JP2016024059A - Surface shape measurement method and surface shape measurement device and optical element using surface shape measurement method and surface shape measurement device - Google Patents

Surface shape measurement method and surface shape measurement device and optical element using surface shape measurement method and surface shape measurement device Download PDF

Info

Publication number
JP2016024059A
JP2016024059A JP2014148424A JP2014148424A JP2016024059A JP 2016024059 A JP2016024059 A JP 2016024059A JP 2014148424 A JP2014148424 A JP 2014148424A JP 2014148424 A JP2014148424 A JP 2014148424A JP 2016024059 A JP2016024059 A JP 2016024059A
Authority
JP
Japan
Prior art keywords
surface shape
wavefront
measurement
measuring
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014148424A
Other languages
Japanese (ja)
Inventor
由美子 大嵜
Yumiko Osaki
由美子 大嵜
裕範 古河
Hironori Furukawa
裕範 古河
義紀 前田
Yoshinori Maeda
義紀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014148424A priority Critical patent/JP2016024059A/en
Publication of JP2016024059A publication Critical patent/JP2016024059A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which in a method of projecting a light flux to a measured surface via an optical system and measuring a measured surface shape by detecting a wavefront of a reflection light flux, an error of the optical system makes a highly accurate measurement of the measured surface shape difficult.SOLUTION: In a surface shape measurement method configured to: project light from a light source to a known reference surface via an optical system; measure, by a detection unit, a light lay angle distribution of a reflection light flux; similarly, measure a measured surface; and measure a measured surface shape from a difference between the measurement light ray angle distributions and a magnification distribution, the surface shape measurement method is configured to calibrate the magnification distribution on the basis of calculation of calculating a wavefront change before and after the reference surface is driven at a known amount, a result of measuring the wavefront change before and after the reference surface is driven by driving the reference surface at the known amount, and the magnification distribution.SELECTED DRAWING: Figure 1

Description

本発明は、面形状計測方法および面形状計測装置並びにこれらを用いた光学素子に関する。   The present invention relates to a surface shape measuring method, a surface shape measuring device, and an optical element using them.

レンズの面形状を非接触かつ高速に計測する方法として、光学系を介して被検面に球面波の光を照射し、被検面の反射光を受光部のシャック・ハルトマンセンサを用いて計測するという方法が非特許文献1で知られている。   As a method to measure the lens surface shape in a non-contact and high-speed manner, the surface to be measured is irradiated with spherical wave light via an optical system, and the reflected light from the surface to be measured is measured using the Shack-Hartmann sensor of the light receiving unit Non-patent document 1 discloses a method of doing this.

この方法は、特許文献1に開示されたようなヌルレンズを用いた干渉計と比較して、多様な設計値の被検面形状が計測可能であるという利点がある。また、計測時にサンプルを駆動する特許文献2に開示されたようなスティッチング干渉計や特許文献3に開示されたような走査干渉計と比較して、高精度に駆動するステージや測長機、複雑な解析プログラムが不要であるという利点がある。   This method has an advantage that the shape of the test surface with various design values can be measured as compared with an interferometer using a null lens as disclosed in Patent Document 1. In addition, compared to a stitching interferometer as disclosed in Patent Document 2 and a scanning interferometer as disclosed in Patent Document 3 that drives a sample at the time of measurement, a stage or length measuring device that is driven with high accuracy, There is an advantage that a complicated analysis program is unnecessary.

また、形状を高精度に算出するために、実際の装置誤差を考慮して、位置誤差を校正することが知られ、被検面を既知量駆動させ、その時の受光部の計測値変化量を計測することで、位置誤差を校正することが知られる(特許文献4、5、6、7)。   In order to calculate the shape with high accuracy, it is known to calibrate the position error in consideration of the actual device error.The measured surface is driven by a known amount and the measured value change amount of the light receiving unit at that time is calculated. It is known that the position error is calibrated by measuring (Patent Documents 4, 5, 6, and 7).

特開平09−329427号公報JP 09-329427 A 特開2004−125768号公報JP 2004-125768 A 特登録03971747号公報Japanese Patent Registration No. 0371747 特開2000−97663号公報JP 2000-97663 A 特開平10−281736号公報Japanese Patent Laid-Open No. 10-281736 特開2006−133059号公報JP 2006-133059 A 特開平04−048201号公報Japanese Patent Laid-Open No. 04-048201

Johannes Pfund,Norbert Lindlein, and Johannes Schwider,“Nonnull testing of rotationally symmetric aspheres:a systematic error assessment,“App.Opt.40(2001)p.439Johannes Pfund, Norbert Lindlein, and Johannes Schwider, “Nonull testing of rotationally symmetrical assets: a systematic error assessment,“ Ap. Opt. 40 (2001) p. 439

被検面として非球面形状を計測する場合、前記非特許文献1に記載されているシャック・ハルトマンセンサを用いる手法では、計測光が被検面に対して、垂直に照射されない。被検面では入射光と異なる角度で反射されるため、反射光は受光部で略平行光にはならず、被検面からの反射波面は平面波面から大きくずれた波面として検出される。また、被検面からの反射波面の平面波面からのずれ量は、いつも一定にはならず、計測した非球面形状によって変わる。   When measuring an aspherical shape as a test surface, the method using the Shack-Hartmann sensor described in Non-Patent Document 1 does not irradiate measurement light perpendicularly to the test surface. Since the test surface is reflected at an angle different from the incident light, the reflected light does not become substantially parallel light at the light receiving unit, and the reflected wavefront from the test surface is detected as a wavefront greatly deviated from the plane wavefront. Further, the amount of deviation of the reflected wavefront from the test surface from the plane wavefront is not always constant, and varies depending on the measured aspheric shape.

そのため、受光部でこの被検面からの反射波面を計測しても、そのまま被検面の形状を得ることはできない。被検面からの反射波面から被検面の形状を算出するためには、被検面での反射とその受光に関する位置と角度の2つの情報が必要になるのである。   Therefore, even if the reflected wavefront from the test surface is measured by the light receiving unit, the shape of the test surface cannot be obtained as it is. In order to calculate the shape of the test surface from the reflected wavefront from the test surface, two pieces of information on the reflection on the test surface and the position and angle regarding the light reception are necessary.

もし計測装置の光学系やその配置が設計通りに出来ていれば、被検面ごとにあらかじめ計算しておけばよいが、実際には、レンズ加工誤差(曲率半径の誤差、研磨残渣、ホモジニティー、厚み誤差など)や、レンズ組み立て誤差(光軸方向の配置誤差、収差など)や、レンズと被検面・受光面のアライメント誤差など、色々な誤差要因があり、設計通りにはならない。形状を高精度に算出するためには、実際の装置誤差を考慮して、位置倍率と角度倍率を校正する必要がある。   If the optical system of the measuring device and its arrangement are made as designed, it may be calculated in advance for each surface to be tested, but in reality, lens processing errors (curvature radius error, polishing residue, homogeneity, There are various error factors such as thickness error, lens assembly error (positioning error in the optical axis direction, aberration, etc.), alignment error between the lens and the test surface / light receiving surface, etc. In order to calculate the shape with high accuracy, it is necessary to calibrate the position magnification and the angle magnification in consideration of an actual apparatus error.

しかし、特許文献4乃至7は、位置倍率の校正には使えることを開示するが、角度倍率を校正する手法を開示したものではない。   However, Patent Documents 4 to 7 disclose that the position magnification can be used for calibration, but do not disclose a method for calibrating the angle magnification.

なお、位置の情報とは、受光部で計測した光束が、被検面のどの位置で反射した光束なのかを示す、受光面と被検面との横座標の関係であり、例えば両者の比をとった位置倍率として表すことができる。また、角度の情報とは、同様に受光部で計測した光束が、被検面のどの角度で反射した光束なのかを示す、受光面と被検面との光線角度の関係であり、例えば両者の比をとった角度倍率として表すことができる。   Note that the position information is the abscissa relationship between the light receiving surface and the test surface that indicates where the light beam measured by the light receiving unit is reflected on the test surface. It can be expressed as a position magnification obtained by taking Similarly, the angle information is the relationship between the light beam angle between the light receiving surface and the test surface, which indicates at which angle the light beam measured by the light receiving unit is reflected by the light receiving unit. Can be expressed as an angle magnification.

本発明の目的は、計測装置に種々の誤差があり、設計値通りに製作できなかった場合でも、倍率分布を装置上で校正することが可能で、非球面を含む被検面の形状の計測を高精度に行うことができる面形状計測方法および面形状計測装置並びにこれらを用いた光学素子面を提供することにある。   The object of the present invention is to measure the shape of the surface to be inspected including an aspherical surface, even if the measuring device has various errors and the magnification distribution can be calibrated on the device even if it cannot be manufactured as designed. It is to provide a surface shape measuring method and a surface shape measuring apparatus capable of performing the above with high accuracy, and an optical element surface using them.

本発明に係る面形状計測方法は、光学系を介して、被検面に光を照射し、前記被検面からの反射光を受光する受光面を有する受光部で受光することによって、前記被検面の面形状を計測する計測装置において、前記受光面に対する共役面での位置倍率分布と角度倍率分布を演算するステップと、既知の面形状を有する基準面で反射した光の波面を前記受光部で計測するステップと、前記被検面で反射した光の波面を前記受光部で計測するステップと、前記二つの計測波面の差分情報から前記被検面の面形状を演算するステップと、を含む面形状計測方法であって、前記光学系の設計値を用いて前記基準面で反射した光の前記受光面上の波面を演算するステップと、前記基準面の既知量駆動前後の波面変化を計算するステップと、前記基準面の既知量駆動前後の波面変化を計測するステップと、前記計算と計測によって求めた既知量駆動前後の波面変化から、前記角度倍率分布を校正するステップと、前記既知の基準面形状と、前記基準面の計測値と、前記被検面の計測値と、前記校正された角度倍率を用いて、前記被検面の面形状を演算するステップと、を含むことを特徴とする。   The surface shape measurement method according to the present invention irradiates light to a surface to be measured through an optical system, and receives the light by a light receiving unit having a light receiving surface that receives reflected light from the surface to be measured. In the measuring device for measuring the surface shape of the inspection surface, a step of calculating a position magnification distribution and an angle magnification distribution on a conjugate plane with respect to the light receiving surface, and a wavefront of light reflected by a reference surface having a known surface shape are received. A step of measuring by the unit, a step of measuring the wavefront of the light reflected by the test surface by the light receiving unit, and a step of calculating the surface shape of the test surface from the difference information of the two measurement wavefronts. A surface shape measuring method including a step of calculating a wavefront on the light receiving surface of light reflected by the reference surface using a design value of the optical system, and a wavefront change before and after driving the reference surface by a known amount. Calculating the reference plane; A step of measuring a wavefront change before and after the knowledge drive, a step of calibrating the angular magnification distribution from the wavefront change before and after the known drive obtained by the calculation and measurement, the known reference surface shape, and the reference surface And a step of calculating a surface shape of the test surface using the measured value of the test surface and the calibrated angular magnification.

