JP2016023002A - Cargo handling amount control device for pneumatic unloader - Google Patents

Cargo handling amount control device for pneumatic unloader Download PDF

Info

Publication number
JP2016023002A
JP2016023002A JP2014145965A JP2014145965A JP2016023002A JP 2016023002 A JP2016023002 A JP 2016023002A JP 2014145965 A JP2014145965 A JP 2014145965A JP 2014145965 A JP2014145965 A JP 2014145965A JP 2016023002 A JP2016023002 A JP 2016023002A
Authority
JP
Japan
Prior art keywords
flow rate
sensor
length
receiver tank
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014145965A
Other languages
Japanese (ja)
Inventor
真斎喜 川北
Masaki Kawakita
真斎喜 川北
功偉 李
Gongwei Li
功偉 李
圭 阿久根
Kei Akune
圭 阿久根
裕貴 中村
Yuki Nakamura
裕貴 中村
右季 小野
Yuki Ono
右季 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Transport Machinery Co Ltd
Original Assignee
IHI Transport Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Transport Machinery Co Ltd filed Critical IHI Transport Machinery Co Ltd
Priority to JP2014145965A priority Critical patent/JP2016023002A/en
Publication of JP2016023002A publication Critical patent/JP2016023002A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • Ship Loading And Unloading (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a flow rate at which a bulk material is suctioned into a receiver tank approach a rated flow rate, while setting the length of a vertical pipe and a horizontal pipe and an undulation angle of the horizontal pipe at an arbitrary position of a suction nozzle such that suction efficiency of the bulk material is maximized, and thereby reducing overall operation time and saving energy.SOLUTION: A cargo handling amount control device for a pneumatic unloader includes: an inverter 17 which controls revolving speed of a motor 5 for driving a vacuum pump 6; a mixture ratio regulating valve 18 which regulates a suction rate of air in a suction nozzle 12; a vertical pipe length sensor 24 which measures a length Lof a vertical pipe 10; a horizontal pipe length sensor 25 which measures a length Lof a horizontal pipe 8; and an undulation angle sensor 26 which measures an undulation angle θof the horizontal pipe 8. In the cargo handling amount control device for a pneumatic unloader, a control signal 17a is outputted to the inverter 17 and an aperture regulating signal 18a is outputted to the mixture ratio regulating valve 18 from a controller 19 so that a flow rate approaches a rated flow rate in accordance with drive of the vacuum pump 6, while the L, L, and θare regulated so that a combination pattern maximizes suction efficiency.SELECTED DRAWING: Figure 1

Description

本発明は、ニューマチックアンローダの荷役量制御装置に関するものである。   The present invention relates to a cargo handling amount control device for a pneumatic unloader.

一般に、穀物等の各種バラ物を積載した船舶が出入する港湾の岸壁には、該船舶の貯槽内部に貯留されたバラ物を吸い上げて払い出すためのニューマチックアンローダが配備されている。   Generally, a pneumatic unloader for sucking up and discharging the bulk material stored in the storage tank of the ship is arranged on the quay of a harbor where a ship loaded with various kinds of bulk materials such as grains comes and goes.

図8は従来のニューマチックアンローダの一例を示す概要構成図であって、該ニューマチックアンローダは、バラ物Bの貯槽1aを装備した船舶1が停泊する港湾2の岸壁3に、内部にバラ物Bを導入可能なレシーバタンク4を、旋回機構(図示せず)により旋回自在に配設し、該レシーバタンク4の上部に、モータ5によって駆動されるルーツブロワ等の真空ポンプ6を空気吸引管7を介して接続し、前記レシーバタンク4に対し横方向へ張り出し且つその軸線方向へ伸縮機構(図示せず)により伸縮自在な横管8を、起伏機構(図示せず)により起伏自在となるよう管継手9を介して接続し、該横管8の先端側に、その軸線方向へ伸縮機構(図示せず)により伸縮自在な縦管10を、ベンド管11を介して接続し、前記縦管10の下端に、前記貯槽1a内部に貯留されたバラ物Bを吸い上げる吸引ノズル12を設け、該吸引ノズル12から縦管10と横管8とを介して前記レシーバタンク4内部に吸い上げられたバラ物Bを該レシーバタンク4内部の気密性を保持しつつ図示していないコンベヤやサイロ等へ搬出するロータリーフィーダ等の払出機13を、前記レシーバタンク4の底部に取り付けてなる構成を有している。因みに、走行機構(図示せず)を具備した機種のニューマチックアンローダの場合、船舶1の長手方向(図8の紙面と直交する方向)へ走行できるようになっている。   FIG. 8 is a schematic diagram showing an example of a conventional pneumatic unloader. The pneumatic unloader is provided with a loose object inside a quay 3 of a harbor 2 where a ship 1 equipped with a storage tank 1a for a loose object B is anchored. A receiver tank 4 into which B can be introduced is disposed so as to be freely rotatable by a turning mechanism (not shown), and a vacuum pump 6 such as a Roots blower driven by a motor 5 is provided above the receiver tank 4 with an air suction pipe 7. So that the horizontal tube 8 extends laterally with respect to the receiver tank 4 and can be expanded and contracted by an expansion / contraction mechanism (not shown) in the axial direction thereof. A vertical pipe 10 is connected via a pipe joint 9 and is connected to a distal end side of the horizontal pipe 8 by a telescopic mechanism (not shown) in the axial direction thereof via a bend pipe 11. At the bottom of 10 A suction nozzle 12 that sucks up the rose B stored in the storage tank 1a is provided, and the rose B sucked into the receiver tank 4 from the suction nozzle 12 through the vertical pipe 10 and the horizontal pipe 8 is supplied to the receiver. A dispenser 13 such as a rotary feeder that is carried out to a conveyor or silo (not shown) while keeping the airtightness inside the tank 4 is configured to be attached to the bottom of the receiver tank 4. Incidentally, in the case of a pneumatic unloader of a model equipped with a traveling mechanism (not shown), it can travel in the longitudinal direction of the ship 1 (direction perpendicular to the paper surface of FIG. 8).

尚、前記レシーバタンク4内上部には、真空ポンプ6側へバラ物Bが吸い込まれることを防止するためのフィルタ14を設けてある。   A filter 14 is provided at the upper part in the receiver tank 4 to prevent the loose material B from being sucked into the vacuum pump 6 side.

又、前記空気吸引管7の途中には、バラ物Bの吸引過剰時に大気を吸入することによってバラ物Bの吸引量を低下させるための大気吸入弁15を設けてある。   Further, an air intake valve 15 is provided in the middle of the air suction pipe 7 to reduce the suction amount of the rose B by sucking the atmosphere when the rose B is excessively sucked.

前記港湾2に停泊した船舶1の貯槽1aからバラ物Bを払い出す際には、先ず、レシーバタンク4を旋回機構(図示せず)により旋回させて位置決めすると共に、横管8をその軸線方向へ伸縮機構(図示せず)により伸縮させて長さ調節しつつ起伏機構(図示せず)により起伏させ、更に、縦管10をその軸線方向へ伸縮機構(図示せず)により伸縮させて長さ調節し、吸引ノズル12を前記船舶1の貯槽1a内部のバラ物Bの上面付近に配置した状態で、真空ポンプ6をモータ5により駆動すると、レシーバタンク4内部が負圧となり、バラ物Bが吸引ノズル12から縦管10と横管8とを介して前記レシーバタンク4内部に吸い上げられ、該レシーバタンク4内部に吸い上げられたバラ物Bは、ロータリーフィーダ等の払出機13の作動によりレシーバタンク4内部の気密性を保持しつつ図示していないコンベヤを介してサイロ或いは輸送用のトラック等へ搬出される。因みに、前記走行機構を具備した機種のニューマチックアンローダの場合、前記走行機構による走行と、前記旋回機構による旋回とによってレシーバタンク4の位置決めが行われる。   When the bulk B is paid out from the storage tank 1a of the ship 1 anchored in the harbor 2, first, the receiver tank 4 is swung by a swiveling mechanism (not shown) and positioned, and the horizontal pipe 8 is moved in the axial direction thereof. The length of the vertical tube 10 is raised and lowered by an elongating mechanism (not shown) while the length is adjusted by elongating and contracting by an elongating and elongating mechanism (not shown). When the vacuum pump 6 is driven by the motor 5 in a state where the suction nozzle 12 is arranged near the upper surface of the loose object B inside the storage tank 1a of the ship 1, the inside of the receiver tank 4 becomes negative pressure, and the loose object B Is sucked into the receiver tank 4 from the suction nozzle 12 through the vertical pipe 10 and the horizontal pipe 8, and the rose B sucked into the receiver tank 4 is operated by the dispenser 13 such as a rotary feeder. It is carried out to a truck silo or for transport through the conveyor (not shown) while maintaining a more receiver tank 4 inside the airtightness. Incidentally, in the case of a pneumatic unloader of a model equipped with the traveling mechanism, the receiver tank 4 is positioned by traveling by the traveling mechanism and turning by the turning mechanism.

尚、図8に示されるような構造のニューマチックアンローダと関連する一般的技術水準を示すものとしては、例えば、特許文献1、2がある。   For example, Patent Documents 1 and 2 show general technical levels related to the pneumatic unloader having the structure shown in FIG.

特許文献1に記載のものでは、任意の吸引ノズル12の位置において、バラ物Bの吸引効率が最大となるように、縦管10の長さと横管8の長さと横管8の起伏角度が設定されるようになっている。   In the one described in Patent Document 1, the length of the vertical tube 10, the length of the horizontal tube 8, and the undulation angle of the horizontal tube 8 are set so that the suction efficiency of the rose B is maximized at the position of an arbitrary suction nozzle 12. It is set up.

特開平6−64758号公報JP-A-6-64758 特開2011−184126号公報JP 2011-184126 A

しかしながら、特許文献1に記載のもののように、任意の吸引ノズル12の位置において、バラ物Bの吸引効率が最大となるように、縦管10の長さと横管8の長さと横管8の起伏角度が設定されたとしても、真空ポンプ6のモータ5の周波数は、図9(a)に示される如く一定(例えば、60Hz)に保持されているため、図9(b)に示される如く、吸引ノズル12の位置が基準位置より高い領域Xでは、前記バラ物Bがレシーバタンク4へ吸引される流量が定格流量(例えば、500[ton/hr])を超え、吸引ノズル12の位置が基準位置より低い領域Yでは、前記流量が定格流量以下となり、更に、吸引ノズル12の位置が底ざらいの領域Zでは、前記流量が定格流量を大幅に下回ることとなる。   However, like the one described in Patent Document 1, the length of the vertical tube 10, the length of the horizontal tube 8, and the length of the horizontal tube 8 are set so that the suction efficiency of the rose B is maximized at the position of an arbitrary suction nozzle 12. Even if the undulation angle is set, the frequency of the motor 5 of the vacuum pump 6 is kept constant (for example, 60 Hz) as shown in FIG. 9A, and as shown in FIG. 9B. In the region X where the position of the suction nozzle 12 is higher than the reference position, the flow rate at which the loose object B is sucked into the receiver tank 4 exceeds the rated flow rate (for example, 500 [ton / hr]), and the position of the suction nozzle 12 is In the region Y lower than the reference position, the flow rate is equal to or lower than the rated flow rate. Further, in the region Z where the position of the suction nozzle 12 is rough, the flow rate is significantly lower than the rated flow rate.

