JP2016024028A - Specifying method of perforated point in vertical multi-pipe type heat exchanger - Google Patents

Specifying method of perforated point in vertical multi-pipe type heat exchanger Download PDF

Info

Publication number
JP2016024028A
JP2016024028A JP2014147804A JP2014147804A JP2016024028A JP 2016024028 A JP2016024028 A JP 2016024028A JP 2014147804 A JP2014147804 A JP 2014147804A JP 2014147804 A JP2014147804 A JP 2014147804A JP 2016024028 A JP2016024028 A JP 2016024028A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
liquid
perforated
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014147804A
Other languages
Japanese (ja)
Other versions
JP6090252B2 (en
Inventor
浩幸 定塚
Hiroyuki Sadatsuka
浩幸 定塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2014147804A priority Critical patent/JP6090252B2/en
Publication of JP2016024028A publication Critical patent/JP2016024028A/en
Application granted granted Critical
Publication of JP6090252B2 publication Critical patent/JP6090252B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Level Indicators Using A Float (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for accurately specifying a perforated position of a tube, a partitioning plate or the like in a vertical multi-pipe type heat exchanger.SOLUTION: In a vertical multi-pipe type heat exchanger in which a cylindrical vessel is partitioned into an upper chamber, an intermediate chamber and a lower chamber which are aligned in an axial direction by a partitioning plate, and the upper chamber and the lower chamber which sandwich the intermediate chamber are made to communicate with each other by one or more tubes, the inside of the tube is filled with liquid by being supplied with the liquid from an opening of the tube which opposes the upper chamber or the lower chamber, after that, a floating measurement instrument is floated on a liquid level by inserting the floating measurement instrument into the tube in which the liquid level of the liquid is lowered, a distance from the opening of the tube up to the liquid level is measured by using the floating measurement instrument, and a perforated point in the vertical multi-pipe type heat exchanger is specified by using the measured distance.SELECTED DRAWING: Figure 2

Description

本発明は、チューブ(伝熱管)を介して温度の異なる流体を接触させて熱の交換を行う熱交換器における、該チューブや仕切り板等の孔あきを簡便かつ確実に特定するための方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for easily and reliably specifying a hole in a tube or a partition plate in a heat exchanger that exchanges heat by bringing fluids having different temperatures into contact with each other via a tube (heat transfer tube). Is.

多管式熱交換器は、蒸気発生器、加熱器、過熱器、温水器、冷却器および復水器等の様々な用途があり、中でもチューブ(伝熱管)の軸方向を縦にして該チューブを配列した縦型多管式熱交換器は、狭い場所に設置する場合に適している。   Multi-tube heat exchangers have various uses such as steam generators, heaters, superheaters, water heaters, coolers, and condensers. Especially, the tubes (heat transfer tubes) are arranged in the vertical direction. The vertical type multi-tube heat exchanger in which is arranged is suitable for installation in a narrow place.

縦型多管式熱交換器は、例えば図1に示すように、(円)筒状の容器1を仕切板1aおよび1bにて、軸方向に並ぶ3つの室2〜4に気密或いは液密下で区画し、中間室3を挟む上部室2と下部室4とを複数本、図示例で3本のチューブ5a〜5cにて連通して成る。そして、例えば上部室2に導入口20を介して流体Aを導入し、この流体Aを前記チューブ5a〜5cに通して下部室4から導出口40に至る、流体Aの経路を形成する一方、中間室3に導入口30を介して流体Bを導入し導出口31に至る、流体Bの経路を形成する。以上の2経路に各流体Aおよびbを通している間に、チューブ5a〜5cを介した伝熱によって流体Aと流体Bとの間で熱交換がなされる。   For example, as shown in FIG. 1, the vertical multitubular heat exchanger is formed of a (circle) cylindrical container 1 in an airtight or liquid-tight manner in three chambers 2 to 4 arranged in the axial direction by partition plates 1a and 1b. A plurality of upper chambers 2 and lower chambers 4 that are partitioned below and sandwich the intermediate chamber 3 are communicated with each other by three tubes 5a to 5c in the illustrated example. Then, for example, the fluid A is introduced into the upper chamber 2 through the inlet 20, and the fluid A is passed through the tubes 5 a to 5 c to form the path of the fluid A from the lower chamber 4 to the outlet 40. The fluid B is introduced into the intermediate chamber 3 through the inlet 30 and leads to the outlet 31. While the fluids A and b are passed through the two paths, heat exchange is performed between the fluid A and the fluid B by heat transfer through the tubes 5a to 5c.