本発明によれば、例えば、計測装置に種々の誤差があり、設計値通りに製作できなかった場合でも、倍率分布を装置上で校正することが可能になり、非球面を含む被検面の形状の計測を高精度に行うことができるのである。   According to the present invention, for example, even when there are various errors in the measuring device and it cannot be manufactured as designed, the magnification distribution can be calibrated on the device, and the surface to be tested including an aspherical surface can be calibrated. The shape can be measured with high accuracy.

実施例1の概略図である。1 is a schematic diagram of Example 1. FIG. 受光部の例を示した図である。It is the figure which showed the example of the light-receiving part. 計測方法のステップを示すフローチャートである。It is a flowchart which shows the step of a measuring method. 前処理のステップを示すフローチャートである。It is a flowchart which shows the step of pre-processing. 倍率分布を算出するステップを示すフローチャートである。It is a flowchart which shows the step which calculates magnification distribution. 計測のステップを示すフローチャートである。It is a flowchart which shows the step of measurement. 解析のステップを示すフローチャートである。It is a flowchart which shows the step of an analysis. 光線の位置と角度を説明するための図である。It is a figure for demonstrating the position and angle of a light ray. 角度倍率分布の校正を説明した図である。It is a figure explaining calibration of angle magnification distribution. 実施例2の概略図である。6 is a schematic diagram of Example 2. FIG. 実施例2の倍率分布を算出するステップを示すフローチャートである10 is a flowchart illustrating steps for calculating a magnification distribution according to the second embodiment. 実施例2における倍率分布の図である。10 is a diagram of a magnification distribution in Example 2. FIG. 共役面の算出方法を説明した図である。It is a figure explaining the calculation method of a conjugate plane. 凹面を計測する実施例3の概略図である。It is the schematic of Example 3 which measures a concave surface.

(実施例1)
図1は、本発明の一例として、凸面の形状を計測する計測装置の構成を示したものである。この計測装置は、基準サンプル10の情報を用いて、被検サンプル11の形状を計測するための装置である。光源1からの光は集光レンズ2とピンホール3を透過し、ハーフミラーで反射され、レンズ5を透過することで収束光となり、基準面10aあるいは被検面11aを照射する。基準面10aあるいは被検面11aで反射した光は、レンズ5、ハーフミラー4、レンズ7を透過し、受光部8で受光する。基準サンプル10と被検サンプル11は、XYZθxθyθzの少なくとも1つを制御できるステージ6の上に配置される。
Example 1
FIG. 1 shows a configuration of a measuring apparatus that measures the shape of a convex surface as an example of the present invention. This measuring device is a device for measuring the shape of the test sample 11 using information of the reference sample 10. The light from the light source 1 passes through the condenser lens 2 and the pinhole 3, is reflected by the half mirror, passes through the lens 5, becomes convergent light, and irradiates the reference surface 10a or the test surface 11a. The light reflected by the reference surface 10 a or the test surface 11 a passes through the lens 5, the half mirror 4, and the lens 7 and is received by the light receiving unit 8. The reference sample 10 and the test sample 11 are arranged on a stage 6 that can control at least one of XYZθxθyθz.

光源1は、例えば単色のレーザやレーザダイオードや発光ダイオードなどを使用する。レンズ5は被検面11aに収束光で光を照射するために用い、被検面11aの近軸付近の曲率中心と、収束光の球面波の曲率中心がほぼ等しくなるようにするとよい。レンズ7は被検面の反射光を受光面8aで受光するために用いている。このレンズ5、7の設計条件は、計測したい被検物11の情報、たとえば有効径や曲率半径、非球面量などと、受光部8の情報、たとえばセンササイズ、受光部の構成、入力許容角度などから決定する。   As the light source 1, for example, a monochromatic laser, a laser diode, a light emitting diode, or the like is used. The lens 5 is used to irradiate the test surface 11a with light with convergent light, and the center of curvature near the paraxial axis of the test surface 11a and the center of curvature of the spherical wave of the convergent light are preferably substantially equal. The lens 7 is used to receive the reflected light of the test surface by the light receiving surface 8a. The design conditions of the lenses 5 and 7 include information on the object 11 to be measured, such as effective diameter, radius of curvature, and aspheric amount, and information on the light receiving unit 8, such as sensor size, configuration of the light receiving unit, and input allowable angle. Determine from

本実施例での計測装置では、レンズ5とレンズ7の組み合わせで、複数の非球面形状を計測することが可能である。但し、1組のレンズで計測できる形状の範囲は限られている。そのため、計測したい非球面形状に対応して、レンズ5、レンズ7のどちらか、あるいは2つとも交換することによって、計測できる非球面形状の範囲を広げることができる。   In the measurement apparatus according to the present embodiment, it is possible to measure a plurality of aspheric shapes by combining the lens 5 and the lens 7. However, the range of shapes that can be measured with one set of lenses is limited. Therefore, the range of the aspheric shape that can be measured can be expanded by exchanging either one of the lens 5 and the lens 7 or two according to the aspheric shape to be measured.

受光部8として、図2(a)に示したシャック・ハルトマンセンサを用いる。シャック・ハルトマンセンサとは、多数の微小集光レンズを格子状に配列したマイクロレンズアレイ21と受光センサ22で構成されている。受光センサにはたとえばCCDなどがある。マイクロレンズアレイでは、その微小領域ごとに集光され、受光センサでは、マイクロレンズアレイの数と同じ集光スポットが計測できる。   As the light receiving unit 8, the Shack-Hartmann sensor shown in FIG. The Shack-Hartmann sensor includes a microlens array 21 and a light receiving sensor 22 in which a large number of minute condensing lenses are arranged in a lattice pattern. An example of the light receiving sensor is a CCD. In the microlens array, the light is condensed for each minute region, and the light receiving sensor can measure the same condensing spot as the number of microlens arrays.

シャック・ハルトマンセンサを用いて、受光面8aにおける光線の角度分布φを求める。具体的には、あらかじめ平面波を入射した際に集光スポット位置を計測しておき、集光スポット位置の基準を求めておく。次に被検面を配置し、被検面からの反射波面に対応した集光スポット位置を計測することで、平面波での基準集光スポット位置からの変化量Δpが得られる。検出面8aでの光線角度分布φは、このΔpとマイクロレンズアレイの焦点距離fから次の式で求めることができる。   Using the Shack-Hartmann sensor, the angle distribution φ of the light beam on the light receiving surface 8a is obtained. Specifically, the focused spot position is measured in advance when a plane wave is incident, and a reference for the focused spot position is obtained. Next, by arranging the test surface and measuring the condensing spot position corresponding to the reflected wavefront from the test surface, the amount of change Δp from the reference condensing spot position in the plane wave can be obtained. The ray angle distribution φ on the detection surface 8a can be obtained from the Δp and the focal length f of the microlens array by the following equation.

(式1)
φ=atan(Δp/f)
受光部8はシャック・ハルトマンセンサ以外にも、波面や角度分布を計測できるものであれば何でもよい。例えば図2(b)に示したように、回折格子とCCDセンサを組み合わせ、シアリング干渉計や、Talbot干渉計を構成してもよい。ほかにもハルトマンプレートとCCDセンサを用いたハルトマン法を用いてもよい。
(Formula 1)
φ = atan (Δp / f)
The light receiving unit 8 may be anything other than the Shack-Hartmann sensor as long as it can measure the wavefront and the angular distribution. For example, as shown in FIG. 2B, a shearing interferometer or a Talbot interferometer may be configured by combining a diffraction grating and a CCD sensor. In addition, the Hartmann method using a Hartmann plate and a CCD sensor may be used.

また、被検面からの反射波面が受光面8aより大きい場合は、反射波面の一部分だけを計測し、受光部8を移動させて複数回計測を繰り返し、つなぎ合わせることで全体の波面や角度分布を受光してもよい。   Further, when the reflected wavefront from the test surface is larger than the light receiving surface 8a, only a part of the reflected wavefront is measured, the light receiving unit 8 is moved, the measurement is repeated a plurality of times, and the entire wavefront and angular distribution are joined together. May be received.

処理部9では、受光部8での計測結果に基づいて、被検面11aの面形状を求めるための処理を行う。また、この計測装置全体を制御する制御部としての機能も具備する。   The processing unit 9 performs processing for obtaining the surface shape of the test surface 11a based on the measurement result of the light receiving unit 8. Further, it also has a function as a control unit for controlling the entire measuring apparatus.

図3は、本実施例の計測装置における処理のフローチャートである。A:前処理、B:倍率分布校正、C:形状計測、D:解析の4つに分かれ、最終的に被検面の形状を求める。以下に各処理手順をさらに詳細のフローチャートに展開して説明する。   FIG. 3 is a flowchart of processing in the measurement apparatus of this embodiment. A: preprocessing, B: magnification distribution calibration, C: shape measurement, D: analysis, and finally the shape of the test surface is obtained. Each processing procedure will be described below in further detail in a flowchart.

図4は、被検面の形状を求めるための前処理の手順をフローチャートとしてまとめたものである。本計測装置では、前述したように、基準サンプル10の情報を用いて、被検サンプル11の形状を計測するための装置である。基準サンプル10と被検サンプル11は、同じ設計値をもとに作成されたレンズであるため、その差は数ミクロン程度のほぼ類似した形状をしている。   FIG. 4 summarizes the preprocessing procedure for obtaining the shape of the test surface as a flowchart. As described above, this measuring apparatus is an apparatus for measuring the shape of the sample 11 to be examined using the information of the reference sample 10. Since the reference sample 10 and the test sample 11 are lenses produced based on the same design value, the difference between the reference sample 10 and the test sample 11 is approximately similar to a few microns.

