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014150444A
Other languages
Japanese (ja)
Inventor
守 福本
Mamoru Fukumoto
守 福本
裕介 小林
Yusuke Kobayashi
裕介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2014150444A priority Critical patent/JP2016024147A/en
Publication of JP2016024147A publication Critical patent/JP2016024147A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a new crack detection sensor embedded in a concrete structure in order to detect a crack in concrete.SOLUTION: With a crack detection sensor 2, a sufficiently thin conductive wire 5 that breaks simultaneously when crack occurs is embedded in a tabular body 3 formed by mortar and concrete used in a concrete structure. The conductive wire 5 is connected with a first terminal line 41 and a second terminal line 42 that are in parallel to one side of the tabular body 3 and disconnection check (continuity check) can be performed externally. The first and second terminal lines 41 and 42 are an electric wire having sufficient intensity so as not to be broken even when being hit by concrete to be installed.SELECTED DRAWING: Figure 1

Description

本発明は、コンクリート内部のひび割れを検知するためにコンクリート構造物に埋設されるひび割れ検知センサ等に関する。   The present invention relates to a crack detection sensor or the like embedded in a concrete structure in order to detect cracks inside the concrete.

コンクリート構造物は、経年変化によりひび割れ、鉄筋の腐食等の様々な変状が発生する。中でも、コンクリート内部で発生するひび割れは目視で確認できず、変状がかなり進行し耐力が低下した状態で発見される場合が多く早期発見が望まれている。   A concrete structure undergoes various deformations such as cracks and corrosion of reinforcing bars due to aging. In particular, cracks occurring inside the concrete cannot be visually confirmed, and are often found in a state where the deformation has progressed considerably and the proof stress has been lowered, and early detection is desired.

コンクリート内部に発生するひび割れの検知技術としては、例えばコンクリート構造物の内部に導電線を埋設し、その導通を検査する方法が知られていた。すなわち、ひび割れの発生とともに導電線が切れることでこれを検知していた(例えば、特許文献1を参照)。   As a technique for detecting cracks generated in concrete, for example, a method of burying a conductive wire inside a concrete structure and inspecting its conduction has been known. That is, this has been detected by breaking the conductive wire with the occurrence of a crack (see, for example, Patent Document 1).

特開平9−159638号公報JP-A-9-159638

しかしながら、配筋時に導電線を設置してコンクリートを打設する必要があり、そのコンクリート打設時に導電線が断線し易い問題があった。   However, it is necessary to install a conductive wire by placing a conductive wire at the time of bar arrangement, and there is a problem that the conductive wire is easily disconnected at the time of placing the concrete.

本発明は、上述した課題に鑑みて考案されたものであり、その目的とするところは、コンクリート内部のひび割れを検知するためにコンクリート構造物に埋設される新たなひび割れ検知センサを実現することである。   The present invention has been devised in view of the above-described problems, and its object is to realize a new crack detection sensor embedded in a concrete structure in order to detect cracks inside the concrete. is there.

以上の課題を解決するための第1の発明は、コンクリート内部のひび割れを検知するためにコンクリート構造物に埋設されるひび割れ検知センサであって、コンクリート又はモルタルを硬化材として用いて形成された平面視多角形状の板状体と、前記板状体の一辺から引き出されるように設けられた第1端子線及び第2端子線と、前記第1端子線及び前記第2端子線を接続する前記板状体内に埋設された導電線と、を備えたひび割れ検知センサである。   A first invention for solving the above problems is a crack detection sensor embedded in a concrete structure in order to detect cracks in the concrete, and is a plane formed using concrete or mortar as a hardener. A plate-like body having a polygonal view, a first terminal line and a second terminal line provided so as to be drawn from one side of the plate-like body, and the plate connecting the first terminal line and the second terminal line And a conductive wire embedded in the body.

