JP2016024109A - Pressure-sensitive sensor - Google Patents

Pressure-sensitive sensor Download PDF

Info

Publication number
JP2016024109A
JP2016024109A JP2014149643A JP2014149643A JP2016024109A JP 2016024109 A JP2016024109 A JP 2016024109A JP 2014149643 A JP2014149643 A JP 2014149643A JP 2014149643 A JP2014149643 A JP 2014149643A JP 2016024109 A JP2016024109 A JP 2016024109A
Authority
JP
Japan
Prior art keywords
resistance layer
pressure
sensitive sensor
high resistance
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014149643A
Other languages
Japanese (ja)
Inventor
直樹 立畠
Naoki Tachihata
直樹 立畠
竜 中江
Ryu Nakae
竜 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014149643A priority Critical patent/JP2016024109A/en
Publication of JP2016024109A publication Critical patent/JP2016024109A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pressure-sensitive sensor used for operation section of various kinds of electronic apparatuses capable of obtaining gentle changes in resistance value with respect to a pressing force.SOLUTION: A low resistance layer 12 is formed on the lower face of a base material 1; and a high resistance layer 13 is formed on the lower face of the low resistance layer 12. The high resistance layer 13 includes: conductive particles; a binder; and generally spherical elastic particles 14 which deforms with a predetermined load. The pressure-sensitive sensor is arranged so that maximum height of surface roughness on the lower face of the high resistance layer 13 is 4 -25 μm.SELECTED DRAWING: Figure 1

Description

本発明は、圧力もしくは荷重の変化に応じて抵抗値が変化する感圧抵抗体を用いた感圧センサに関し、各種電子機器の操作部に用いられる感圧センサに関するものである。   The present invention relates to a pressure-sensitive sensor using a pressure-sensitive resistor whose resistance value changes according to a change in pressure or load, and relates to a pressure-sensitive sensor used in an operation unit of various electronic devices.

近年、携帯電話やカーナビ等の各種電子機器の高機能化や多様化が進むに伴い、これらの操作に用いられる感圧センサにも、多様な操作が可能なものが求められている。   In recent years, as various types of electronic devices such as mobile phones and car navigation systems have become highly functional and diversified, pressure-sensitive sensors used for these operations are required to be capable of various operations.

このような従来の感圧センサについて、図4および図5を用いて説明する。   Such a conventional pressure sensor will be described with reference to FIGS. 4 and 5. FIG.

なお、これらの図のうち断面図は、構成を判り易くするために厚さ方向の寸法を拡大して表している。   Note that, in these drawings, the cross-sectional views are shown by enlarging the dimension in the thickness direction for easy understanding of the configuration.

図4は従来の感圧センサの断面図であり、同図において、1はフィルム状の基材で、この下面にはカーボン粉を分散した合成樹脂によって抵抗体層3が形成されると共に、この抵抗体層3内には合成樹脂等の粒径の異なる複数の粒子4が分散され、抵抗体層3下面が凹凸状に形成されて導電シート5が構成されている。   FIG. 4 is a cross-sectional view of a conventional pressure-sensitive sensor. In FIG. 4, reference numeral 1 denotes a film-like substrate. A resistor layer 3 is formed on the lower surface of the resin layer by a synthetic resin in which carbon powder is dispersed. In the resistor layer 3, a plurality of particles 4 having different particle diameters such as synthetic resin are dispersed, and the lower surface of the resistor layer 3 is formed in an uneven shape to constitute a conductive sheet 5.