(A−1)あらかじめ基準サンプル10の基準面の形状10aは、別の高精度な測定機で計測しておく。本計測装置は、基準サンプル10と被検サンプル11の形状を計測することによって両者の差分情報を得るシステムになっている。   (A-1) The shape 10a of the reference surface of the reference sample 10 is measured in advance with another high-precision measuring machine. This measuring apparatus is a system for obtaining difference information between the reference sample 10 and the test sample 11 by measuring the shapes of the reference sample 10 and the test sample 11.

(A−2)次に、計測装置の光学系の情報と、(A−1)の計測によって得られた基準面10aの計測結果あるいは基準面の設計データを使い、受光面8aで得られると予想される波面Wを、例えば光線追跡ソフトウエアなどを使って計算で求める。もし、あらかじめ光学系の収差情報や、光学系の組み立て誤差、光学系の詳細誤差などが分かっていれば、この光線トレースの際に含めて計算することで、受光面での波面をより高精度に見積もることが出来る。波面は、たとえば直交関数であるZernike係数で表現する。   (A-2) Next, when the optical system information of the measuring device and the measurement result of the reference surface 10a obtained by the measurement of (A-1) or the design data of the reference surface are used, the light receiving surface 8a is used. An expected wavefront W is obtained by calculation using, for example, a ray tracing software. If the aberration information of the optical system, the assembly error of the optical system, the detailed error of the optical system, etc. are known in advance, the wavefront at the light receiving surface can be more accurately calculated by including it in the ray tracing. Can be estimated. The wavefront is expressed by, for example, a Zernike coefficient that is an orthogonal function.

(A−3)同様に、計測装置の光学系の情報と、(A−1)の計測によって得られた基準面10aの計測結果あるいは基準面の設計データを使い、基準面10aを微小量光軸を中心に傾けた際、受光面8aで得られると予想される波面を、例えば光線追跡ソフトウエアなどを使って計算で求める。基準面の波面情報(A−2)と、基準面駆動後の波面情報から、駆動前後の波面差を算出する。   (A-3) Similarly, using the information of the optical system of the measuring device and the measurement result of the reference surface 10a obtained by the measurement of (A-1) or the design data of the reference surface, the reference surface 10a is made with a minute amount of light. A wavefront that is expected to be obtained at the light receiving surface 8a when tilted about the axis is obtained by calculation using, for example, a ray tracing software. The wavefront difference before and after driving is calculated from the wavefront information (A-2) of the reference plane and the wavefront information after driving the reference plane.

本計測装置では、被検面に対して垂直に照射されない構成のため、被検面では入射光と異なる角度で反射される。反射光は受光部で略平行光にはならず、被検面からの反射波面は平面波面から大きくずれた波面として検出される。また、被検面からの反射波面の平面波面からのずれ量は、いつも一定にはならず、計測した非球面形状によって変わる。   Since this measuring apparatus is configured so as not to irradiate perpendicularly to the test surface, it is reflected at an angle different from the incident light on the test surface. The reflected light does not become substantially parallel light at the light receiving unit, and the reflected wavefront from the surface to be detected is detected as a wavefront greatly deviated from the plane wavefront. Further, the amount of deviation of the reflected wavefront from the test surface from the plane wavefront is not always constant, and varies depending on the measured aspheric shape.

そのため、受光部でこの被検面からの反射波面を計測しても、そのまま被検面の形状を得ることはできない。被検面からの反射波面から被検面の形状を算出するためには、被検面
での反射とその受光に関する位置と角度の2つの情報が必要になるのである。
Therefore, even if the reflected wavefront from the test surface is measured by the light receiving unit, the shape of the test surface cannot be obtained as it is. In order to calculate the shape of the test surface from the reflected wavefront from the test surface, two pieces of information on the reflection on the test surface and the position and angle regarding the light reception are necessary.

図8は、光線の位置と角度を説明するための図であり、ある光束の、受光面と受光面の共役面における光線の関係を示したものである。受光面の共役面(以下センサー共役面とする)は、基準面、被検面に近くなるよう設計されている。   FIG. 8 is a diagram for explaining the position and angle of a light beam, and shows the relationship between light beams on a conjugate surface of the light receiving surface and the light receiving surface of a certain light beam. The conjugate surface of the light receiving surface (hereinafter referred to as the sensor conjugate surface) is designed to be close to the reference surface and the test surface.

位置の情報とは、受光面とセンサ共役面との横座標の関係である。図8では、光軸からrの位置で受光した光束は、センサ共役面で光軸からRの位置で反射した光束であることを示している。位置倍率分布αは、受光面とセンサ共役面(該被検面)の横座標の比をとったものとし、R/rとして表すことができる。この位置倍率は一定ではなく、例えば光軸からの距離に対応した分布を持つ。   The position information is the abscissa relationship between the light receiving surface and the sensor conjugate surface. FIG. 8 shows that the light beam received at the position r from the optical axis is the light beam reflected at the position R from the optical axis by the sensor conjugate plane. The position magnification distribution α is obtained by taking the ratio of the abscissa of the light receiving surface and the sensor conjugate surface (the test surface) and can be expressed as R / r. This position magnification is not constant and has a distribution corresponding to the distance from the optical axis, for example.

(式2)
α=R/r
α:位置倍率分布
R:センサ共役面での光線位置
r:受光面での光線位置
角度の情報とは、受光面とセンサ共役面との光線角度の関係である。図8では、基準面10aを微小角度だけ傾けた時、センサ共役面の光線角度変化がΔVであり、受光面の光線角度変化はΔvであることを示している。角度倍率分布βは、この光線角度変化の比をとったものとし、Δv/ΔVとして表すことができる。この角度倍率は一定ではなく、例えば光軸からの距離に対応した分布を持つ。
(Formula 2)
α = R / r
α: Position magnification distribution R: Ray position on the sensor conjugate surface r: Ray position on the light receiving surface The angle information is the relationship between the light ray angle between the light receiving surface and the sensor conjugate surface. FIG. 8 shows that when the reference surface 10a is tilted by a minute angle, the light ray angle change on the sensor conjugate surface is ΔV, and the light ray angle change on the light receiving surface is Δv. The angle magnification distribution β is obtained by taking the ratio of the light beam angle changes and can be expressed as Δv / ΔV. This angular magnification is not constant and has a distribution corresponding to the distance from the optical axis, for example.

(式3)
β=Δv/ΔV
β:角度倍率分布
ΔV:センサ共役面での光線角度変化
Δv:受光面での光線角度変化
(A−4)座標倍率分布αと角度倍率分布βは光学系の設計データと基準面の設計データをもとに、光線追跡ソフトウエアなどを使って計算で求める。もし、あらかじめ光学系の収差情報や、光学系の組み立て誤差、光学系の面形状や透過波面などが分かっていれば、この光線追跡の際に含めて計算すると、より高精度な位置倍率分布と角度倍率分布を算出することができる。
(Formula 3)
β = Δv / ΔV
β: Angular magnification distribution ΔV: Ray angle change on sensor conjugate plane Δv: Ray angle change on light receiving surface (A-4) Coordinate magnification distribution α and angle magnification distribution β are design data of optical system and reference surface Based on the above, it is calculated using ray tracing software. If the aberration information of the optical system, the assembly error of the optical system, the surface shape of the optical system, the transmitted wavefront, etc. are known in advance, calculating with this ray tracing will give a more accurate position magnification distribution. An angular magnification distribution can be calculated.

以上のように、前処理として、以下の3つを行う。
A−1:基準面を別計測装置で計測した形状計測結果
A−2:計測装置の光学系と基準面の情報をもとに、受光面で得られる波面を演算
A−3:計測装置の光学系と基準面の情報をもとに、基準面を微小量駆動前後の波面差を演算
A−4:計測装置の光学系と基準面の情報をもとに、位置倍率分布と角度倍率分布を演算で算出
図5は、被検面の形状を算出するために必要な倍率分布を実機上で校正する手順をフローチャートで示したものである。
As described above, the following three are performed as preprocessing.
A-1: Shape measurement result obtained by measuring the reference surface with another measuring device A-2: Calculate the wavefront obtained on the light receiving surface based on the information of the optical system of the measuring device and the reference surface A-3: Of the measuring device Calculate wavefront difference before and after driving a small amount of reference surface based on information on optical system and reference surface A-4: Position magnification distribution and angular magnification distribution based on information on optical system and reference surface of measuring device FIG. 5 is a flowchart showing a procedure for calibrating the magnification distribution necessary for calculating the shape of the test surface on an actual machine.

もし計測装置の光学系やその配置が設計通りであれば、A−4で求めた位置倍率分布と角度倍率分布で被検面の形状を精度よく求めることができるのだが、実際には、レンズ加工誤差(曲率半径の誤差、研磨残渣、ホモジニティ、厚み誤差など)や、レンズ組み立て誤差(光軸方向の配置誤差、収差など)や、レンズと被検面・受光面のアライメント誤差など、色々な誤差要因があり設計通りにはならない。これらの条件を出来るだけ事前に計測し、その計測結果を光線追跡ソフトウエアに取り込んだ上で倍率分布を求めれば、設計値を使うよりはずっと精度は向上するが、すべての状態を計測することは難しく、どうしても計算と実測での倍率分布の差が発生してしまう。   If the optical system of the measuring device and its arrangement are as designed, the shape of the surface to be measured can be accurately obtained from the position magnification distribution and angle magnification distribution obtained in A-4. Various errors such as processing error (curvature radius error, polishing residue, homogeneity, thickness error, etc.), lens assembly error (positioning error in the optical axis direction, aberration, etc.), alignment error between the lens and the test surface / light receiving surface There is an error factor and it is not as designed. If these conditions are measured in advance as much as possible and the measurement results are taken into the ray tracing software and the magnification distribution is obtained, the accuracy will be much better than using the design values, but all states will be measured. Is difficult, and a difference in magnification distribution between calculation and actual measurement is inevitably generated.