第1の発明によれば、ひび割れ検知の要となる導電線と、外部からその導通/非導通の確認、すなわち断線チェック、導通チェックをするための第1端子線及び第2端子線とを別種の線として全体として平面視多角形状の板状体とすることができる。つまり、導電線を板状体のひび割れにともなって断線する程度の細線としつつも、第1端子線及び第2端子線とをコンクリート打設時の力で断線しない太線として、板状体をコンクリート又はモルタルを硬化剤として用いて形成することができる。よって、施工時の断線不具合を削減することができる。また、第1端子線及び第2端子線を板状体の同じ辺から引き出すので、2つの線をひとまとめにして配線しやすくなり施工性が向上する。また、埋設した後のひび割れ検査時の作業性が向上する。   According to the first aspect of the invention, there are different types of conductive wires that are essential for detecting cracks, and the first terminal wires and the second terminal wires for checking the continuity / non-conduction from the outside, that is, the disconnection check and the continuity check. As a whole line, a plate-like body having a polygonal shape in plan view can be obtained. That is, while the conductive wire is a thin wire that is broken to the extent that the plate-like body is cracked, the first terminal wire and the second terminal wire are made thick lines that are not broken by the force of placing concrete, and the plate-like body is made of concrete. Alternatively, it can be formed using mortar as a curing agent. Therefore, the disconnection defect at the time of construction can be reduced. Further, since the first terminal line and the second terminal line are drawn out from the same side of the plate-like body, it is easy to wire the two lines together and the workability is improved. Moreover, the workability at the time of crack inspection after being buried is improved.

第2の発明は、前記導電線が、前記板状体内に蛇行して配線された第1の発明のひび割れ検知センサである。   The second invention is the crack detection sensor according to the first invention, wherein the conductive wires meander and are wired in the plate-like body.

第2の発明によれば、導電線を板状体内に満遍なく行き渡らせ、板状体のどこでひび割れが発生しても確実に検知できるようになる。   According to the second aspect of the present invention, the conductive wires are evenly distributed throughout the plate-like body, and it is possible to reliably detect where a crack occurs in the plate-like body.

なお、1つのひび割れ検知センサに設けられる導電線と第1端子線及び第2端子線との組み合わせは1つに限らず複数設けることもできる。
例えば、第3の発明として、前記一辺の一方側に間隔をおいて複数の前記第1端子線が、前記一辺の他方側に間隔をおいて前記第1端子線と同数の前記第2端子線が設けられ、複数の前記導電線が、対応する前記第1端子線及び前記第2端子線同士を接続するように年輪状に埋設された、第1又は第2の発明のひび割れ検知センサを構成することができる。
Note that the number of combinations of the conductive wires, the first terminal wires, and the second terminal wires provided in one crack detection sensor is not limited to one, and a plurality of combinations may be provided.
For example, as a third invention, a plurality of the first terminal lines spaced on one side of the one side and the same number of the second terminal lines as the first terminal lines spaced on the other side of the one side The crack detection sensor according to the first or second invention is configured in which a plurality of the conductive wires are embedded in an annual ring shape so as to connect the corresponding first terminal wires and the second terminal wires. can do.

第4の発明は、前記導電線が、前記板状体内に蛇行して配線され、前記導電線の蛇行配線の途中に接続されて前記一辺から引き出されるように設けられたN個(N≧1)の端子線を更に備えた第1の発明のひび割れ検知センサである。   According to a fourth aspect of the present invention, N conductive wires are provided such that the conductive wires are meandered in the plate-like body, connected to the meandering wires of the conductive wires, and drawn from the one side (N ≧ 1). The crack detection sensor according to the first aspect of the present invention further provided with a terminal wire.

第4の発明によれば、1本の導電線を複数の部分に分割して(換言すると導電線を直列接続の部分構成にして)断線チェックできるので、複数のひび割れ検知センサを用いなくとも、断線検知された時間と分割部分の位置関係とから、ひび割れの発生位置や進行方向、進展度合いを推定することが可能となる。
また、複数の端子線を用意することでバックアップとし、万が一にコンクリート打設に伴って端子線が断線するようなことがあっても検知機能を補償することができる。
According to the fourth invention, since one conductor wire is divided into a plurality of portions (in other words, the conductor wires are connected in series and can be checked for disconnection), even without using a plurality of crack detection sensors, From the time when the disconnection is detected and the positional relationship between the divided portions, it is possible to estimate the position where the crack is generated, the traveling direction, and the degree of progress.
In addition, it is possible to provide a backup by preparing a plurality of terminal wires and to compensate the detection function even if the terminal wires are disconnected due to the concrete placement.

