JP2016023426A - Dredging system - Google Patents

Dredging system Download PDF

Info

Publication number
JP2016023426A
JP2016023426A JP2014146537A JP2014146537A JP2016023426A JP 2016023426 A JP2016023426 A JP 2016023426A JP 2014146537 A JP2014146537 A JP 2014146537A JP 2014146537 A JP2014146537 A JP 2014146537A JP 2016023426 A JP2016023426 A JP 2016023426A
Authority
JP
Japan
Prior art keywords
bottom mud
water
reservoir
slurry
dredging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014146537A
Other languages
Japanese (ja)
Other versions
JP6359902B2 (en
Inventor
透 青井
Toru Aoi
透 青井
衛 齋藤
Mamoru Saito
衛 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HATSUKARI KOGYO KK
Original Assignee
HATSUKARI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HATSUKARI KOGYO KK filed Critical HATSUKARI KOGYO KK
Priority to JP2014146537A priority Critical patent/JP6359902B2/en
Publication of JP2016023426A publication Critical patent/JP2016023426A/en
Application granted granted Critical
Publication of JP6359902B2 publication Critical patent/JP6359902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dredging system having a water feeding pump hung from a barge-type platform floating on a reservoir water surface, capable of vacuuming bottom mud with the water feeding pump for dredging and efficiently separating and recovering the vacuumed bottom mud.SOLUTION: A dredging system 100 of the present invention uses an inorganic neutral coagulant for coagulating bottom mud and transports bottom mud slurry (bottom mud and supernatant water) from a reservoir to a belt press part 80 by pumping a water feeding pump 20 and using a natural water flow. As such, condensed bottom mud may be transported to the belt press part 80 with its high concentration retained, without re-dispersing the coagulated and condensed bottom mud. The dredging system 100 of the present invention dehydrates the condensed bottom mud continuously with the belt press part 80, enabling separation and recovery of the bottom mud at an extremely high efficiency.SELECTED DRAWING: Figure 1

Description

本発明は、貯水池の底に溜まった底泥を水ごと吸引して、底泥を分離回収する浚渫システムに関するものである。   The present invention relates to a dredging system that sucks bottom mud collected at the bottom of a reservoir together with water and separates and collects the bottom mud.

従来、湖沼や堀、人工池、農業用ため池等の貯水池には、土や砂、ゴミ、ヘドロ等の底泥が徐々に堆積してゆく。これら、底泥の堆積は貯水池の水深を浅くして貯水池本来の機能を低下させる他、水質の悪化を引き起こす一因となる。よって、これら底泥を除去する浚渫を定期的に行うことが好ましい。   Conventionally, soil, sand, garbage, sludge, and other bottom mud gradually accumulate in reservoirs such as lakes, moats, artificial ponds, and agricultural ponds. The accumulation of bottom mud reduces the original function of the reservoir by reducing the depth of the reservoir, and also contributes to the deterioration of water quality. Therefore, it is preferable to periodically perform dredging to remove these bottom mud.

従来の貯水池の浚渫は、貯水池の水を抜いた上で重機等により行うことが一般的であった。しかしながら、この手法では貯水池への水の遮水と貯水池の水の排水が必要となり、何らかの土木工事が必要であるとともに作業期間が長く、コスト高であるという問題点がある。また、浚渫作業中には貯水池を使用できないという問題点がある。さらに、貯水池の水が抜き取られるため、貯水池に生息する水生動植物が死滅し、貯水池の生態系に多大な悪影響を与えるという問題点がある。   In general, the dredging of the conventional reservoir is performed by heavy machinery after draining the water from the reservoir. However, this method requires water shielding to the reservoir and drainage of the reservoir, which requires some civil engineering work, a long work period, and high costs. Another problem is that the reservoir cannot be used during dredging work. Furthermore, since the water in the reservoir is extracted, there is a problem that aquatic animals and plants that inhabit the reservoir are killed, and the ecosystem of the reservoir is greatly adversely affected.

この問題点に対し、本願発明者は下記[特許文献1]に示す湖沼水の浚渫システムに関する発明を行った。この[特許文献1]に記載の発明は、貯水池の水面に浮かべた台船から送水ポンプを吊下げ、この送水ポンプで底泥を吸引し浚渫を行う。このため、貯水池の遮水作業、排水作業が不要で、作業期間の短縮と、抵コスト化とを実現することができる。また、貯水池の水を抜き取ることなく浚渫を行うことが可能なため、貯水池に生息する動植物の生態系を維持することができる。   In response to this problem, the present inventor has invented a lake water system shown in [Patent Document 1] below. In the invention described in [Patent Document 1], a water pump is suspended from a pontoon floated on the surface of a reservoir, and the bottom mud is sucked by this water pump to perform dredging. For this reason, the water shielding work and drainage work of the reservoir are unnecessary, and the work period can be shortened and the cost can be reduced. Moreover, since dredging can be performed without draining the water from the reservoir, the ecosystem of animals and plants that live in the reservoir can be maintained.

特開2007−146425号公報JP 2007-146425 A

しかしながら、[特許文献1]に記載の発明は、吸引した底泥を主に濾過材と水生植物とで処理しており処理能力の点で更なる改善が望まれる。   However, in the invention described in [Patent Document 1], the sucked bottom mud is mainly treated with a filter medium and an aquatic plant, and further improvement is desired in terms of processing capability.

本発明は上記事情に鑑みてなされたものであり、吸引した底泥を効率的に分離回収することが可能な浚渫システムを提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the dredging system which can isolate | separate and collect | recover the sucked bottom mud efficiently.

本発明は、
(1)底泥を攪拌する攪拌羽根26を有するとともに攪拌した底泥を水ごと吸引して底泥スラリとして圧送する送水ポンプ20と、水面に浮いて前記送水ポンプ20を水中に吊下げる台船10と、前記送水ポンプ20が吸引した底泥スラリを搬送する送水ホース12と、前記送水ホース12により搬送された底泥スラリから底泥を分離回収する分離処理装置90と、を有する浚渫システムであって、
前記分離処理装置90は、前記送水ホース12により搬送された底泥スラリから重量物を遠心分離により除去する遠心分離部30と、前記遠心分離部30を通過した底泥スラリから夾雑物を除去する夾雑物選別部40と、前記夾雑物選別部40を通過した底泥スラリと凝集剤とを攪拌し、底泥を凝集沈降させる凝集分離槽50と、前記凝集分離槽50で凝集沈降した底泥を濃縮する濃縮槽60と、前記濃縮槽で濃縮された底泥を脱水するベルトプレス部80と、を有することを特徴とする浚渫システム100を提供することにより、上記課題を解決する。
(2)凝集剤が無機中性凝集剤であることを特徴とする上記(1)記載の浚渫システム100を提供することにより、上記課題を解決する。
(3)遠心分離部30からベルトプレス部80までの底泥スラリの搬送を送水ポンプ20による圧送と自然流下によって行うことを特徴とする上記(1)または(2)記載の浚渫システム100を提供することにより、上記課題を解決する。
The present invention
(1) A water supply pump 20 that has a stirring blade 26 for stirring the bottom mud and sucks the stirred bottom mud together with water and pumps it as a bottom mud slurry, and a trolley that floats on the water surface and suspends the water pump 20 in the water. 10, a water supply hose 12 that conveys the bottom mud slurry sucked by the water pump 20, and a separation processing device 90 that separates and collects the bottom mud from the bottom mud slurry conveyed by the water supply hose 12. There,
The separation processing device 90 removes impurities from the bottom mud slurry that has passed through the centrifugal separator 30 and the centrifugal separator 30 that removes heavy materials from the bottom mud slurry conveyed by the water supply hose 12 by centrifugation. The dust sorting unit 40, the bottom mud slurry that has passed through the dust sorting unit 40, and the flocculant are agitated, and the bottom mud is agglomerated and settled in the coagulation separation tank 50. The above-mentioned problem is solved by providing a dredging system 100 characterized by having a concentrating tank 60 for concentrating water and a belt press unit 80 for dewatering the bottom mud concentrated in the concentrating tank.
(2) The problem is solved by providing the dredging system 100 according to (1) above, wherein the flocculant is an inorganic neutral flocculant.
(3) The dredging system 100 according to (1) or (2) is provided, wherein the bottom mud slurry is conveyed from the centrifugal separator 30 to the belt press unit 80 by pressure feeding by the water pump 20 and natural flow. This solves the above problem.