被検面の形状を高精度に算出するためには、それら設計値からの誤差分を考慮して、実機上で位置倍率分布と角度倍率分布を校正する必要があり、本発明では特に角度倍率分布の校正を行うところに特徴がある。この倍率分布校正のフローは、本計測装置の組立アライメント時、環境変動(空気圧、湿度、温度などの変化)により光学系に誤差が発生し、設計値からずれが生じた場合、設計データの異なる被検面を計測する場合に行うとよい。   In order to calculate the shape of the test surface with high accuracy, it is necessary to calibrate the position magnification distribution and the angle magnification distribution on the actual machine in consideration of the error from the design value. It is characterized in that the distribution is calibrated. The flow of this magnification distribution calibration is different in design data when an error occurs in the optical system due to environmental fluctuations (changes in air pressure, humidity, temperature, etc.) during assembly alignment of this measuring device, resulting in deviation from the design value. It may be performed when measuring the test surface.

(B−1)基準レンズ10を計測装置のステージ6に設置する。   (B-1) The reference lens 10 is installed on the stage 6 of the measuring device.

(B−2)受光部8で、基準面10aで反射した波面を計測する。受光部8にはマイクロレンズアレイとセンサを組み合わせたシャック・ハルトマンを用いていることから、各XY位置での光線角度分布を計測することができ、この光線角度分布から波面を求めることができる。ここで、基準面のアライメントを行うため、計測した波面と、前処理(A−2)であらかじめ光線追跡ソフトウエアの演算で求めた波面とを比較する。両者のチルト成分やコマ成分の差が出来るだけ小さくなるよう、ステージ6で基準面を光軸と垂直なxy面内の位置や傾きの調整を行う。   (B-2) The light receiving unit 8 measures the wavefront reflected by the reference surface 10a. Since the light receiving unit 8 uses a Shack-Hartmann that combines a microlens array and a sensor, the ray angle distribution at each XY position can be measured, and the wavefront can be obtained from the ray angle distribution. Here, in order to perform alignment of the reference plane, the measured wavefront is compared with the wavefront previously obtained by the calculation of the ray tracing software in the preprocessing (A-2). The stage 6 adjusts the position and tilt of the reference plane in the xy plane perpendicular to the optical axis so that the difference between the tilt component and the coma component of the two becomes as small as possible.

(B−3)アライメント後の基準面10aをステージ6で微小角度だけ光軸を中心に傾け、受光面において、基準面10aからの反射波面を計測する。ここで傾ける微小角度は(A−3)の演算で求めた角度と等しくする。   (B-3) The reference surface 10a after alignment is tilted around the optical axis by a small angle on the stage 6, and the reflected wavefront from the reference surface 10a is measured on the light receiving surface. The minute angle to be tilted here is equal to the angle obtained by the calculation of (A-3).

(B−4)基準面駆動前の計測波面(B−2)と基準面駆動後の計測波面(B−3)から、駆動前後の計測波面差を算出する。   (B-4) A measurement wavefront difference before and after driving is calculated from the measurement wavefront (B-2) before driving the reference plane and the measurement wavefront (B-3) after driving the reference plane.

(B−5)あらかじめ前処理で計算しておいた駆動前後の演算波面差(A−3)と、演算した角度倍率分布(A−4)を読み込む。   (B-5) The calculated wavefront difference (A-3) before and after driving and the calculated angular magnification distribution (A-4), which are calculated in the preprocessing in advance, are read.

(B−6)駆動前後の計測波面差(ΔWm)、前処理で計算した駆動前後の演算波面差(ΔWc)、前処理で計算した角度倍率校正分布βをもとに、校正倍率分布を式4の通りに算出する。角度倍率分布の一例を図9に示した。計算で得られた角度倍率分布βを点線で、式4を用いて校正した校正後の角度倍率分布β‘を実線であらわしており、受光面での光軸からの距離rに対応して、下記比例係数を決定することができることを示している。   (B-6) Based on the measured wavefront difference before and after driving (ΔWm), the calculated wavefront difference before and after driving (ΔWc) calculated in the preprocessing, and the angular magnification calibration distribution β calculated in the preprocessing, Calculate as follows. An example of the angular magnification distribution is shown in FIG. The angle magnification distribution β obtained by calculation is represented by a dotted line, and the angle magnification distribution β ′ after calibration using Equation 4 is represented by a solid line, corresponding to the distance r from the optical axis on the light receiving surface, It shows that the following proportionality factor can be determined.

(式4)
β’=β*ΔWm/ΔWc
β’:校正角度倍率分布
β:計算角度倍率分布
ΔWm:計測波面差
ΔWc:演算波面差
本実施例では、光軸中心に微小量傾ける場合について説明したが、1方向だけの傾けに限らず、2方向など複数方向に傾けたり、XY方向の面内に平行シフトしてもよい。駆動前後の差を求めることが重要である。但し、前処理での駆動前後の演算波面差と、校正時の駆動前後の計測波面差は、同じ駆動条件で行う必要がある。
(Formula 4)
β ′ = β * ΔWm / ΔWc
β ′: Calibration angle magnification distribution β: Calculated angle magnification distribution ΔWm: Measurement wavefront difference ΔWc: Calculation wavefront difference In the present embodiment, the case where a minute amount is inclined to the optical axis center has been described. You may incline in two or more directions, such as 2 directions, and carry out parallel shift in the surface of an XY direction. It is important to obtain the difference between before and after driving. However, the calculated wavefront difference before and after driving in the preprocessing and the measured wavefront difference before and after driving during calibration need to be performed under the same driving conditions.

駆動前後の計測波面を得るために、ステージで基準面を駆動するため、校正精度を高くするためには、できるだけステージ精度が良いにこしたことはない。但し、実際の校正は、駆動誤差があってもその位置を精度よく読み取ることが出来ればよく、ステージ性能の観点からも、実現に大きな問題はない。例えば0.5度傾けると指示し、実際には0.5+0.001度傾いてしまったとしても、実際には0.501度傾いたと分かれば、その条件で演算すればよく、つまり演算と計測の条件を揃えることが重要なのである。   In order to obtain the measurement wavefront before and after driving, the reference plane is driven by the stage. Therefore, in order to increase the calibration accuracy, the stage accuracy is not as good as possible. However, in actual calibration, even if there is a drive error, it is only necessary to be able to read the position accurately, and there is no significant problem in realization from the viewpoint of stage performance. For example, it is instructed to tilt by 0.5 degrees, and even if it is actually tilted by 0.5 + 0.001 degrees, if it is actually tilted by 0.501 degrees, it is sufficient to calculate under that condition, that is, calculation and measurement It is important to have the same conditions.

このように、計算で求めた角度倍率分布に対して、計測と演算の関係から校正を行うことによって、実機上での様々な誤差を考慮した、より実機に最適化された倍率分布を求めることができる。   In this way, by calibrating the angular magnification distribution obtained by calculation based on the relationship between measurement and calculation, it is possible to obtain a magnification distribution that is more optimized for the actual machine considering various errors on the actual machine. Can do.

次にC:形状計測に関して図6を用いて説明する。   Next, C: shape measurement will be described with reference to FIG.

(C−1)基準レンズ10をステージ6に設置し、受光部で基準レンズ10からの反射波面を計測する。受光部はシャック・ハルトマンセンサを用いており、反射光の光線角度分布が得られる。光線角度分布は積分処理を行うことによって、波面が得られる。   (C-1) The reference lens 10 is installed on the stage 6, and the reflected wavefront from the reference lens 10 is measured by the light receiving unit. The light receiving unit uses a Shack-Hartmann sensor, and a light ray angle distribution of reflected light can be obtained. The wavefront distribution is obtained by integrating the ray angle distribution.

基準面の計測の際、(B−2)と同様に、計測波面と計算波面との差がしきい値以下になるようステージ6のチルトとシフトの調整を行うといった基準面のアライメントを行い、基準面のアライメント終了後に波面を計測する。計測された基準面の波面情報は、処理部に格納しておく。   When measuring the reference surface, as in (B-2), alignment of the reference surface is performed such that the tilt and shift of the stage 6 are adjusted so that the difference between the measured wavefront and the calculated wavefront is equal to or less than the threshold value. The wavefront is measured after the alignment of the reference plane. The measured wavefront information of the reference plane is stored in the processing unit.

(C−2)
次に、基準レンズ10を退避し、被検レンズ11をステージ6に配置する。基準面と被検面とは出来るだけ一致させる必要があることから、基準レンズ退避前に、光軸方向の位置をあらかじめ計測しておき、被検面を同じ位置に配置する。光軸方向の位置は、測長機や変位センサなど別のセンサを用いてはかるとよい。
(C-2)
Next, the reference lens 10 is retracted, and the test lens 11 is placed on the stage 6. Since it is necessary to match the reference surface and the test surface as much as possible, the position in the optical axis direction is measured in advance and the test surface is arranged at the same position before retracting the reference lens. The position in the optical axis direction may be measured using another sensor such as a length measuring device or a displacement sensor.

また、(C−1)と同様に、被検査面のチルトとシフトのアライメントも行い、被検面のアライメント終了後に波面を計測する。計測された被検面の波面情報も、(C−1)同様、そり部に格納しておく。   Similarly to (C-1), tilt and shift alignment of the surface to be inspected is also performed, and the wavefront is measured after the alignment of the surface to be inspected. The measured wavefront information of the test surface is also stored in the sled portion as in (C-1).

次に、D解析フローに関して、図7を用いて説明する。図3Cの形状計測において、基準面10aと被検面11aを計測し、反射光の光線角度分布が得られる。   Next, the D analysis flow will be described with reference to FIG. In the shape measurement of FIG. 3C, the reference surface 10a and the test surface 11a are measured, and the ray angle distribution of the reflected light is obtained.

(D−1)図3Cの形状計測において、基準面10aと被検面11aを計測した反射光の光線角度分布を得る。   (D-1) In the shape measurement of FIG. 3C, the light beam angle distribution of the reflected light obtained by measuring the reference surface 10a and the test surface 11a is obtained.