第5の発明は、第3の発明のひび割れ検知センサに接続された測定装置による測定方法であって、対応する前記第1端子線及び前記第2端子線同士の導通を確認するステップと、前記確認結果に基づいてひび割れの進展を判定するステップと、を含む測定方法である。   5th invention is the measuring method by the measuring apparatus connected to the crack detection sensor of 3rd invention, Comprising: The step which confirms conduction | electrical_connection between the said 1st terminal wire and said 2nd terminal wire corresponding, Determining the progress of cracks based on the confirmation result.

第5の発明によれば、1つのひび割れ検知センサであっても、ひび割れの進行方向、進展度合いを推定することが可能となる。   According to the fifth aspect, even with a single crack detection sensor, it is possible to estimate the direction and degree of progress of the crack.

第6の発明は、第4の発明のひび割れ検知センサに接続された測定装置による測定方法であって、前記第1端子線、前記第2端子線及び前記N個の端子線のうちの何れかの組み合わせでの導通を確認するステップと、前記確認結果に基づいてひび割れの発生位置を判定するステップと、を含む測定方法である。   6th invention is a measuring method by the measuring apparatus connected to the crack detection sensor of 4th invention, Comprising: Any of said 1st terminal wire, said 2nd terminal wire, and said N terminal wires And a step of determining a crack occurrence position based on the result of the confirmation.

第6の発明によれば、1つのひび割れ検知センサであっても、ひび割れの発生位置を推定することが可能となる。   According to the sixth aspect of the invention, it is possible to estimate the occurrence position of a crack even with one crack detection sensor.

ひび割れ検知センサの構成例と作成手順とを説明するための図。The figure for demonstrating the structural example and creation procedure of a crack detection sensor. ひび割れ検知センサの設置例を示す図。The figure which shows the example of installation of a crack detection sensor. コンクリート構造物の施工からひび割れ検知センサの設置、ひび割れ検知測定までの流れを説明する為のフローチャート。The flowchart for explaining the flow from construction of a concrete structure to installation of crack detection sensors and crack detection measurement. ひび割れ検知センサの変形例を示す図。The figure which shows the modification of a crack detection sensor. ひび割れ検知センサの変形例を示す図。The figure which shows the modification of a crack detection sensor. ひび割れ検知センサの変形例を示す図。The figure which shows the modification of a crack detection sensor. ひび割れ検知センサの変形例を示す図。The figure which shows the modification of a crack detection sensor. ひび割れ検知センサの変形例を示す図。The figure which shows the modification of a crack detection sensor. ひび割れ検知センサの変形例を示す図。The figure which shows the modification of a crack detection sensor.

図1は、ひび割れ検知センサの構成例と作成手順とを説明するための図である。
ひび割れ検知センサ2は、
1)コンクリート又はモルタルを硬化材として用いて形成された平面視多角形状の板状体3と、
2)板状体3の一辺から引き出されるように設けられた第1端子線41及び第2端子線42と、
3)第1端子線41及び第2端子線42を接続する板状体3内に埋設された導電線5と、を有する。
FIG. 1 is a diagram for explaining a configuration example and a creation procedure of a crack detection sensor.
The crack detection sensor 2
1) Plane-view polygonal plate-like body 3 formed using concrete or mortar as a hardener,
2) a first terminal line 41 and a second terminal line 42 provided so as to be drawn from one side of the plate-like body 3;
3) The conductive wire 5 embedded in the plate-like body 3 connecting the first terminal wire 41 and the second terminal wire 42.

板状体3は、図示の例では平面視矩形を為しているがその他の多角形(例えば三角形)形状であってもよい。厚さは運搬中の衝撃で割れが生じない程度に適宜設定することができる。硬化材は、ひび割れ検知対象とするコンクリート構造物の打設に使用するのと同じまたは類似する組成のコンクリート、又は同じセメントを用いたモルタルとすると好適である。   The plate-like body 3 has a rectangular shape in plan view in the illustrated example, but may have another polygonal shape (for example, a triangle). The thickness can be appropriately set to such an extent that cracking does not occur due to impact during transportation. It is preferable that the hardened material is concrete having the same or similar composition as that used for placing a concrete structure to be detected for cracking, or mortar using the same cement.