本発明に係る浚渫システムは、底泥の凝集に無機中性凝集剤を用い、これにより得られた濃縮底泥の脱水をベルトプレス部を用いて連続的に行う。このため、極めて高い効率で底泥の分離回収を行うことができる。また、底泥スラリの搬送を送水ポンプの圧送と自然流下で行うため、凝集した底泥が再分散されず、凝集した底泥を高濃度のままベルトプレス部に搬送することができる。   The dredging system according to the present invention uses an inorganic neutral flocculant for agglomeration of the bottom mud, and continuously dewaters the concentrated bottom mud obtained by using a belt press unit. For this reason, the bottom mud can be separated and recovered with extremely high efficiency. Further, since the bottom mud slurry is transported under the pressure of the water pump and the natural flow, the aggregated bottom mud is not re-dispersed, and the aggregated bottom mud can be conveyed to the belt press section with a high concentration.

本発明に係る浚渫システムを示す図である。It is a figure which shows the dredging system which concerns on this invention. 本発明に係る浚渫システムの送水ポンプ及び台船を示す図である。It is a figure which shows the water supply pump and trolley of the dredging system which concern on this invention. 本発明に係る浚渫システムの分離処理装置の概要を示す図である。It is a figure which shows the outline | summary of the separation processing apparatus of the dredging system which concerns on this invention. 本発明に係る浚渫システムによる処理水のリン濃度を示すグラフである。It is a graph which shows the phosphorus concentration of the treated water by the dredging system which concerns on this invention. 本発明に係る浚渫システムのベルトプレス部を示す図である。It is a figure which shows the belt press part of the scissors system based on this invention. 本発明に係る浚渫システムで得られた脱水底泥の植物栽培試験結果を示すグラフである。It is a graph which shows the plant cultivation test result of the dewatered bottom mud obtained with the dredging system which concerns on this invention.

本発明に係る浚渫システム100の実施の形態について図面に基づいて説明する。図1に示す本発明に係る浚渫システム100は、貯水池の底泥を水ごと吸引して底泥スラリとして圧送する送水ポンプ20と、貯水池の水面に浮いて送水ポンプ20を水中に吊下げる台船10と、送水ポンプ20が吸引した底泥スラリを搬送する送水ホース12と、この送水ホース12により搬送された底泥スラリから底泥を分離回収する分離処理装置90と、を有している。また、分離処理装置90は、送水ホース12により搬送された底泥スラリから砂や小石等の重量物を遠心分離により除去する遠心分離部30と、この遠心分離部30を通過した底泥スラリから植物片やゴミ等の夾雑物を除去する夾雑物選別部40と、この夾雑物選別部40を通過した底泥スラリと凝集剤とを攪拌し底泥を凝集沈降させる凝集分離槽50と、この凝集分離槽50で凝集沈降した底泥(凝集底泥)を濃縮する濃縮槽60と、この濃縮槽60で濃縮された底泥(濃縮底泥)を脱水するベルトプレス部80と、を有している。   DESCRIPTION OF EMBODIMENTS Embodiments of a bag system 100 according to the present invention will be described with reference to the drawings. A dredging system 100 according to the present invention shown in FIG. 1 includes a water pump 20 that sucks the bottom mud of a reservoir together with water and pumps it as a bottom mud slurry, and a trolley that floats on the surface of the reservoir and suspends the water pump 20 in water. 10, a water supply hose 12 for conveying the bottom mud slurry sucked by the water supply pump 20, and a separation processing device 90 for separating and recovering the bottom mud from the bottom mud slurry conveyed by the water supply hose 12. In addition, the separation processing device 90 includes a centrifugal separator 30 that removes heavy objects such as sand and pebbles from the bottom mud slurry conveyed by the water supply hose 12 by centrifugation, and the bottom mud slurry that has passed through the centrifugal separator 30. A contaminant sorting unit 40 for removing contaminants such as plant pieces and dust, a coagulation separation tank 50 for aggregating and sedimenting the bottom mud by stirring the bottom mud slurry and the flocculant that have passed through the contaminant sorting unit 40, and A concentration tank 60 for concentrating the bottom mud (aggregated bottom mud) agglomerated and settled in the aggregation separation tank 50; and a belt press unit 80 for dewatering the bottom mud (concentrated bottom mud) concentrated in the concentration tank 60. ing.

次に、本発明に係る浚渫システム100の送水ポンプ20と台船10の構成を図2の部分断面図を用いて説明する。本発明に係る浚渫システム100の送水ポンプ20は1%〜20%程度のSS濃度(浮遊物質濃度)のスラリを圧送可能なものであり、モータを内蔵し防水性を有するポンプ本体部21と、このポンプ本体部21の下部に設置されたケーシング22と、このケーシング22内に設置されモータによって回転動作するインペラ23と、ケーシング22の取水口に設置されたカッタ24と、モータによって回転動作し斜め下方を向いた羽根を複数備えた攪拌羽根26と、ケーシング22の下方に延びた脚部28と、を有している。そして、ケーシング22からはホース接続端22aが伸び、このホース接続端22aに送水ホース12の一端が接続する。また、送水ポンプ20の電源ケーブル15aは、送水ホース12に沿って陸上まで延伸され、分離処理装置90側の図示しない送水ポンプ制御盤を介して発電機等の電源に接続される。   Next, the structure of the water pump 20 and the trolley 10 of the dredging system 100 according to the present invention will be described with reference to a partial sectional view of FIG. The water pump 20 of the dredging system 100 according to the present invention is capable of pumping a slurry having an SS concentration (floating substance concentration) of about 1% to 20%, and has a built-in motor and a waterproof pump main body 21. A casing 22 installed in the lower part of the pump main body 21, an impeller 23 installed in the casing 22 and rotated by a motor, a cutter 24 installed in a water intake of the casing 22, and rotated by a motor and slanted. A stirring blade 26 having a plurality of blades facing downward and a leg portion 28 extending below the casing 22 are provided. The hose connection end 22a extends from the casing 22, and one end of the water supply hose 12 is connected to the hose connection end 22a. The power cable 15a of the water pump 20 is extended to the land along the water hose 12, and is connected to a power source such as a generator via a water pump control panel (not shown) on the separation processing device 90 side.