(D−2)(D−1)における基準面10aと被検面11aの計測された光線角度分布V10・V11に対し、式5を用いてセンサ共役面上の光線角度分布v10・v11を算出する。式5で用いる角度倍率分布は、図4Bおよび図5で説明した手順によって校正した倍率分布を用いる。また式5における主光線角度分布ηとは、基準面での反射光が検出面で光軸と平行になる光束の、基準面への入射光線角度を示している。これは、A前処理と同じように、計測装置の光学系の情報や基準面の設計データを用いて、光線追跡ソフトウエアなどを使って計算で求めたものである。 (D-2) With respect to the measured light angle distribution V 10 · V 11 of the reference surface 10a and the test surface 11a in (D-1), the light angle distribution v 10 · v 11 is calculated. As the angular magnification distribution used in Equation 5, the magnification distribution calibrated by the procedure described with reference to FIGS. 4B and 5 is used. In addition, the principal ray angle distribution η in Expression 5 indicates the incident ray angle to the reference plane of the light beam whose reflected light on the reference plane is parallel to the optical axis on the detection plane. This is obtained by calculation using ray tracing software or the like using the information of the optical system of the measuring apparatus and the design data of the reference surface, as in the case of the A pretreatment.

(式5)
v=V/β+η
V:計測された光線角度分布 (V10:基準面 V11:被検面)
v:基準面または被検面における、検出面の共役面上の光線角度分布
(v10:基準面 v11:被検面)
β:角度倍率分布
η:主光線の角度分布
次に、受光面8aの光線座標分布Rに対し、センサ共役面での光線座標分布rを式6によって求める。受光面の光線座標分布とは、受光部としてシャック・ハルトマンセンサを用いる場合には、マイクロレンズアレイの個々の中心位置をCCDの座標(x、y)として表現したものであり、
(Formula 5)
v = V / β + η
V: Measured ray angle distribution (V 10 : Reference plane V 11 : Test surface)
v: Ray angle distribution on the conjugate plane of the detection plane on the reference plane or the test plane
(V 10: reference plane v 11: test surface)
β: Angular magnification distribution η: Angular distribution of principal ray Next, with respect to the ray coordinate distribution R of the light receiving surface 8a, the ray coordinate distribution r on the sensor conjugate plane is obtained by Equation 6. The light beam coordinate distribution on the light receiving surface is obtained by expressing individual center positions of the microlens array as CCD coordinates (x, y) when using a Shack-Hartmann sensor as the light receiving unit,

となる。 It becomes.

(式6)
r=α×R
R:受光面8aの光線座標分布
r:センサ共役面での光線座標分布
α:位置倍率分布
(D−3)センサ共役面は光学系の構成で決まっているが、本計測装置は、1つの光学系で複数の基準面を計測できるシステムになっている。そのため、センサ共役面と基準面とは理想的に一致しない。そこで、(D−2)によって求められた、センサ共役面上の光線角度分布v10・v11と光線座標分布rに対して、基準面における対応点を光線追跡演算によって求める。式7のように、基準面の光線角度分布v10と被検面の光線角度分布v11との面傾斜(スロープ)の差分Δsを算出する。
(Formula 6)
r = α × R
R: Ray coordinate distribution on the light receiving surface 8a r: Ray coordinate distribution on the sensor conjugate plane α: Position magnification distribution (D-3) The sensor conjugate plane is determined by the configuration of the optical system. It is a system that can measure multiple reference planes with an optical system. For this reason, the sensor conjugate plane and the reference plane do not ideally match. Therefore, corresponding points on the reference plane are obtained by ray tracing calculation with respect to the ray angle distributions v 10 · v 11 and the ray coordinate distribution r on the sensor conjugate plane obtained by (D-2). As shown in Equation 7, a difference Δs in the surface inclination (slope) between the light ray angle distribution v 10 on the reference surface and the light ray angle distribution v 11 on the test surface is calculated.

(式7)
Δs=tan(v11)−tan(v10
(D−4)前記面傾斜の差分Δsは基準面10aと被検面11aとの面形状の差の微分値になっている。そのため、面形状差を求めるためには、Δsを積分する必要がある。積分手法には基底関数の微分関数を用いたフィッティングや、面傾斜の差分を随時加算していく手法など、種々の方法がある。
(Formula 7)
Δs = tan (v 11 ) −tan (v 10 )
(D-4) The difference Δs in the surface inclination is a differential value of the difference in surface shape between the reference surface 10a and the test surface 11a. Therefore, Δs needs to be integrated in order to obtain the surface shape difference. There are various integration methods such as fitting using a differential function of a basis function and a method of adding a difference in surface inclination as needed.

積分することで基準面10aと被検面11aとの面形状の差が得られ、この値に(A−1)であらかじめ計測しておいた基準面の情報を加算することで、最終的に被検面11aの形状を求めることが出来る。   By integrating, a difference in surface shape between the reference surface 10a and the test surface 11a is obtained, and finally by adding information of the reference surface measured in advance in (A-1) to this value, The shape of the test surface 11a can be obtained.

以上のフローを行い、特に計算で求めた角度倍率分布に対して、計測と演算の関係から校正を行うことによって、実機上での様々な誤差を考慮した、より実機に最適化された倍率分布を求めることができる。そして、実機上の様々な誤差がある場合でも、被検面の形状を非接触で高速かつ高精度に計測することができる。   By performing the above flow and calibrating the angle magnification distribution obtained by calculation from the relationship between measurement and calculation, the magnification distribution is optimized for the actual machine considering various errors on the actual machine. Can be requested. Even when there are various errors on the actual machine, the shape of the surface to be measured can be measured in a non-contact manner at high speed and with high accuracy.

最終的には、計測と加工によって、設計値に近い所望の形状のレンズを作成することである。そのため、本実施例の手法を用いて計測した被検面の形状と、設計形状との差分を計算し、修正加工量とその位置関係(横座標)を求め、加工機を用いて、修正加工を行うとよい。1回で所望の形状が得られなかった場合には、計測+修正加工を複数回繰り返し、最終的に製作したいレンズ形状を得ることができる。   Finally, a lens having a desired shape close to the design value is created by measurement and processing. Therefore, the difference between the shape of the test surface measured using the method of the present embodiment and the design shape is calculated, the correction processing amount and the positional relationship (abscissa) are obtained, and the correction processing is performed using a processing machine. It is good to do. When a desired shape cannot be obtained at one time, the lens shape desired to be finally produced can be obtained by repeating measurement + correction processing a plurality of times.

なお、本実施例では、被検サンプルはレンズであるとして説明をしてきたが、レンズ以外でもよく、レンズと同等の形状のミラーなどの光学素子や、金型などでもよい。   In the present embodiment, the sample to be examined is described as being a lens, but it may be other than a lens, or may be an optical element such as a mirror having the same shape as the lens, a mold, or the like.

(実施例2)
実施例1では、光学系に製造上の誤差があってもセンサ共役面は設計値と同じ位置であるとし、計測値を用いて角度倍率分布を校正し、校正した角度倍率分布を用いて高精度に被検面の形状を求める手法を開示している。
(Example 2)
In the first embodiment, the sensor conjugate plane is assumed to be at the same position as the design value even if there is a manufacturing error in the optical system, and the angular magnification distribution is calibrated using the measured value, and the calibrated angular magnification distribution is used to increase the height. A technique for obtaining the shape of the test surface with high accuracy is disclosed.

本実施例2では、光学系に製造上の誤差が大きく、設計でのセンサ共役面と、実際のセンサ共役面とが異なる場合には、計測値を用いて角度倍率分布を校正することに加え、位置倍率分布も校正する倍率校正手法を開示したものである。   In the second embodiment, when an optical system has a large manufacturing error and the designed sensor conjugate surface is different from the actual sensor conjugate surface, in addition to calibrating the angular magnification distribution using the measured value. The magnification calibration method for calibrating the position magnification distribution is also disclosed.

もう少し説明を加えると、高精度に被検面形状を求めるためには、センサ共役面とほぼ同じ位置にサンプルを配置して計測することが望ましい。そのため、設計でのセンサ共役面と実際のセンサ共役面とが異なる場合には、位置倍率分布・角度倍率分布の校正を行うだけでなく、実際のセンサ共役面の位置を求め、その位置にサンプルを配置し、計測することが必要である。   In a little more explanation, in order to obtain the shape of the test surface with high accuracy, it is desirable to place and measure the sample at substantially the same position as the sensor conjugate surface. Therefore, if the sensor conjugate plane in the design is different from the actual sensor conjugate plane, not only the position magnification distribution / angle magnification distribution is calibrated, but the actual sensor conjugate plane position is obtained and the sample is taken at that position. It is necessary to arrange and measure.

装置の構成は実施例1で開示した図1と同じであり、倍率校正以外は実施例1を参照いただきたい。本実施例2の特徴である倍率校正手法に関して、以下に、図10〜13を用いて説明する。図10は本実施例2の概要、図11は本実施例2のフロー、図12は本実施例2での倍率校正、図13は共役面の算出に関して説明した図である。   The configuration of the apparatus is the same as that of FIG. 1 disclosed in the first embodiment, and refer to the first embodiment except for magnification calibration. A magnification calibration method that is a feature of the second embodiment will be described below with reference to FIGS. 10 is an overview of the second embodiment, FIG. 11 is a flowchart of the second embodiment, FIG. 12 is a magnification calibration in the second embodiment, and FIG. 13 is a diagram explaining calculation of a conjugate plane.

実施例1では、角度倍率分布の校正を行うために、図8に示したような基準面を微小角度チルトさせ、チルト前後の波面を計測している。   In the first embodiment, in order to calibrate the angular magnification distribution, the reference plane as shown in FIG. 8 is tilted by a minute angle, and the wavefront before and after the tilt is measured.

本実施例2では、センサ共役面も探索することから、図10のように、基準面を光軸方向(Z方向)に駆動し、複数の位置で基準面を微小角度チルトさせ、チルト前後の波面を計測している点が異なっている。図10では、サンプルを光軸方向に異なる4か所に配置した計測を行っている例を示している。   In the second embodiment, the sensor conjugate plane is also searched. Therefore, as shown in FIG. 10, the reference plane is driven in the optical axis direction (Z direction), and the reference plane is tilted by a small angle at a plurality of positions. The difference is that the wavefront is measured. FIG. 10 shows an example in which measurement is performed by arranging samples at four different locations in the optical axis direction.