そして、前記吸引ノズル12の位置が基準位置より高い領域Xでは、前記流量を低下させて真空ポンプ6のモータ5の駆動電力の消費量を減少させる一方、前記吸引ノズル12の位置が基準位置より低い領域Yや底ざらいの領域Zでは、極力、前記流量を定格流量に近づけた方が、前記駆動電力の消費量は若干増加するものの、全体の作業時間を短縮して省エネルギ化を図る上で好ましく、改善の余地が残されていることが、本発明者等の研究によって判明した。   In the region X where the position of the suction nozzle 12 is higher than the reference position, the flow rate is decreased to reduce the consumption of driving power of the motor 5 of the vacuum pump 6, while the position of the suction nozzle 12 is higher than the reference position. In the low region Y and the rough region Z, the drive power consumption is slightly increased when the flow rate is made as close as possible to the rated flow rate, but the overall work time is shortened to save energy. The present inventors have found that there is still room for improvement.

本発明は、上記従来の問題点に鑑みてなしたもので、任意の吸引ノズルの位置において、バラ物の吸引効率が最大となるよう縦管の長さと横管の長さと横管の起伏角度を設定しつつ、バラ物がレシーバタンクへ吸引される流量を定格流量に近づけ、全体の作業時間を短縮して省エネルギ化を図り得るニューマチックアンローダの荷役量制御装置を提供しようとするものである。   The present invention has been made in view of the above-described conventional problems, and the length of the vertical tube, the length of the horizontal tube, and the undulation angle of the horizontal tube so that the suction efficiency of the loose object is maximized at any suction nozzle position. While trying to provide a pneumatic unloader load control device that can reduce energy consumption by bringing the flow rate at which loose objects are sucked into the receiver tank closer to the rated flow rate and reducing the overall work time. is there.

本発明は、内部にバラ物を導入可能となるよう配設されるレシーバタンクと、
該レシーバタンクに空気吸引管を介して接続され且つ該レシーバタンクの内部を負圧とする真空ポンプと、
前記レシーバタンクに対し横方向へ張り出すよう起伏自在に接続された横管と、
該横管の先端側から垂下するよう接続された縦管と、
該縦管の下端に設けられ且つ貯槽の内部に貯留されたバラ物を吸い上げる吸引ノズルと、
該吸引ノズルから縦管と横管とを介して前記レシーバタンクの内部に吸い上げられたバラ物を該レシーバタンクの内部の気密性を保持しつつ搬出する払出機と
を備え、前記貯槽の内部に貯留されたバラ物を吸い上げて払い出すためのニューマチックアンローダの荷役量制御装置において、
前記真空ポンプを駆動するモータの回転数を制御するインバータと、
前記吸引ノズルにおける空気の吸込量を調整する混合比調整弁と、
前記縦管の伸縮に伴う長さを計測する縦管長センサと、
前記横管の伸縮に伴う長さを計測する横管長センサと、
前記横管の起伏角度を計測する起伏角度センサと、
想定される前記縦管の長さと前記横管の長さと前記横管の起伏角度との組合せパターンに対応させて前記バラ物がレシーバタンクへ吸引される流量に基づく吸引効率を事前計測したデータテーブルが予め記憶され、実際の運転時に、前記縦管長センサで計測された縦管の長さと、前記横管長センサで計測された横管の長さと、前記起伏角度センサで計測された横管の起伏角度とに基づき前記吸引ノズルの位置を算出し、該吸引ノズルの位置に基づき前記縦管の伸縮可能範囲と前記横管の伸縮可能範囲と前記横管の起伏可能範囲とを求め、該各範囲内における前記縦管の長さと前記横管の長さと前記横管の起伏角度との組合せパターンを前記データテーブルより選出し、該選出された組合せパターンのうち吸引効率が最大の組合せパターンとなるよう前記縦管の長さと前記横管の長さと前記横管の起伏角度とを調整しつつ、前記流量が前記真空ポンプの駆動による定格流量に近づくよう、前記インバータへ制御信号を出力し且つ前記混合比調整弁へ開度調整信号を出力する制御器と
を備えたことを特徴とするニューマチックアンローダの荷役量制御装置にかかるものである。
The present invention is a receiver tank arranged so that a rose can be introduced inside,
A vacuum pump connected to the receiver tank via an air suction pipe and having a negative pressure inside the receiver tank;
A horizontal pipe connected undulatingly so as to project laterally with respect to the receiver tank;
A vertical pipe connected to hang down from the distal end side of the horizontal pipe;
A suction nozzle that is provided at the lower end of the vertical pipe and sucks up roses stored in the storage tank;
A dispenser that carries out the bulk material sucked into the receiver tank from the suction nozzle through the vertical pipe and the horizontal pipe while maintaining the airtightness inside the receiver tank, and is provided inside the storage tank. In a pneumatic unloader load control device for sucking up and discharging stored roses,
An inverter for controlling the number of rotations of a motor for driving the vacuum pump;
A mixing ratio adjusting valve for adjusting the amount of air sucked in the suction nozzle;
A longitudinal tube length sensor for measuring the length associated with the expansion and contraction of the longitudinal tube;
A horizontal tube length sensor for measuring the length accompanying expansion and contraction of the horizontal tube;
A undulation angle sensor for measuring the undulation angle of the horizontal pipe;
A data table in which the suction efficiency based on the flow rate at which the loose objects are sucked into the receiver tank is measured in advance in correspondence with the combination pattern of the length of the vertical pipe, the length of the horizontal pipe, and the undulation angle of the horizontal pipe. Is stored in advance and during actual operation, the length of the vertical pipe measured by the vertical pipe length sensor, the length of the horizontal pipe measured by the horizontal pipe length sensor, and the horizontal pipe undulation measured by the undulation angle sensor. Calculating the position of the suction nozzle based on the angle, obtaining the expandable range of the vertical tube, the expandable range of the horizontal tube, and the undulating range of the horizontal tube based on the position of the suction nozzle; A combination pattern of the length of the vertical pipe, the length of the horizontal pipe, and the undulation angle of the horizontal pipe is selected from the data table, and the combination pattern having the maximum suction efficiency is selected from the selected combination patterns. Adjusting the length of the vertical tube, the length of the horizontal tube and the undulation angle of the horizontal tube, and outputting a control signal to the inverter so that the flow rate approaches the rated flow rate by driving the vacuum pump, and The present invention relates to a cargo handling amount control device for a pneumatic unloader characterized by comprising a controller that outputs an opening adjustment signal to a mixing ratio adjustment valve.

前記ニューマチックアンローダの荷役量制御装置において、前記レシーバタンクは走行自在且つ旋回自在に配設され、
前記レシーバタンクの走行位置を計測する走行位置センサと、
前記レシーバタンクの旋回角度を計測する旋回角度センサとを備え、
前記制御器は、
想定される前記縦管の長さと前記横管の長さと前記横管の起伏角度と前記レシーバタンクの走行位置と前記レシーバタンクの旋回角度との組合せパターンに対応させて前記バラ物がレシーバタンクへ吸引される流量に基づく吸引効率を事前計測したデータテーブルが予め記憶され、実際の運転時に、前記縦管長センサで計測された縦管の長さと、前記横管長センサで計測された横管の長さと、前記起伏角度センサで計測された横管の起伏角度と、前記走行位置センサで計測されたレシーバタンクの走行位置と、前記旋回角度センサで計測されたレシーバタンクの旋回角度とに基づき前記吸引ノズルの位置を算出し、該吸引ノズルの位置に基づき前記縦管の伸縮可能範囲と前記横管の伸縮可能範囲と前記横管の起伏可能範囲と前記レシーバタンクの走行可能範囲と前記レシーバタンクの旋回可能範囲とを求め、該各範囲内における前記縦管の長さと前記横管の長さと前記横管の起伏角度と前記レシーバタンクの走行位置と前記レシーバタンクの旋回角度との組合せパターンを前記データテーブルより選出し、該選出された組合せパターンのうち吸引効率が最大の組合せパターンとなるよう前記縦管の長さと前記横管の長さと前記横管の起伏角度と前記レシーバタンクの走行位置と前記レシーバタンクの旋回角度とを調整しつつ、前記流量が前記真空ポンプの駆動による定格流量に近づくよう、前記インバータへ制御信号を出力し且つ前記混合比調整弁へ開度調整信号を出力することが好ましい。
In the cargo handling amount control device of the pneumatic unloader, the receiver tank is disposed to be able to travel and turn,
A travel position sensor for measuring the travel position of the receiver tank;
A turning angle sensor for measuring a turning angle of the receiver tank,
The controller is
Corresponding to a combination pattern of the assumed length of the vertical pipe, the length of the horizontal pipe, the undulation angle of the horizontal pipe, the travel position of the receiver tank, and the turning angle of the receiver tank, the loose article is transferred to the receiver tank. A data table that pre-measures the suction efficiency based on the suctioned flow rate is stored in advance, and the length of the vertical pipe measured by the vertical pipe length sensor and the length of the horizontal pipe measured by the horizontal pipe length sensor during actual operation. The suction angle of the horizontal pipe measured by the undulation angle sensor, the travel position of the receiver tank measured by the travel position sensor, and the swivel angle of the receiver tank measured by the swivel angle sensor. The position of the nozzle is calculated, and based on the position of the suction nozzle, the stretchable range of the vertical tube, the stretchable range of the horizontal tube, the undulating range of the horizontal tube, and the receiver tongue And the receiver tank turning range, and the length of the vertical tube, the length of the horizontal tube, the undulation angle of the horizontal tube, the travel position of the receiver tank, and the receiver tank within each range. A combination pattern with the swivel angle is selected from the data table, and the length of the vertical tube, the length of the horizontal tube, and the undulation of the horizontal tube so that the combination pattern having the maximum suction efficiency among the selected combination patterns is selected. Adjusting the angle, the travel position of the receiver tank, and the turning angle of the receiver tank, and outputting a control signal to the inverter and adjusting the mixing ratio adjusting valve so that the flow rate approaches the rated flow rate driven by the vacuum pump It is preferable to output an opening adjustment signal to

前記ニューマチックアンローダの荷役量制御装置においては、前記縦管の内部を流通するバラ物の流量を計測する流量センサを備え、
前記制御器は、前記流量センサで計測されたバラ物の流量が予め設定された目標流量となるよう、前記インバータへ制御信号を出力し且つ前記混合比調整弁へ開度調整信号を出力することが好ましい。
In the cargo handling amount control device for the pneumatic unloader, the pneumatic unloader includes a flow sensor for measuring the flow rate of loose objects flowing inside the vertical pipe,
The controller outputs a control signal to the inverter and outputs an opening adjustment signal to the mixing ratio adjustment valve so that the flow rate of the bulk material measured by the flow sensor becomes a preset target flow rate. Is preferred.

前記ニューマチックアンローダの荷役量制御装置においては、前記流量センサで計測されたバラ物の流量を表示する流量表示器と、
該流量表示器に表示されたバラ物の流量に基づき前記インバータの周波数を操作するための周波数手動調節器と、
流量表示器に表示されたバラ物の流量に基づき前記混合比調整弁の開度を操作するための開度手動調節器と
を備えることが好ましい。
In the pneumatic unloader cargo handling amount control device, a flow rate indicator for displaying the flow rate of the roses measured by the flow rate sensor,
A frequency manual adjuster for operating the frequency of the inverter based on the flow rate of the rose displayed on the flow rate indicator;
It is preferable to include an opening degree manual adjuster for operating the opening degree of the mixing ratio adjusting valve based on the flow rate of the bulk material displayed on the flow rate indicator.

前記ニューマチックアンローダの荷役量制御装置において、前記流量センサは、前記バラ物に対し検出波を投射してその反射波を受信することにより前記バラ物の流量を計測するセンサであって、前記縦管の内面で反射する反射波が受信されない縦管内面反射波非受信機構を備えることが好ましい。   In the cargo handling amount control device of the pneumatic unloader, the flow rate sensor is a sensor that measures a flow rate of the loose object by projecting a detection wave to the loose object and receiving a reflected wave thereof. It is preferable to provide a vertical tube inner surface reflected wave non-receiving mechanism that does not receive a reflected wave reflected by the inner surface of the tube.