第1端子線41及び第2端子線42は、導電線5よりも断線に強い電線である。具体的には、コンクリート構造物の施工時に、打設時に流れ落ちるコンクリートが当たって生じる外力に抗して断線することのない強度を有するものとする。なお、裸電線でも被覆線でも構わない。また、図示の例ではそれぞれ独立した電線としているが複数の電線による撚線や撚対線、同軸線を適宜用いるとしてもよい。   The first terminal wire 41 and the second terminal wire 42 are electric wires that are more resistant to disconnection than the conductive wire 5. Specifically, it is assumed that the concrete structure has a strength that does not break against an external force generated by the concrete flowing down during placement when the concrete structure is constructed. A bare wire or a covered wire may be used. In the illustrated example, the wires are independent from each other, but a twisted wire, a twisted pair wire, and a coaxial wire by a plurality of wires may be used as appropriate.

導電線5は、金属や炭素繊維などの導電性の細い線材であり、裸電線である。板状体3にひび割れが生じると断線する程度の弱さとする。例えば、エナメル線ならば0.01〜0.05mm程度である。そして、想定されるひび割れ線CL(換言すると、検知予定のひび割れ)の方向に対して交差するように配線される。   The conductive wire 5 is a thin conductive wire such as metal or carbon fiber, and is a bare electric wire. If the plate-like body 3 is cracked, it is weak enough to break. For example, in the case of enamel wire, it is about 0.01 to 0.05 mm. And it is wired so that it may cross | intersect with the direction of the crack line CL (in other words, crack to be detected).

ひび割れ検知センサ2の作成手順は次の通りである。
手順1)型枠6の深さ半分程度に硬化材7を入れる。
手順2)硬化材7が適当に固まったならば、予め接続された第1端子線41と第2端子線42と導電線5とを型枠6内に載置し、残りの硬化材7を入れる。
手順3)硬化後に型枠6を外す。
The procedure for creating the crack detection sensor 2 is as follows.
Procedure 1) Put the curing material 7 about half the depth of the mold 6.
Procedure 2) If the hardening material 7 is properly solidified, the first terminal wire 41, the second terminal wire 42, and the conductive wire 5 that are connected in advance are placed in the mold 6, and the remaining hardening material 7 is attached. Put in.
Procedure 3) The mold 6 is removed after curing.

図2は、ひび割れ検知センサ2の設置例を示す図である。
図3は、コンクリート構造物の施工からひび割れ検知センサの設置、ひび割れ検知測定までの流れを説明する為のフローチャートである。
FIG. 2 is a diagram illustrating an installation example of the crack detection sensor 2.
FIG. 3 is a flowchart for explaining the flow from the construction of the concrete structure to the installation of the crack detection sensor and the crack detection measurement.

先ず、ひび割れ検知センサ2を予め作成しておく(ステップS2)。
そして、作成されたひび割れ検知センサ2は、ひび割れの検知対象とするコンクリート構造物8の所定位置に所定姿勢で単数または複数(図2の例では3つ)埋設する。具体的には、コンクリート構造物8の配筋及び型枠の設置完了後に(ステップS4)、コンクリート構造物8の想定ひび割れ線CL’(図2参照)の範囲にて、ひび割れ検知センサ2の作成時に想定したひび割れ線CLが想定ひび割れ線CL’に沿うようにひび割れ検知センサ2を配置する(ステップS6)。このとき、第1端子線41及び第2端子線42は、コンクリート構造物8の型枠外まで配筋つたいに適宜配置する。そして、コンクリートを打設する(ステップS8)。
First, the crack detection sensor 2 is created in advance (step S2).
And the created crack detection sensor 2 is embedded in the predetermined position of the concrete structure 8 used as the detection object of a crack by single or plural (three in the example of FIG. 2) with a predetermined attitude. Specifically, after the reinforcement of the concrete structure 8 and the installation of the formwork are completed (step S4), the creation of the crack detection sensor 2 within the range of the assumed crack line CL ′ (see FIG. 2) of the concrete structure 8 The crack detection sensor 2 is arranged so that the crack line CL that is sometimes assumed follows the assumed crack line CL ′ (step S6). At this time, the first terminal line 41 and the second terminal line 42 are appropriately arranged to be arranged outside the formwork of the concrete structure 8. Then, concrete is placed (step S8).

コンクリートが硬化したならば型枠を撤去し(ステップS10)、コンクリート構造物8の供用を開始する(ステップS12)。そして、第1端子線41及び第2端子線42を測定装置9に接続して常時或いは周期的な断線チェック(導通チェック)を開始する(ステップS14)。   When the concrete is hardened, the formwork is removed (step S10), and the use of the concrete structure 8 is started (step S12). Then, the first terminal line 41 and the second terminal line 42 are connected to the measuring device 9 to start a continuous or periodic disconnection check (continuity check) (step S14).

計測の結果、最初に断線検知されたひび割れ検知センサ2の埋設位置から、コンクリート構造物8の内部のどこでひび割れが発生したかを判定することができる(ステップS16)。
更に、複数のひび割れ検知センサ2のうち、次々に断線検知されてゆく順にその埋設位置をトレースすることで、内部ひび割れ発生位置とその後の進行方向、その速度、すなわちひび割れの進展を判定することができる(ステップS18)。
As a result of the measurement, it is possible to determine where the crack has occurred inside the concrete structure 8 from the embedment position of the crack detection sensor 2 that is first detected to be disconnected (step S16).
Furthermore, by tracing the embedded positions of the plurality of crack detection sensors 2 in the order in which the disconnection is detected one after another, it is possible to determine the internal crack occurrence position and the subsequent traveling direction, its speed, that is, the progress of the crack. Yes (step S18).

以上、本実施形態によれば、検知の肝である導電線5を、微弱なひび割れでも検知できるように十分細く弱い線材としたとしても、板状体3の中に予め埋設されているので、設置時やコンクリート打設時に外力が加わったとしても簡単には切断されない。   As described above, according to the present embodiment, even if the conductive wire 5 that is the liver of detection is sufficiently thin and weak so that it can be detected even with a weak crack, since it is embedded in the plate-like body 3 in advance, Even if an external force is applied during installation or when placing concrete, it is not easily cut.

また、第1端子線41及び第2端子線42は、板状体3の一辺から引き出されるようにして設けられる。第1端子線41及び第2端子線42のうち、コンクリート構造物8の外部に引き出されるまでの部分を撚り合わせることも可能である。すなわち、端子線の取り回しが容易になり、且つ打設時に流下するコンクリートが当たっても容易に断線しないようにできる。従来に比べて施工性を一層向上させることができる。   Further, the first terminal line 41 and the second terminal line 42 are provided so as to be drawn from one side of the plate-like body 3. Of the first terminal wire 41 and the second terminal wire 42, it is possible to twist the portions until they are drawn out of the concrete structure 8. That is, handling of the terminal wire is facilitated, and even when the concrete flowing down at the time of placement hits, it can be prevented from being easily disconnected. The workability can be further improved compared to the conventional case.

なお、本発明のひび割れ検知センサの実施形態は、上記に限らず適宜構成要素の追加・省略・変更が可能である。   The embodiment of the crack detection sensor of the present invention is not limited to the above, and components can be added, omitted, or changed as appropriate.

例えば、図1の例では導電線5の折り返しを1回としているが、図4のひび割れ検知センサ2Bに示すように、折り返しを複数とし、板状体3に導電線5を蛇行して配線することとしてもよい。この構成は、ひび割れ発生が想定される領域が広い場合や、想定ひび割れ線CLの発生場所や発生方向が絞り込めない場合に好適である。   For example, in the example of FIG. 1, the conductive wire 5 is folded once, but as shown in the crack detection sensor 2 </ b> B of FIG. 4, the conductive wire 5 is meandering and wired to the plate-like body 3. It is good as well. This configuration is suitable when the region where cracks are expected to occur is wide, or when the generation location and direction of the assumed crack line CL cannot be narrowed down.

更には、図5のひび割れ検知センサ2Cのように、板状体3内に蛇行して配線された導電線5の途中に接続されて、第1端子線41及び第2端子線42と同じ一辺から引き出されるように設けられたN個(N≧1)の端子線(図示の例では、第3端子線43と、第4端子線44:N=2)を設けるとしてもよい。
この構成によれば、断線チェックに用いる端子線の組合せを変えることで、蛇行した導電線5の部分別のチェックが可能となり、ひび割れ位置をより具体的に判定することが可能となる。
また、端子線はコンクリート打設時の外力に十分抗する太さを設定するが、絶対に断線しないとは断定できない。しかし、当該構成のように3以上の端子線が用意されていれば、健全な端子線が2つあれば、その2つの端子線が接続された導電線5の部分を用いてひび割れの検知機能を補償することができる。
Further, like the crack detection sensor 2C of FIG. 5, the same side as the first terminal line 41 and the second terminal line 42 is connected to the middle of the conductive wire 5 meandering in the plate-like body 3 and wired. N terminal lines (N ≧ 1) provided so as to be led out from the terminal (in the illustrated example, the third terminal line 43 and the fourth terminal line 44: N = 2) may be provided.
According to this configuration, by changing the combination of the terminal wires used for the disconnection check, it is possible to check each part of the meandering conductive wire 5 and more specifically determine the crack position.
In addition, the terminal wire is set to a thickness that sufficiently resists the external force at the time of placing concrete, but it cannot be determined unless it is disconnected. However, if three or more terminal wires are prepared as in the configuration, if there are two healthy terminal wires, the function of detecting cracks using the portion of the conductive wire 5 to which the two terminal wires are connected is used. Can be compensated.

また、図6〜図9のひび割れ検知センサ2D,2E,2F,2Gのように、第1端子線41と第2端子線42と導電線5とを1セットとして、複数セット設ける構成も可能である。この場合、ステップS16やステップS18においてセット別に断線チェックすることで、1つのひび割れ検知センサであっても、ひび割れの発生位置や、ひび割れの進行方向、ひび割れの進展度合を推定することが可能となる。   Further, as in the case of the crack detection sensors 2D, 2E, 2F, and 2G in FIGS. 6 to 9, it is possible to provide a plurality of sets in which the first terminal wire 41, the second terminal wire 42, and the conductive wire 5 are set as one set. is there. In this case, by performing a disconnection check for each set in step S16 and step S18, even with one crack detection sensor, it is possible to estimate the occurrence position of the crack, the direction of progress of the crack, and the progress of the crack. .

特に、図7のひび割れ検知センサ2Eのように、板状体3の一辺の一方側に間隔をおいて複数の第1端子線41,41,・・・を設け、当該一辺の他方側に間隔をおいて第1端子線と同数の第2端子線42,42,・・・を設けて、複数の導電線5,5,・・・が、対応する第1端子線41及び第2端子線42同士を接続するように年輪状に板状体3に埋設して構成すると、次のようなひび割れの検知に有効である。すなわち、年輪状に設けた導電線5,5,・・・の年輪中央部から外方に向けてひび割れの発生・進展が想定される場合の当該ひび割れの検知に有効である。例えば、あるコンクリート構造物において、コンクリート内部のひび割れの発生位置がおよそ推測できている場合に、当該発生位置近傍に年輪中央部が位置するようにひび割れ検知センサ2Eを埋設すれば、ひび割れの進展(ひび割れの進展方向や進展速度など)を測定することができる。   In particular, like the crack detection sensor 2E of FIG. 7, a plurality of first terminal lines 41, 41,... Are provided on one side of one side of the plate-like body 3, and the other side of the one side is spaced. Are provided with the same number of second terminal lines 42, 42,... As the first terminal lines, and the plurality of conductive lines 5, 5,. If it embed | buries and comprises in the plate-shaped body 3 like an annual ring so that 42 may be connected, it is effective in the detection of the following cracks. That is, it is effective for detecting the cracks when the occurrence and progress of cracks are assumed from the center part of the annual rings of the conductive wires 5, 5,. For example, in a concrete structure, when the crack occurrence position in the concrete can be estimated approximately, if the crack detection sensor 2E is embedded so that the center part of the annual ring is located in the vicinity of the crack occurrence position, the crack progress ( It is possible to measure the direction of crack propagation and the rate of progress.

2,2B,2C,2D,2E,2F,2G…ひび割れ検知センサ
3…板状体
5…導電線
6…型枠
7…硬化材
8…コンクリート構造物
9…測定装置
41…第1端子線
42…第2端子線
43…第3端子線
44…第4端子線
2, 2B, 2C, 2D, 2E, 2F, 2G ... Crack detection sensor 3 ... Plate-like body 5 ... Conductive wire 6 ... Formwork 7 ... Hardening material 8 ... Concrete structure 9 ... Measuring device 41 ... First terminal wire 42 ... 2nd terminal wire 43 ... 3rd terminal wire 44 ... 4th terminal wire

Claims (6)

コンクリート内部のひび割れを検知するためにコンクリート構造物に埋設されるひび割れ検知センサであって、
コンクリート又はモルタルを硬化材として用いて形成された平面視多角形状の板状体と、
前記板状体の一辺から引き出されるように設けられた第1端子線及び第2端子線と、
前記第1端子線及び前記第2端子線を接続する前記板状体内に埋設された導電線と、
を備えたひび割れ検知センサ。
A crack detection sensor embedded in a concrete structure to detect cracks in the concrete,
A plate-like body having a polygonal shape in plan view formed using concrete or mortar as a hardener;
A first terminal line and a second terminal line provided so as to be drawn from one side of the plate-like body;
A conductive wire embedded in the plate-like body connecting the first terminal wire and the second terminal wire;
Crack detection sensor with
前記導電線は、前記板状体内に蛇行して配線された
請求項1に記載のひび割れ検知センサ。
The crack detection sensor according to claim 1, wherein the conductive wire is meandered and wired in the plate-like body.
前記一辺の一方側に間隔をおいて複数の前記第1端子線が、前記一辺の他方側に間隔をおいて前記第1端子線と同数の前記第2端子線が設けられ、
複数の前記導電線が、対応する前記第1端子線及び前記第2端子線同士を接続するように年輪状に埋設された、
請求項1又は2に記載のひび割れ検知センサ。
A plurality of the first terminal lines are provided at intervals on one side of the one side, and the same number of the second terminal lines as the first terminal lines are provided at intervals on the other side of the one side,
A plurality of the conductive wires are embedded in an annual ring shape so as to connect the corresponding first terminal wires and the second terminal wires,
The crack detection sensor according to claim 1 or 2.
前記導電線は、前記板状体内に蛇行して配線され、
前記導電線の蛇行配線の途中に接続されて前記一辺から引き出されるように設けられたN個(N≧1)の端子線を更に備えた
請求項1に記載のひび割れ検知センサ。
The conductive wire is meandered and wired in the plate-like body,
The crack detection sensor according to claim 1, further comprising N terminal lines (N ≧ 1) provided so as to be connected in the middle of the meandering wiring of the conductive lines and drawn from the one side.
請求項3に記載されたひび割れ検知センサに接続された測定装置による測定方法であって、
対応する前記第1端子線及び前記第2端子線同士の導通を確認するステップと、
前記確認結果に基づいてひび割れの進展を判定するステップと、
を含む測定方法。
A measurement method by a measurement device connected to the crack detection sensor according to claim 3,
Confirming conduction between the corresponding first terminal lines and the second terminal lines;
Determining the development of cracks based on the confirmation results;
Measuring method including
請求項4に記載されたひび割れ検知センサに接続された測定装置による測定方法であって、
前記第1端子線、前記第2端子線及び前記N個の端子線のうちの何れかの組み合わせでの導通を確認するステップと、
前記確認結果に基づいてひび割れの発生位置を判定するステップと、
を含む測定方法。
A measurement method using a measurement device connected to the crack detection sensor according to claim 4,
Confirming conduction in any combination of the first terminal line, the second terminal line, and the N terminal lines;
Determining a crack occurrence position based on the confirmation result;
Measuring method including
JP2014150444A 2014-07-24 2014-07-24 Crack detection sensor and measurement method Pending JP2016024147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014150444A JP2016024147A (en) 2014-07-24 2014-07-24 Crack detection sensor and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014150444A JP2016024147A (en) 2014-07-24 2014-07-24 Crack detection sensor and measurement method

Publications (1)

Publication Number Publication Date
JP2016024147A true JP2016024147A (en) 2016-02-08

Family

ID=55270996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150444A Pending JP2016024147A (en) 2014-07-24 2014-07-24 Crack detection sensor and measurement method

Country Status (1)