上記の縦型多管式熱交換器において、伝熱管となるチューブは、外径が40mmおよび内径が30mm程度の鋼製の管が用いられている。また、流体としては、高温のアンモニア等を用いることもあり、従って腐食環境で使用される場合も多い。
このように熱交換器の使用環境には厳しいところがあり、特にチューブが置かれる環境は苛酷であるため、チューブでの孔あきを回避することは難しく、その都度の補修が必要になっている。
In the above-described vertical multi-tube heat exchanger, a steel tube having an outer diameter of about 40 mm and an inner diameter of about 30 mm is used as a tube serving as a heat transfer tube. Moreover, high temperature ammonia etc. may be used as a fluid, therefore it is often used in a corrosive environment.
As described above, the usage environment of the heat exchanger is severe. Particularly, since the environment where the tube is placed is harsh, it is difficult to avoid perforation in the tube, and it is necessary to repair each time.

ここで、チューブに孔あきが発生した場合に、「適切かつ効率的な応急処置」が必要になる。そこで、チューブの孔あきの有無を定期的に検査することが重要になる。この検査は、上記した中間室3内に水を張り、チューブ内部に懐中電灯などの光をあてて、チューブからの水の滲みを目視で確認し、おおよそのチューブの孔あき箇所を判断することで行われていた。   Here, when perforation occurs in the tube, “appropriate and efficient first aid” is required. Therefore, it is important to periodically inspect the tube for holes. In this inspection, the above-described intermediate chamber 3 is filled with water, a flashlight or the like is applied to the inside of the tube, and the bleeding of the water from the tube is visually confirmed to determine an approximate hole portion of the tube. It was done in.

しかしながら、孔あき箇所の特定手法が懐中電灯による目視観察であるため、暗いためにその精度に劣ること、その結果、適切かつ効率的な応急処置ができないため、繰り返しの孔あき漏洩トラブルの発生によって度重なる操業停止が余儀なくされている。   However, since the method of identifying the perforated spot is visual observation with a flashlight, it is inferior in accuracy because it is dark, and as a result, appropriate and efficient emergency treatment cannot be performed. Repeated operations are forced to stop.

本発明の目的は、縦型多管式熱交換器におけるチューブや仕切板等の孔あきの位置を正確に特定する方法を提供することにある。   An object of the present invention is to provide a method for accurately specifying the positions of holes such as tubes and partition plates in a vertical multi-tube heat exchanger.

本発明の要旨構成は、次のとおりである。
1.筒状の容器を、仕切板にて軸方向に並ぶ上部室、中間室および下部室に区画し、該中間室を挟む上部室と下部室とを1本以上のチューブにて連通して成る縦型多管式熱交換器において、
前記上部室または下部室に臨む前記チューブの開口から内部に液体を供給して該チューブ内部を液体で充満させること、
その後、該液体の液面が低下したチューブにフロート式計測器を挿入して前記フロート式計測器を前記液面に浮かべること、
前記フロート式計測器を用いて前記チューブの開口から液面までの距離を計測すること、
該計測距離をもって縦型多管式熱交換器における孔あき箇所を特定すること、
を特徴とする縦型多管式熱交換器における孔あき箇所の特定方法。
The gist configuration of the present invention is as follows.
1. A cylindrical container is divided into an upper chamber, an intermediate chamber, and a lower chamber arranged in the axial direction by a partition plate, and the upper chamber and the lower chamber sandwiching the intermediate chamber are connected by one or more tubes. Type multi-tube heat exchanger
Supplying the liquid from the opening of the tube facing the upper chamber or the lower chamber to fill the inside of the tube with the liquid,
Thereafter, the float type measuring instrument is floated on the liquid level by inserting a float type measuring instrument into the tube where the liquid level of the liquid is lowered,
Measuring the distance from the opening of the tube to the liquid level using the float measuring instrument,
Identifying the perforated point in the vertical multi-tube heat exchanger with the measured distance;
A method for identifying perforated points in a vertical multi-tube heat exchanger characterized by the above.

2.前記液体は水である前記1に記載の縦型多管式熱交換器における孔あき箇所の特定方法。 2. 2. The method for identifying a perforated portion in the vertical multitubular heat exchanger according to 1 above, wherein the liquid is water.

本発明によれば、縦型多管式熱交換器におけるチューブや仕切り板等の孔あきの位置を正確に特定することができる。   ADVANTAGE OF THE INVENTION According to this invention, the position of perforations, such as a tube and a partition plate, in a vertical multi-tube heat exchanger can be pinpointed correctly.