また、8は導電シート5下面に配置された基板で、上面には銀やカーボン等の複数の固定接点6A、6Bが形成されると共に、導電シート5と基板8の間には固定接点6A、6Bを囲むように、絶縁樹脂によってスペーサ7が形成され、導電シート5下面と固定接点6A、6Bが所定の空隙で対向して、感圧センサが構成されている。   Reference numeral 8 denotes a substrate disposed on the lower surface of the conductive sheet 5. A plurality of fixed contacts 6A and 6B such as silver and carbon are formed on the upper surface, and the fixed contacts 6A and 6B are formed between the conductive sheet 5 and the substrate 8. Spacers 7 are formed of insulating resin so as to surround 6B, and the pressure-sensitive sensor is configured such that the lower surface of the conductive sheet 5 and the fixed contacts 6A and 6B face each other with a predetermined gap.

そして、このように構成された感圧センサが電子機器の操作部に装着されると共に、複数の固定接点6A、6Bがリード線(図示せず)等を介して、機器の電子回路(図示せず)に接続される。   The pressure sensor configured as described above is attached to the operation unit of the electronic device, and a plurality of fixed contacts 6A and 6B are connected to the electronic circuit of the device (not shown) via lead wires (not shown). Connected).

以上の構成において、導電シート5上面を押圧操作すると、導電シート5が下方へ撓んで、抵抗体層3下面が、固定接点6A、6Bに接触し、この間の抵抗体層3を介して、固定接点6A、6B間が電気的に接続される。   In the above configuration, when the upper surface of the conductive sheet 5 is pressed, the conductive sheet 5 bends downward and the lower surface of the resistor layer 3 comes into contact with the fixed contacts 6A and 6B, and is fixed via the resistor layer 3 therebetween. The contacts 6A and 6B are electrically connected.

押圧力の増加に伴って、粒径の異なる複数の粒子4によって凹凸状に形成された抵抗体層3下面の、固定接点6A、6Bへの接触面積が大きくなるため、小さな押圧力では抵抗値が高く、大きな押圧力では抵抗値が低くなり、図5の抵抗特性図に示す曲線Aのように、押圧力に応じて漸次変化する抵抗特性が得られるようになっている。   As the pressing force increases, the contact area of the lower surface of the resistor layer 3 formed in a concavo-convex shape with a plurality of particles 4 having different particle diameters to the fixed contacts 6A and 6B increases. The resistance value decreases with a large pressing force, and a resistance characteristic that gradually changes according to the pressing force can be obtained as shown by a curve A shown in the resistance characteristic diagram of FIG.

そして、これらの電気的接続や、押圧力に応じて変化する抵抗値を電子回路が検出し、例えば、表示図面に表示されたカーソルやポインタの移動速度が変化する等の、機器の様々な機能の操作が行なわれるように構成されている。   The electronic circuit detects the electrical connection and the resistance value that changes according to the pressing force. For example, various functions of the device such as the movement speed of the cursor and pointer displayed on the display drawing change. The operation is performed.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開2002−158103号公報JP 2002-158103 A

従来の感圧センサは、抵抗体層3の表面粗さが0.1〜3μmと小さかったため、押圧力の変化に対して抵抗体層3と固定接点6A、6Bとの接触面積の変化が十分ではなかった。そのため押圧初期に荷重が増加すると抵抗値が大きく低下してしまい、その後荷重を大きくしても抵抗値はあまり変化しないものであった。   In the conventional pressure-sensitive sensor, since the surface roughness of the resistor layer 3 is as small as 0.1 to 3 μm, the change in the contact area between the resistor layer 3 and the fixed contacts 6A and 6B is sufficient with respect to the change in the pressing force. It wasn't. For this reason, when the load increases in the initial stage of pressing, the resistance value greatly decreases, and the resistance value does not change much even if the load is increased thereafter.

すなわち、表面粗さが小さいため、低い押圧力に対しても抵抗体層3と固定接点6A、6Bがほぼ面で接触してしまう。そのため、図5で示した曲線Aのように、接触初期の低荷重域での曲線の傾きが急峻となり、測定可能な荷重範囲を広くとれず、高荷重域での曲線は傾きが小さすぎてダイナミックレンジを十分にとれないものとなっていた。   That is, since the surface roughness is small, the resistor layer 3 and the fixed contacts 6A and 6B come into contact with each other even on a low pressing force. Therefore, as shown by curve A in FIG. 5, the slope of the curve in the low load region at the initial stage of contact becomes steep, the measurable load range cannot be widened, and the curve in the high load region is too small. The dynamic range was not sufficient.