Country Link
JP (1) JP2016024147A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112160240A (en) * 2020-10-23 2021-01-01 同济大学 Stress damage self-induction concrete bridge deck and manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193993A (en) * 1994-11-16 1996-07-30 Kumagai Gumi Co Ltd Method for detecting crack of concrete structure
JPH1031002A (en) * 1996-07-15 1998-02-03 Arusu Kaihatsu Kk Structure and method of detecting crack of structure
JPH10153568A (en) * 1996-11-22 1998-06-09 Shimizu Corp Crack sensor for concrete structure
JPH11211644A (en) * 1998-01-28 1999-08-06 Nkk Corp Two-dimensional crack gauge
JP2005283196A (en) * 2004-03-29 2005-10-13 Toa Harbor Works Co Ltd Crack monitor sensor of concrete structure, and method for monitoring crack of the concrete structure
JP2008506950A (en) * 2004-07-16 2008-03-06 シミュラ インコーポレイテッド Method and system for detecting cracks in armor and broken parts
KR20120029303A (en) * 2010-09-16 2012-03-26 조은주 Corrosion probe measuring concrete corrosion damage using thin film and measure system using thin film and measuring method thereof
JP2014032057A (en) * 2012-08-02 2014-02-20 Kyowa Electron Instr Co Ltd Crack sensor, device for monitoring crack, and system for monitoring crack

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193993A (en) * 1994-11-16 1996-07-30 Kumagai Gumi Co Ltd Method for detecting crack of concrete structure
JPH1031002A (en) * 1996-07-15 1998-02-03 Arusu Kaihatsu Kk Structure and method of detecting crack of structure
JPH10153568A (en) * 1996-11-22 1998-06-09 Shimizu Corp Crack sensor for concrete structure
JPH11211644A (en) * 1998-01-28 1999-08-06 Nkk Corp Two-dimensional crack gauge
JP2005283196A (en) * 2004-03-29 2005-10-13 Toa Harbor Works Co Ltd Crack monitor sensor of concrete structure, and method for monitoring crack of the concrete structure
JP2008506950A (en) * 2004-07-16 2008-03-06 シミュラ インコーポレイテッド Method and system for detecting cracks in armor and broken parts
KR20120029303A (en) * 2010-09-16 2012-03-26 조은주 Corrosion probe measuring concrete corrosion damage using thin film and measure system using thin film and measuring method thereof
JP2014032057A (en) * 2012-08-02 2014-02-20 Kyowa Electron Instr Co Ltd Crack sensor, device for monitoring crack, and system for monitoring crack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112160240A (en) * 2020-10-23 2021-01-01 同济大学 Stress damage self-induction concrete bridge deck and manufacturing method

Similar Documents

Publication Publication Date Title
JP7216464B2 (en) STRESS MONITORING SENSOR AND STRESS MONITORING METHOD
JP2016188850A (en) Concrete cracks detection method and cracks sensor
KR20160085559A (en) Device for Sensing Crack of Concrete Structure
Kainuma et al. Welding residual stress in roots between deck plate and U-rib in orthotropic steel decks
EP2947456B1 (en) Method for positioning a sensor for concrete monitoring
JP2016024147A (en) Crack detection sensor and measurement method
JP6934413B2 (en) Stress monitoring sensor and stress monitoring method
KR101546213B1 (en) The testbed for measuring tensile force and the measuring method thereof
JP6234742B2 (en) A method for evaluating grout filling of prestressed concrete structures.
JP2009250838A (en) Crack growth analyzing method
JP6414495B2 (en) Electrode for rebar corrosion environment measurement sensor in concrete
CN112160240A (en) Stress damage self-induction concrete bridge deck and manufacturing method
JP7075658B2 (en) Shrinkage evaluation method and concrete test piece
JP2006038752A (en) Reinforcing bar inspection method and reinforcing bar repairing method
JP2017166249A (en) Construction management method of horizontal member
JPH0894557A (en) Method for checking soundness of buried prestressing steel
JP2005283196A (en) Crack monitor sensor of concrete structure, and method for monitoring crack of the concrete structure
RU2017130168A (en) Method for detecting cracks and metal loss in metal structures
JP2008278708A (en) Construction method of lightening down-conductor
RU2295088C1 (en) Method of preventing pipeline walls against cracking
JP2016205832A (en) Estimation method
JP5369977B2 (en) Method for determining necessity of repair of wall member having dry shrinkage crack inducing part and design method for wall member having dry shrinkage crack inducing part
JP4012956B2 (en) Verification method for structures embedded with optical fiber for soundness evaluation
CN114459906B (en) Method for testing weldability of full grouting sleeve and steel bar
JP6546075B2 (en) Detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904