縦型多管式熱交換器を示す断面図である。It is sectional drawing which shows a vertical multi-tube heat exchanger. 縦型多管式熱交換器におけるチューブの孔あきの位置を特定する手法を説明する図である。It is a figure explaining the method of pinpointing the position of the hole of the tube in a vertical type multi-tube heat exchanger. 縦型多管式熱交換器におけるチューブの孔あきの位置を特定する手法を説明する図である。It is a figure explaining the method of pinpointing the position of the hole of the tube in a vertical type multi-tube heat exchanger.

以下に、縦型多管式熱交換器におけるチューブや仕切り板等の孔あきの位置を特定する手順を具体的に説明する。
図1に示した縦型多管式熱交換器は、上部室2の外郭を構成するカバー21が交換器本体32に対して着脱可能であり、チューブの孔あき検査を行う際には、該カバー21を交換器本体32から外して仕切板1aに開口する各チューブも端面を露出させる。ここで、仕切板1aの表面に並ぶチューブ5a〜5cの開口から、それぞれのチューブ内部に液体、例えば水を開口部まで供給する。このとき、下部室4内に水が充満してから各チューブ内の水位が上昇し始める。
その後、チューブ5a〜5cの上方から各チューブの水位を目視にて確認する。その結果、水位の低下が確認されたチューブにおいて孔あきが発生していると判断し、当該チューブを対象として、孔あき位置の特定を行う。
Below, the procedure which pinpoints the position of perforations, such as a tube and a partition plate in a vertical multi-tube heat exchanger, is demonstrated concretely.
The vertical multi-tube heat exchanger shown in FIG. 1 has a cover 21 that forms an outline of the upper chamber 2 detachable with respect to the exchanger main body 32. The cover 21 is removed from the exchanger main body 32 and each tube opened to the partition plate 1a also exposes the end face. Here, liquid, for example, water is supplied to the inside of each tube from the openings of the tubes 5a to 5c arranged on the surface of the partition plate 1a. At this time, the water level in each tube begins to rise after the lower chamber 4 is filled with water.
Thereafter, the water level of each tube is visually confirmed from above the tubes 5a to 5c. As a result, it is determined that perforation has occurred in the tube in which the drop in the water level has been confirmed, and the perforated position is specified for the tube.

次に、図2を参照して、チューブ5aに水位低下が確認された場合について説明する。なお、図2には、対象のチューブ5aのみを示している。
まず、水位が低下したチューブ5aの内部にフロート式計測器6を投入する。該フロート式計測器6は、チューブ内の水(液体)に対して十分な浮力を有し、好ましくは水面(液面)上に浮かぶことが可能な材質や構造を有するフロート6aと、該フロート6aから延びるスケール6bとからなる。スケール6bは、プラスチックなどの柔らかい長尺物にフロート6aの喫水線からの距離を刻んであり、水面上にフロート式計測器6を浮かべた際に、水面からの距離が読み取れるようになっている。従って、チューブ5aの内部にフロート式計測器6を投入すれば、前記の低下した水位、すなわちチューブ5aの開口端から水面までの距離hを把握することができる。
Next, with reference to FIG. 2, the case where the water level fall is confirmed by the tube 5a is demonstrated. FIG. 2 shows only the target tube 5a.
First, the float type measuring instrument 6 is put into the tube 5a where the water level is lowered. The float type measuring instrument 6 has a float 6a having a sufficient buoyancy with respect to water (liquid) in the tube, and preferably has a material or structure capable of floating on the water surface (liquid surface), and the float. And a scale 6b extending from 6a. The scale 6b is formed by marking the distance from the draft line of the float 6a on a soft long object such as plastic, and the distance from the water surface can be read when the float type measuring instrument 6 is floated on the water surface. Therefore, if the float type measuring instrument 6 is inserted into the tube 5a, the lowered water level, that is, the distance h from the opening end of the tube 5a to the water surface can be grasped.

ここに、チューブ5a内での水位低下は、孔あきHuからの漏水に起因しているわけであり、チューブ5a内の水位は孔あきHuの位置まで低下し、当該位置で水位が安定することになる。従って、この距離hが孔あきHuのチューブ開口端からの位置ということになる。   Here, the lowering of the water level in the tube 5a is caused by water leakage from the perforated Hu, and the water level in the tube 5a is lowered to the position of the perforated Hu, and the water level is stabilized at the position. become. Therefore, this distance h is the position of the perforated Hu from the tube opening end.