本発明は、このような従来の課題を解決するものであり、押圧力の変化に対する抵抗値の変化を緩やかにできる感圧センサを提供することを目的とする。   The present invention solves such a conventional problem, and an object of the present invention is to provide a pressure-sensitive sensor that can moderate a change in resistance value with respect to a change in pressing force.

上記目的を達成するために本発明は、以下の構成を有するものである。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、可撓性を有した基材の下面に抵抗体層を備えた導電シートと、抵抗体層と対向する位置に配された固定接点とで構成され、押圧操作により導電シートが撓み、抵抗体層と固定接点が接触する感圧センサであって、抵抗体層は所定の荷重で変形する弾性粒子が分散されて、固定接点と対向する面の表面粗さの最大高さが4μm〜25μmに形成された感圧センサとしたものであり、弾性粒子を含んだ高抵抗体層の表面粗さの最大高さが4μm〜25μmと大きいため、押圧力に対して抵抗値の変化を緩やかにできる感圧センサを提供できるという作用を有する。   The invention according to claim 1 of the present invention comprises a conductive sheet having a resistor layer on the bottom surface of a flexible substrate, and a fixed contact disposed at a position facing the resistor layer. , A pressure-sensitive sensor in which the conductive sheet is bent by the pressing operation, and the resistor layer and the fixed contact are in contact with each other, and the resistor layer is dispersed with elastic particles deformed by a predetermined load, and the surface of the surface facing the fixed contact This is a pressure-sensitive sensor having a maximum roughness of 4 μm to 25 μm, and since the maximum height of the surface roughness of the high resistance layer containing elastic particles is as large as 4 μm to 25 μm, In contrast, it is possible to provide a pressure-sensitive sensor that can moderately change the resistance value.

本発明の請求項2に記載の発明は、弾性粒子は、平均粒径が5〜30μmで、1mNの荷重で5〜15μm変形する感圧センサとしたものであり、押圧力に対して弾性粒子が適度に変形するため、抵抗値のダイナミックレンジを広く確保できるという作用を有する。   According to a second aspect of the present invention, the elastic particles have an average particle diameter of 5 to 30 μm and are deformed by 5 to 15 μm with a load of 1 mN. Is appropriately deformed, so that a wide dynamic range of the resistance value can be secured.

以上のように本発明によれば、押圧力に対して抵抗値の変化を緩やかにできる感圧センサを提供できるという有利な効果が得られる。   As described above, according to the present invention, it is possible to provide an advantageous effect that it is possible to provide a pressure-sensitive sensor that can moderate a change in resistance value with respect to a pressing force.

本発明の一実施の形態による感圧センサの断面図Sectional drawing of the pressure-sensitive sensor by one embodiment of this invention 同押圧操作時の断面図Sectional view during pressing operation 同抵抗特性図Resistance characteristics 従来の感圧センサの断面図Cross section of conventional pressure sensor 同抵抗特性図Resistance characteristics

以下、本発明の実施の形態について、図1〜図3を用いて説明する。なお、これらの図のうち断面図は、構成を判り易くするために厚さ方向の寸法を拡大して表している。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. Note that, in these drawings, the cross-sectional views are shown by enlarging the dimension in the thickness direction for easy understanding of the configuration.

なお、従来の技術の項で説明した構成と同一構成の部分には同一符号を付して、詳細な説明を簡略化する。   In addition, the same code | symbol is attached | subjected to the part of the structure same as the structure demonstrated in the term of the prior art, and detailed description is simplified.