また、本実施例2における倍率校正には、2つのサンプルを用い、1つは実施例1と同じ基準面10a、基準面10aと同じ設計値で作成された被検面11aである。基準面10a被検面11aの差は例えばZ36項以上の比較的周波数の高い形状差があることが好ましい。本実施例2では、倍率校正のためにこれら2つのサンプルを用いるので、通常は基準面10aだけ別の装置での計測データがあればよいのだが、基準面10aと被検面11aのいずれも、別の装置において計測データを取得しておく必要がある。   In addition, two samples are used for the magnification calibration in the second embodiment, and one is a reference surface 10a that is the same as that of the first embodiment and a test surface 11a that is created with the same design value as the reference surface 10a. The difference between the reference surface 10a and the test surface 11a preferably has a shape difference with a relatively high frequency of, for example, Z36 or more. In the second embodiment, since these two samples are used for magnification calibration, it is usually only necessary to obtain measurement data from another apparatus for the reference surface 10a, but both the reference surface 10a and the test surface 11a are used. It is necessary to acquire measurement data in another device.

この2つのサンプルを用いて倍率校正を行う手順に関して、図11のフローを用いて説明する。   The procedure for calibrating the magnification using these two samples will be described with reference to the flow of FIG.

(B−1)基準面10aを計測するため、基準サンプル10を計測装置のステージ6に設置する。   (B-1) In order to measure the reference surface 10a, the reference sample 10 is placed on the stage 6 of the measuring device.

(B−2)受光部8で、基準面10aで反射した波面を計測する。受光部8にはマイクロレンズアレイとセンサを組み合わせたシャック・ハルトマンを用いていることから、各XY位置での光線角度分布を計測することができ、この光線角度分布から波面を求めることができる。ここで、基準面のアライメントを行うため、計測した波面と、前処理(A−2)であらかじめ光線追跡ソフトウエアの演算で求めた波面とを比較する。両者のチルト成分やコマ成分の差が出来るだけ小さくなるよう、ステージ6で基準面を光軸と垂直なxy面内の位置や傾きの調整するアライメントを行う。   (B-2) The light receiving unit 8 measures the wavefront reflected by the reference surface 10a. Since the light receiving unit 8 uses a Shack-Hartmann that combines a microlens array and a sensor, the ray angle distribution at each XY position can be measured, and the wavefront can be obtained from the ray angle distribution. Here, in order to perform alignment of the reference plane, the measured wavefront is compared with the wavefront previously obtained by the calculation of the ray tracing software in the preprocessing (A-2). Alignment for adjusting the position and tilt of the reference plane in the xy plane perpendicular to the optical axis is performed on the stage 6 so that the difference between the tilt component and the coma component of the two becomes as small as possible.

(B−3/B−4)
まず、アライメント後の基準面10aを計測する。次にステージ6で微小角度だけ光軸を中心に傾け、受光面において、基準面10aからの反射波面を計測する。ここで傾ける微小角度は(A−3)の演算で求めた角度と等しくする。ある位置での微小角チルト前後の計測波面を得る。
(B-3 / B-4)
First, the reference surface 10a after alignment is measured. Next, the stage 6 is tilted about the optical axis by a minute angle, and the reflected wavefront from the reference surface 10a is measured on the light receiving surface. The minute angle to be tilted here is equal to the angle obtained by the calculation of (A-3). A measurement wavefront before and after a small angle tilt at a certain position is obtained.

次に、基準面10aをステージ6で光軸方向(z方向)に動かし、同様に基準面を微小角度だけ光軸を中心に傾け、チルト前後の基準面からの反射波面を計測する。同様に、基準面をn回光軸方向(z方向)に動かし、各基準面計測位置において基準面を微小角度だけ光軸を中心に傾ける動作を繰り返し、n個の基準面位置における微小角チルト前後の計測波面を得る。   Next, the reference plane 10a is moved in the optical axis direction (z direction) by the stage 6, and similarly, the reference plane is tilted about the optical axis by a minute angle, and the reflected wavefront from the reference plane before and after tilting is measured. Similarly, the reference surface is moved n times in the optical axis direction (z direction), and the operation of inclining the reference surface about the optical axis by a minute angle at each reference surface measurement position is repeated, and the minute angle tilt at the n reference surface positions is repeated. Get front and back measurement wavefronts.

(B−5)(B−4)で得られたn個の基準面位置における微小角チルト前後の計測波面から倍率分布の校正を行う。   (B-5) The magnification distribution is calibrated from the measured wavefronts before and after the small angle tilt at the n reference plane positions obtained in (B-4).

サンプル位置が決まると、基準面の微小角チルト前後の計測波面が得られることから、各サンプル位置で、実施例1と同じ方法で角度倍率分布を校正することができる。具体的には、駆動前後の計測波面差(ΔWm)、前処理で計算した駆動前後の演算波面差(ΔWc)、前処理で計算した角度倍率校正分布βをもとに、校正倍率分布を式4で算出する。ここで、「前処理で計算した駆動前後の演算波面差(ΔWc)」に関しては、サンプル位置が異なると演算波面も変わるため、あらかじめ前処理において、各サンプル位置に対応した複数の演算波面を算出しておく必要がある。   When the sample position is determined, the measurement wavefronts before and after the minute angle tilt of the reference plane are obtained, so that the angular magnification distribution can be calibrated at the respective sample positions by the same method as in the first embodiment. Specifically, based on the measured wavefront difference before and after driving (ΔWm), the calculated wavefront difference before and after driving (ΔWc) calculated in the preprocessing, and the angular magnification calibration distribution β calculated in the preprocessing, 4 is calculated. Here, regarding the “computed wavefront difference before and after driving (ΔWc) calculated in the preprocessing”, the calculated wavefront also changes depending on the sample position. Therefore, in the preprocessing, a plurality of calculated wavefronts corresponding to each sample position are calculated in advance. It is necessary to keep it.

角度倍率分布の一例を図12(a)に示した。計算で得られた角度倍率分布βを点線で、式7を用いて校正した校正後の角度倍率分布β‘を実線であらわしており、受光面での光軸からの距離rに対応して、下記比例係数を決定することができることを示している。   An example of the angular magnification distribution is shown in FIG. The angle magnification distribution β obtained by calculation is represented by a dotted line, and the angle magnification distribution β ′ after calibration using Equation 7 is represented by a solid line, corresponding to the distance r from the optical axis on the light receiving surface, It shows that the following proportionality factor can be determined.

(式7)
β’=β*ΔWm/ΔWc
β’:各サンプル位置での校正角度倍率分布
β:各サンプル位置での計算角度倍率分布
ΔWm:各サンプル位置での計測波面差
ΔWc:各サンプル位置での演算波面差
組立後の光学系に誤差があるために、設計したセンサ共役面とは異なる位置に実際のセンサ共役面があるとすると、光学系の近軸上の倍率もずれていると考えられる。つまり、r=0(光軸上)での位置倍率も異なっている。正しいセンサ共役面においては、r=0(光軸上)の角度倍率はr=0(光軸上)の位置倍率とほぼ等しいことを利用し、位置倍率分布の校正は以下の式8を用いて行う。以上の手順によって、各サンプル位置での校正角度倍率分布と校正位置倍率分布を求めることができる。
(Formula 7)
β ′ = β * ΔWm / ΔWc
β ′: calibration angle magnification distribution at each sample position β: calculated angle magnification distribution at each sample position ΔWm: measured wavefront difference at each sample position ΔWc: computed wavefront difference at each sample position Error in the assembled optical system Therefore, if there is an actual sensor conjugate plane at a position different from the designed sensor conjugate plane, it is considered that the magnification on the paraxial axis of the optical system is also shifted. That is, the position magnification at r = 0 (on the optical axis) is also different. In the correct sensor conjugate plane, the fact that the angular magnification of r = 0 (on the optical axis) is substantially equal to the positional magnification of r = 0 (on the optical axis), and the calibration of the position magnification distribution uses the following equation (8). Do it. By the above procedure, the calibration angle magnification distribution and the calibration position magnification distribution at each sample position can be obtained.

センサ共役面とほぼ同じ位置にサンプルを配置して計測することが、誤差が最も小さくなるため望ましい。そのため、もし正しいセンサ共役面とは異なる位置にサンプルを配置して計測したデータから倍率分布を校正した場合は、校正後の倍率分布にも誤差が含まれているため、結局正確な形状を算出できない。形状を最も正確に算出できる校正倍率分布を得ることができたサンプルの位置が、正しいセンサ共役面に最も近いといえる。   It is desirable to place the sample at approximately the same position as the sensor conjugate plane for measurement because the error is minimized. Therefore, if the magnification distribution is calibrated from the data measured by placing the sample at a position different from the correct sensor conjugate plane, an error is also included in the corrected magnification distribution, so an accurate shape is calculated after all. Can not. It can be said that the position of the sample from which the calibration magnification distribution capable of calculating the shape most accurately is obtained is closest to the correct sensor conjugate plane.

(式8)
α‘=α+(β’(r=0)−α(r=0))
α’:校正位置倍率分布
α:計算位置倍率分布
β’(r=0):光軸上での校正角度倍率
α(r=0):光軸上での計算位置倍率
(B−6)本計測装置では、2枚のサンプルの差分を計測するシステムであるため、形状を算出するためには、もう1枚のサンプル(被検サンプル11)が必要になる。被検面11aを計測するため、被検サンプル11を計測装置のステージ6に設置する。
(Formula 8)
α ′ = α + (β ′ (r = 0) −α (r = 0))
α ′: calibration position magnification distribution α: calculated position magnification distribution β ′ (r = 0): calibration angle magnification on the optical axis α (r = 0): calculated position magnification on the optical axis (B-6) Since the measuring device is a system that measures the difference between two samples, another sample (test sample 11) is required to calculate the shape. In order to measure the test surface 11a, the test sample 11 is placed on the stage 6 of the measuring device.

(B−7)受光部8で、被検面11aで反射した波面を計測する。受光部8にはマイクロレンズアレイとセンサを組み合わせたシャック・ハルトマンを用いていることから、各XY位置での光線角度分布を計測することができ、この光線角度分布から波面を求めることができる。ここで、被検面のアライメントを行うため、計測した波面と、前処理(A−2)であらかじめ光線追跡ソフトウエアの演算で求めた波面とを比較する。両者のチルト成分やコマ成分の差が出来るだけ小さくなるよう、ステージ6で被検面を光軸と垂直なxy面内の位置や傾きを調整する。   (B-7) The light receiving unit 8 measures the wavefront reflected by the test surface 11a. Since the light receiving unit 8 uses a Shack-Hartmann that combines a microlens array and a sensor, the ray angle distribution at each XY position can be measured, and the wavefront can be obtained from the ray angle distribution. Here, in order to perform alignment of the test surface, the measured wavefront is compared with the wavefront previously obtained by the calculation of the ray tracing software in the preprocessing (A-2). The position and inclination of the test surface in the xy plane perpendicular to the optical axis are adjusted by the stage 6 so that the difference between the tilt component and the coma component of the two becomes as small as possible.

(B−8/B−9)まず、受光面において、アライメント後の被検面11aからの反射波面を計測する。次に、被検面10aをステージ6でn回光軸方向(z方向)に動かし、各サンプル位置において、被検面からの反射波面を計測する。ここでのサンプル位置は、基準面10aの計測(B−3/B−4)と同じ位置にする。サンプル位置は少なくとも3箇所以上で計測することが望ましい。   (B-8 / B-9) First, on the light receiving surface, the reflected wavefront from the test surface 11a after alignment is measured. Next, the test surface 10a is moved n times in the optical axis direction (z direction) on the stage 6, and the reflected wavefront from the test surface is measured at each sample position. The sample position here is the same position as the measurement (B-3 / B-4) of the reference plane 10a. It is desirable to measure at least three sample positions.

(B−10)以上の手順によって、複数のサンプル位置において、基準面10aと被検面11aの計測波面データ、校正角度倍率分布、校正位置倍率分布が得られ、あらかじめ前処理で別装置にて計測している基準面の形状データを用いて、各サンプル位置での被検面の形状を回復する。   (B-10) According to the above procedure, the measurement wavefront data, the calibration angle magnification distribution, and the calibration position magnification distribution of the reference surface 10a and the test surface 11a are obtained at a plurality of sample positions. Using the shape data of the reference surface being measured, the shape of the test surface at each sample position is recovered.

被検面11aの形状は、事前に別測定装置で計測しておく。上記計測結果をもとに算出した被検面の形状と、前処理での被検面形状データとの差が形状回復誤差になる。この形状回復誤差とサンプルの光軸上の位置zとの関係をプロットしたのが図13である。サンプル位置ごとに形状回復誤差が変化することが確認できる。この図13から、形状回復誤差が最も小さくなるサンプルの光軸上位置を、Fittingなどを使って求める。ここで求めたサンプルの光軸上の位置がセンサ共役面に最も近いことになり、その位置にサンプルを配置して計測することによって求められた校正角度倍率と校正位置倍率が、倍率の校正値になるのである。   The shape of the test surface 11a is measured in advance by another measuring device. A difference between the shape of the test surface calculated based on the measurement result and the test surface shape data in the preprocessing is a shape recovery error. FIG. 13 is a plot of the relationship between the shape recovery error and the position z on the optical axis of the sample. It can be confirmed that the shape recovery error changes for each sample position. From FIG. 13, the position on the optical axis of the sample with the smallest shape recovery error is obtained using fitting or the like. The position on the optical axis of the sample obtained here is closest to the sensor conjugate plane, and the calibration angle magnification and calibration position magnification obtained by placing the sample at that position and measuring are the calibration values of the magnification. It becomes.

センサ共役面とほぼ同じ位置にサンプルを配置して計測することが、誤差が最も小さくなるため望ましい。そのため、もし正しいセンサ共役面ではない位置にサンプルを配置して計測したデータから倍率分布を校正した場合は、校正後の倍率分布にも誤差が含まれているため、結局正確な形状を算出できない。形状を最も正確に算出できる校正倍率分布を得ることができた光軸上のサンプル位置が、もっとも正しいセンサ共役面に近いといえるのである。   It is desirable to place the sample at approximately the same position as the sensor conjugate plane for measurement because the error is minimized. For this reason, if the magnification distribution is calibrated from data measured by placing a sample at a position that is not the correct sensor conjugate plane, an accurate shape cannot be calculated after all because the magnification distribution after calibration contains errors. . It can be said that the sample position on the optical axis at which the calibration magnification distribution capable of calculating the shape most accurately is obtained is close to the most correct sensor conjugate plane.

ここでは、計測から求めた形状と、実際の形状との差分である形状回復誤差が最も小さくなる位置をセンサ共役面の位置としたが、センサ共役面の位置の求め方はこれだけに限らない。ほかの手法の一例としては、計算で複数のサンプル位置においてチルト前後の形状差を計算しておき、複数のサンプル位置での計測で得られたチルト前後の形状差と比較し、その差が最も小さい位置をセンサ共役面の位置としてもよい。   Here, the position at which the shape recovery error, which is the difference between the shape obtained from the measurement and the actual shape, becomes the smallest, is set as the position of the sensor conjugate surface. As an example of another method, the shape difference before and after the tilt is calculated at multiple sample positions by calculation, and compared with the shape difference before and after the tilt obtained by measurement at multiple sample positions. A small position may be the position of the sensor conjugate plane.

このように、複数のサンプル位置での基準面と被検面の計測結果から、複数の校正位置倍率と校正角度倍率とを求め、形状を算出した際の誤差の極小値を求めることで、共役面も求めることができる。これによって、光学系の誤差による変化を考慮した最適な共役位置を算出することができ、その最適な共役位置での、最適な角度倍率分布と位置倍率分布を得ることができるといえるのである。   In this way, from the measurement results of the reference surface and the test surface at a plurality of sample positions, a plurality of calibration position magnifications and calibration angle magnifications are obtained, and a minimum value of error when calculating the shape is obtained. A surface can also be obtained. Accordingly, it is possible to calculate an optimum conjugate position in consideration of a change due to an error of the optical system, and to obtain an optimum angular magnification distribution and position magnification distribution at the optimum conjugate position.

以上のように最適な共役位置を求めることができたので、次のステップである図3C:の形状計測の前に、ステージ6を前記手法で求めた最適な共役位置に動かし、その位置で基準面・被検面の計測データを取得する。   Since the optimum conjugate position has been obtained as described above, the stage 6 is moved to the optimum conjugate position obtained by the above-described method before the next step of shape measurement in FIG. Get the measurement data of the surface / test surface.

(実施例3)
本実施例3は、凹面の形状を計測する計測装置であって、実施例1、2と同様に、基準サンプル10の情報を用いて、被検サンプル11の形状を得ることが出来るシステムになっている。図13は本発明の方法を行う面形状計測装置の構成を示す図である。図13の構成を用い、実施例1、実施例2の手法を用いることで、被検面11aの形状を計測することが出来るのである。ここで、10’は基準レンズ、一方の面10a’は基準面、11’は被検レンズ、一方の面11a’は被検面、その他は図1と同じである。
(Example 3)
The third embodiment is a measurement device that measures the shape of the concave surface, and is a system that can obtain the shape of the test sample 11 using the information of the reference sample 10 as in the first and second embodiments. ing. FIG. 13 is a diagram showing the configuration of a surface shape measuring apparatus that performs the method of the present invention. By using the configuration of FIG. 13 and using the methods of the first and second embodiments, the shape of the test surface 11a can be measured. Here, 10 ′ is a reference lens, one surface 10a ′ is a reference surface, 11 ′ is a test lens, one surface 11a ′ is a test surface, and the others are the same as in FIG.

実施例1、2と同様にレンズ5からの発散光の曲率中心と被検面11a’における近軸領域の曲率中心とが略一致する位置に被検レンズ11’を配置する。また本実施例3のA前処理、B倍率分布演算、C形状計測、D解析の4つのフローは実施例1、2と同等である。   As in the first and second embodiments, the test lens 11 ′ is arranged at a position where the center of curvature of the diverging light from the lens 5 substantially matches the center of curvature of the paraxial region on the test surface 11 a ′. Further, the four flows of A preprocessing, B magnification distribution calculation, C shape measurement, and D analysis of the third embodiment are the same as those of the first and second embodiments.

1 光源、2 集光レンズ、3 ピンホール、4 ハーフミラー、5 レンズ、
6 ステージ、7 レンズ、8 受光部、8a 受光面、9 処理部、
10 基準レンズ、10a 基準面、11 被検レンズ、11a 被検面
1 light source, 2 condenser lens, 3 pinhole, 4 half mirror, 5 lens,
6 stage, 7 lens, 8 light receiving part, 8a light receiving surface, 9 processing part,
10 reference lens, 10a reference surface, 11 test lens, 11a test surface

Claims (12)

光学系を介して、被検面に光を照射し、前記被検面からの反射光を受光する受光面を有する受光部で受光することによって、前記被検面の面形状を計測する計測装置において、
前記受光面に対する共役面での位置倍率分布と角度倍率分布を演算するステップと、
既知の面形状を有する基準面で反射した光の波面を前記受光部で計測するステップと、
前記被検面で反射した光の波面を前記受光部で計測するステップと、
前記二つの計測波面の差分情報から前記被検面の面形状を演算するステップと、
を含む面形状計測方法であって、
前記光学系の設計値を用いて前記基準面で反射した光の前記受光面上の波面を演算するステップと、
前記基準面の既知量駆動前後の波面変化を計算するステップと、
前記基準面の既知量駆動前後の波面変化を計測するステップと、
前記計算と計測によって求めた既知量駆動前後の波面変化から、前記角度倍率分布を校正するステップと、
前記既知の基準面形状と、前記基準面の計測値と、前記被検面の計測値と、前記校正された角度倍率を用いて、前記被検面の面形状を演算するステップと、
を含むことを特徴とする面形状計測方法。
A measuring device for measuring the surface shape of the test surface by irradiating the test surface with light through an optical system and receiving the light by a light receiving unit having a light receiving surface that receives reflected light from the test surface. In
Calculating a position magnification distribution and an angle magnification distribution in a conjugate plane with respect to the light receiving surface;
Measuring a wavefront of light reflected by a reference surface having a known surface shape by the light receiving unit;
Measuring the wavefront of the light reflected by the test surface with the light receiving unit;
Calculating the surface shape of the test surface from the difference information of the two measurement wavefronts;
A surface shape measuring method including:
Calculating a wavefront on the light receiving surface of light reflected by the reference surface using a design value of the optical system;
Calculating a wavefront change before and after driving a known amount of the reference surface;
Measuring a wavefront change before and after driving a known amount of the reference surface;
Calibrating the angular magnification distribution from a wavefront change before and after driving a known amount determined by the calculation and measurement;
Calculating the surface shape of the test surface using the known reference surface shape, the measurement value of the reference surface, the measurement value of the test surface, and the calibrated angular magnification;
A surface shape measurement method comprising:
光学系を介して、被検面に光を照射し、前記被検面からの反射光を受光する受光面を有する受光部で受光することによって、前記被検面の面形状を計測する計測装置において、
前記受光面に対する共役面での位置倍率分布と角度倍率分布を演算するステップと、
既知の面形状を有する基準面で反射した光の波面を前記受光部で計測するステップと、
既知の面形状を有する被検面で反射した光の波面を前記受光部で計測するステップと、
前記二つの計測波面の差分情報から前記被検面の面形状を演算するステップと、
を含む面形状計測方法であって、
前記光学系の設計値を用いて前記基準面で反射した光の前記受光面上の波面を演算するステップと、
前記基準面の既知量駆動前後の波面変化を計算するステップと、
前記基準面の既知量駆動前後の波面変化を計測するステップと、
前記計算と計測によって求めた既知量駆動前後の波面変化から、前記角度倍率分布と前記位置倍率分布を校正するステップと、
前記既知の基準面形状と、前記基準面の計測値と、前記被検面の計測値と、前記校正された角度倍率と、前記校正された位置倍率を用いて、前記被検面の面形状を演算するステップと、
を含むことを特徴とする面形状計測方法。
A measuring device for measuring the surface shape of the test surface by irradiating the test surface with light through an optical system and receiving the light by a light receiving unit having a light receiving surface that receives reflected light from the test surface. In
Calculating a position magnification distribution and an angle magnification distribution in a conjugate plane with respect to the light receiving surface;
Measuring a wavefront of light reflected by a reference surface having a known surface shape by the light receiving unit;
Measuring the wavefront of light reflected by a test surface having a known surface shape by the light receiving unit;
Calculating the surface shape of the test surface from the difference information of the two measurement wavefronts;
A surface shape measuring method including:
Calculating a wavefront on the light receiving surface of light reflected by the reference surface using a design value of the optical system;
Calculating a wavefront change before and after driving a known amount of the reference surface;
Measuring a wavefront change before and after driving a known amount of the reference surface;
Calibrating the angular magnification distribution and the position magnification distribution from wavefront changes before and after driving a known amount obtained by the calculation and measurement;
Using the known reference surface shape, the measurement value of the reference surface, the measurement value of the test surface, the calibrated angle magnification, and the calibrated position magnification, the surface shape of the test surface A step of calculating
A surface shape measurement method comprising:
前記位置倍率分布は、前記角度倍率分布をもとに校正することを特徴とする請求項2に記載の面形状計測方法。   The surface shape measurement method according to claim 2, wherein the position magnification distribution is calibrated based on the angle magnification distribution. 前記基準面の既知量駆動前後の波面変化を計測するステップは、光軸方向に複数位置での計測ステップを含み、前記計測結果から、共役位置を算出することを特徴とする請求項2に記載の面形状計測手法。   The step of measuring the wavefront change before and after driving the reference surface by a known amount includes a measurement step at a plurality of positions in the optical axis direction, and calculating a conjugate position from the measurement result. Surface shape measurement method. 前記被検面を、光軸方向に複数位置で計測するステップと、
前記既知の基準面形状と、前記複数位置での基準面の計測値と、前記複数位置での被検面の計測値と、前記複数位置ごとに校正された角度倍率と、前記複数位置ごとに校正された位置倍率とを用い、前記被検面の面形状を演算するステップを含み、
前記基準面の形状と、前記演算で求められた面形状との差から、前記共役位置を算出することを特徴とする請求項4に記載の面形状計測方法。
Measuring the test surface at a plurality of positions in the optical axis direction;
The known reference surface shape, the measurement value of the reference surface at the plurality of positions, the measurement value of the test surface at the plurality of positions, the angle magnification calibrated for each of the plurality of positions, and the plurality of positions. Using the calibrated position magnification, and calculating the surface shape of the test surface,
5. The surface shape measuring method according to claim 4, wherein the conjugate position is calculated from a difference between the shape of the reference surface and the surface shape obtained by the calculation.
前記光軸方向に複数位置での計測ステップは、少なくとも3つ以上の位置での計測であることを特徴とした請求項4又は請求項5に記載の面形状計測方法。   6. The surface shape measurement method according to claim 4, wherein the measurement step at a plurality of positions in the optical axis direction is measurement at at least three or more positions. 前記光軸方向の位置が異なる複数位置で計測するステップにおいて、基準面と被検面の計測位置は等しいことを特徴とする請求項4乃至請求項6の何れか一項に記載の面形状計測方法。   The surface shape measurement according to any one of claims 4 to 6, wherein in the step of measuring at a plurality of positions having different positions in the optical axis direction, the measurement positions of the reference surface and the test surface are the same. Method. 前記基準面の駆動前後の変化量とは、基準面のチルト前後の変化量、あるいは基準面のシフト前後の変化量であることを特徴とする請求項1又は請求項2に記載の面形状計測方法。   3. The surface shape measurement according to claim 1, wherein the change amount of the reference surface before and after driving is a change amount of the reference surface before and after tilting or a change amount of the reference surface before and after shifting. Method. 前記計測する面形状は、球面あるいは非球面であることを特徴とする請求項1又は請求項2に記載の面形状計測方法。   The surface shape measurement method according to claim 1, wherein the surface shape to be measured is a spherical surface or an aspherical surface. 前記検出部はシャック・ハルトマンセンサ、ハルトマン、シアリング干渉計またはTalbot干渉計であることを特徴とする請求項1又は請求項2に記載の面形状計測方法。   The surface shape measuring method according to claim 1, wherein the detection unit is a Shack-Hartmann sensor, a Hartmann, a shearing interferometer, or a Talbot interferometer. 請求項1乃至請求項10の何れか一項に記載の面形状計測方法を用いた面形状計測装置。   A surface shape measuring apparatus using the surface shape measuring method according to claim 1. 請求項1乃至請求項10の何れか一項に記載の面形状計測方法、または請求項11に記載の面形状計測装置を用いて作成した光学素子。   An optical element produced by using the surface shape measuring method according to claim 1 or the surface shape measuring apparatus according to claim 11.
JP2014148424A 2014-07-22 2014-07-22 Surface shape measurement method and surface shape measurement device and optical element using surface shape measurement method and surface shape measurement device Pending JP2016024059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148424A JP2016024059A (en) 2014-07-22 2014-07-22 Surface shape measurement method and surface shape measurement device and optical element using surface shape measurement method and surface shape measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148424A JP2016024059A (en) 2014-07-22 2014-07-22 Surface shape measurement method and surface shape measurement device and optical element using surface shape measurement method and surface shape measurement device

Publications (1)

Publication Number Publication Date
JP2016024059A true JP2016024059A (en) 2016-02-08

Family

ID=55270926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148424A Pending JP2016024059A (en) 2014-07-22 2014-07-22 Surface shape measurement method and surface shape measurement device and optical element using surface shape measurement method and surface shape measurement device

Country Status (1)

Country Link
JP (1) JP2016024059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281013A (en) * 2021-05-25 2021-08-20 华中科技大学 Device and method for measuring surface shape of optical element in vacuum environment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281013A (en) * 2021-05-25 2021-08-20 华中科技大学 Device and method for measuring surface shape of optical element in vacuum environment
CN113281013B (en) * 2021-05-25 2022-08-05 华中科技大学 Device and method for measuring surface shape of optical element in vacuum environment

Similar Documents

Publication Publication Date Title
JP6000577B2 (en) Aspherical surface measuring method, aspherical surface measuring device, optical element processing apparatus, and optical element manufacturing method
JP5896792B2 (en) Aspherical surface measuring method, aspherical surface measuring device, and optical element processing device
US20080002252A1 (en) Method and apparatus for the auto-focussing infinity corrected microscopes
JP5971965B2 (en) Surface shape measuring method, surface shape measuring apparatus, program, and optical element manufacturing method
JP6000578B2 (en) Aspherical surface measuring method, aspherical surface measuring device, optical element processing apparatus, and optical element manufacturing method
CN105890875A (en) Performance test device and method for projection objective lens based on mask plate
US8027037B2 (en) Method for evaluating microstructures on a workpiece based on the orientation of a grating on the workpiece
JP4340625B2 (en) Optical inspection method and apparatus
TWI638133B (en) Non-contact lens radius of curvature and thickness detection device and detection method thereof
KR20110065365A (en) Method and apparatus for measuring aspherical body
JP2016024059A (en) Surface shape measurement method and surface shape measurement device and optical element using surface shape measurement method and surface shape measurement device
JP2016211933A (en) Surface shape measurement device, surface shape measurement method, processing device, and optical element processed by the same
JP2005140673A (en) Aspherical eccentricity measuring device and aspherical eccentricity measuring method
JP2005201703A (en) Interference measuring method and system
JP2016003900A (en) Measuring device, measuring method, optical element processing device, and optical element
JP7293078B2 (en) Analysis device, analysis method, interference measurement system, and program
JP5358898B2 (en) Optical surface shape measuring method and apparatus, and recording medium
CN108106560B (en) Method and device for measuring large radius of curvature of optical element by comparison method
JP5751886B2 (en) Surface shape measuring device and surface shape measuring method
JP5307528B2 (en) Measuring method and measuring device
TWI596325B (en) Method or system for dertermining information about an object or a transparent optical element and method of forming an optical assembly
CN220104459U (en) Optical lens centering and positioning device based on multi-focus annular lens
JP4488710B2 (en) Lens characteristic inspection method and apparatus
JP6821407B2 (en) Measuring method, measuring device, manufacturing method of optical equipment and manufacturing equipment of optical equipment
JP3410902B2 (en) Lens surface eccentricity measuring method and lens surface eccentricity measuring device