前記ニューマチックアンローダの荷役量制御装置において、前記縦管内面反射波非受信機構は、前記流量センサの検出波の投射方向が縦管の軸線に対し直角とならないよう前記流量センサが縦管に対し傾斜配置されることにより構成されることが好ましい。   In the cargo handling amount control device for the pneumatic unloader, the vertical pipe inner surface reflected wave non-receiving mechanism is configured such that the flow rate sensor is not perpendicular to the vertical pipe so that the detection direction of the detection wave of the flow sensor is not perpendicular to the axis of the vertical pipe. It is preferable to be configured by being inclined.

前記ニューマチックアンローダの荷役量制御装置において、前記縦管内面反射波非受信機構は、前記流量センサの検出波の投射方向が縦管の軸線に対し直角となるよう前記流量センサが縦管に対し配置され、前記縦管の内面に、前記流量センサから投射される検出波の反射を防ぐ反射防止材が設けられることにより構成されることが好ましい。   In the cargo handling amount control device for the pneumatic unloader, the vertical pipe inner surface reflected wave non-receiving mechanism is configured such that the flow rate sensor is relative to the vertical pipe so that a projection direction of a detection wave of the flow sensor is perpendicular to an axis of the vertical pipe. Preferably, the anti-reflection material is provided on the inner surface of the vertical pipe to prevent reflection of detection waves projected from the flow sensor.

前記ニューマチックアンローダの荷役量制御装置において、前記縦管内面反射波非受信機構は、前記流量センサの検出波の投射方向が縦管の軸線に対し平行で且つ前記バラ物の流通方向に対向するよう前記流量センサが縦管の内部に配設され、該流量センサが前記バラ物の流れを阻害しない絶縁体からなる流線型構造体で覆われることにより構成されることが好ましい。   In the cargo handling amount control device for the pneumatic unloader, the vertical pipe inner surface reflected wave non-receiving mechanism is configured such that the detection direction of the detection wave of the flow sensor is parallel to the axis of the vertical pipe and faces the flow direction of the loose article. It is preferable that the flow rate sensor is disposed inside the vertical pipe, and the flow rate sensor is covered with a streamline structure made of an insulator that does not obstruct the flow of the bulk material.

本発明のニューマチックアンローダの荷役量制御装置によれば、任意の吸引ノズルの位置において、バラ物の吸引効率が最大となるよう縦管の長さと横管の長さと横管の起伏角度を設定しつつ、バラ物がレシーバタンクへ吸引される流量を定格流量に近づけ、全体の作業時間を短縮して省エネルギ化を図り得るという優れた効果を奏し得る。   According to the pneumatic unloader load control device of the present invention, the length of the vertical tube, the length of the horizontal tube, and the undulation angle of the horizontal tube are set so that the suction efficiency of the loose object is maximized at any suction nozzle position. However, the flow rate at which the roses are sucked into the receiver tank can be brought close to the rated flow rate, and the overall work time can be shortened to save energy.

本発明のニューマチックアンローダの荷役量制御装置の実施例を示す概要構成図である。It is a schematic block diagram which shows the Example of the cargo handling amount control apparatus of the pneumatic unloader of this invention. 本発明のニューマチックアンローダの荷役量制御装置の実施例における吸引ノズルを示す断面図である。It is sectional drawing which shows the suction nozzle in the Example of the cargo handling amount control apparatus of the pneumatic unloader of this invention. 本発明のニューマチックアンローダの荷役量制御装置の実施例における制御ブロック図である。It is a control block diagram in the Example of the cargo handling amount control apparatus of the pneumatic unloader of this invention. 本発明のニューマチックアンローダの荷役量制御装置の実施例における線図であって、(a)は横軸に時間を取り、縦軸に周波数を取った線図、(b)は横軸に時間を取り、縦軸に流量を取った線図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the diagram in the Example of the cargo handling amount control apparatus of the pneumatic unloader of this invention, Comprising: (a) is the diagram which took time on the horizontal axis and took the frequency on the vertical axis, (b) is time on the horizontal axis. Is a diagram in which the flow rate is taken on the vertical axis. 本発明のニューマチックアンローダの荷役量制御装置の実施例における流量センサの設置の第一例を示す断面図である。It is sectional drawing which shows the 1st example of installation of the flow sensor in the Example of the cargo handling amount control apparatus of the pneumatic unloader of this invention. 本発明のニューマチックアンローダの荷役量制御装置の実施例における流量センサの設置の第二例を示す断面図である。It is sectional drawing which shows the 2nd example of installation of the flow sensor in the Example of the cargo handling amount control apparatus of the pneumatic unloader of this invention. 本発明のニューマチックアンローダの荷役量制御装置の実施例における流量センサの設置の第三例を示す断面図であって、(a)は側断面図、(b)は平断面図である。It is sectional drawing which shows the 3rd example of installation of the flow sensor in the Example of the cargo handling amount control apparatus of the pneumatic unloader of this invention, Comprising: (a) is a sectional side view, (b) is a plane sectional view. 従来のニューマチックアンローダの一例を示す概要構成図である。It is a schematic block diagram which shows an example of the conventional pneumatic unloader. 従来のニューマチックアンローダの一例における線図であって、(a)は横軸に時間を取り、縦軸に周波数を取った線図、(b)は横軸に時間を取り、縦軸に流量を取った線図である。It is the diagram in an example of the conventional pneumatic unloader, (a) is a diagram in which time is taken on the horizontal axis and frequency is taken on the vertical axis, (b) is time on the horizontal axis, and flow rate is taken on the vertical axis. FIG.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図4は本発明のニューマチックアンローダの荷役量制御装置の実施例であって、図中、図8及び図9と同一の符号を付した部分は同一物を表わしており、基本的な構成は図8及び図9に示す従来のものと同様である。   1 to 4 show an embodiment of a cargo handling amount control apparatus for a pneumatic unloader according to the present invention. In the figure, the same reference numerals as those in FIGS. 8 and 9 denote the same components. The configuration is the same as that of the conventional one shown in FIGS.

本実施例では、真空ポンプ6を駆動するモータ5の回転数を制御するインバータ17と、吸引ノズル12における空気の吸込量を調整する混合比調整弁18とを備えると共に、縦管10の伸縮に伴う長さLを計測する縦管長センサ24と、前記横管8の伸縮に伴う長さLを計測する横管長センサ25と、前記横管8の起伏角度θを計測する起伏角度センサ26とを備え、各計測結果を制御器19へ入力するようにしてある。尚、図示していない走行機構と旋回機構とを具備した機種のニューマチックアンローダの場合、図3に示す如く、前記レシーバタンク4の走行位置Lを計測する走行位置センサ40と、前記レシーバタンク4の旋回角度θを計測する旋回角度センサ41とが更に設けられる。 In this embodiment, an inverter 17 that controls the rotation speed of the motor 5 that drives the vacuum pump 6 and a mixing ratio adjustment valve 18 that adjusts the amount of air sucked in the suction nozzle 12 are provided, and the vertical tube 10 can be expanded and contracted. a vertical pipe length sensor 24 for measuring the length L V with a horizontal pipe length sensor 25 for measuring the length L H due to expansion and contraction of the transverse tube 8, derricking angle sensor for measuring the relief angle theta D of the transverse tube 8 26, and each measurement result is input to the controller 19. In the case of pneumatic unloader models equipped with a turning mechanism and the traveling mechanism (not shown), as shown in FIG. 3, the traveling position sensor 40 that measures the traveling position L T of the receiver tank 4, the receiver tank And a turning angle sensor 41 for measuring the turning angle θ S of 4 is further provided.

前記混合比調整弁18は、図2に示す如く、前記縦管10の下端に取り付けられる吸引ノズル12の上部側面に接続されている。前記混合比調整弁18の開度を大きくすると、導入される空気の流量が増加するため、吸引されるバラ物Bの密度を小さくすることができ、又、前記混合比調整弁18の開度を小さくすると、導入される空気の流量が減少するため、吸引されるバラ物Bの密度を大きくすることができる。   As shown in FIG. 2, the mixing ratio adjusting valve 18 is connected to the upper side surface of the suction nozzle 12 attached to the lower end of the vertical tube 10. Increasing the opening of the mixing ratio adjusting valve 18 increases the flow rate of the introduced air, so that the density of the sucked bulk material B can be reduced, and the opening of the mixing ratio adjusting valve 18 is increased. If is reduced, the flow rate of the introduced air is reduced, so that the density of the sucked rose B can be increased.

前記制御器19には、想定される前記縦管10の長さLと前記横管8の長さLと前記横管8の起伏角度θと、更に前記レシーバタンク4の走行位置Lと前記レシーバタンク4の旋回角度θとの組合せパターンに対応させて前記バラ物Bがレシーバタンク4へ吸引される流量Qに基づく吸引効率を事前計測したデータテーブル44が予め記憶されている。実際の運転時には、前記縦管長センサ24で計測された縦管10の長さLと、前記横管長センサ25で計測された横管8の長さLと、前記起伏角度センサ26で計測された横管8の起伏角度θと、更に前記走行位置センサ40で計測されたレシーバタンク4の走行位置Lと、前記旋回角度センサ41で計測されたレシーバタンク4の旋回角度θとを現在の各モーションセンサ位置情報42として前記制御器19に入力し、現在の各モーションセンサ位置情報42に基づき前記制御器19の吸引ノズル位置座標演算部43で前記吸引ノズル12の位置を算出する。該吸引ノズル12の位置に基づき前記制御器19で前記縦管10の伸縮可能範囲と前記横管8の伸縮可能範囲と前記横管8の起伏可能範囲と、更に前記レシーバタンク4の走行可能範囲と前記レシーバタンク4の旋回可能範囲とを求める。該各範囲内における前記縦管10の長さLと前記横管8の長さLと前記横管8の起伏角度θと前記レシーバタンク4の走行位置Lと前記レシーバタンク4の旋回角度θとの組合せパターンを前記データテーブル44より選出する。該選出された組合せパターンのうち吸引効率が最大の組合せパターンと前記現在の各モーションセンサ位置情報42との差を求めて各モーション位置調整演算部45へ入力し、各モーション操作量46を求めて各モーションドライブ装置(前記縦管10及び横管8の伸縮機構、前記横管8を起伏させる起伏機構、前記レシーバタンク4を走行させる走行機構、並びに前記レシーバタンク4を旋回させる旋回機構)へ出力する。これにより、前記吸引効率が最大の組合せパターンとなるよう前記縦管10の長さLと前記横管8の長さLと前記横管8の起伏角度θと前記レシーバタンク4の走行位置Lと前記レシーバタンク4の旋回角度θとを調整しつつ、前記流量Qが前記真空ポンプ6の駆動による定格流量に近づくよう、前記制御器19から前記インバータ17へ制御信号17aを出力し且つ前記混合比調整弁18へ開度調整信号18aを出力するようにしてある。 To the controller 19, the derricking angle theta D of the length L H and the transverse tube 8 of the length L V horizontal pipe 8 of the vertical pipe 10 which is assumed, further running position of the receiver tank 4 L A data table 44 in which suction efficiency based on a flow rate Q at which the loose article B is sucked into the receiver tank 4 in advance corresponding to a combination pattern of T and the turning angle θ S of the receiver tank 4 is stored in advance. . In actual operation, the length L V of the vertical pipe 10 measured in the longitudinal tube length sensor 24, the length L H of the horizontal pipe 8 which is measured in the transverse tube length sensor 25, measured by the derricking angle sensor 26 a derricking angle theta D of the lateral tubes 8 which is further a running position L T of the receiver tank 4 which is measured by the traveling position sensor 40, and the turning angle theta S of the receiver tank 4 which is measured by the turning angle sensor 41 Are input to the controller 19 as current motion sensor position information 42, and the position of the suction nozzle 12 is calculated by the suction nozzle position coordinate calculation unit 43 of the controller 19 based on the current motion sensor position information 42. . Based on the position of the suction nozzle 12, the controller 19 allows the vertical tube 10 to expand and contract, the horizontal tube 8 can expand and contract, the horizontal tube 8 can be raised and lowered, and the receiver tank 4 can travel. And the swivelable range of the receiver tank 4 is obtained. A derricking angle theta D and the traveling position L T of the receiver tank 4 of length L H and the transverse tube 8 of the length L V horizontal pipe 8 of the vertical pipe 10 in the respective range of the receiver tank 4 A combination pattern with the turning angle θ S is selected from the data table 44. Of the selected combination patterns, the difference between the combination pattern having the maximum suction efficiency and the current motion sensor position information 42 is obtained and input to each motion position adjustment calculation unit 45 to obtain each motion operation amount 46. Output to each motion drive device (extension / contraction mechanism of the vertical tube 10 and the horizontal tube 8, a raising / lowering mechanism for raising and lowering the horizontal tube 8, a running mechanism for running the receiver tank 4, and a turning mechanism for turning the receiver tank 4) To do. As a result, the length L V of the vertical tube 10, the length L H of the horizontal tube 8, the undulation angle θ D of the horizontal tube 8, and the travel of the receiver tank 4 so that the suction efficiency becomes the maximum combination pattern. while adjusting the position L T and turning angle theta S of the receiver tank 4, so that the flow rate Q approaches the rated flow rate by driving the vacuum pump 6, outputs a control signal 17a from the controller 19 to the inverter 17 In addition, an opening degree adjusting signal 18a is output to the mixing ratio adjusting valve 18.