この孔あきHuの位置が特定されたならば、水を抜いてから孔あきHuを塞ぐ作業を行う。この作業は、例えば、孔を栓で塞ぐ、被覆するなどの方法で行う。孔あきの位置が判明しているため、作業が迅速かつ容易に進めることができる。なお、孔の大きさや数などによっては、チューブを交換してもよい。   When the position of the perforated Hu is specified, the work for closing the perforated Hu is performed after draining water. This operation is performed by, for example, a method of closing or covering the hole with a stopper. Since the position of the hole is known, the operation can be performed quickly and easily. The tube may be exchanged depending on the size and number of holes.

なお、同一チューブに複数の孔あきが同時に発生した場合は、まず、水を充填したチューブの最下方にある孔あき箇所を特定し、その補修を行ったのち、再度チューブに水を充填して上記の孔あきの特定を行って該孔あきを補修する工程を繰り返すことによって、対処することができる。   If multiple holes are generated in the same tube at the same time, first identify the hole at the bottom of the tube filled with water, repair it, and then fill the tube again with water. This can be dealt with by repeating the process of identifying the hole and repairing the hole.

また、図3に示すように、チューブ5aと仕切板1bとの接合部に孔あきHdが発生した場合について説明する。
孔あきHdが発生すると、チューブ5aに注入した水は上記と同様に既存の導出口31の位置まで低下するため、上記と同様にフロート式計測器6を投入すれば、前記の低下した水位、すなわち既存の導出口31の高さまでフロートが下がる。この場合、チューブ5aの孔あきか仕切り板1bの孔あきか明確ではないが、いずれかの孔あきが導出口31に対応する位置近傍にあると推定できるため、下部室4を熱交換器本体から取り外すなどして、迅速に対処できる。
Moreover, as shown in FIG. 3, the case where perforated Hd generate | occur | produces in the junction part of the tube 5a and the partition plate 1b is demonstrated.
When perforated Hd is generated, the water injected into the tube 5a is lowered to the position of the existing outlet 31 in the same manner as described above. Therefore, if the float type measuring instrument 6 is introduced in the same manner as described above, the lowered water level, That is, the float is lowered to the height of the existing outlet 31. In this case, although it is not clear whether the tube 5a is perforated or the partition plate 1b is perforated, it can be estimated that one of the perforations is in the vicinity of the position corresponding to the outlet 31. It can be quickly dealt with by removing it from the

この孔あきHdの位置が特定されたならば、水抜き後に孔あきHdを塞ぐ作業を行う。この作業は、例えば、孔を栓でふさぐ、または被覆するなどの方法にて行う。孔あきの位置が判明しているため、作業が迅速かつ容易に進めることができる。なお、孔の大きさ、数などによっては、チューブや仕切り板などを交換してもよい。   If the position of the perforated Hd is specified, an operation for closing the perforated Hd is performed after draining. This operation is performed by, for example, a method of closing or covering the hole with a stopper. Since the position of the hole is known, the operation can be performed quickly and easily. Depending on the size, number, etc. of the holes, the tubes and partition plates may be exchanged.

1 容器
1a、1b 仕切板
2 上部室
3 中間室
4 下部室
5a〜5c チューブ
20、30 導入口
21 カバー
31、40 導出口
32 交換器本体
6 フロート式計測器
6a フロート
6b スケール
A、B 流体
DESCRIPTION OF SYMBOLS 1 Container 1a, 1b Partition plate 2 Upper chamber 3 Intermediate chamber 4 Lower chamber 5a-5c Tube 20, 30 Inlet 21 Cover 31, 40 Outlet 32 Exchanger body 6 Float type measuring instrument 6a Float 6b Scale A, B Fluid

Claims (2)