(実施の形態)
図1は本発明の一実施の形態による感圧センサの断面図であり、同図において、11はポリエチレンテレフタレートやポリカーボネート、ポリウレタン、ポリイミド等のフィルム状で可撓性を有する厚さ25〜200μmの基材で、この下面にはシート抵抗値50Ω〜30kΩ/□の低抵抗体層12が、カーボン粉を分散したフェノールやエポキシ、フェノキシ、フッ素ゴム等の合成樹脂によって形成されている。
(Embodiment)
FIG. 1 is a cross-sectional view of a pressure-sensitive sensor according to an embodiment of the present invention, in which 11 is a film of polyethylene terephthalate, polycarbonate, polyurethane, polyimide, etc., and has a thickness of 25 to 200 μm. A low resistance layer 12 having a sheet resistance of 50Ω to 30 kΩ / □ is formed on the lower surface of the base material by a synthetic resin such as phenol, epoxy, phenoxy, or fluororubber in which carbon powder is dispersed.

なお、低抵抗体層12は上記したもののほか、シート抵抗値数Ω〜数10Ω/□前後の、ポリエステルやエポキシ等に銀やカーボン等を分散したものを用いてもよい。   In addition to the above, the low resistance layer 12 may have a sheet resistance value of several Ω to several tens of Ω / □ in which silver, carbon, or the like is dispersed in polyester, epoxy, or the like.

そして、13は低抵抗体層12の下面に重ねて形成された高抵抗体層で、同じくカーボン粉を分散した合成樹脂によって形成されている。この高抵抗体層13内には平均粒径が2〜100μm、好ましくは平均粒径が5〜30μmの略球状で、ウレタンやアクリル、ナイロン、シリコーン、オレフィン等のショアA硬度30〜90HSの弾性粒子14が、10〜80重量%程度、好ましくは20〜60重量%程度分散され、高抵抗体層13下面が凹凸状に形成されて導電シート15が構成されている。高抵抗体層13はシート抵抗値50kΩ〜5MΩ/□、厚さ5〜50μmになっている。   Reference numeral 13 denotes a high resistance layer formed on the lower surface of the low resistance layer 12, which is also formed of a synthetic resin in which carbon powder is dispersed. The high resistance layer 13 has an approximately spherical shape with an average particle diameter of 2 to 100 μm, preferably an average particle diameter of 5 to 30 μm, and an elasticity with a Shore A hardness of 30 to 90 HS such as urethane, acrylic, nylon, silicone, and olefin. The particles 14 are dispersed in an amount of about 10 to 80% by weight, preferably about 20 to 60% by weight, and the lower surface of the high resistance layer 13 is formed in an uneven shape to constitute the conductive sheet 15. The high resistance layer 13 has a sheet resistance value of 50 kΩ to 5 MΩ / □ and a thickness of 5 to 50 μm.

なお、このような導電シート15は、基材11に低抵抗体層12をスクリーン印刷によって形成した後、これに重ねて、SUS300〜100メッシュの版を用いてスクリーン印刷によって、弾性粒子14が分散された高抵抗体層13を形成して製作することができる。   In addition, after forming the low resistance body layer 12 in the base material 11 by screen printing in such a conductive sheet 15, the elastic particle 14 is disperse | distributed by screen printing using the plate of SUS300-100 mesh on this. The formed high resistance layer 13 can be formed.

弾性粒子14は強靭で弾性を有する粒子になっており、ほぼ球状のものを用いる。この弾性粒子14に荷重をかけると、ほぼ球状のものが荷重をかけた方向に圧縮されてつぶれ、楕円体のような形状になる。このとき弾性粒子14は、1mNの荷重に対して、荷重をかけた方向に5〜15μm程度変形するものを用いると、押圧力に対して弾性粒子14が適度に変形するため、抵抗値のダイナミックレンジを広く確保できて好ましい。   The elastic particles 14 are tough and elastic particles, and substantially spherical particles are used. When a load is applied to the elastic particles 14, a substantially spherical particle is compressed and crushed in the direction in which the load is applied, resulting in an ellipsoidal shape. At this time, if the elastic particle 14 deforms about 5 to 15 μm in the applied direction with respect to a load of 1 mN, the elastic particle 14 is appropriately deformed with respect to the pressing force. It is preferable because a wide range can be secured.

なお、1mNの荷重に対しての変形が5μmより小さい弾性粒子を用いた場合では、荷重の増加に対して抵抗値の変化が滑らかにならず、ばらつきが大きいものになってしまう。また、1mNの荷重に対しての変形が15μmより大きい弾性粒子を用いた場合では、押圧初期に荷重が増加すると抵抗値が大きく低下してしまい、さらに荷重を大きくしても抵抗値はあまり変化しないものになってしまう。   In the case where elastic particles whose deformation with respect to a load of 1 mN is smaller than 5 μm are used, the change of the resistance value does not become smooth as the load increases, and the variation becomes large. In addition, when elastic particles with a deformation greater than 15 μm are used for a load of 1 mN, the resistance value greatly decreases when the load increases in the initial stage of pressing, and the resistance value changes much even when the load is further increased. It will be something that will not.

そして、8はポリエチレンテレフタレートやポリカーボネート等のフィルム状、または紙フェノールやガラス入りエポキシ等の板状の基板で、導電シート15下面に配置されると共に、8の上面には銀やカーボン、銅箔等の複数の固定接点6A、6Bが、0.05〜0.2mm前後の間隙を空けて形成されている。   Reference numeral 8 denotes a film-like substrate such as polyethylene terephthalate or polycarbonate, or a plate-like substrate such as paper phenol or glass-filled epoxy, which is disposed on the lower surface of the conductive sheet 15, and silver, carbon, copper foil, etc. The plurality of fixed contacts 6A and 6B are formed with a gap of about 0.05 to 0.2 mm.

さらに、導電シート15と基板8の間には固定接点6A、6Bを囲むように、ポリエステルやエポキシ等の絶縁樹脂によってスペーサ7が形成され、高抵抗体層13下面と固定接点6A、6Bが、10〜100μm前後の空隙で対向するようにして、感圧センサが構成されている。   Further, a spacer 7 is formed of an insulating resin such as polyester or epoxy between the conductive sheet 15 and the substrate 8 so as to surround the fixed contacts 6A and 6B, and the lower surface of the high resistance layer 13 and the fixed contacts 6A and 6B are The pressure sensor is configured to face each other with a gap of about 10 to 100 μm.

このように構成された感圧センサが電子機器の操作部に装着されると共に、複数の固定接点6A、6Bがリード線(図示せず)等を介して、機器の電子回路(図示せず)に接続される。   The pressure sensor configured as described above is mounted on the operation unit of the electronic device, and a plurality of fixed contacts 6A and 6B are connected to the electronic circuit (not shown) of the device via lead wires (not shown). Connected to.

以上の構成において、導電シート15上面を押圧操作すると、図2の断面図に示すように、導電シート15が下方へ撓んで、固定接点6A、6Bと対向した弾性粒子14高抵抗体層13下面が、固定接点6A、6Bに接触し、高抵抗体層13と低抵抗体層12を介して、固定接点6A、6B間が電気的に接続される。   In the above configuration, when the upper surface of the conductive sheet 15 is pressed, the conductive sheet 15 bends downward as shown in the cross-sectional view of FIG. However, it contacts the fixed contacts 6A and 6B, and the fixed contacts 6A and 6B are electrically connected via the high-resistance layer 13 and the low-resistance layer 12.

ここで、固定接点6A、6Bと接触した高抵抗体層13下面の接触箇所は、結果的に高抵抗体層13下面の凹凸において、大きく凸形状に出っ張りを形成している箇所である。つまり、弾性粒子14によって大きく出っ張りを形成している高抵抗体層13下面の箇所が、最初に固定接点6A、6Bに接触する。   Here, the contact location on the lower surface of the high resistance layer 13 that is in contact with the fixed contacts 6 </ b> A and 6 </ b> B is a location where a bulge is formed in a large convex shape on the unevenness on the lower surface of the high resistance layer 13 as a result. That is, the portion of the lower surface of the high resistance layer 13 that forms a large bulge by the elastic particles 14 first comes into contact with the fixed contacts 6A and 6B.

また、さらに押圧力を加えると、弾性粒子14が変形し、上述した接触箇所以外の、高抵抗体層13下面も固定接点6A、6Bに接触する。つまり接触箇所の面積が大きくなるため接触抵抗が低下し、固定接点6A、6B間の抵抗値が低下する。   Further, when a pressing force is further applied, the elastic particles 14 are deformed, and the lower surface of the high resistance layer 13 other than the contact portion described above also contacts the fixed contacts 6A and 6B. That is, since the area of the contact location increases, the contact resistance decreases, and the resistance value between the fixed contacts 6A and 6B decreases.

つまり、押圧力の増加に伴って、凹凸状に形成された高抵抗体層13下面の、固定接点6A、6Bへの接触面積が大きくなるため、小さな押圧力では抵抗値が高く、大きな押圧力では抵抗値が低くなり、図3の抵抗特性図に示す曲線Cのように、押圧力に応じて漸次変化する抵抗特性が得られるようになっている。   That is, as the pressing force increases, the contact area of the lower surface of the high resistance layer 13 formed in an uneven shape with the fixed contacts 6A and 6B increases. Then, the resistance value becomes low, and a resistance characteristic that gradually changes according to the pressing force can be obtained as shown by a curve C in the resistance characteristic diagram of FIG.

そして、これらの電気的接続や、押圧力に応じて変化する抵抗値を電子回路が検出し、例えば、表示図面に表示されたカーソルやポインタの移動速度が変化する等の、機器の様々な機能の操作が行なわれるように構成されている。   The electronic circuit detects the electrical connection and the resistance value that changes according to the pressing force. For example, various functions of the device such as the movement speed of the cursor and pointer displayed on the display drawing change. The operation is performed.

なお、本発明においては、高抵抗体層13の下面は、JIS B0601:2001で定義される表面粗さの最大高さRzの値を4μm以上25μm以下としたものである。このときの測定条件は、評価長さ1.25mm、基準長さ0.25mmとした。   In the present invention, the lower surface of the high resistance layer 13 has a maximum surface roughness height Rz defined by JIS B0601: 2001 of 4 μm to 25 μm. The measurement conditions at this time were an evaluation length of 1.25 mm and a reference length of 0.25 mm.

表面粗さの最大高さが4μm以上8μm未満であると、図3で示した曲線Bのように、押圧力(荷重)に対して抵抗値の変化を緩やかにできるため好ましい。また、表面粗さの最大高さが8μm以上25μm以下であるとより好ましく、これであれば図3で示した曲線Cのように、押圧力(荷重)に対して抵抗値の変化をさらに緩やかにできる。   When the maximum height of the surface roughness is 4 μm or more and less than 8 μm, it is preferable because the resistance value can be gradually changed with respect to the pressing force (load) as shown by the curve B shown in FIG. Further, it is more preferable that the maximum height of the surface roughness is 8 μm or more and 25 μm or less. In this case, as shown by the curve C shown in FIG. Can be.

表面粗さの最大高さが4μm未満の場合には、低い押圧力に対しても高抵抗体層13と固定接点6A、6Bがほぼ面で接触してしまい、接触抵抗が低くなる。そのため、図3で示した曲線Aのように、接触初期の低荷重域での曲線の傾きが急峻となり、測定可能な荷重範囲を広くとれず、高荷重域での曲線は傾きが小さすぎてダイナミックレンジを十分にとれないものとなってしまう。また、表面粗さの最大高さが25μmを超える場合には、高抵抗体層13と固定接点6A、6Bの接触の仕方が個体間でばらつきを生じる原因となり、歩留まりが低くなってしまう。表面粗さの最大高さが35μmを超えると個体間のばらつきによる歩留まりの低下がさらに顕著になる。   When the maximum height of the surface roughness is less than 4 μm, the high resistance layer 13 and the fixed contacts 6A and 6B are almost in contact with each other even with a low pressing force, and the contact resistance is lowered. Therefore, as shown by the curve A shown in FIG. 3, the slope of the curve in the low load region at the beginning of contact becomes steep, the measurable load range cannot be widened, and the curve in the high load region is too small. The dynamic range will not be sufficient. Further, when the maximum height of the surface roughness exceeds 25 μm, the manner of contact between the high resistance layer 13 and the fixed contacts 6A and 6B causes variations among individuals, resulting in a low yield. When the maximum height of the surface roughness exceeds 35 μm, the yield reduction due to the variation among individuals becomes more remarkable.

なお、本発明は、高抵抗体層13の下面において表面粗さの最大高さRzの値を4μm以上25μm以下としたものである。十点平均粗さRzJISの値はおよそ相関関係があり、4〜16μm程度にすれば、同様に押圧力に対して抵抗値の変化を緩やかにできる。算術平均粗さRaについては明確な相関が得られなかった。   In the present invention, the value of the maximum height Rz of the surface roughness on the lower surface of the high resistance layer 13 is 4 μm or more and 25 μm or less. The value of the ten-point average roughness RzJIS is approximately correlated, and if the value is about 4 to 16 μm, the change in the resistance value with respect to the pressing force can be moderated similarly. A clear correlation was not obtained for the arithmetic average roughness Ra.

以上の説明では、低抵抗体層12のシート抵抗値を50Ω〜30kΩ/□、高抵抗体層13のシート抵抗値を50kΩ〜5MΩ/□として説明した。低抵抗体層12は、抵抗値が低いほうが感度がよくなる傾向があるため、50Ω〜10kΩ/□程度に設定するとさらに好ましい。高抵抗体層13は抵抗値が高いほうがダイナミックレンジを大きくとれるため、100kΩ〜1MΩ/□のシート抵抗値とするとさらに好ましい。   In the above description, the sheet resistance value of the low resistance layer 12 is 50Ω to 30 kΩ / □, and the sheet resistance value of the high resistance layer 13 is 50 kΩ to 5 MΩ / □. The low resistance layer 12 has a tendency that the lower the resistance value, the better the sensitivity. Therefore, the low resistance layer 12 is more preferably set to about 50Ω to 10 kΩ / □. The higher resistance layer 13 has a higher resistance value, so that the dynamic range can be increased. Therefore, the sheet resistance value of 100 kΩ to 1 MΩ / □ is more preferable.

また、導電シート15と基板8の間にスペーサ7を形成すると共に、導電シート15の高抵抗体層13下面に、複数の固定接点6A、6Bを配置したパネルスイッチとして構成することが可能である。   In addition, the spacer 7 can be formed between the conductive sheet 15 and the substrate 8, and a plurality of fixed contacts 6 </ b> A and 6 </ b> B can be configured on the lower surface of the high resistance layer 13 of the conductive sheet 15. .

本発明による感圧センサは、押圧力に対する抵抗値の変化が緩やかなものを実現することができ、各種電子機器の操作部等に有用である。   The pressure-sensitive sensor according to the present invention can realize a sensor whose change in resistance value with respect to the pressing force is gradual, and is useful for operation units of various electronic devices.

6A、6B 固定接点
7 スペーサ
8 基板
11 基材
12 低抵抗体層
13 高抵抗体層
14 弾性粒子
15 導電シート
6A, 6B Fixed contact 7 Spacer 8 Substrate 11 Base 12 Low resistance layer 13 High resistance layer 14 Elastic particle 15 Conductive sheet

Claims (2)

可撓性を有した基材の下面に抵抗体層を備えた導電シートと、
前記抵抗体層と対向する位置に配された固定接点とで構成され、
押圧操作により前記導電シートが撓み、前記抵抗体層と前記固定接点が接触する感圧センサであって、
前記抵抗体層は所定の荷重で変形する弾性粒子が分散されて、
前記固定接点と対向する面の表面粗さの最大高さが4μm〜25μmに形成された感圧センサ。
A conductive sheet having a resistor layer on the bottom surface of a flexible substrate;
It is composed of a fixed contact disposed at a position facing the resistor layer,
A pressure sensor in which the conductive sheet is bent by a pressing operation, and the resistor layer and the fixed contact are in contact with each other;
In the resistor layer, elastic particles that are deformed by a predetermined load are dispersed,
A pressure-sensitive sensor in which the maximum height of the surface roughness of the surface facing the fixed contact is 4 μm to 25 μm.
前記弾性粒子は、平均粒径が5〜30μmで、1mNの荷重で5〜15μm変形する請求項1記載の感圧センサ。 The pressure-sensitive sensor according to claim 1, wherein the elastic particles have an average particle diameter of 5 to 30 μm and are deformed by 5 to 15 μm with a load of 1 mN.
JP2014149643A 2014-07-23 2014-07-23 Pressure-sensitive sensor Pending JP2016024109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014149643A JP2016024109A (en) 2014-07-23 2014-07-23 Pressure-sensitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014149643A JP2016024109A (en) 2014-07-23 2014-07-23 Pressure-sensitive sensor

Publications (1)

Publication Number Publication Date
JP2016024109A true JP2016024109A (en) 2016-02-08

Family

ID=55270968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014149643A Pending JP2016024109A (en) 2014-07-23 2014-07-23 Pressure-sensitive sensor

Country Status (1)

Country Link
JP (1) JP2016024109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173028A (en) * 2016-03-22 2017-09-28 日本写真印刷株式会社 Pressure-sensitive sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173028A (en) * 2016-03-22 2017-09-28 日本写真印刷株式会社 Pressure-sensitive sensor

Similar Documents

Publication Publication Date Title
JP6347292B2 (en) Sensor device, input device and electronic apparatus
US7528337B2 (en) Pressure sensitive conductive sheet and panel switch using same
JP6643647B2 (en) Pressure sensitive element
JP6643629B2 (en) Pressure sensitive element
WO2015037197A1 (en) Capacitive sensor for detecting touch position and pressing force
JP2008311208A (en) Pressure-sensitive conductive sheet and panel switch using the same
CN105009045A (en) Sensor device, input device, and electronic apparatus
JP2015197300A (en) Pressure sensitive element, manufacturing method thereof, touch panel including pressure sensitive element and manufacturing method thereof
JP5407152B2 (en) Pressure-sensitive conductive sheet and panel switch using the same
TW201209664A (en) Pressure detecting unit and information input device having pressure detecting unit
TWI547841B (en) And a method of manufacturing the input device and the input device
CN212659063U (en) Stress sensing film, touch module and electronic equipment
JP2016091089A (en) Touch pen
JP2016024109A (en) Pressure-sensitive sensor
JP2015114178A (en) Pressure-sensitive sensor
CN111190504A (en) Display device
JP2015232490A (en) Pressure sensitive sensor and input device using the same
KR101095125B1 (en) Resistive touch screen
KR20180113081A (en) Touch panel
JP5350861B2 (en) Pressure detection unit
JP2015153482A (en) Pressure-sensitive switch
CN212463189U (en) Touch panel and switch assembly for touch panel
JP2012132816A (en) Pressure detection device, electronic apparatus and robot
JPWO2009139097A1 (en) Touch panel
JP2017010868A (en) switch

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520