因みに、前記縦管10及び横管8の伸縮機構(図示せず)は、例えば、ラックアンドピニオン方式の直線移動機構であって、伸縮用モータによって作動するようになっている。このため、前記縦管長センサ24及び横管長センサ25としては、前記各伸縮用モータの回転角度をそれぞれ検出するエンコーダを用いることができ、該各エンコーダで各伸縮用モータの回転角度をそれぞれ検出することにより、前記各伸縮機構のストロークを検出し、前記縦管10の伸縮に伴う長さLと、前記横管8の伸縮に伴う長さLとを計測することができるようになっている。 Incidentally, the expansion / contraction mechanism (not shown) of the vertical tube 10 and the horizontal tube 8 is, for example, a rack-and-pinion linear movement mechanism and is operated by an expansion / contraction motor. For this reason, as the vertical tube length sensor 24 and the horizontal tube length sensor 25, an encoder for detecting the rotation angle of each expansion / contraction motor can be used, and the rotation angle of each expansion / contraction motor is detected by each encoder. by detects the stroke of the respective telescopic mechanism, the length L V due to the expansion and contraction of the vertical pipe 10, so that it can measure the length L H due to expansion and contraction of the transverse tube 8 Yes.

又、前記横管8を起伏させる起伏機構(図示せず)は、起伏用モータによって作動するようになっている。このため、前記起伏角度センサ26としては、前記起伏用モータの回転角度を検出するエンコーダを用いることができ、該エンコーダで起伏用モータの回転角度を検出することにより、前記横管8の起伏角度θを計測することができるようになっている。 A raising / lowering mechanism (not shown) for raising and lowering the horizontal tube 8 is operated by a raising / lowering motor. Therefore, as the undulation angle sensor 26, an encoder that detects the rotation angle of the undulation motor can be used, and by detecting the rotation angle of the undulation motor with the encoder, the undulation angle of the horizontal tube 8 can be used. and it is capable of measuring the theta D.

更に又、前記レシーバタンク4を走行させる走行機構(図示せず)は、走行用モータによって作動するようになっている。このため、前記走行位置センサ40としては、前記走行用モータの回転角度を検出するエンコーダを用いることができ、該エンコーダで走行用モータの回転角度を検出することにより、前記レシーバタンク4の走行位置Lを計測することができるようになっている。又、前記レシーバタンク4を旋回させる旋回機構(図示せず)は、旋回用モータによって作動するようになっている。このため、前記旋回角度センサ41としては、前記旋回用モータの回転角度を検出するエンコーダを用いることができ、該エンコーダで旋回用モータの回転角度を検出することにより、前記レシーバタンク4の旋回角度θを計測することができるようになっている。 Furthermore, a traveling mechanism (not shown) for traveling the receiver tank 4 is operated by a traveling motor. Therefore, as the travel position sensor 40, an encoder that detects the rotation angle of the travel motor can be used, and the travel position of the receiver tank 4 can be detected by detecting the rotation angle of the travel motor using the encoder. thereby making it possible to measure the L T. A turning mechanism (not shown) for turning the receiver tank 4 is operated by a turning motor. Therefore, as the turning angle sensor 41, an encoder that detects the rotation angle of the turning motor can be used. By detecting the rotation angle of the turning motor by the encoder, the turning angle of the receiver tank 4 can be used. thereby making it possible to measure the θ S.

次に、上記実施例の作用を説明する。   Next, the operation of the above embodiment will be described.

ニューマチックアンローダの実際の運転時には、前記縦管長センサ24で計測された縦管10の長さLと、前記横管長センサ25で計測された横管8の長さLと、前記起伏角度センサ26で計測された横管8の起伏角度θと、更に前記走行位置センサ40で計測されたレシーバタンク4の走行位置Lと、前記旋回角度センサ41で計測されたレシーバタンク4の旋回角度θとが現在の各モーションセンサ位置情報42として前記制御器19に入力され、現在の各モーションセンサ位置情報42に基づき前記制御器19の吸引ノズル位置座標演算部43で前記吸引ノズル12の位置が算出される。該吸引ノズル12の位置に基づき前記制御器19で前記縦管10の伸縮可能範囲と前記横管8の伸縮可能範囲と前記横管8の起伏可能範囲と、更に前記レシーバタンク4の走行可能範囲と前記レシーバタンク4の旋回可能範囲とが求められる。該各範囲内における前記縦管10の長さLと前記横管8の長さLと前記横管8の起伏角度θと前記レシーバタンク4の走行位置Lと前記レシーバタンク4の旋回角度θとの組合せパターンが前記データテーブル44より選出される。該選出された組合せパターンのうち吸引効率が最大の組合せパターンと前記現在の各モーションセンサ位置情報42との差が求められて各モーション位置調整演算部45へ入力され、各モーション操作量46が求められて各モーションドライブ装置(前記縦管10及び横管8の伸縮機構、前記横管8を起伏させる起伏機構、前記レシーバタンク4を走行させる走行機構、並びに前記レシーバタンク4を旋回させる旋回機構)へ出力される。これにより、前記吸引効率が最大の組合せパターンとなるよう前記縦管10の長さLと前記横管8の長さLと前記横管8の起伏角度θと前記レシーバタンク4の走行位置Lと前記レシーバタンク4の旋回角度θとが調整されつつ、前記流量Qが前記真空ポンプ6の駆動による定格流量に近づくよう、前記制御器19から前記インバータ17へ制御信号17aが出力され且つ前記混合比調整弁18へ開度調整信号18aが出力される。 In actual operation of the pneumatic unloader, the length L V of the vertical pipe 10 measured in the longitudinal tube length sensor 24, the length L H of the horizontal pipe 8, wherein said measured by the horizontal tube length sensor 25, the derricking angle a derricking angle theta D of the lateral tubes 8 measured by the sensors 26, further wherein the travel and traveling position L T of the receiver tank 4, which is measured by the position sensor 40, the turning of the turning angle sensor 41 receiver tank 4 which is measured by The angle θ S is input to the controller 19 as current motion sensor position information 42, and the suction nozzle position coordinate calculation unit 43 of the controller 19 based on the current motion sensor position information 42 determines the suction nozzle 12. The position is calculated. Based on the position of the suction nozzle 12, the controller 19 allows the vertical tube 10 to expand and contract, the horizontal tube 8 can expand and contract, the horizontal tube 8 can be raised and lowered, and the receiver tank 4 can travel. And the swivelable range of the receiver tank 4 is obtained. A derricking angle theta D and the traveling position L T of the receiver tank 4 of length L H and the transverse tube 8 of the length L V horizontal pipe 8 of the vertical pipe 10 in the respective range of the receiver tank 4 A combination pattern with the turning angle θ S is selected from the data table 44. Of the selected combination patterns, the difference between the combination pattern having the maximum suction efficiency and the current motion sensor position information 42 is obtained and input to each motion position adjustment calculation unit 45 to obtain each motion operation amount 46. Motion drive devices (extension and contraction mechanisms of the vertical tube 10 and the horizontal tube 8, a hoisting mechanism for raising and lowering the horizontal tube 8, a running mechanism for running the receiver tank 4, and a turning mechanism for turning the receiver tank 4) Is output. As a result, the length L V of the vertical tube 10, the length L H of the horizontal tube 8, the undulation angle θ D of the horizontal tube 8, and the travel of the receiver tank 4 so that the suction efficiency becomes the maximum combination pattern. while the position L T and turning angle theta S of the receiver tank 4 is adjusted so that the flow rate Q approaches the rated flow rate by driving the vacuum pump 6, the control signal 17a is outputted from the controller 19 to the inverter 17 In addition, an opening degree adjusting signal 18 a is output to the mixing ratio adjusting valve 18.

これにより、特許文献1に記載のものと同様、任意の吸引ノズル12の位置において、バラ物Bの吸引効率が最大となるように、縦管10の長さLと横管8の長さLと横管8の起伏角度θが設定されることに加え、真空ポンプ6のモータ5の周波数は、図4(a)に示す如く、吸引ノズル12の位置が基準位置より高い領域Xから吸引ノズル12の位置が基準位置より低い領域Yを経て、吸引ノズル12の位置が底ざらいの領域Zに至るまで緩やかに増加する形となって、単に一定(例えば、60Hz)に保持されるのとは異なった制御が行われる。このため、図4(b)に示す如く、前記領域Xと前記領域Yにおいて、前記バラ物Bがレシーバタンク4へ吸引される流量が定格流量(例えば、500[ton/hr])に略一致する形で推移し、更に、前記領域Zでも、前記流量が定格流量を大幅に下回ってしまうことが避けられる。 Thus, similar to that described in Patent Document 1, at the position of any of the suction nozzles 12, so that suction efficiency rose product B is the maximum length the length of the L V and the horizontal pipe 8 of the vertical pipe 10 In addition to setting L H and the undulation angle θ D of the horizontal tube 8, the frequency of the motor 5 of the vacuum pump 6 is a region X in which the position of the suction nozzle 12 is higher than the reference position, as shown in FIG. The position of the suction nozzle 12 gradually increases until the position of the suction nozzle 12 reaches the rough area Z through the region Y where the position of the suction nozzle 12 is lower than the reference position, and is simply held constant (for example, 60 Hz). Different control is performed. For this reason, as shown in FIG. 4B, in the region X and the region Y, the flow rate at which the loose object B is sucked into the receiver tank 4 substantially matches the rated flow rate (for example, 500 [ton / hr]). Furthermore, in the region Z, it is possible to avoid that the flow rate is significantly lower than the rated flow rate.

この結果、前記領域Xでは、前記流量を低下させて真空ポンプ6のモータ5の駆動電力の消費量を減少させることが可能となる一方、前記領域Yや領域Zでは、前記流量が定格流量に近づく形となり、前記駆動電力の消費量は若干増加するものの、全体の作業時間を短縮して省エネルギ化を図ることが可能となる。   As a result, in the region X, it is possible to reduce the consumption of the driving power of the motor 5 of the vacuum pump 6 by reducing the flow rate, while in the region Y and the region Z, the flow rate becomes the rated flow rate. Although it approaches, the consumption of the driving power slightly increases, but it is possible to reduce the overall work time and save energy.

こうして、任意の吸引ノズル12の位置において、バラ物Bの吸引効率が最大となるよう縦管10の長さLと横管8の長さLと横管8の起伏角度θを設定しつつ、バラ物Bがレシーバタンク4へ吸引される流量を定格流量に近づけ、全体の作業時間を短縮して省エネルギ化を図り得る。 Thus, set in the position of any of the suction nozzle 12, the derricking angle theta D of the length L H and the horizontal tube 8 of length L V and the horizontal pipe 8 of the vertical pipe 10 so that the suction efficiency is maximized rose Compound B However, the flow rate at which the rose B is sucked into the receiver tank 4 can be made close to the rated flow rate, and the overall work time can be shortened to save energy.

尚、前記走行機構と旋回機構とを具備しておらず、特許文献1に開示されているものと同じようにレシーバタンク4が固定されているニューマチックアンローダの場合、図3に示す走行位置センサ40と旋回角度センサ41とを省略し、前記吸引効率が最大の組合せパターンとなるよう前記縦管10の長さLと前記横管8の長さLと前記横管8の起伏角度θのみを調整しつつ、前記流量Qが前記真空ポンプ6の駆動による定格流量に近づくよう、前記制御器19から前記インバータ17へ制御信号17aを出力し且つ前記混合比調整弁18へ開度調整信号18aを出力すれば良い。 In the case of a pneumatic unloader in which the receiver tank 4 is fixed in the same manner as that disclosed in Patent Document 1 without the travel mechanism and the turning mechanism, the travel position sensor shown in FIG. omitted and 40 and the turning angle sensor 41, derricking angle of the suction efficiency is the maximum length of the length L V horizontal pipe 8 of the vertical pipe 10 so as to be combined pattern L H and the horizontal pipe 8 theta While adjusting only D , the controller 19 outputs a control signal 17a to the inverter 17 and adjusts the opening to the mixing ratio adjusting valve 18 so that the flow rate Q approaches the rated flow rate by driving the vacuum pump 6. The signal 18a may be output.

又、前記制御はオープンループ制御となっているが、前記縦管10の内部を流通するバラ物Bの流量Qを計測する流量センサ16(図3参照)を設け、該流量センサ16で計測されたバラ物Bの流量Qを前記制御器19へ入力し、該流量Qが予め設定された目標流量Qとなるよう、前記制御器19から前記インバータ17へ制御信号17aを出力し且つ前記混合比調整弁18へ開度調整信号18aを出力するフィードバック制御を組合せても良い。 Further, although the control is open loop control, a flow rate sensor 16 (see FIG. 3) for measuring the flow rate Q of the loose article B flowing through the vertical pipe 10 is provided and measured by the flow rate sensor 16. The flow rate Q of the loose article B is input to the controller 19, and a control signal 17 a is output from the controller 19 to the inverter 17 so that the flow rate Q becomes a preset target flow rate Q 0 and the mixing is performed. Feedback control for outputting the opening adjustment signal 18a to the ratio adjustment valve 18 may be combined.

前記フィードバック制御を組み合わせる場合、前記制御器19には、図3に示す如く、前記目標流量Qと前記流量センサ16で計測されたバラ物Bの流量Qとの偏差を0とするための制御信号17aを前記インバータ17へ出力する比例積分調節器20と、前記目標流量Qと前記流量センサ16で計測されたバラ物Bの流量Qとの偏差を0とするための開度調整信号18aを前記混合比調整弁18のサーボユニット18Sへ出力する比例積分調節器21とが内蔵される。尚、前記混合比調整弁18の開度を小さくして、吸引されるバラ物Bの密度を大きくすれば、吸引効率は増す。しかし、前記バラ物Bの密度を大きくし過ぎると、縦管10の詰りが生じてしまう。即ち、前記混合比調整弁18の開度を小さくする開度調整信号18aを前記混合比調整弁18のサーボユニット18Sへ比例積分調節器21から出力しつつ、前記真空ポンプ6を駆動するモータ5の回転数が最低限に抑えられる制御信号17aを比例積分調節器20から前記インバータ17へ出力するよう予め制御器19の設定を行うことにより、前記縦管10の詰りが生じない程度にバラ物Bの密度を最大としつつ、モータ5の回転数を下げて、前記バラ物Bの流量Qを目標流量Qとすることが省エネルギの観点から好ましい。 When the feedback control is combined, the controller 19 controls the controller 19 to set the deviation between the target flow rate Q0 and the flow rate Q of the loose article B measured by the flow rate sensor 16 to zero as shown in FIG. a proportional integral adjuster 20 which outputs a signal 17a to the inverter 17, the target flow rate Q 0 and the flow opening adjustment signal 18a to the deviation between the flow rate Q and 0 rose product B, which is measured by the sensor 16 Is incorporated into the servo unit 18S of the mixing ratio adjusting valve 18. In addition, if the opening degree of the mixing ratio adjusting valve 18 is decreased to increase the density of the sucked object B, the suction efficiency increases. However, if the density of the rose B is increased too much, the vertical tube 10 is clogged. That is, the motor 5 that drives the vacuum pump 6 while outputting the opening adjustment signal 18a for decreasing the opening of the mixing ratio adjusting valve 18 from the proportional-integral controller 21 to the servo unit 18S of the mixing ratio adjusting valve 18. By setting the controller 19 in advance so as to output the control signal 17a to the inverter 17 from the proportional-plus-integral controller 20 so that the number of rotations can be suppressed to a minimum, the vertical pipe 10 is not clogged. while the density of B to the maximum, by reducing the rotational speed of the motor 5, the flow rate Q of the rose was B the target flow rate Q 0 it is preferable from the viewpoint of energy saving.

前記流量センサ16は、ドップラー効果を応用したマイクロ波によりバラ物Bの流量Qを計測する形式のセンサを用いるようにしてある。尚、前記流量センサ16としては、超音波によりバラ物Bの流量Qを計測する形式のセンサを用いるようにしても良い。又、前記バラ物Bの流量Qは(密度ρ×流速v×流路断面積A)で求められるため、前記流量センサ16の代わりに、バラ物Bの密度ρを計測する密度センサ22及びバラ物Bの流速vを計測する流速センサ23(図3参照)を前記縦管10に設けて、流量Qを求めるようにすることも可能である。   The flow rate sensor 16 is a sensor that measures the flow rate Q of the rose B by microwaves using the Doppler effect. As the flow rate sensor 16, a sensor of a type that measures the flow rate Q of the rose B by ultrasonic waves may be used. Further, since the flow rate Q of the loose object B is obtained by (density ρ × flow velocity v × channel cross-sectional area A), instead of the flow rate sensor 16, a density sensor 22 for measuring the density ρ of the loose object B and It is also possible to provide the flow rate sensor 23 (see FIG. 3) for measuring the flow rate v of the object B in the vertical pipe 10 to obtain the flow rate Q.

前記流量センサ16を備えた場合の制御は、以下のように行われる。   Control when the flow sensor 16 is provided is performed as follows.

ニューマチックアンローダの運転時には、流量センサ16により縦管10の内部を流通するバラ物Bの流量Qが計測されて制御器19へ入力され、該制御器19の比例積分調節器20から、予め設定された目標流量Qと前記流量センサ16で計測されたバラ物Bの流量Qとの偏差を0とするための制御信号17aが前記インバータ17へ出力されると共に、前記制御器19の比例積分調節器21から、予め設定された目標流量Qと前記流量センサ16で計測されたバラ物Bの流量Qとの偏差を0とするための開度調整信号18aが前記混合比調整弁18のサーボユニット18Sへ出力される。これにより、前記縦管10の詰りが生じない程度にバラ物Bの密度を最大としつつ、モータ5の回転数を下げて、バラ物Bの流量Qを予め設定された目標流量Qとすることが可能となる。 During operation of the pneumatic unloader, the flow rate sensor 16 measures the flow rate Q of the loose article B flowing through the inside of the vertical tube 10 and inputs it to the controller 19, which is set in advance from the proportional integral controller 20 of the controller 19. A control signal 17 a for setting the deviation between the target flow rate Q 0 and the flow rate Q of the loose article B measured by the flow rate sensor 16 to 0 is output to the inverter 17, and the proportional integration of the controller 19 is performed. An opening degree adjustment signal 18 a for setting the deviation between the preset target flow rate Q 0 and the flow rate Q of the loose object B measured by the flow rate sensor 16 from the adjuster 21 to the mixing ratio adjustment valve 18. It is output to the servo unit 18S. Thus, while the maximum density rose compound B to the extent that does not cause clogging of the vertical pipe 10, by reducing the rotational speed of the motor 5, the target flow rate Q 0 which has been previously set flow rate Q rose Compound B It becomes possible.

この場合、実際にどれだけの流量Qのバラ物Bが吸引されているのかをリアルタイムで監視することが可能となるため、真空ポンプ6による吸引能力を、常に余裕を持たせて高めに設定する必要がなくなり、エネルギ(真空ポンプ6のモータ5の駆動電力)を余分に消費しなくて済む。尚、前記真空ポンプ6のモータ5の動力をPとし、該モータ5の回転数をNとすると、
P∝N
となることから、前記縦管10の詰りが生じない程度にバラ物Bの密度を最大としつつ、モータ5の回転数を下げて、バラ物Bの流量Qを予め設定された目標流量Qとすることは、動力Pを低減する上できわめて有効となる。
In this case, since it is possible to monitor in real time how much the flow rate Q of the loose material B is being sucked, the suction capacity of the vacuum pump 6 is always set high with a margin. This eliminates the need for extra energy (driving power of the motor 5 of the vacuum pump 6). If the power of the motor 5 of the vacuum pump 6 is P and the rotational speed of the motor 5 is N,
P∝N 3
Therefore, the density of the loose article B is maximized to such an extent that the vertical pipe 10 is not clogged, and the number of revolutions of the motor 5 is decreased to set the flow rate Q of the loose article B to a preset target flow rate Q 0. This is extremely effective in reducing the power P.

又、バラ物Bの吸引過剰時には、従来の場合、前記空気吸引管7の途中に設けられた大気吸入弁15を開き、大気を吸入することによってバラ物Bの吸引量を低下させることが行われ、無駄が生じていたが、本実施例では、従来のように前記空気吸引管7の途中に設けられた大気吸入弁15を開き、大気を吸入することによってバラ物Bの吸引量を低下させなくても、インバータ17の周波数制御による真空ポンプ6のモータ5の回転数制御と、混合比調整弁18の開度調整による吸引ノズル12における空気の吸込量調整とによって、バラ物Bの流量Qを適正に保持することができるため、真空ポンプ6のモータ5の駆動電力の消費量は低下し、無駄がなくなる。   In the case of excessive suction of the rose B, in the conventional case, the air suction valve 15 provided in the middle of the air suction pipe 7 is opened, and the amount of suction of the rose B is reduced by sucking the atmosphere. However, in this embodiment, the suction amount of the rose B is reduced by opening the air suction valve 15 provided in the middle of the air suction pipe 7 and sucking the air in the present embodiment. Even if not, the flow rate of the rose B is controlled by controlling the rotational speed of the motor 5 of the vacuum pump 6 by controlling the frequency of the inverter 17 and adjusting the amount of air sucked in the suction nozzle 12 by adjusting the opening of the mixing ratio adjusting valve 18. Since Q can be appropriately maintained, the consumption of the driving power of the motor 5 of the vacuum pump 6 is reduced, and there is no waste.

即ち、前記流量センサ16を備えてフィードバック制御を行うようにすれば、バラ物Bの過剰な吸引を回避しつつ流量Qを一定に保持して荷役能力を維持し得、且つ消費エネルギの削減を図り得る。   That is, if the flow rate sensor 16 is provided to perform feedback control, it is possible to maintain the cargo handling capacity by keeping the flow rate Q constant while avoiding excessive suction of the loose article B, and to reduce energy consumption. It can be planned.

一方、従来のニューマチックアンローダでは、実際にどれだけの流量のバラ物Bが吸引されているのかをリアルタイムで監視できないため、コンベヤ等の後方設備への荷役量調整は、断続的な荷役実施やレシーバタンク4の底部に取り付けられたロータリーフィーダ等の払出機13の回転数制御で行われている。しかし、前記払出機13の回転数制御によって後方設備への荷役量調整を行うためには、レシーバタンク4の残量管理が必要であり、効率的であるとは言えなかった。   On the other hand, with a conventional pneumatic unloader, it is impossible to monitor in real time how much of the bulk material B is being sucked. This is performed by controlling the number of revolutions of a dispenser 13 such as a rotary feeder attached to the bottom of the receiver tank 4. However, in order to adjust the cargo handling amount to the rear equipment by controlling the rotational speed of the dispenser 13, it is necessary to manage the remaining amount of the receiver tank 4, which is not efficient.

そこで、本実施例の場合、上記の構成に加え更に、図3に示す如く、前記流量センサ16で計測されたバラ物Bの流量Qを表示する流量表示器27と、該流量表示器27に表示されたバラ物Bの流量Qに基づき前記インバータ17の周波数を操作するための周波数手動調節器28と、流量表示器27に表示されたバラ物Bの流量Qに基づき前記混合比調整弁18の開度を操作するための開度手動調節器29とを備えるようにすることができる。   Therefore, in this embodiment, in addition to the above-described configuration, a flow rate indicator 27 for displaying the flow rate Q of the loose article B measured by the flow rate sensor 16 and a flow rate indicator 27 as shown in FIG. A frequency manual adjuster 28 for operating the frequency of the inverter 17 based on the displayed flow rate Q of the rose B, and the mixing ratio adjusting valve 18 based on the flow rate Q of the rose B displayed on the flow rate indicator 27. The opening degree manual adjuster 29 for operating the opening degree can be provided.

前記流量表示器27は、ニューマチックアンローダの運転室、屋外表示盤、地上監視室等のオペレータが目視できる箇所に設置される。   The flow rate indicator 27 is installed at a place where an operator can visually check, such as a pneumatic unloader cab, an outdoor display panel, and a ground monitoring room.

前記周波数手動調節器28及び開度手動調節器29は、オペレータが前記流量表示器27の表示を見ながら操作できる箇所に設置され、例えば、回動させることによって操作量を調節できるツマミ等を用いることができる。   The frequency manual adjuster 28 and the opening manual adjuster 29 are installed at locations where the operator can operate while looking at the display of the flow rate indicator 27. For example, a knob or the like that can adjust the operation amount by rotating is used. be able to.

尚、前記密度センサ22及び流速センサ23を設けた場合に、前記密度センサ22で計測されたバラ物Bの密度ρを表示する密度表示器30、及び前記流速センサ23で計測されたバラ物Bの流速vを表示する流速表示器31を設けても良い。   In addition, when the density sensor 22 and the flow velocity sensor 23 are provided, the density indicator 30 that displays the density ρ of the rose B measured by the density sensor 22 and the rose B measured by the flow velocity sensor 23. A flow rate indicator 31 may be provided for displaying the flow velocity v.

前記流量表示器27と周波数手動調節器28と開度手動調節器29とを備えるようにすると、オペレータは、運転中、常に、流量表示器27に表示されたバラ物Bの流量Qを見ながら、周波数手動調節器28によってインバータ17の周波数を操作すると共に、開度手動調節器29によって混合比調整弁18の開度を操作し、荷役量の過不足を調整することが可能となる。   When the flow rate indicator 27, the frequency manual adjuster 28, and the opening degree manual adjuster 29 are provided, the operator always looks at the flow rate Q of the rose B displayed on the flow rate indicator 27 during operation. In addition to operating the frequency of the inverter 17 with the frequency manual adjuster 28, the opening degree of the mixing ratio adjusting valve 18 can be operated with the opening degree manual controller 29 to adjust the excess or deficiency of the cargo handling amount.

これにより、実際にどれだけの流量のバラ物Bが吸引されているのかをリアルタイムで監視できるため、断続的な荷役を実施したり、レシーバタンク4の底部に取り付けられたロータリーフィーダ等の払出機13の回転数制御を行ったりしなくても、コンベヤ等の後方設備への荷役量を調整でき、レシーバタンク4の残量管理が不要となり、効率的な荷役が行える。   As a result, it is possible to monitor in real time how much of the rose B is being sucked in, so that intermittent cargo handling is performed, or a dispenser such as a rotary feeder attached to the bottom of the receiver tank 4 is used. Even if the rotational speed control of 13 is not performed, the amount of cargo handling to the rear equipment such as a conveyor can be adjusted, and the remaining amount management of the receiver tank 4 becomes unnecessary, so that efficient cargo handling can be performed.

図5は本発明のニューマチックアンローダの荷役量制御装置の実施例における流量センサ16の設置の第一例を示す断面図である。前記流量センサ16は、前記バラ物Bに対し検出波(マイクロ波、或いは超音波)を投射してその反射波を受信することにより前記バラ物Bの流量Qを計測するセンサであって、前記縦管10の内面で反射する反射波が受信されない縦管内面反射波非受信機構32を備えている。図5に示す第一例において、前記縦管内面反射波非受信機構32は、前記流量センサ16の検出波の投射方向が縦管10の軸線に対し直角とならないよう前記流量センサ16が縦管10に対し傾斜配置されることにより構成されている。   FIG. 5 is a cross-sectional view showing a first example of installation of the flow sensor 16 in the embodiment of the cargo handling amount control apparatus for a pneumatic unloader of the present invention. The flow rate sensor 16 is a sensor that measures the flow rate Q of the rose B by projecting a detection wave (microwave or ultrasonic wave) on the rose B and receiving the reflected wave. A vertical tube inner surface reflected wave non-receiving mechanism 32 that does not receive a reflected wave reflected by the inner surface of the vertical tube 10 is provided. In the first example shown in FIG. 5, the vertical pipe inner surface reflected wave non-receiving mechanism 32 is configured so that the flow sensor 16 is not connected to the vertical line of the vertical pipe 10 so that the detection direction of the detection wave of the flow sensor 16 is not perpendicular to the axis of the vertical pipe 10. 10 to be inclined.

仮に、前記流量センサ16の検出波の投射方向が縦管10の軸線に対し直角となるよう前記流量センサ16を縦管10に対し配置した場合、縦管10の内面で反射する反射波が流量センサ16によって受信され、誤検出の可能性が高まり、計測精度の低下が懸念される。しかし、図5に示す如く、前記流量センサ16を縦管10に対し傾斜配置することで縦管内面反射波非受信機構32を構成すると、縦管10の内部を流通するバラ物Bに当たって反射する反射波だけが流量センサ16によって受信され、縦管10の内面で反射する反射波は流量センサ16によって受信されないため、誤検出が避けられ、流量センサ16によるバラ物Bの流量Qを精度良く計測することが可能となる。   If the flow rate sensor 16 is arranged with respect to the vertical tube 10 so that the detection direction of the detection wave of the flow rate sensor 16 is perpendicular to the axis of the vertical tube 10, the reflected wave reflected from the inner surface of the vertical tube 10 flows. It is received by the sensor 16, and the possibility of erroneous detection is increased, and there is a concern that the measurement accuracy may be reduced. However, as shown in FIG. 5, when the flow rate sensor 16 is inclined with respect to the vertical tube 10 to constitute the vertical tube inner surface reflected wave non-reception mechanism 32, it strikes and reflects the rose B that circulates inside the vertical tube 10. Since only the reflected wave is received by the flow sensor 16 and the reflected wave reflected by the inner surface of the vertical tube 10 is not received by the flow sensor 16, erroneous detection is avoided, and the flow rate Q of the loose object B by the flow sensor 16 is accurately measured. It becomes possible to do.

図6は本発明のニューマチックアンローダの荷役量制御装置の実施例における流量センサ16の設置の第二例を示す断面図である。図6に示す第二例において、前記縦管内面反射波非受信機構32は、前記流量センサ16の検出波の投射方向が縦管10の軸線に対し直角となるよう前記流量センサ16が縦管10に対し配置され、前記縦管10の内面に、前記流量センサ16から投射される検出波の反射を防ぐ反射防止材33が設けられることにより構成されている。前記反射防止材33は、材料内部の抵抗により電波によって発生する電流を吸収する導電性電波吸収材料、或いは分子の分極反応に起因する誘電損失を利用し、カーボン粉等をゴム、発泡ウレタン、発泡ポリスチロール等の誘電体に混合して見かけ上の誘電損失を大きくした誘電性電波吸収材料を用いることができる。又、前記反射防止材33は、その表面がガラス又はセラミックス等の保護材34により覆われている。   FIG. 6 is a sectional view showing a second example of the installation of the flow sensor 16 in the embodiment of the cargo handling amount control device of the pneumatic unloader of the present invention. In the second example shown in FIG. 6, the vertical pipe inner surface reflected wave non-receiving mechanism 32 is configured so that the flow sensor 16 is connected to the vertical pipe so that the detection direction of the detection wave of the flow sensor 16 is perpendicular to the axis of the vertical pipe 10. The anti-reflection material 33 is disposed on the inner surface of the vertical tube 10 to prevent reflection of the detection wave projected from the flow rate sensor 16. The antireflection material 33 is a conductive wave absorbing material that absorbs current generated by radio waves due to resistance inside the material, or dielectric loss caused by molecular polarization reaction, and carbon powder is made of rubber, urethane foam, foam A dielectric wave absorbing material in which an apparent dielectric loss is increased by mixing with a dielectric material such as polystyrene can be used. The antireflection material 33 has a surface covered with a protective material 34 such as glass or ceramics.

前記流量センサ16は、その検出波の投射方向が縦管10の軸線に対し直角となるよう縦管10に配置されているが、図6に示す如く、前記縦管10の内面に反射防止材33を設けることで縦管内面反射波非受信機構32を構成すると、前記流量センサ16から投射される検出波は反射防止材33により縦管10の内面で反射せず、縦管10の内部を流通するバラ物Bに当たって反射する反射波だけが流量センサ16によって受信されるため、誤検出が避けられ、流量センサ16によるバラ物Bの流量Qを精度良く計測することが可能となる。   The flow rate sensor 16 is disposed on the vertical tube 10 so that the detection wave projection direction is perpendicular to the axis of the vertical tube 10, but as shown in FIG. When the vertical tube inner surface reflected wave non-receiving mechanism 32 is configured by providing 33, the detection wave projected from the flow rate sensor 16 is not reflected on the inner surface of the vertical tube 10 by the antireflection material 33, and the inside of the vertical tube 10 is not reflected. Since only the reflected wave that hits and reflects the circulating rose B is received by the flow sensor 16, erroneous detection is avoided, and the flow Q of the rose B by the flow sensor 16 can be accurately measured.

図7は本発明のニューマチックアンローダの荷役量制御装置の実施例における流量センサの設置の第三例を示す断面図であって、(a)は側断面図、(b)は平断面図である。図7(a)及び図7(b)に示す第三例において、前記縦管内面反射波非受信機構32は、前記流量センサ16の検出波の投射方向が縦管10の軸線に対し平行で且つ前記バラ物Bの流通方向に対向するよう前記流量センサ16が縦管10の内部に配設され、該流量センサ16が前記バラ物Bの流れを阻害しない絶縁体からなる流線型構造体35で覆われることにより構成されている。尚、この場合、前記流量センサ16は、前記バラ物Bに対し検出波としてマイクロ波を投射してその反射波を受信することにより前記バラ物Bの流量Qを計測するセンサとする。又、前記流線型構造体35は、縦管10の内面から中心部へ張り出す支持部材36に取り付けられている。   FIG. 7 is a cross-sectional view showing a third example of the installation of the flow sensor in the embodiment of the pneumatic unloader cargo handling amount control apparatus of the present invention, where (a) is a side cross-sectional view and (b) is a flat cross-sectional view. is there. In the third example shown in FIG. 7A and FIG. 7B, the longitudinal tube inner surface reflected wave non-receiving mechanism 32 has a detection wave projection direction of the flow sensor 16 parallel to the axis of the longitudinal tube 10. In addition, the flow sensor 16 is disposed inside the vertical pipe 10 so as to face the flow direction of the loose article B, and the flow sensor 16 is a streamline structure 35 made of an insulator that does not obstruct the flow of the loose article B. It is configured by being covered. In this case, the flow rate sensor 16 is a sensor that measures the flow rate Q of the loose object B by projecting a microwave as a detection wave to the loose object B and receiving the reflected wave. The streamlined structure 35 is attached to a support member 36 that projects from the inner surface of the vertical tube 10 to the center.

前記流量センサ16は、図7に示す如く、その検出波の投射方向が縦管10の軸線に対し平行で且つ前記バラ物Bの流通方向に対向するよう縦管10の内部に配設されているため、前記流量センサ16から投射される検出波は縦管10の内面で反射せず、縦管10の内部を流通するバラ物Bに当たって反射する反射波だけが流量センサ16によって受信されるため、誤検出が避けられ、流量センサ16によるバラ物Bの流量Qを精度良く計測することが可能となる。しかも、前記流量センサ16は流線型構造体35で覆われているため、前記バラ物Bの流れを阻害する心配はなく、又、前記流線型構造体35は絶縁体であるため、前記流量センサ16から投射される検出波(マイクロ波)を通しやすく、バラ物Bの流量Qの測定に支障を来たす心配もない。   As shown in FIG. 7, the flow sensor 16 is disposed inside the vertical tube 10 so that the detection wave projection direction is parallel to the axis of the vertical tube 10 and faces the flow direction of the rose B. Therefore, the detection wave projected from the flow sensor 16 is not reflected by the inner surface of the vertical tube 10, and only the reflected wave reflected by the rose B flowing through the vertical tube 10 is received by the flow sensor 16. Thus, erroneous detection can be avoided, and the flow rate Q of the loose object B by the flow rate sensor 16 can be accurately measured. Moreover, since the flow rate sensor 16 is covered with the streamlined structure 35, there is no fear of obstructing the flow of the rose B, and the streamlined structure 35 is an insulator. It is easy to pass the detection wave (microwave) to be projected, and there is no worry that the measurement of the flow rate Q of the rose B will be hindered.

尚、本発明のニューマチックアンローダの荷役量制御装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The cargo handling amount control device for a pneumatic unloader according to the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.

1a 貯槽
4 レシーバタンク
5 モータ
6 真空ポンプ
7 空気吸引管
8 横管
10 縦管
12 吸引ノズル
13 払出機
16 流量センサ
17 インバータ
17a 制御信号
18 混合比調整弁
18a 開度調整信号
19 制御器
24 縦管長センサ
25 横管長センサ
26 起伏角度センサ
27 流量表示器
28 周波数手動調節器
29 開度手動調節器
32 縦管内面反射波非受信機構
33 反射防止材
35 流線型構造体
40 走行位置センサ
41 旋回角度センサ
42 現在の各モーションセンサ位置情報
43 吸引ノズル位置座標演算部
44 データテーブル
45 各モーション位置調整演算部
46 各モーション操作量
B バラ物
Q 流量
目標流量
縦管の長さ
横管の長さ
θ横管の起伏角度
レシーバタンクの走行位置
θレシーバタンクの旋回角度
DESCRIPTION OF SYMBOLS 1a Storage tank 4 Receiver tank 5 Motor 6 Vacuum pump 7 Air suction pipe 8 Horizontal pipe 10 Vertical pipe 12 Suction nozzle 13 Dispenser 16 Flow rate sensor 17 Inverter 17a Control signal 18 Mixing ratio adjustment valve 18a Opening adjustment signal 19 Controller 24 Vertical pipe length Sensor 25 Horizontal pipe length sensor 26 Relief angle sensor 27 Flow rate indicator 28 Frequency manual adjuster 29 Opening manual adjuster 32 Vertical pipe inner surface reflected wave non-receiving mechanism 33 Antireflection material 35 Streamline structure 40 Traveling position sensor 41 Turning angle sensor 42 Current motion sensor position information 43 Suction nozzle position coordinate calculation unit 44 Data table 45 Each motion position adjustment calculation unit 46 Each motion operation amount B Individual object Q Flow rate Q 0 Target flow rate L V Vertical tube length L H handed travel position theta S receiver tank derricking angle L T receiver tank length theta D horizontal tube Angle

Claims (8)

内部にバラ物を導入可能となるよう配設されるレシーバタンクと、
該レシーバタンクに空気吸引管を介して接続され且つ該レシーバタンクの内部を負圧とする真空ポンプと、
前記レシーバタンクに対し横方向へ張り出すよう起伏自在に接続された横管と、
該横管の先端側から垂下するよう接続された縦管と、
該縦管の下端に設けられ且つ貯槽の内部に貯留されたバラ物を吸い上げる吸引ノズルと、
該吸引ノズルから縦管と横管とを介して前記レシーバタンクの内部に吸い上げられたバラ物を該レシーバタンクの内部の気密性を保持しつつ搬出する払出機と
を備え、前記貯槽の内部に貯留されたバラ物を吸い上げて払い出すためのニューマチックアンローダの荷役量制御装置において、
前記真空ポンプを駆動するモータの回転数を制御するインバータと、
前記吸引ノズルにおける空気の吸込量を調整する混合比調整弁と、
前記縦管の伸縮に伴う長さを計測する縦管長センサと、
前記横管の伸縮に伴う長さを計測する横管長センサと、
前記横管の起伏角度を計測する起伏角度センサと、
想定される前記縦管の長さと前記横管の長さと前記横管の起伏角度との組合せパターンに対応させて前記バラ物がレシーバタンクへ吸引される流量に基づく吸引効率を事前計測したデータテーブルが予め記憶され、実際の運転時に、前記縦管長センサで計測された縦管の長さと、前記横管長センサで計測された横管の長さと、前記起伏角度センサで計測された横管の起伏角度とに基づき前記吸引ノズルの位置を算出し、該吸引ノズルの位置に基づき前記縦管の伸縮可能範囲と前記横管の伸縮可能範囲と前記横管の起伏可能範囲とを求め、該各範囲内における前記縦管の長さと前記横管の長さと前記横管の起伏角度との組合せパターンを前記データテーブルより選出し、該選出された組合せパターンのうち吸引効率が最大の組合せパターンとなるよう前記縦管の長さと前記横管の長さと前記横管の起伏角度とを調整しつつ、前記流量が前記真空ポンプの駆動による定格流量に近づくよう、前記インバータへ制御信号を出力し且つ前記混合比調整弁へ開度調整信号を出力する制御器と
を備えたことを特徴とするニューマチックアンローダの荷役量制御装置。
A receiver tank arranged so that roses can be introduced inside;
A vacuum pump connected to the receiver tank via an air suction pipe and having a negative pressure inside the receiver tank;
A horizontal pipe connected undulatingly so as to project laterally with respect to the receiver tank;
A vertical pipe connected to hang down from the distal end side of the horizontal pipe;
A suction nozzle that is provided at the lower end of the vertical pipe and sucks up roses stored in the storage tank;
A dispenser that carries out the bulk material sucked into the receiver tank from the suction nozzle through the vertical pipe and the horizontal pipe while maintaining the airtightness inside the receiver tank, and is provided inside the storage tank. In a pneumatic unloader load control device for sucking up and discharging stored roses,
An inverter for controlling the number of rotations of a motor for driving the vacuum pump;
A mixing ratio adjusting valve for adjusting the amount of air sucked in the suction nozzle;
A longitudinal tube length sensor for measuring the length associated with the expansion and contraction of the longitudinal tube;
A horizontal tube length sensor for measuring the length accompanying expansion and contraction of the horizontal tube;
A undulation angle sensor for measuring the undulation angle of the horizontal pipe;
A data table in which the suction efficiency based on the flow rate at which the loose objects are sucked into the receiver tank is measured in advance in correspondence with the combination pattern of the length of the vertical pipe, the length of the horizontal pipe, and the undulation angle of the horizontal pipe. Is stored in advance and during actual operation, the length of the vertical pipe measured by the vertical pipe length sensor, the length of the horizontal pipe measured by the horizontal pipe length sensor, and the horizontal pipe undulation measured by the undulation angle sensor. Calculating the position of the suction nozzle based on the angle, obtaining the expandable range of the vertical tube, the expandable range of the horizontal tube, and the undulating range of the horizontal tube based on the position of the suction nozzle; A combination pattern of the length of the vertical pipe, the length of the horizontal pipe, and the undulation angle of the horizontal pipe is selected from the data table, and the combination pattern having the maximum suction efficiency is selected from the selected combination patterns. Adjusting the length of the vertical tube, the length of the horizontal tube and the undulation angle of the horizontal tube, and outputting a control signal to the inverter so that the flow rate approaches the rated flow rate by driving the vacuum pump, and And a controller for outputting an opening degree adjustment signal to the mixing ratio adjustment valve.
前記レシーバタンクは走行自在且つ旋回自在に配設され、
前記レシーバタンクの走行位置を計測する走行位置センサと、
前記レシーバタンクの旋回角度を計測する旋回角度センサとを備え、
前記制御器は、
想定される前記縦管の長さと前記横管の長さと前記横管の起伏角度と前記レシーバタンクの走行位置と前記レシーバタンクの旋回角度との組合せパターンに対応させて前記バラ物がレシーバタンクへ吸引される流量に基づく吸引効率を事前計測したデータテーブルが予め記憶され、実際の運転時に、前記縦管長センサで計測された縦管の長さと、前記横管長センサで計測された横管の長さと、前記起伏角度センサで計測された横管の起伏角度と、前記走行位置センサで計測されたレシーバタンクの走行位置と、前記旋回角度センサで計測されたレシーバタンクの旋回角度とに基づき前記吸引ノズルの位置を算出し、該吸引ノズルの位置に基づき前記縦管の伸縮可能範囲と前記横管の伸縮可能範囲と前記横管の起伏可能範囲と前記レシーバタンクの走行可能範囲と前記レシーバタンクの旋回可能範囲とを求め、該各範囲内における前記縦管の長さと前記横管の長さと前記横管の起伏角度と前記レシーバタンクの走行位置と前記レシーバタンクの旋回角度との組合せパターンを前記データテーブルより選出し、該選出された組合せパターンのうち吸引効率が最大の組合せパターンとなるよう前記縦管の長さと前記横管の長さと前記横管の起伏角度と前記レシーバタンクの走行位置と前記レシーバタンクの旋回角度とを調整しつつ、前記流量が前記真空ポンプの駆動による定格流量に近づくよう、前記インバータへ制御信号を出力し且つ前記混合比調整弁へ開度調整信号を出力する請求項1記載のニューマチックアンローダの荷役量制御装置。
The receiver tank is disposed so as to be able to run and turn,
A travel position sensor for measuring the travel position of the receiver tank;
A turning angle sensor for measuring a turning angle of the receiver tank,
The controller is
Corresponding to a combination pattern of the assumed length of the vertical pipe, the length of the horizontal pipe, the undulation angle of the horizontal pipe, the travel position of the receiver tank, and the turning angle of the receiver tank, the loose article is transferred to the receiver tank. A data table that pre-measures the suction efficiency based on the suctioned flow rate is stored in advance, and the length of the vertical pipe measured by the vertical pipe length sensor and the length of the horizontal pipe measured by the horizontal pipe length sensor during actual operation. The suction angle of the horizontal pipe measured by the undulation angle sensor, the travel position of the receiver tank measured by the travel position sensor, and the swivel angle of the receiver tank measured by the swivel angle sensor. The position of the nozzle is calculated, and based on the position of the suction nozzle, the stretchable range of the vertical tube, the stretchable range of the horizontal tube, the undulating range of the horizontal tube, and the receiver tongue And the receiver tank turning range, and the length of the vertical tube, the length of the horizontal tube, the undulation angle of the horizontal tube, the travel position of the receiver tank, and the receiver tank within each range. A combination pattern with the swivel angle is selected from the data table, and the length of the vertical tube, the length of the horizontal tube, and the undulation of the horizontal tube so that the combination pattern having the maximum suction efficiency among the selected combination patterns is selected. Adjusting the angle, the travel position of the receiver tank, and the turning angle of the receiver tank, and outputting a control signal to the inverter and adjusting the mixing ratio adjusting valve so that the flow rate approaches the rated flow rate driven by the vacuum pump 2. The pneumatic unloader load control apparatus according to claim 1, wherein an opening adjustment signal is output to the pneumatic unloader.
前記縦管の内部を流通するバラ物の流量を計測する流量センサを備え、
前記制御器は、前記流量センサで計測されたバラ物の流量が予め設定された目標流量となるよう、前記インバータへ制御信号を出力し且つ前記混合比調整弁へ開度調整信号を出力する請求項1又は2記載のニューマチックアンローダの荷役量制御装置。
Comprising a flow sensor for measuring the flow rate of loose objects flowing through the inside of the vertical pipe,
The controller outputs a control signal to the inverter and outputs an opening adjustment signal to the mixing ratio adjustment valve so that the flow rate of the loose material measured by the flow rate sensor becomes a preset target flow rate. Item 3. The cargo handling amount control device for a pneumatic unloader according to Item 1 or 2.
前記流量センサで計測されたバラ物の流量を表示する流量表示器と、
該流量表示器に表示されたバラ物の流量に基づき前記インバータの周波数を操作するための周波数手動調節器と、
流量表示器に表示されたバラ物の流量に基づき前記混合比調整弁の開度を操作するための開度手動調節器と
を備えた請求項1〜3の何れか一項に記載のニューマチックアンローダの荷役量制御装置。
A flow rate indicator for displaying the flow rate of the rose measured by the flow rate sensor;
A frequency manual adjuster for operating the frequency of the inverter based on the flow rate of the rose displayed on the flow rate indicator;
A pneumatic manual adjustment device according to any one of claims 1 to 3, further comprising: an opening degree manual controller for operating the opening degree of the mixing ratio adjustment valve based on the flow rate of the bulk material displayed on the flow rate indicator. Unloader load control device.
前記流量センサは、前記バラ物に対し検出波を投射してその反射波を受信することにより前記バラ物の流量を計測するセンサであって、前記縦管の内面で反射する反射波が受信されない縦管内面反射波非受信機構を備えた請求項1〜4の何れか一項に記載のニューマチックアンローダの荷役量制御装置。   The flow rate sensor is a sensor that measures the flow rate of the loose object by projecting a detection wave on the loose object and receiving the reflected wave, and does not receive the reflected wave reflected by the inner surface of the vertical pipe. The cargo handling amount control device for a pneumatic unloader according to any one of claims 1 to 4, further comprising a vertical pipe inner surface reflected wave non-receiving mechanism. 前記縦管内面反射波非受信機構は、前記流量センサの検出波の投射方向が縦管の軸線に対し直角とならないよう前記流量センサが縦管に対し傾斜配置されることにより構成される請求項5記載のニューマチックアンローダの荷役量制御装置。   The vertical pipe inner surface reflected wave non-receiving mechanism is configured by the flow sensor being inclined with respect to the vertical pipe so that a projection direction of a detection wave of the flow sensor is not perpendicular to an axis of the vertical pipe. The pneumatic unloader cargo handling amount control device according to claim 5. 前記縦管内面反射波非受信機構は、前記流量センサの検出波の投射方向が縦管の軸線に対し直角となるよう前記流量センサが縦管に対し配置され、前記縦管の内面に、前記流量センサから投射される検出波の反射を防ぐ反射防止材が設けられることにより構成される請求項5記載のニューマチックアンローダの荷役量制御装置。   The vertical pipe inner surface reflected wave non-receiving mechanism is configured such that the flow sensor is arranged with respect to the vertical pipe so that the detection direction of the detection wave of the flow sensor is perpendicular to the axis of the vertical pipe, 6. The pneumatic unloader load control device according to claim 5, wherein the load control device is provided with an antireflection material that prevents reflection of a detection wave projected from the flow sensor. 前記縦管内面反射波非受信機構は、前記流量センサの検出波の投射方向が縦管の軸線に対し平行で且つ前記バラ物の流通方向に対向するよう前記流量センサが縦管の内部に配設され、該流量センサが前記バラ物の流れを阻害しない絶縁体からなる流線型構造体で覆われることにより構成される請求項5記載のニューマチックアンローダの荷役量制御装置。   The vertical pipe inner surface reflected wave non-reception mechanism is configured such that the flow sensor is arranged inside the vertical pipe so that the detection direction of the detection wave of the flow sensor is parallel to the axis of the vertical pipe and faces the flow direction of the roses. The pneumatic unloader load control apparatus according to claim 5, wherein the load sensor is configured to be covered with a streamlined structure made of an insulator that does not obstruct the flow of the loose article.
JP2014145965A 2014-07-16 2014-07-16 Cargo handling amount control device for pneumatic unloader Withdrawn JP2016023002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014145965A JP2016023002A (en) 2014-07-16 2014-07-16 Cargo handling amount control device for pneumatic unloader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014145965A JP2016023002A (en) 2014-07-16 2014-07-16 Cargo handling amount control device for pneumatic unloader

Publications (1)

Publication Number Publication Date
JP2016023002A true JP2016023002A (en) 2016-02-08

Family

ID=55270129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014145965A Withdrawn JP2016023002A (en) 2014-07-16 2014-07-16 Cargo handling amount control device for pneumatic unloader

Country Status (1)

Country Link
JP (1) JP2016023002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098081A (en) * 2014-11-21 2016-05-30 株式会社日立プラントメカニクス Energy saving control method for air type unloader
JP7371883B2 (en) 2019-04-23 2023-10-31 国立大学法人 鹿児島大学 Powder transfer device, powder transfer method, and control program

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244665A (en) * 1975-10-04 1977-04-07 Toshoku Kk Method and apparatus for watching exit velocity of fluid and so forth flowing through conduit
JPS58113038A (en) * 1981-12-28 1983-07-05 Ishikawajima Harima Heavy Ind Co Ltd Adjusting method and device of suction nozzle in pneumatic unloader
JPS5922238U (en) * 1982-07-30 1984-02-10 浜口 和夫 Vacuum recovery pumping device
JPS6067325A (en) * 1983-09-20 1985-04-17 Babcock Hitachi Kk Granular powder collecting device
JPS60157725U (en) * 1984-03-29 1985-10-21 三菱重工業株式会社 New machine unloader
JPH0664758A (en) * 1992-08-21 1994-03-08 Ishikawajima Yusoki Kk Pneumatic unloader
JPH06115690A (en) * 1991-07-16 1994-04-26 Daiyamondo Eng Kk Pulverized coal discharge quantity control device
JPH0912156A (en) * 1995-06-29 1997-01-14 Ishikawajima Harima Heavy Ind Co Ltd Unloader-loader
JPH09189587A (en) * 1996-01-11 1997-07-22 Mitsubishi Heavy Ind Ltd Powder flowmeter
JP2003177042A (en) * 2002-12-13 2003-06-27 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2011184126A (en) * 2010-03-08 2011-09-22 Ihi Transport Machinery Co Ltd Pneumatic transfer device for bulk material
JP2014091118A (en) * 2012-11-07 2014-05-19 Fts:Kk Powder-removing device for granular material, and powder-removing system for crushed material equipped with the same
JP2014145964A (en) * 2013-01-30 2014-08-14 Brother Ind Ltd Image forming apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244665A (en) * 1975-10-04 1977-04-07 Toshoku Kk Method and apparatus for watching exit velocity of fluid and so forth flowing through conduit
JPS58113038A (en) * 1981-12-28 1983-07-05 Ishikawajima Harima Heavy Ind Co Ltd Adjusting method and device of suction nozzle in pneumatic unloader
JPS5922238U (en) * 1982-07-30 1984-02-10 浜口 和夫 Vacuum recovery pumping device
JPS6067325A (en) * 1983-09-20 1985-04-17 Babcock Hitachi Kk Granular powder collecting device
JPS60157725U (en) * 1984-03-29 1985-10-21 三菱重工業株式会社 New machine unloader
JPH06115690A (en) * 1991-07-16 1994-04-26 Daiyamondo Eng Kk Pulverized coal discharge quantity control device
JPH0664758A (en) * 1992-08-21 1994-03-08 Ishikawajima Yusoki Kk Pneumatic unloader
JPH0912156A (en) * 1995-06-29 1997-01-14 Ishikawajima Harima Heavy Ind Co Ltd Unloader-loader
JPH09189587A (en) * 1996-01-11 1997-07-22 Mitsubishi Heavy Ind Ltd Powder flowmeter
JP2003177042A (en) * 2002-12-13 2003-06-27 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2011184126A (en) * 2010-03-08 2011-09-22 Ihi Transport Machinery Co Ltd Pneumatic transfer device for bulk material
JP2014091118A (en) * 2012-11-07 2014-05-19 Fts:Kk Powder-removing device for granular material, and powder-removing system for crushed material equipped with the same
JP2014145964A (en) * 2013-01-30 2014-08-14 Brother Ind Ltd Image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098081A (en) * 2014-11-21 2016-05-30 株式会社日立プラントメカニクス Energy saving control method for air type unloader
JP7371883B2 (en) 2019-04-23 2023-10-31 国立大学法人 鹿児島大学 Powder transfer device, powder transfer method, and control program

Similar Documents

Publication Publication Date Title
JP6341781B2 (en) Pneumatic unloader cargo handling control device
US12018463B2 (en) Swing automation for rope shovel
US9643789B2 (en) Control system for material handling conveyor vehicle
US8352128B2 (en) Dynamic protective envelope for crane suspended loads
JP5530223B2 (en) Air transfer device for roses
CN105569340B (en) The method and apparatus of mobile articulated jib
US3690731A (en) Apparatus and methods for unloading bulk fluent materials
JP2016023002A (en) Cargo handling amount control device for pneumatic unloader
CA3195636A1 (en) Method and system for controlling a rotation speed of a turntable and aerial work platform
JP6341782B2 (en) Pneumatic unloader power requirement controller
JP6616222B2 (en) Pneumatic unloader
JPS58113038A (en) Adjusting method and device of suction nozzle in pneumatic unloader
JP2016023004A (en) Device for displaying and adjusting cargo handling amount for pneumatic unloader
JP4315747B2 (en) Ash flow control device in coal ash shipping facility
JP2016023005A (en) Cargo handling amount detection device for pneumatic unloader
JP2022123286A (en) Crane loading type batcher plant and cement charge method for crane loading type batcher plant
CN211691509U (en) Wet spraying machine intelligent arm support and wet spraying machine
CN113568412B (en) Unmanned control system of bulk cargo wharf ship loader
KR101760988B1 (en) Device and control method of Continuous ship unloader
CN219910008U (en) Concrete transportation cloth integrated operation equipment
CN215928824U (en) Anti-blocking device, concrete conveying pipe and concrete pump truck
JPH0365238B2 (en)
JPS5815411B2 (en) Bucket elevator
JPH06202704A (en) Work volume controller for industrial machine
JPH0446861B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20180320