送水ホース12は送水ポンプ20と接続可能であれば如何なるものを用いても良いが、内径65mm程度のものを用いることが好ましい。また、送水ホース12にはフロート18が所定の間隔で設置され、電源ケーブル15a(15b)とともに貯水池の水面に支持される。   Any water hose 12 may be used as long as it can be connected to the water pump 20, but it is preferable to use a water hose having an inner diameter of about 65 mm. Moreover, the float 18 is installed in the water supply hose 12 at predetermined intervals, and is supported on the water surface of the reservoir together with the power cable 15a (15b).

また、台船10は送水ポンプ20及び作業者を搭載しても貯水池の水面に浮く十分なフロートを備え、台船10の略中央部分には送水ポンプ20を貯水池内に昇降する昇降口11を有している。また、昇降口11の上部には送水ポンプ20を吊下げる櫓14が設置され、この櫓14の上部には送水ポンプ20を昇降する昇降機16が設置されている。尚、昇降機16の電源ケーブル15bは、送水ポンプ20の電源ケーブル15aとともに送水ホース12に沿って陸上まで延伸され図示しない電源に接続される。   Further, the trolley 10 has a sufficient float that floats on the water surface of the reservoir even when the water pump 20 and the operator are mounted, and an elevator 11 for raising and lowering the water pump 20 into the reservoir is provided at a substantially central portion of the trolley 10. Have. Further, a cage 14 for suspending the water pump 20 is installed in the upper part of the elevator 11, and an elevator 16 for elevating the water pump 20 is installed in the upper part of the cage 14. The power cable 15b of the elevator 16 is extended to the land along the water supply hose 12 together with the power cable 15a of the water pump 20, and is connected to a power source (not shown).

次に、分離処理装置90の遠心分離部30、夾雑物選別部40、凝集分離槽50、濃縮槽60の構成を図3を用いて説明する。先ず、分離処理装置90の遠心分離部30は、周知のサイクロン型の遠心分離装置であり、外筒32aと内筒32bとを有している。そして、送水ホース12は分離処理装置90の外筒32aの上部に横方向に向けて接続される。また、外筒32aの下部はホッパ部34となっており、ホッパ部34には開閉コック36aにより開閉する排出口36が設置されている。そして、内筒32bには夾雑物選別部40と繋がる配管5aが接続されている。尚、分離処理装置90の各部を繋ぐ配管5a〜5c及び水配管7a、7bとしては、ホースや金属配管等の周知の配管設備を用いることができる。   Next, the configuration of the centrifuge 30, the contaminant sorting unit 40, the agglomeration separation tank 50, and the concentration tank 60 of the separation processing apparatus 90 will be described with reference to FIG. 3. First, the centrifuge 30 of the separation processing device 90 is a well-known cyclone type centrifuge, and has an outer cylinder 32a and an inner cylinder 32b. And the water supply hose 12 is connected to the upper part of the outer cylinder 32a of the separation processing apparatus 90 toward a horizontal direction. A lower portion of the outer cylinder 32a is a hopper portion 34, and a discharge port 36 that is opened and closed by an opening / closing cock 36a is provided in the hopper portion 34. The inner cylinder 32b is connected with a pipe 5a connected to the foreign matter sorting unit 40. In addition, as piping 5a-5c which connects each part of the separation processing apparatus 90, and water piping 7a, 7b, well-known piping facilities, such as a hose and metal piping, can be used.

また、分離処理装置90の夾雑物選別部40は、底泥スラリ中の夾雑物を取り除く夾雑物選別装置42を有している。この夾雑物選別装置42としては、所定の大きさ以上の夾雑物を取り除くことが可能であれば如何なる装置を用いても良いが、2mm程度のスリットを有する周知のベルトスクリーンを用いることが特に好ましい。また、夾雑物選別部40には流量測定升44を設け、送水ポンプ20が吸引する底泥スラリの流量を確認可能とすることが好ましい。   Further, the contaminant sorting unit 40 of the separation processing device 90 has a contaminant sorting device 42 that removes the contaminants in the bottom mud slurry. As the foreign matter sorting device 42, any device may be used as long as it can remove foreign matters of a predetermined size or larger. However, it is particularly preferable to use a well-known belt screen having a slit of about 2 mm. . In addition, it is preferable that the foreign matter sorting unit 40 is provided with a flow rate measuring rod 44 so that the flow rate of the bottom mud slurry sucked by the water pump 20 can be confirmed.

また、分離処理装置90の凝集分離槽50は、夾雑物選別部40を通過した底泥スラリが流入する内槽50bを有しており、この内槽50bには底泥スラリと凝集剤とを混合攪拌する攪拌装置52が設置されている。また、凝集分離槽50の下部は略円錐形のホッパ部50aとなっており、このホッパ部50aの先側には濃縮槽60と繋がる配管5bが接続されている。また、凝集分離槽50の上部には凝集分離槽50の上澄み水を貯水池に放流する水配管7aが接続されている。   The flocculation / separation tank 50 of the separation processing apparatus 90 has an inner tank 50b into which the bottom mud slurry that has passed through the contaminant sorting unit 40 flows. The inner tank 50b contains the bottom mud slurry and the flocculant. A stirring device 52 for mixing and stirring is installed. The lower part of the coagulation separation tank 50 is a substantially conical hopper part 50a, and a pipe 5b connected to the concentration tank 60 is connected to the front side of the hopper part 50a. Further, a water pipe 7 a for discharging the supernatant water of the coagulation / separation tank 50 to the reservoir is connected to the upper part of the coagulation / separation tank 50.

また、分離処理装置90の濃縮槽60は、凝集分離槽50で凝集沈降した凝集底泥を静置してさらに濃縮する機能を有し、上部に凝集分離槽50と繋がった配管5bが接続されている。また、濃縮槽60の下部は略円錐形のホッパ部60aとなっており、このホッパ部60aの先側には濃縮槽60で濃縮された濃縮底泥をベルトプレス部80に送る配管5cが接続されている。また、濃縮槽60の上部には濃縮槽60の上澄み水を貯水池に放流する水配管7bが接続されている。   Further, the concentration tank 60 of the separation processing apparatus 90 has a function of allowing the aggregated bottom mud that has been aggregated and settled in the aggregation separation tank 50 to stand and further concentrate, and a pipe 5b connected to the aggregation separation tank 50 is connected to the upper part. ing. The lower part of the concentration tank 60 is a substantially conical hopper part 60a, and a pipe 5c for sending the concentrated bottom mud concentrated in the concentration tank 60 to the belt press part 80 is connected to the front side of the hopper part 60a. Has been. Further, a water pipe 7 b for discharging the supernatant water of the concentration tank 60 to the reservoir is connected to the upper part of the concentration tank 60.

尚、分離処理装置90は凝集分離槽50、濃縮槽60の上澄み水を一旦貯水して適宜貯水池に放流する水循環槽を有しても良い。この構成によれば、水循環槽に貯水した上澄み水を設備の洗浄等に利用することができる。これにより、水道栓が分離処理装置90の近傍に存在しない場合でも、設備の洗浄等の作業を円滑に行うことができる。また、洗浄に関する水道費用を削減することができる。   In addition, the separation treatment apparatus 90 may have a water circulation tank that temporarily stores the supernatant water of the coagulation separation tank 50 and the concentration tank 60 and discharges it to the reservoir as appropriate. According to this configuration, the supernatant water stored in the water circulation tank can be used for equipment cleaning and the like. Thereby, even when a water tap does not exist in the vicinity of the separation processing apparatus 90, operations such as cleaning of facilities can be performed smoothly. In addition, water costs for cleaning can be reduced.

次に、本発明に係る浚渫システム100の動作を説明する。先ず、分離処理装置90を浚渫を行う貯水池近傍の陸地に設置する。また、台船10を浚渫を行う貯水池に浮かべる。この台船10には送水ホース12で繋がった送水ポンプ20が設置されている。   Next, the operation of the bag system 100 according to the present invention will be described. First, the separation processing device 90 is installed on the land near the reservoir for dredging. In addition, the trolley 10 is floated on a reservoir for dredging. A water pump 20 connected by a water hose 12 is installed in the trolley 10.

次に、台船10に作業者が搭乗し、台船10を浚渫場所に移動させる。そして、竿等の測量器具を用いて浚渫場所の大まかな水深と底泥の厚みを把握する。次に、作業者は昇降機16を操作して送水ポンプ20を貯水池中に投入する。次に、作業者は分離処理装置90側の作業者に対し、送水ポンプ20の稼働を要求する。分離処理装置90側の作業者はこの要求を受けて、送水ポンプ制御盤を操作し送水ポンプ20を稼働する。これにより、ポンプ本体部21内のモータが回転し、インペラ23と攪拌羽根26とが回転動作する。そして、貯水池の水はケーシング22の取水口から吸引され送水ホース12を介して分離処理装置90に圧送される。   Next, an operator gets on the carriage 10 and moves the carriage 10 to a dredging place. Then, using a surveying instrument such as a dredge, the rough water depth and the thickness of the bottom mud are grasped. Next, the operator operates the elevator 16 to put the water pump 20 into the reservoir. Next, the worker requests the worker on the separation processing device 90 side to operate the water pump 20. In response to this request, the operator on the separation processing device 90 side operates the water pump control panel to operate the water pump 20. As a result, the motor in the pump body 21 rotates, and the impeller 23 and the stirring blade 26 rotate. The water in the reservoir is sucked from the water intake port of the casing 22 and is pumped to the separation processing device 90 via the water supply hose 12.

次に、台船10側の作業者は昇降機16を操作して送水ポンプ20を貯水池中の適切な位置に保持する。この適切な位置とは、送水ポンプ20の吸引する底泥スラリの濃度が5%〜10%となる位置である。尚、底泥スラリの濃度は分離処理装置90側の作業者が目視等で確認し、適宜、台船10側の作業者に連絡して調整する。   Next, an operator on the side of the carriage 10 operates the elevator 16 to hold the water pump 20 at an appropriate position in the reservoir. This appropriate position is a position where the concentration of the bottom mud slurry sucked by the water pump 20 is 5% to 10%. The concentration of the bottom mud slurry is confirmed by visual inspection or the like by an operator on the separation processing apparatus 90 side, and adjusted appropriately by contacting the operator on the base boat 10 side.

送水ポンプ20が底泥の表層近傍の適切な位置に保持されると、攪拌羽根26が底泥を攪拌するとともに、攪拌羽根26の回転動作によって発生する下向きの水流が底泥を舞い上げる。舞い上げられた底泥はインペラ23の回転動作により貯水池の水ごとケーシング22の取水口から吸引され、底泥スラリとして送水ホース12を介して分離処理装置90に圧送される。このとき、底泥中に混在する落ち葉、枯枝、水生植物の葉茎根、ビニール等のゴミ類は、ケーシング22の取水口に設置されたカッタ24と回転するインペラ23及び攪拌羽根26との間で適度な大きさに破砕される。これにより、これらゴミ類の送水ポンプ20への絡まりや、ケーシング22内や送水ホース12内における目詰りを防止することができる。また、攪拌羽根26は空き缶等の比較的大型で硬質な夾雑物を跳ね飛ばして、これら夾雑物が送水ポンプ20で吸引されることを防止する。尚、底泥が厚い場合には、表層近傍の底泥を浚渫した後、徐々に送水ポンプ20を降下させ底泥を掘り下げるようにして浚渫して行くことが好ましい。   When the water pump 20 is held at an appropriate position near the surface layer of the bottom mud, the stirring blade 26 stirs the bottom mud, and the downward water flow generated by the rotation operation of the stirring blade 26 soars the bottom mud. The raised bottom mud is sucked from the intake port of the casing 22 together with the water in the reservoir by the rotation of the impeller 23, and is pumped to the separation processing device 90 through the water supply hose 12 as a bottom mud slurry. At this time, fallen leaves, dead branches, leaf stem roots of aquatic plants, vinyl, and other debris mixed in the bottom mud are separated from the cutter 24 installed at the intake port of the casing 22, the rotating impeller 23 and the stirring blade 26. It is crushed to an appropriate size. Thereby, the entanglement of these garbage in the water supply pump 20 and clogging in the casing 22 and the water supply hose 12 can be prevented. Further, the stirring blade 26 jumps away relatively large and hard foreign matters such as empty cans and prevents these foreign matters from being sucked by the water supply pump 20. In addition, when the bottom mud is thick, after dripping the bottom mud near the surface layer, it is preferable that the water pump 20 is gradually lowered to dredge the bottom mud.

送水ポンプ20によって吸引、圧送された底泥スラリは送水ホース12を通って遠心分離部30の外筒32aに横方向を向けて吐出される。そして、吐出された底泥スラリは外筒32a内を渦を巻いて流下する。このとき、砂や小石等の比較的重い重量物は遠心分離部30の外筒32aに沿って下方へ落下し、遠心分離部30のホッパ部34に堆積する。また、その他の底泥スラリは内筒32bの下端から内筒32b内を通って夾雑物選別部40側へ搬送される。尚、ホッパ部34に堆積した重量物は開閉コック36aを適宜開閉することで排出口36から排出され、廃棄や選別等のしかるべき処理が行われる。   The bottom mud slurry sucked and pumped by the water pump 20 is discharged through the water hose 12 to the outer cylinder 32a of the centrifugal separator 30 in the lateral direction. Then, the discharged bottom mud slurry flows down in the outer cylinder 32a in a vortex. At this time, relatively heavy heavy objects such as sand and pebbles fall downward along the outer cylinder 32 a of the centrifugal separator 30 and accumulate on the hopper portion 34 of the centrifugal separator 30. Further, the other bottom mud slurry is conveyed from the lower end of the inner cylinder 32b through the inner cylinder 32b to the contaminant sorting unit 40 side. In addition, the heavy load deposited on the hopper 34 is discharged from the discharge port 36 by appropriately opening and closing the open / close cock 36a, and appropriate processing such as disposal and sorting is performed.

また、遠心分離部30を通過した底泥スラリは配管5aを介して夾雑物選別部40の流量測定升44に吐出され、分離処理装置90側の作業者はこの流量測定升44によって底泥スラリの流量を把握する。そして、送水ポンプ制御盤を操作して底泥スラリが適正な流量となるように送水ポンプ20の回転数を調整する。また、底泥スラリの濃度を目視等で確認し、濃度が適正でない場合、台船10側の作業者に指示して送水ポンプ20の位置調整を行わせる。   Also, the bottom mud slurry that has passed through the centrifugal separator 30 is discharged to the flow rate measuring rod 44 of the contaminant sorting unit 40 via the pipe 5a, and the operator on the separation processing device 90 side uses the flow rate measuring rod 44 to remove the bottom mud slurry. Know the flow rate of Then, the rotational speed of the water pump 20 is adjusted so that the bottom mud slurry has an appropriate flow rate by operating the water pump control panel. Moreover, the density | concentration of bottom mud slurry is confirmed visually etc., and when a density | concentration is not appropriate, it will instruct | indicate the operator of the trolley 10 side, and will perform the position adjustment of the water pump 20.

流量測定升44を通った底泥スラリは、夾雑物選別部40の夾雑物選別装置42に吐出される。そして、この夾雑物選別装置42において、底泥スラリ中に混入した夾雑物、即ち、カッタ24で破砕されたゴミ類等が選別除去される。尚、本例では夾雑物選別装置42としてベルトスクリーンを用いた例を図示しており、選別された夾雑物はベルトスクリーンの移動によって自動的に排出される。排出された夾雑物は例えばスライダ46上を滑り落ちて、夾雑物集積用袋等に落下し、廃棄等のしかるべき処理に付される。尚、夾雑物選別部40は凝集分離槽50の上方に設置し、この夾雑物選別部40において凝集剤を添加することが好ましい。尚、凝集剤は底泥スラリの流量、濃度に応じて作業者が目視にて判断して適宜添加する。また、凝集剤の添加は自動機によって行っても良い。凝集剤の添加量は底泥(乾燥重量)に対して概ね1wt%前後である。   The bottom mud slurry that has passed through the flow rate measuring basin 44 is discharged to the trash screening device 42 of the trash screening unit 40. Then, in this foreign matter sorting device 42, the foreign matter mixed in the bottom mud slurry, that is, the trash crushed by the cutter 24 is sorted out. In this example, an example in which a belt screen is used as the foreign matter sorting device 42 is shown, and the sorted foreign matter is automatically discharged by the movement of the belt screen. The discharged contaminants slide down on the slider 46, for example, fall into a contaminant collection bag, etc., and are subjected to appropriate processing such as disposal. In addition, it is preferable that the contaminant sorting unit 40 is installed above the agglomeration separation tank 50 and a flocculant is added to the contaminant sorting unit 40. The flocculant is added as appropriate by the operator's visual judgment according to the flow rate and concentration of the bottom mud slurry. Further, the flocculant may be added by an automatic machine. The amount of the flocculant added is approximately 1 wt% with respect to the bottom mud (dry weight).

また、ここで投入する凝集剤としてはカルシウムを主成分とした中性の無機凝集剤を用いる。このカルシウムを主成分とした無機中性凝集剤は、有機高分子等の自然界に存在しない化学物質を含有していない。また、pHを変化させたり、動植物に悪影響を与える成分を含有していない。よって、本発明に係る浚渫システム100は、この無機中性凝集剤を用いることで分離回収した脱水底泥をそのまま植物栽培用の培養土として使用することができる。また、分離した上澄み水をそのまま貯水池に放流することができる。   Further, as the flocculant added here, a neutral inorganic flocculant mainly composed of calcium is used. This inorganic neutral flocculant mainly composed of calcium does not contain chemical substances that do not exist in nature such as organic polymers. Moreover, it does not contain components that change pH or adversely affect animals and plants. Therefore, the dredging system 100 according to the present invention can use the dehydrated bottom mud separated and recovered by using this inorganic neutral flocculant as it is as the cultivation soil for plant cultivation. Moreover, the separated supernatant water can be discharged into the reservoir as it is.

さらに、カルシウムを主成分とした無機中性凝集剤は底泥スラリ中のリン成分を底泥側に固定する。ここで、図4に、処理前の貯水池の水のリン酸態リン濃度と、凝集分離槽の上澄み水のリン酸態リン濃度と、濃縮槽の上澄み水のリン酸態リン濃度とをそれぞれ示す。図4から、処理前の貯水池の水のリン酸態リン濃度は0.059mg/Lであるのに対し、凝集分離槽の上澄み水のリン酸態リン濃度は0.024mg/Lであり、濃縮槽の上澄み水のリン酸態リン濃度は0.017mg/Lであった。このことから、分離処理装置90の処理により貯水池の水のリン濃度は約1/3に減少することが分かる。これは、水中のリン成分がカルシウムを主成分とした無機中性凝集剤によって底泥側に固定され、底泥とともに除去されたことを意味している。よって、本発明によって得られる脱水底泥には植物栽培に有用なリン成分が含まれるとともに、上澄み水のリン成分は減少し、このリン成分の少ない上澄み水を貯水池に還流することで貯水池の富栄養化を抑制することができる。   Further, the inorganic neutral flocculant mainly composed of calcium fixes the phosphorus component in the bottom mud slurry on the bottom mud side. Here, FIG. 4 shows the phosphoric acid phosphorus concentration of the water in the reservoir before treatment, the phosphoric acid phosphorus concentration of the supernatant water of the coagulation separation tank, and the phosphoric phosphorus concentration of the supernatant water of the concentration tank, respectively. . From FIG. 4, the phosphoric acid phosphorus concentration of the water in the reservoir before treatment is 0.059 mg / L, whereas the phosphoric acid phosphorus concentration of the supernatant water of the coagulation separation tank is 0.024 mg / L, which is concentrated. The phosphate phosphorus concentration of the supernatant water of the tank was 0.017 mg / L. From this, it can be seen that the phosphorus concentration of the water in the reservoir is reduced to about 1/3 by the treatment of the separation treatment device 90. This means that the phosphorus component in water was fixed to the bottom mud side by an inorganic neutral flocculant mainly composed of calcium and removed together with the bottom mud. Therefore, the dehydrated bottom mud obtained by the present invention contains phosphorus components useful for plant cultivation, the phosphorus component of the supernatant water decreases, and the rich water of the reservoir is returned to the reservoir by returning the supernatant water having a low phosphorus component to the reservoir. Nutrition can be suppressed.

夾雑物選別部40を通過した底泥スラリは凝集分離槽50の内槽50bに吐出される。そして、吐出された底泥スラリと凝集剤とは内槽50bに設置された攪拌装置52によって更に混合攪拌される。この凝集剤の効果により底泥スラリ中の泥、ヘドロ等の底泥は凝集し下方のホッパ部50aに沈殿する。そして、沈殿した凝集底泥は凝集分離槽50への新たな底泥スラリの流入によりホッパ部50aに接続された配管5bに押し出され、この配管5bを通って濃縮槽60の上部に吐出する。また、凝集分離槽50の上澄み水は水配管7aを通して貯水池に放流される。   The bottom mud slurry that has passed through the contaminant sorting unit 40 is discharged to the inner tank 50b of the agglomeration separation tank 50. The discharged bottom mud slurry and the flocculant are further mixed and stirred by the stirring device 52 installed in the inner tank 50b. Due to the effect of the flocculant, the mud in the bottom mud slurry and the bottom mud such as sludge are aggregated and settled on the lower hopper 50a. Then, the precipitated aggregated bottom mud is pushed out to the pipe 5b connected to the hopper 50a by the inflow of new bottom mud slurry into the aggregated separation tank 50, and discharged to the upper part of the concentration tank 60 through this pipe 5b. Moreover, the supernatant water of the coagulation separation tank 50 is discharged to the reservoir through the water pipe 7a.

濃縮槽60に吐出された凝集底泥は、この濃縮槽60で静置され濃縮槽60の下方のホッパ部60aに沈降してさらに濃縮される。そして、この濃縮底泥は、濃縮槽60への新たな凝集底泥の流入によりホッパ部60aに接続された配管5cに押し出され、この配管5cを通ってベルトプレス部80に搬送される。また、濃縮槽60の上澄み水は水配管7bを通して貯水池に放流される。   The agglomerated bottom mud discharged to the concentration tank 60 is allowed to stand in the concentration tank 60 and settles down to the hopper portion 60a below the concentration tank 60 to be further concentrated. Then, the concentrated bottom mud is pushed out to the pipe 5c connected to the hopper 60a by the inflow of new agglomerated bottom mud into the concentration tank 60, and is conveyed to the belt press unit 80 through the pipe 5c. The supernatant water of the concentration tank 60 is discharged to the reservoir through the water pipe 7b.

次に、本発明に係る浚渫システム100に好適なベルトプレス部80の構成を図5を用いて説明する。本発明に好適なベルトプレス部80は、布製でベルト状の濾布82と、スラリ(濃縮底泥)を濾布82上に堆積させるスラリーダム部81と、濾布82上のスラリの過剰な水分を吸引する吸引部83と、濾布82上のスラリを脱水する脱水部86と、を有している。そして、濾布82を送る搬送ローラ84が回転することで、濾布82はスラリーダム部81と吸引部83と脱水部86とを連続的に移動する。   Next, the structure of the belt press part 80 suitable for the scissors system 100 according to the present invention will be described with reference to FIG. A belt press unit 80 suitable for the present invention includes a cloth-like belt-like filter cloth 82, a slurry dam part 81 for depositing slurry (concentrated bottom mud) on the filter cloth 82, and excess slurry on the filter cloth 82. A suction part 83 that sucks moisture and a dehydration part 86 that dehydrates the slurry on the filter cloth 82 are provided. Then, the conveyance roller 84 that feeds the filter cloth 82 rotates, so that the filter cloth 82 continuously moves through the slurry dam part 81, the suction part 83, and the dehydration part 86.

そして、配管5cから吐出された濃縮底泥はスラリーダム部81に溜まり、この状態で濾布82が一定速度で移動することで濾布82上にほぼ一定の厚みで堆積する。濾布82上に堆積した濃縮底泥は吸引部83に搬送され、この吸引部83によって濾布82の裏面側から過剰な水分が吸引除去される。吸引された水分は排水部89を介して貯水池に放流される。次に、濾布82は脱水部86に搬送される。脱水部86は大ローラ86aと複数の小ローラ86bとで構成される脱水ローラを有し、大ローラ86aが濃縮底泥側に位置し、小ローラ86bが濾布82の裏面側に位置する。そして、濃縮底泥は濾布82ごと脱水ローラ86a、86b間を通され、この脱水ローラ86a、86bの圧接によって脱水される。脱水された水分は排水部89を介して貯水池に放流される。そして、このベルトプレス部80の脱水により、濃縮底泥は含水率が50%〜55%程度の脱水底泥となる。この脱水底泥はスクレイパ87によって剥ぎ取られ、脱水底泥回収袋1等に送られて回収される。   Then, the concentrated bottom mud discharged from the pipe 5c accumulates in the slurry dam portion 81, and in this state, the filter cloth 82 moves at a constant speed and accumulates on the filter cloth 82 with a substantially constant thickness. The concentrated bottom mud deposited on the filter cloth 82 is conveyed to the suction unit 83, and excess water is sucked and removed from the back surface side of the filter cloth 82 by the suction unit 83. The sucked water is discharged to the reservoir through the drainage part 89. Next, the filter cloth 82 is conveyed to the dehydrating unit 86. The dewatering unit 86 includes a dewatering roller including a large roller 86a and a plurality of small rollers 86b. The large roller 86a is located on the concentrated bottom mud side, and the small roller 86b is located on the back side of the filter cloth 82. The concentrated bottom mud is passed along the filter cloth 82 between the dewatering rollers 86a and 86b, and dewatered by the pressure contact of the dewatering rollers 86a and 86b. The dehydrated water is discharged to the reservoir through the drainage part 89. And the dewatering of this belt press part 80 turns the concentrated bottom mud into a dewatered bottom mud having a water content of about 50% to 55%. The dewatered bottom mud is peeled off by the scraper 87 and sent to the dewatered bottom mud collection bag 1 and collected.

ここで、脱水底泥の植物栽培試験結果を図6に示す。ここでの植物栽培試験は「植物に対する害に関する栽培試験の方法(昭和59年4月18日付け59農蚕第1943号農林水産省農蚕園芸局長通知)」に準拠し、底に孔の空いていない試験容器(内径11.3cm、高さ6.5cm)に貯水池Aで得た脱水底泥、貯水池Bで得た脱水底泥、市販の黒土をそれぞれ等量入れ、各20粒の小松菜種を蒔き、発芽本数と播種25日後の苗の地上部の長さ(草丈)及び湿重量を測定したものである。尚、測定試料は25℃の恒温槽で蛍光灯照明(3500lux)を明暗12時間で交互に照射し栽培を行った。また、測定試料は各土に対して3個ずつ作製し、その平均を取った。さらに、草丈と湿重量の測定は発芽した苗の草丈の高い方から7本を抜き取り、これの平均草丈と総重量とを測定した。   Here, the plant cultivation test result of dehydrated bottom mud is shown in FIG. The plant cultivation test here conforms to “Method of cultivation test on damage to plants (No. 1943, No. 1943, dated April 18, 1984)”, and there is no hole in the bottom. In a test container (inner diameter 11.3 cm, height 6.5 cm), add dehydrated bottom mud obtained from reservoir A, dehydrated bottom mud obtained from reservoir B, and commercially available black soil, and sprinkle 20 pine rapeseed seeds each. The number of germination and the length (plant height) and wet weight of the seedling above 25 days after sowing were measured. The measurement sample was cultivated in a constant temperature bath at 25 ° C. by alternately irradiating fluorescent lamp illumination (3500 lux) in 12 hours of light and dark. Three measurement samples were prepared for each soil, and the average was taken. Further, the plant height and wet weight were measured by extracting 7 plants from the higher plant height of the germinated seedlings and measuring the average plant height and total weight.

図6(a)に播種からの経過日数と発芽本数の関係を示す。図6(a)から、植物の発芽速度には脱水底泥と市販の黒土とで大きな差は見られず、両者で有意差は存在しないことが解る。また、図6(b)に播種25日後の苗の平均長さと総重量を示す。図6(b)から、苗の平均長さ、総重量ともに脱水底泥で栽培したものの方が市販の黒土で栽培したものよりも高く、脱水底泥は市販の黒土よりも苗の生育が良いことが解る。これらのことから、本発明の浚渫システム100で得られた脱水底泥は、植物栽培に際して阻害要因は存在せず、植物栽培に適していることが解る。これは、本発明の浚渫システム100で得られた脱水底泥が、貯水池の底に溜まった有機物を豊富に含むとともに、前述のように植物栽培に有用なリン成分及び凝集剤のカルシウム成分を含むためと考えられる。また、本発明の浚渫システム100で得られた脱水底泥は、適度に団粒化し保水性に優れ、このことも植物栽培に適する要因と考えられる。   FIG. 6A shows the relationship between the number of days elapsed after sowing and the number of germination. From FIG. 6 (a), it can be seen that there is no significant difference in the germination rate of the plant between the dehydrated bottom mud and the commercially available black soil, and there is no significant difference between the two. FIG. 6 (b) shows the average length and total weight of seedlings 25 days after sowing. From FIG. 6 (b), both the average length and the total weight of the seedlings were cultivated with dehydrated bottom mud, which was higher than that cultivated with commercially available black soil, and the dehydrated bottom mud grew better than the commercially available black soil. I understand that. From these facts, it can be understood that the dewatered bottom mud obtained by the dredging system 100 of the present invention has no obstruction factor in plant cultivation and is suitable for plant cultivation. This is because the dewatered bottom mud obtained by the dredging system 100 of the present invention contains abundant organic matter accumulated at the bottom of the reservoir, and also contains the phosphorus component useful for plant cultivation and the calcium component of the flocculant as described above. This is probably because of this. Moreover, the dewatered bottom mud obtained by the dredging system 100 of the present invention is moderately aggregated and excellent in water retention, which is also considered to be a factor suitable for plant cultivation.

以上のように、本発明に係る浚渫システム100は貯水池の水面に浮かべた台船10から送水ポンプ20を吊下げ、この送水ポンプ20で底泥を吸引し浚渫を行う。このため、貯水池の遮水作業、排水作業が不要で、作業期間の短縮を図ることができる。また、抵コストで浚渫作業を行うことができる。また、貯水池の水を抜かないため、貯水池の機能を維持したまま浚渫作業を行うことができる。特に、公園や観光地の池等では、浚渫作業による景観の悪化を最小限に抑えることができる。さらに、貯水池の水を抜き取ることなく浚渫を行うことが可能なため、貯水池に生息する動植物の生態系を維持することができる。   As described above, the dredging system 100 according to the present invention suspends the water pump 20 from the trolley 10 floated on the water surface of the reservoir, and sucks the bottom mud with the water pump 20 to dredge. For this reason, the water shielding work and drainage work of the reservoir are unnecessary, and the work period can be shortened. Also, dredging can be performed at low cost. Moreover, since the water in the reservoir is not drained, dredging work can be performed while maintaining the function of the reservoir. In particular, the deterioration of the landscape due to dredging work can be minimized in parks and ponds of sightseeing spots. Furthermore, since dredging can be performed without draining water from the reservoir, the ecosystem of animals and plants that live in the reservoir can be maintained.

また、本発明に係る浚渫システム100は分離処理装置90を設置して底泥の処理を行うため、従来の重機を使用した浚渫と比較して、省スペースで浚渫作業を行うことができる。また、分離処理装置90は分解して現地にて組立てが可能なため、大型の運搬車両が進入できない貯水池に対しても浚渫作業を行うことができる。   Moreover, since the dredging system 100 according to the present invention performs the treatment of bottom mud by installing the separation processing device 90, dredging work can be performed in a space-saving manner as compared with dredging using conventional heavy machinery. Moreover, since the separation processing apparatus 90 can be disassembled and assembled on site, it is possible to perform dredging work on a reservoir into which a large transport vehicle cannot enter.

また、本発明に係る浚渫システム100は、底泥の凝集に無機中性凝集剤を用い、また、貯水池からベルトプレス部80までの底泥スラリ等(底泥及び上澄み水)の搬送を送水ポンプ20の圧送と自然流下で行う。このため、凝集底泥、濃縮底泥が再分散されることがなく、濃縮底泥を高濃度のままベルトプレス部80に搬送することができる。そして、本発明に係る浚渫システム100は、濃縮底泥の脱水をベルトプレス部80を用いて連続的に行うため、極めて高い効率で底泥の分離回収を行うことができる。   Moreover, the dredging system 100 according to the present invention uses an inorganic neutral flocculant for agglomeration of bottom mud, and a water pump for conveying bottom mud slurry (bottom mud and supernatant water) from the reservoir to the belt press unit 80. 20 pumping and natural flow. For this reason, the condensed bottom mud and the concentrated bottom mud are not redispersed, and the concentrated bottom mud can be conveyed to the belt press unit 80 with a high concentration. And since the dredging system 100 which concerns on this invention performs dehydration of concentrated bottom mud continuously using the belt press part 80, it can separate and collect | recover bottom mud with very high efficiency.

さらに、本発明に係る浚渫システム100は、凝集剤にカルシウムを主成分とする無機中性凝集剤を用いるため、脱水底泥に動植物に有害な成分が存在しない反面、貯水池の底に溜まった有機物と水中のリン成分、及び凝集剤の主成分であるカルシウムを豊富に含んでいる。よって、本発明に係る浚渫システム100で分離回収された脱水底泥は、栄養成分が豊富な優れた培養土としてそのまま植物栽培に使用することができる。また、本発明に係る浚渫システム100で分離された上澄み水には凝集剤成分が溶出せず、また水のpHを変化させることもない。よって、上澄み水をそのまま貯水池に放流しても生息する動植物に悪影響を与えることがない。さらに、無機中性凝集剤が水中のリン成分を固定して底泥として分離するため、この上澄み水を貯水池に放流することで貯水池のリン濃度は減少し、貯水池の富栄養化を抑制することができる。   Furthermore, the dredging system 100 according to the present invention uses an inorganic neutral flocculant mainly composed of calcium as the flocculant, so that there are no harmful components to animals and plants in the dewatered bottom mud, but the organic matter accumulated at the bottom of the reservoir It contains abundantly the phosphorus component in water and calcium which is the main component of the flocculant. Therefore, the dewatered bottom mud separated and recovered by the dredging system 100 according to the present invention can be used as it is for plant cultivation as an excellent culture soil rich in nutrient components. Moreover, the flocculant component does not elute into the supernatant water separated by the dredging system 100 according to the present invention, and the pH of the water is not changed. Therefore, even if the supernatant water is discharged to the reservoir as it is, it does not adversely affect the animals and plants that live. In addition, since the inorganic neutral flocculant fixes the phosphorus component in the water and separates it as bottom mud, discharging the supernatant water to the reservoir reduces the phosphorus concentration in the reservoir and suppresses eutrophication of the reservoir. Can do.

尚、本例で示した浚渫システム100の各部の形状、構成、動作機構、配管経路等は一例であり、本発明は本発明の要旨を逸脱しない範囲で変更して実施することが可能である。   It should be noted that the shape, configuration, operation mechanism, piping path, and the like of each part of the dredging system 100 shown in this example are examples, and the present invention can be modified and implemented without departing from the scope of the present invention. .

10 台船
12 送水ホース
20 送水ポンプ
26 攪拌羽根
30 遠心分離部
40 夾雑物選別部
50 凝集分離槽
60 濃縮槽
80 ベルトプレス部
90 分離処理装置
100 浚渫システム
10 boats
12 Water hose
20 Water pump
26 Stirrer blade
30 Centrifuge section
40 Foreign matter sorting section
50 Coagulation separation tank
60 Concentration tank
80 Belt press
90 Separation processing equipment
100 kite system

Claims (3)

底泥を攪拌する攪拌羽根を有するとともに、攪拌した底泥を水ごと吸引して底泥スラリとして圧送する送水ポンプと、
水面に浮いて前記送水ポンプを水中に吊下げる台船と、
前記送水ポンプが吸引した底泥スラリを搬送する送水ホースと、
前記送水ホースにより搬送された底泥スラリから底泥を分離回収する分離処理装置と、を有する浚渫システムであって、
前記分離処理装置は、
前記送水ホースにより搬送された底泥スラリから重量物を遠心分離により除去する遠心分離部と、
前記遠心分離部を通過した底泥スラリから夾雑物を除去する夾雑物選別部と、
前記夾雑物選別部を通過した底泥スラリと凝集剤とを攪拌し、底泥を凝集沈降させる凝集分離槽と、
前記凝集分離槽で凝集沈降した底泥を濃縮する濃縮槽と、
前記濃縮槽で濃縮された底泥を脱水するベルトプレス部と、を有することを特徴とする浚渫システム。
A water supply pump that has a stirring blade for stirring the bottom mud, sucks the stirred bottom mud together with water, and pumps it as a bottom mud slurry,
A trolley that floats on the water surface and suspends the water pump underwater;
A water supply hose for conveying the bottom mud slurry sucked by the water supply pump;
A separation processing device for separating and collecting bottom mud from the bottom mud slurry conveyed by the water supply hose,
The separation processing apparatus includes:
A centrifuge for removing heavy objects by centrifugation from the bottom mud slurry conveyed by the water supply hose;
A contaminant sorting unit for removing contaminants from the bottom mud slurry that has passed through the centrifugal separator;
Agglomeration separation tank for aggregating the bottom mud slurry and the flocculant that have passed through the contaminant sorting unit, and aggregating and sedimenting the bottom mud;
A concentration tank for concentrating the bottom mud coagulated and settled in the aggregation separation tank;
And a belt press section for dewatering the bottom mud concentrated in the concentration tank.
凝集剤が無機中性凝集剤であることを特徴とする請求項1記載の浚渫システム。 The dredging system according to claim 1, wherein the flocculant is an inorganic neutral flocculant. 遠心分離部からベルトプレス部までの底泥スラリの搬送を送水ポンプによる圧送と自然流下によって行うことを特徴とする請求項1または請求項2記載の浚渫システム。 The dredging system according to claim 1 or 2, wherein conveyance of the bottom mud slurry from the centrifugal separation unit to the belt press unit is performed by pressure feeding by a water pump and natural flow.
JP2014146537A 2014-07-17 2014-07-17 Firewood system Active JP6359902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014146537A JP6359902B2 (en) 2014-07-17 2014-07-17 Firewood system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146537A JP6359902B2 (en) 2014-07-17 2014-07-17 Firewood system

Publications (2)

Publication Number Publication Date
JP2016023426A true JP2016023426A (en) 2016-02-08
JP6359902B2 JP6359902B2 (en) 2018-07-18

Family

ID=55270459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146537A Active JP6359902B2 (en) 2014-07-17 2014-07-17 Firewood system

Country Status (1)

Country Link
JP (1) JP6359902B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106638456A (en) * 2016-12-30 2017-05-10 浙江广川工程咨询有限公司 Integrated ecological desilting design method for large and medium-sized reservoirs
CN106930349A (en) * 2017-05-16 2017-07-07 密西西比国际水务有限公司 The method and system of large reservoir, lake environment-protective desilting
JP2021038540A (en) * 2019-09-02 2021-03-11 初雁興業株式会社 Dredging system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183683A (en) * 1996-12-20 1998-07-14 Mitsubishi Constr Co Ltd Method and device for volume reduction of construction sludge
EP0904858A2 (en) * 1997-09-19 1999-03-31 Labromare S.R.L. Method and relative system for the controlled reclamation of polluted basin bottoms
JP2000176205A (en) * 1998-12-14 2000-06-27 Kurasutaa:Kk Flocculating and settling agent
JP2000246298A (en) * 1999-03-02 2000-09-12 Amukon Kk Sludge dehydrating apparatus
JP2001212600A (en) * 2000-02-02 2001-08-07 Ohbayashi Corp Method for treating dredged sludge
JP2006181559A (en) * 2004-12-28 2006-07-13 Okumura Corp Muddy material dehydrating method and its system
JP2007146425A (en) * 2005-11-25 2007-06-14 Institute Of National Colleges Of Technology Japan Method and system for dredging lake water
JP2013078717A (en) * 2011-10-03 2013-05-02 Rematec Corp Cleaning wastewater treatment agent of sludge adhesion wood, and treatment method
JP2014033997A (en) * 2012-08-08 2014-02-24 Kawasaki Heavy Ind Ltd Facility and method for treating sludge

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183683A (en) * 1996-12-20 1998-07-14 Mitsubishi Constr Co Ltd Method and device for volume reduction of construction sludge
EP0904858A2 (en) * 1997-09-19 1999-03-31 Labromare S.R.L. Method and relative system for the controlled reclamation of polluted basin bottoms
JP2000176205A (en) * 1998-12-14 2000-06-27 Kurasutaa:Kk Flocculating and settling agent
JP2000246298A (en) * 1999-03-02 2000-09-12 Amukon Kk Sludge dehydrating apparatus
JP2001212600A (en) * 2000-02-02 2001-08-07 Ohbayashi Corp Method for treating dredged sludge
JP2006181559A (en) * 2004-12-28 2006-07-13 Okumura Corp Muddy material dehydrating method and its system
JP2007146425A (en) * 2005-11-25 2007-06-14 Institute Of National Colleges Of Technology Japan Method and system for dredging lake water
JP2013078717A (en) * 2011-10-03 2013-05-02 Rematec Corp Cleaning wastewater treatment agent of sludge adhesion wood, and treatment method
JP2014033997A (en) * 2012-08-08 2014-02-24 Kawasaki Heavy Ind Ltd Facility and method for treating sludge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106638456A (en) * 2016-12-30 2017-05-10 浙江广川工程咨询有限公司 Integrated ecological desilting design method for large and medium-sized reservoirs
CN106638456B (en) * 2016-12-30 2019-10-22 浙江广川工程咨询有限公司 Large and middle reservoirs integration ecological dredging design method
CN106930349A (en) * 2017-05-16 2017-07-07 密西西比国际水务有限公司 The method and system of large reservoir, lake environment-protective desilting
JP2021038540A (en) * 2019-09-02 2021-03-11 初雁興業株式会社 Dredging system

Also Published As

Publication number Publication date
JP6359902B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6247663B2 (en) Firewood system
CN109944286B (en) Environment-friendly trash removal system
JP6006762B2 (en) Classifier pump for dredging and dredging system
KR101479179B1 (en) The Erasing apparatus and the method for floating particles in surface of water
JP2015232245A (en) Sediment dredging flocculation treatment system and construction method
JP6359902B2 (en) Firewood system
CN208465262U (en) A kind of sewage treatment mud scraper
CN103351090A (en) Method and device for collecting and treating sludge in shallow lake
JP6739815B1 (en) Dredging system
JP6456007B1 (en) Stirring separation type suction device, stirring separation type suction system and stirring separation type suction method
CN108360660A (en) The heavy mud groove method for cleaning of the inspection shaft of inspection shaft and system
KR101809553B1 (en) Apparatus for sucking and removing the underwater waste
US4113616A (en) Fish manure removal method
JP4041901B2 (en) Lake water dredging method and dredging system
CN107438689A (en) System for being sampled to the deposit on liquid medium bottom
JP2016125277A (en) Dredging system
CN203382620U (en) Device for collecting and treating sludge in shallow lake
CN102765865B (en) Pull-type sludge treatment equipment and method
KR101030786B1 (en) A Sludge Processing Apparatus using the Siphon Principle
US20120192606A1 (en) Method and apparatus for removing and treating sludge from animal waste pits
CN203639969U (en) Detachable water dredging equipment
CN212504495U (en) Sewage treatment device convenient for removing floating mud
JP2009022834A (en) Apparatus for recovering useless algae, floating mud and the like floating or depositing in water and on water bottom
CN209098350U (en) A kind of online desilting system of mine sump
JP3289962B2 (en) Water cleaner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180621

R150 Certificate of patent or registration of utility model

Ref document number: 6359902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250