筒状の容器を、仕切板にて軸方向に並ぶ上部室、中間室および下部室に区画し、該中間室を挟む上部室と下部室とを1本以上のチューブにて連通して成る縦型多管式熱交換器において、
前記上部室または下部室に臨む前記チューブの開口から内部に液体を供給して該チューブ内部を液体で充満させること、
その後、該液体の液面が低下したチューブにフロート式計測器を挿入して前記フロート式計測器を前記液面に浮かべること、
前記フロート式計測器を用いて前記チューブの開口から液面までの距離を計測すること、
該計測距離をもって縦型多管式熱交換器における孔あき箇所を特定すること、
を特徴とする縦型多管式熱交換器における孔あき箇所の特定方法。
A cylindrical container is divided into an upper chamber, an intermediate chamber, and a lower chamber arranged in the axial direction by a partition plate, and the upper chamber and the lower chamber sandwiching the intermediate chamber are connected by one or more tubes. Type multi-tube heat exchanger
Supplying the liquid from the opening of the tube facing the upper chamber or the lower chamber to fill the inside of the tube with the liquid,
Thereafter, the float type measuring instrument is floated on the liquid level by inserting a float type measuring instrument into the tube where the liquid level of the liquid is lowered,
Measuring the distance from the opening of the tube to the liquid level using the float measuring instrument,
Identifying the perforated point in the vertical multi-tube heat exchanger with the measured distance;
A method for identifying perforated points in a vertical multi-tube heat exchanger characterized by the above.
前記液体は水である請求項1に記載の縦型多管式熱交換器における孔あき箇所の特定方法。   The method for identifying a perforated portion in a vertical multi-tubular heat exchanger according to claim 1, wherein the liquid is water.
JP2014147804A 2014-07-18 2014-07-18 Identification method of perforated spot in vertical multi-tube heat exchanger Expired - Fee Related JP6090252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014147804A JP6090252B2 (en) 2014-07-18 2014-07-18 Identification method of perforated spot in vertical multi-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014147804A JP6090252B2 (en) 2014-07-18 2014-07-18 Identification method of perforated spot in vertical multi-tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2016024028A true JP2016024028A (en) 2016-02-08
JP6090252B2 JP6090252B2 (en) 2017-03-08

Family

ID=55270901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014147804A Expired - Fee Related JP6090252B2 (en) 2014-07-18 2014-07-18 Identification method of perforated spot in vertical multi-tube heat exchanger

Country Status (1)

Country Link
JP (1) JP6090252B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298260A (en) * 1976-02-16 1977-08-17 Mitsubishi Heavy Ind Ltd Inspection of heating pipes used in heat exchanger
JPS57155095A (en) * 1981-03-20 1982-09-25 Toshiba Corp Heat exchanger
JPS63203581A (en) * 1987-02-10 1988-08-23 日本エンヂニヤ−・サ−ビス株式会社 Underground tank with leakage detecting mechanism

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298260A (en) * 1976-02-16 1977-08-17 Mitsubishi Heavy Ind Ltd Inspection of heating pipes used in heat exchanger
JPS57155095A (en) * 1981-03-20 1982-09-25 Toshiba Corp Heat exchanger
JPS63203581A (en) * 1987-02-10 1988-08-23 日本エンヂニヤ−・サ−ビス株式会社 Underground tank with leakage detecting mechanism

Also Published As

Publication number Publication date
JP6090252B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
CL2020001188A1 (en) Cooling water monitoring and control system.
NO148925B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF 5-METHYL-ISOXSAZOL-4-CARBOXYLIC ACID (4-TRIFLUORMETHYL) ANILIDE WITH ANTIFLOGISTIC AND ANTI-RUMATIC EFFECT
CN103257104A (en) Protection material hot-cold pulse fatigue resistance test apparatus
GB2547370A (en) Leak testing method and apparatus for use with heat exchangers
MY152898A (en) Isothermal reactor
JP6090252B2 (en) Identification method of perforated spot in vertical multi-tube heat exchanger
CN105003254A (en) High-temperature high-pressure pit shaft annular sealed space temperature and pressure change simulation experiment device
CN115219113A (en) Leakage detection method for micro-channel heat exchanger
CN105445175A (en) Monitoring method and monitoring system for equipment corrosion
CN206300758U (en) One kind tube bank pressure test leak-detecting device
CN204944240U (en) A kind of possess the coaxial pipe heat exchanger that Real-Time Monitoring reveals function
CN206945231U (en) A kind of sealing device for water pressure test
JP5625545B2 (en) Pipe end weld repair structure and pipe end weld repair method
CN202486034U (en) Cold and hot pulse fatigue tester of barrier material
CN205351285U (en) Waste heat boiler hunt leak on line device, online leak detection system and waste heat boiler system
CN204404863U (en) Plate type heat exchanger
KR101023234B1 (en) Apparatus for measuring a copying crevice environment of a steam generator and measuring method using the same
CN204855324U (en) Fast corrosion monitoring heat exchanger of multithread
JP2015210219A (en) Leak detector and leak detecting method of heat exchanger
WO2015097221A3 (en) Method for quantitative estimation of fouling of the spacers plates in a steam generator
KR102077700B1 (en) Apparatus for testing leakage of heat exchanger with tube bundle
GB2552805A (en) Cleaning of the shell side of a tube bundle of a heat exchanger
CN105865351A (en) Nondestructive detecting method for thickness of scales on inner surface of drum
EP2621392B1 (en) Test device
JP2018502271A (en) Steam generator coolant header having horizontal U-shaped heat transfer tube bundle and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6090252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees