JP2016017055A - Porous coordination polymer composite, and manufacturing method of the same - Google Patents

Porous coordination polymer composite, and manufacturing method of the same Download PDF

Info

Publication number
JP2016017055A
JP2016017055A JP2014141597A JP2014141597A JP2016017055A JP 2016017055 A JP2016017055 A JP 2016017055A JP 2014141597 A JP2014141597 A JP 2014141597A JP 2014141597 A JP2014141597 A JP 2014141597A JP 2016017055 A JP2016017055 A JP 2016017055A
Authority
JP
Japan
Prior art keywords
coordination polymer
porous coordination
porous
pores
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014141597A
Other languages
Japanese (ja)
Other versions
JP6320207B2 (en
Inventor
松山 清
Kiyoshi Matsuyama
清 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2014141597A priority Critical patent/JP6320207B2/en
Publication of JP2016017055A publication Critical patent/JP2016017055A/en
Application granted granted Critical
Publication of JP6320207B2 publication Critical patent/JP6320207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a porous coordination polymer composite in which a porous coordination polymer is impregnated with an effective substance, such as a pharmaceutical compound, a cosmetic compound and a catalyst precursor in high concentrations.SOLUTION: A manufacturing method of a porous coordination polymer composite in which a porous coordination polymer is impregnated with an effective substance in high concentrations includes: a synthesizing step of a porous coordination polymer in which a porous coordination polymer is synthesized in solvent; a drying step of drying the porous coordination polymer synthesized in the synthesizing step by supercritical carbon dioxide to obtain a porous coordination polymer in which pores are maintained; and an impregnation step of impregnating the porous coordination polymer in which pores are maintained with the effective substance by processing a mixed substance obtained by mixing the porous coordination polymer in which pores are maintained, which is obtained in the drying step, with the effective substance by a mixed fluid of carbon dioxide and organic solvent.SELECTED DRAWING: Figure 1

Description

本発明は、多孔性配位高分子に高濃度で有効物質を含浸させた多孔性配位高分子複合体およびその製造方法に関するものである。   The present invention relates to a porous coordination polymer composite obtained by impregnating a porous coordination polymer with an active substance at a high concentration and a method for producing the same.

多孔性配位高分子(Porous Coodination Polymer:PCP)とは、金属イオンと有機物の配位結合を利用して多孔性構造を形成したものをいう。この材料は、金属有機構造体(Metal−organic framework:MOF)や多孔性金属錯体ともよばれ、数Å〜数十Åの規則正しい細孔を有している。   Porous coordination polymer (PCP) refers to a material in which a porous structure is formed by utilizing a coordination bond between a metal ion and an organic substance. This material is also called a metal-organic framework (MOF) or a porous metal complex, and has regular pores of several to several tens of thousands.

この多孔性配位高分子は、その製造工程により、細孔構造が変わることが知られている。この細孔構造を調整しながら、様々な多孔性配位高分子を提供する技術として、特許文献1〜3が開示されている。これらの文献に開示された多孔性金属錯体の具体的な製造方法においては、反応溶液中で合成された多孔性配位高分子の細孔内の溶媒分子などを除去(乾燥)するために、錯体が分解しない温度での乾燥、好ましくは低温で、特に好ましくは超臨界CO2で行う乾燥が開示されている。これらの文献のように、超臨界CO2による乾燥を行うと、細孔維持された多孔性配位高分子(多孔性金属錯体)を得ることができることが知られている(非特許文献1)。 This porous coordination polymer is known to change its pore structure depending on the production process. Patent Documents 1 to 3 are disclosed as techniques for providing various porous coordination polymers while adjusting the pore structure. In the specific method for producing a porous metal complex disclosed in these documents, in order to remove (dry) solvent molecules in the pores of the porous coordination polymer synthesized in the reaction solution, drying at temperatures complex is not decomposed, preferably at low temperature, particularly preferably discloses drying carried out in supercritical CO 2. As in these documents, it is known that a porous coordination polymer (porous metal complex) maintaining pores can be obtained by drying with supercritical CO 2 (Non-patent Document 1). .

特開2010−209042号公報JP 2010-209042 A 特開2008−208110号公報JP 2008-208110 A 特開2013−112660号公報JP 2013-112660 A

Nelson, A. P.; Farha, O. K.; Mulfort, K. L.; Hupp, J. T., 「Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metal-Organic Framework Materials.」 J. Am. Chem. Soc. 2009, 131 (2), 458-460.Nelson, AP; Farha, OK; Mulfort, KL; Hupp, JT, "Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metal-Organic Framework Materials." J. Am. Chem. Soc. 2009, 131 ( 2), 458-460. Zhao, Y. J.; Zhang, J. L.; Song, J. L.; Li, J. S.; Liu, J. L.; Wu, T. B.; Zhang, P.; Han, B. X., 「Ru nanoparticles immobilized on metal-organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst.」 Green Chem. 2011, 13 (8), 2078-2082.Zhao, YJ; Zhang, JL; Song, JL; Li, JS; Liu, JL; Wu, TB; Zhang, P .; Han, BX, `` Ru nanoparticles fixed on metal-organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst. '' Green Chem. 2011, 13 (8), 2078-2082.

多孔性配位高分子(PCP)は、前述したように数Å〜数十Åの規則正しい細孔を有しており、ガスや、触媒、医薬品等の含浸・貯蔵材料として期待されており、前述したように超臨界CO2を用いて乾燥することで細孔維持することができる。しかしながら、これらPCPの細孔は極めて小さいことなどから、細孔維持された多孔性配位高分子を含浸・貯蔵対象となるガス、触媒、医薬品等と単に接触させたり、溶液中で接触させたりしてもこれらを高濃度で含浸させることはできなかった(非特許文献2)。 The porous coordination polymer (PCP) has regular pores of several to several tens of thousands as described above, and is expected as an impregnation / storage material for gases, catalysts, pharmaceuticals, etc. As described above, pores can be maintained by drying using supercritical CO 2 . However, since the pores of these PCPs are very small, the porous coordination polymer maintained with pores is simply brought into contact with the gas, catalyst, medicine, etc. to be impregnated and stored, or in solution. Even so, they could not be impregnated at a high concentration (Non-patent Document 2).

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventor has found that the following inventions meet the above object, and have reached the present invention.

すなわち、本発明は、以下の発明に係るものである。
<1> 多孔性配位高分子を溶媒中で合成する多孔性配位高分子の合成工程と、前記合成工程で合成される多孔性配位高分子を超臨界二酸化炭素により乾燥することで細孔維持された多孔性配位高分子を得る乾燥工程と、前記乾燥工程で得られる細孔維持された多孔性配位高分子と有効物質とを混合した混合物質を、超臨界二酸化炭素および有機溶媒の混合流体により処理することで、前記細孔維持された多孔性配位高分子に、前記有効物質を含浸させる含浸工程とを有することを特徴とする有効物質を多孔性配位高分子に高濃度で含浸させた多孔性配位高分子複合体の製造方法。
<2> 前記多孔性配位高分子が、ジカルボン酸および/またはトリカルボン酸からなる群から選択される少なくとも1以上の有機配位子と、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Mgからなる群から選択される少なくとも1以上の金属のイオンからなる多孔性配位高分子である前記<1>記載の多孔性配位高分子複合体の製造方法。
<3> 前記含浸工程の前記混合物質に混合される有効物質が、医薬品化合物、化粧品化合物、触媒前駆体からなる群から選択される少なくとも1以上の有効物質である前記<1>または<2>に記載の多孔性配位高分子複合体の製造方法。
<4> 前記含浸工程の混合流体の有機溶媒が、アルコール類、ケトン類、芳香族炭化水素類、アルカン類からなる群から選択される少なくとも1以上の有機溶媒である前記<1>〜<3>のいずれかに記載の多孔性配位高分子複合体の製造方法。
<5> 前記<1>〜<4>のいずれかに記載の多孔性配位高分子複合体の製造方法によって得られてなる多孔性配位高分子複合体。
That is, the present invention relates to the following inventions.
<1> A porous coordination polymer synthesis process for synthesizing a porous coordination polymer in a solvent, and the porous coordination polymer synthesized in the synthesis process by drying with supercritical carbon dioxide. A drying step for obtaining a porous coordination polymer with pores maintained, and a mixed material obtained by mixing the porous coordination polymer with pores maintained in the drying step and an active substance are combined with supercritical carbon dioxide and organic The porous coordinating polymer is treated with a mixed fluid of a solvent, and the porous coordinating polymer in which the pores are maintained is impregnated with the effective substance. A method for producing a porous coordination polymer composite impregnated at a high concentration.
<2> The porous coordination polymer is at least one organic ligand selected from the group consisting of dicarboxylic acid and / or tricarboxylic acid, and Cr, Mn, Fe, Co, Ni, Cu, Zn, The method for producing a porous coordination polymer composite according to the above <1>, which is a porous coordination polymer comprising at least one metal ion selected from the group consisting of Al and Mg.
<3> The <1> or <2>, wherein the active substance mixed with the mixed substance in the impregnation step is at least one active substance selected from the group consisting of a pharmaceutical compound, a cosmetic compound, and a catalyst precursor. A method for producing a porous coordination polymer composite as described in 1.
<4> The <1> to <3, wherein the organic solvent of the mixed fluid in the impregnation step is at least one organic solvent selected from the group consisting of alcohols, ketones, aromatic hydrocarbons, and alkanes. > A method for producing a porous coordination polymer composite according to any one of the above.
<5> A porous coordination polymer composite obtained by the method for producing a porous coordination polymer composite according to any one of <1> to <4>.

本発明によれば、細孔維持された多孔性配位高分子に、高濃度で含浸・貯蔵対象となる有効物質を含浸・貯蔵させることができる。例えば、この有効物質として医薬品を選択した場合、徐放性を有する薬剤組成物のようにドラッグデリバリーシステムに適した制御を行うことができる。   According to the present invention, a porous coordination polymer in which pores are maintained can be impregnated / stored with an effective substance to be impregnated / stored at a high concentration. For example, when a pharmaceutical product is selected as the active substance, control suitable for a drug delivery system can be performed like a drug composition having sustained release properties.

多孔性配位高分子の拡大画像を示す図である。It is a figure which shows the enlarged image of a porous coordination polymer. 多孔性配位高分子のXRDパターンを示す図である。It is a figure which shows the XRD pattern of a porous coordination polymer. 多孔性配位高分子の窒素ガス吸着等温線を示す図である。It is a figure which shows the nitrogen gas adsorption isotherm of a porous coordination polymer. 多孔性配位高分子に含浸させたイブプロフェンの徐放性を示す図である。It is a figure which shows the sustained release property of the ibuprofen impregnated with the porous coordination polymer. 多孔性配位高分子に含浸させたイブプロフェンの徐放性を示す図である。It is a figure which shows the sustained release property of the ibuprofen impregnated with the porous coordination polymer.

以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。   DESCRIPTION OF EMBODIMENTS Embodiments of the present invention will be described in detail below. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention. It is not limited to the contents.

本発明は、多孔性配位高分子を溶媒中で合成する多孔性配位高分子の合成工程と、前記合成工程で合成される多孔性配位高分子を超臨界二酸化炭素により乾燥することで細孔維持された多孔性配位高分子を得る乾燥工程と、前記乾燥工程で得られる細孔維持された多孔性配位高分子と有効物質とを混合した混合物質を超臨界二酸化炭素および有機溶媒の混合流体により処理することで、前記細孔維持された多孔性配位高分子に前記有効物質を含浸させる含浸工程とを有する有効物質を多孔性配位高分子に高濃度で含浸させた多孔性配位高分子複合体の製造方法に関するものである。これにより、多孔性配位高分子の細孔に有効物質を充分に含浸・貯蔵させることができる。   The present invention includes a synthesis step of a porous coordination polymer in which a porous coordination polymer is synthesized in a solvent, and drying the porous coordination polymer synthesized in the synthesis step with supercritical carbon dioxide. A supercritical carbon dioxide and organic mixture obtained by drying a porous coordinating polymer maintaining pores, and a mixed material obtained by mixing the porous coordinating polymer maintaining pores obtained in the drying step and an effective substance. The porous coordinating polymer was impregnated at a high concentration with an effective substance having an impregnation step of impregnating the porous coordinating polymer maintained with pores with the effective substance by treating with a mixed fluid of the solvent. The present invention relates to a method for producing a porous coordination polymer composite. Thereby, the effective substance can be sufficiently impregnated and stored in the pores of the porous coordination polymer.

本発明は、多孔性配位高分子を利用した多孔性配位高分子複合体の製造方法に関するものである。まず、本発明に用いる多孔性配位高分子は、多孔性配位高分子を溶媒中で合成する多孔性配位高分子の合成工程により合成される。多孔性配位高分子は、その原料となる有機配位子と溶媒中等で金属イオンとなる金属塩等の試薬を溶媒に溶解させ液相で混合反応させる合成工程により製造されることが一般的である。この合成工程は、目的の形態のPCPが生成されるように、有機配位子および金属塩、溶媒の種類や濃度、濃度比を選択し、さらに、反応温度、時間、pH、添加物等の反応条件のパラメータが調整される。この合成工程の反応方法として、溶液拡散法や溶液撹拌法、水熱合成法、マイクロ波法、超音波法等の反応方法があげられる。本発明においては、合成工程後の乾燥工程により所望の細孔維持することができ、含浸工程により有効物質を含浸・担持させることができるように適宜反応条件のパラメータとなるものを選択し、適した反応方法により合成すればよい。本発明の多孔性配位高分子は、含浸させようとする有効物質に応じた使用環境で利用されるため、当該使用環境に適したパラメータを設定することが好ましい。例えば、本発明の有効物質として医薬品を選択する場合、合成工程に用いる有機配位子、金属塩(イオン)、溶媒等が本発明の多孔性配位高分子複合体に残存する可能性があるため、人体に対して毒性が少ないものを用いて合成することが好ましい。   The present invention relates to a method for producing a porous coordination polymer composite using a porous coordination polymer. First, the porous coordination polymer used in the present invention is synthesized by a synthesis process of a porous coordination polymer in which a porous coordination polymer is synthesized in a solvent. Porous coordination polymers are generally manufactured by a synthesis process in which a reagent such as a metal salt that becomes a metal ion in a solvent or the like is dissolved in a solvent and mixed in a liquid phase. It is. In this synthesis step, the kind and concentration of organic ligand and metal salt, solvent and concentration ratio are selected so that the desired form of PCP is generated, and the reaction temperature, time, pH, additives, etc. The parameters of the reaction conditions are adjusted. Examples of reaction methods in this synthesis step include solution diffusion methods, solution stirring methods, hydrothermal synthesis methods, microwave methods, and ultrasonic methods. In the present invention, the desired pores can be maintained by the drying step after the synthesis step, and the reaction conditions are appropriately selected so that the active substance can be impregnated and supported by the impregnation step. May be synthesized by the reaction method described above. Since the porous coordination polymer of the present invention is used in a use environment corresponding to an effective substance to be impregnated, it is preferable to set parameters suitable for the use environment. For example, when a pharmaceutical product is selected as the active substance of the present invention, organic ligands, metal salts (ions), solvents, etc. used in the synthesis process may remain in the porous coordination polymer complex of the present invention. Therefore, it is preferable to synthesize using a substance that has little toxicity to the human body.

本発明の多孔性配位高分子には、多孔性配位高分子を形成する架橋性を有機配位子であればいずれの有機配位子を用いてもよい。多孔性配位高分子を形成する有機配位子は酸素ドナー性配位子や窒素ドナー性配位子が多く用いられている。一種の多孔性配位高分子を製造するために用いられる有機配位子は、一つの場合もあるが、複数種の有機配位子を使用して得られる多孔性配位高分子もある。本発明に適したこの有機配位子のより具体的なものとしては、ジカルボン酸やトリカルボン酸が挙げられる。ジカルボン酸としては、マロン酸やシュウ酸、芳香族ジカルボン酸であるテレフタル酸や2,6-ナフタレンジカルボン酸、置換基を有する芳香族ジカルボン酸である5-シアノ-1,3-ベンジカルボン酸(5-Cyano-1,3-benzenedicarboxylic acid)、5-エチニル-1,3-ベンジカルボン酸(5-Ethynyl-1,3-benzenedicarboxylic acid)、2,2'-ジアミノ-4,4'-スチルベンジカルボン酸、2,5-ジアミノテレフタル酸、2,5-ジヒドロキシテレフタル酸、5-ブロモイソフタル酸などを好適に用いることができる。また、トリカルボン酸としてはクエン酸や、芳香族トリカルボン酸であるトリメシン酸、置換基を有する芳香族トリカルボン酸である4,4',4''-s-トリアジン-2,4,6-トリイル-三安息香酸や、1,3,5-トリス(4-カルボキシフェニル)ベンゼン、ビフェニル-3,4',5-トリカルボン酸などを好適に用いることができる。本発明においては、ここで前述したジカルボン酸および/またはトリカルボン酸の有機配位子を用いた多孔性配位高分子であることが好ましい。有機配位子は、それを用いた多孔性配位高分子の製造しやすさ、有効物質の含浸・担持しやすさ、人体等への毒性の低さなど、適宜その使用環境に応じて選択すればよいが、前述した群から選択させる有機配位子はこれらの観点から使用しやすいものであることが好ましい。   As the porous coordination polymer of the present invention, any organic ligand may be used as long as it is an organic ligand capable of crosslinking to form the porous coordination polymer. As an organic ligand that forms a porous coordination polymer, an oxygen donor ligand or a nitrogen donor ligand is often used. There may be one organic ligand used for producing a kind of porous coordination polymer, but there is also a porous coordination polymer obtained by using a plurality of kinds of organic ligands. More specific examples of this organic ligand suitable for the present invention include dicarboxylic acids and tricarboxylic acids. Examples of the dicarboxylic acid include malonic acid, oxalic acid, terephthalic acid which is an aromatic dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 5-cyano-1,3-benzicarboxylic acid which is an aromatic dicarboxylic acid having a substituent ( 5-Cyano-1,3-benzenedicarboxylic acid), 5-Ethynyl-1,3-benzenedicarboxylic acid, 2,2'-diamino-4,4'-stilbene dicarboxylic acid Acid, 2,5-diaminoterephthalic acid, 2,5-dihydroxyterephthalic acid, 5-bromoisophthalic acid and the like can be preferably used. Tricarboxylic acids include citric acid, aromatic tricarboxylic acid trimesic acid, and substituted aromatic tricarboxylic acid 4,4 ', 4' '-s-triazine-2,4,6-triyl- Tribenzoic acid, 1,3,5-tris (4-carboxyphenyl) benzene, biphenyl-3,4 ′, 5-tricarboxylic acid and the like can be suitably used. In the present invention, a porous coordination polymer using the organic ligand of dicarboxylic acid and / or tricarboxylic acid described above is preferable. Organic ligands are selected according to the environment in which they are used, such as ease of production of porous coordination polymers using them, ease of impregnation and loading of active substances, and low toxicity to the human body. However, it is preferable that the organic ligand selected from the group described above is easy to use from these viewpoints.

また、本発明の多孔性配位高分子は、周期表の多くの金属を用いて製造することができる。本発明においても、有機配位子との組み合わせ等により多孔性配位高分子が形成される金属イオンを適宜選択して使用してよい。具体的に多く使用されている金属としては、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Mgがあげられ、これらからなる群から選択される少なくとも1以上の金属のイオンからなる多孔性配位高分子とすることが好ましい。この金属のイオンは、基本的には合成工程に用いる金属塩の選択により決定される。多孔性配位高分子を形成する金属のイオンも単独の場合や、複数種の場合があり、有機配位子と金属イオンとの組み合わせ等により多孔性配位高分子の形成しやすさ、得られる多孔性配位高分子の形状、使用環境への適合性等の観点から選択される。   Moreover, the porous coordination polymer of the present invention can be produced using many metals in the periodic table. Also in the present invention, a metal ion that forms a porous coordination polymer by combination with an organic ligand or the like may be appropriately selected and used. Specific examples of frequently used metals include Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, and Mg. The metal includes at least one metal ion selected from the group consisting of these. It is preferable to use a porous coordination polymer. This metal ion is basically determined by the selection of the metal salt used in the synthesis process. The metal ions that form the porous coordination polymer may be single or multiple types, and it is easy to form the porous coordination polymer by combining organic ligands and metal ions. The shape is selected from the viewpoint of the shape of the porous coordination polymer to be used, compatibility with the use environment, and the like.

次に、本発明の製造方法は、細孔維持された多孔性配位高分子を得る工程を有する。この工程として、本発明の製造方法は、前記合成工程で合成される多孔性配位高分子を超臨界二酸化炭素により乾燥することで細孔維持された多孔性配位高分子を得る乾燥工程を有する。前述したような溶媒を用いた合成工程により得られる多孔性配位高分子は、合成直後は溶媒と共存状態にある。多孔性配位高分子に有効物質を含浸させるためには、この溶媒を取り除く必要がある。この溶媒を取り除くにあたり、溶媒除去後にも多孔性配位高分子が細孔を維持するように、本発明においては、超臨界流体である超臨界二酸化炭素により乾燥を行う。超臨界流体とは、物質固有の臨界点を超えた流体のことであり、その臨界点を超えた圧力を加えても液化しない非凝縮性の気体である。この超臨界流体とした二酸化炭素により多孔性配位高分子内のゲスト分子として残存している溶媒を置換し、その後、圧力を減圧し超臨界流体を除去することで合成された多孔性配位高分子にその構造を破壊する力をほとんどかけずに、細孔が維持された多孔性配位高分子を得ることができる。特に、この乾燥工程に用いる超臨界流体として、二酸化炭素の超臨界流体(超臨界CO2)は、反応性が低く、臨界温度が31℃と低く、不燃性であり、人体に対しても毒性が低いことから、取り扱いやすさ等も含めて多孔性配位高分子の細孔維持するための乾燥に適している。 Next, the manufacturing method of this invention has the process of obtaining the porous coordination polymer by which the pore maintenance was carried out. As this step, the production method of the present invention includes a drying step of obtaining a porous coordination polymer in which pores are maintained by drying the porous coordination polymer synthesized in the synthesis step with supercritical carbon dioxide. Have. The porous coordination polymer obtained by the synthesis process using the solvent as described above is in a coexistence state with the solvent immediately after the synthesis. In order to impregnate the porous coordination polymer with the active substance, it is necessary to remove this solvent. In removing the solvent, in the present invention, drying is performed with supercritical carbon dioxide, which is a supercritical fluid, so that the porous coordination polymer maintains pores even after the solvent is removed. A supercritical fluid is a fluid that exceeds the critical point inherent to a substance, and is a non-condensable gas that does not liquefy even when a pressure exceeding the critical point is applied. This supercritical fluid carbon dioxide replaces the remaining solvent as guest molecules in the porous coordination polymer, and then the pressure is reduced and the supercritical fluid is removed. A porous coordination polymer in which pores are maintained can be obtained with almost no force applied to the polymer to destroy its structure. In particular, as a supercritical fluid used in this drying process, a supercritical fluid of carbon dioxide (supercritical CO 2 ) has low reactivity, a critical temperature as low as 31 ° C., is nonflammable, and is toxic to the human body. Since it is low, it is suitable for drying to maintain the pores of the porous coordination polymer including ease of handling.

この乾燥工程の前に、合成工程後の多孔性配位高分子(またはその溶液)を、反応に用いた溶媒とは異なる溶媒等で洗浄することができる。この洗浄を行うことで、乾燥に用いる超臨界流体では揮発しにくい残存物質等を除去しておいたり、多孔性配位高分子内の溶媒を置換しておいたりすることができるため、製造効率の向上や、得られる多孔性配位高分子の純度向上や、構造の安定といった効果が得られる。   Prior to this drying step, the porous coordination polymer (or its solution) after the synthesis step can be washed with a solvent different from the solvent used in the reaction. By performing this cleaning, it is possible to remove residual substances that are difficult to volatilize in the supercritical fluid used for drying, or to replace the solvent in the porous coordination polymer, so that the production efficiency Effects such as improving the purity, improving the purity of the resulting porous coordination polymer, and stabilizing the structure.

本発明の多孔性配位高分子複合体の製造方法は、前述した乾燥工程で得られた細孔維持された多孔性配位高分子と有効物質とを混合した混合物質を、超臨界二酸化炭素および有機溶媒の混合流体により処理することで、前記細孔維持された多孔性配位高分子に、前記有効物質を含浸させる含浸工程を有する。このような含浸を行うことで、有効物質を多孔性配位高分子に高濃度で含浸させた多孔性配位高分子複合体を得ることができる。   The method for producing a porous coordination polymer composite according to the present invention includes a supercritical carbon dioxide mixed material obtained by mixing the pore-maintained porous coordination polymer obtained in the drying step and an effective substance. And an impregnation step of impregnating the effective substance into the porous coordination polymer having pores maintained by treating with a mixed fluid of organic solvent. By performing such impregnation, it is possible to obtain a porous coordination polymer composite in which an effective substance is impregnated in a high concentration in a porous coordination polymer.

細孔維持された多孔性配位高分子に、有効物質を含浸させるために、まず、多孔性配位高分子と、有効物質とを混合して混合物質とする。この混合物質は、それぞれが固体の乾燥状態で混合してもよいが、処理に用いる混合流体の一成分である有機溶媒の溶液として、混合した状態もいう。この混合物質を、超臨界二酸化炭素と有機溶媒との混合流体により処理することで、多孔性配位高分子の内部に効率よく有効物質が含浸される。この含浸工程を達成しやすい構成としては、たとえば、細孔維持された多孔性配位高分子と含浸させたい有効物質と混合流体に用いる溶媒との溶液を圧力容器にいれ、ここに超臨界二酸化炭素を加えることで、超臨界二酸化炭素と溶媒との混合流体による処理を達成することができる。また、この超臨界二酸化炭素の流通を続けることで、この含浸に用いた溶媒を除去することもでき、二酸化炭素の超臨界状態を解除したときに、細孔維持された多孔性配位高分子に有効物質が含浸された乾燥固体としての多孔性配位高分子複合体を得ることができる。なお、ここで高濃度とは混合流体を用いない場合の含浸上限を超えるものをいう。   In order to impregnate the porous coordination polymer in which pores are maintained with the effective substance, first, the porous coordination polymer and the effective substance are mixed to form a mixed substance. Each of the mixed substances may be mixed in a solid dry state, but may also be a mixed state as a solution of an organic solvent that is a component of a mixed fluid used for processing. By treating this mixed substance with a mixed fluid of supercritical carbon dioxide and an organic solvent, the effective substance is efficiently impregnated inside the porous coordination polymer. For example, the impregnation step can be easily achieved by placing a solution of a porous coordination polymer having pores maintained therein, an effective substance to be impregnated, and a solvent used as a mixed fluid in a pressure vessel, where supercritical dioxide is added. By adding carbon, treatment with a mixed fluid of supercritical carbon dioxide and a solvent can be achieved. In addition, by continuing the flow of this supercritical carbon dioxide, the solvent used for this impregnation can also be removed, and when the supercritical state of carbon dioxide is released, the porous coordination polymer that maintains the pores A porous coordination polymer composite as a dry solid impregnated with an active substance can be obtained. Here, the high concentration means a concentration exceeding the upper limit of impregnation when no mixed fluid is used.

前記含浸工程の前記混合物質に混合される有効物質は、多孔性配位高分子の内部に含浸される大きさのものであり、当該物質を含浸・担持させることで所定の機能を発揮するものであればよい。具体的には、この有効物質が、医薬品化合物、化粧品化合物、触媒前駆体からなる群から選択される少なくとも1以上の有効物質であることが好ましい。これらは、いずれかの化合物等を単独で含浸させても良く、その用途・機能に併せて複数を組み合わせて含浸させてもよい。   The effective substance mixed with the mixed substance in the impregnation step is of a size that is impregnated inside the porous coordination polymer, and exhibits a predetermined function by impregnating and supporting the substance. If it is. Specifically, the effective substance is preferably at least one effective substance selected from the group consisting of pharmaceutical compounds, cosmetic compounds, and catalyst precursors. Any of these compounds may be impregnated alone, or a plurality of them may be impregnated in combination according to their use / function.

有効物質として選択される医薬品化合物としては、特に制限がなく、例えば鎮痛薬、解熱薬、抗生物質、抗炎症薬、抗潰瘍薬、抗圧薬、神経弛緩薬、抗鬱薬等を挙げることができる。医薬品化合物を含浸させれば、徐放性を有する優れたDDSの医薬品組成物とすることができる。また、化粧品化合物としては、化粧品化合物の生理活性成分であり、化粧品や薬用化粧品に配合される緩和な薬理作用をもった成分である、美白剤、育毛剤、抗炎症剤、しわ防止剤、にきびケア剤、かゆみ防止剤、臭気防止剤などが挙げられる。これらの化粧品化合物を含浸させた場合も、徐放性が得られるため、使用開始時の刺激を低減し、長時間効果を発揮させることが期待される。また、触媒前駆体としては、金属の前駆体および/または金属酸化物の前駆体が好ましく、具体的には、Pt前駆体、Rh前駆体、Au前駆体、Pd前駆体、Ir前駆体、Ru前駆体、CeO2前駆体、RhO2前駆体、Rh23前駆体、RuO2前駆体、TiO2前駆体、SnO2前駆体、ZnO前駆体、Nb25前駆体、NbO2前駆体、InO3前駆体、ZrO2前駆体、La23前駆体、Ta25前駆体、WO3前駆体、Fe23前駆体、SiO2前駆体、NiO前駆体、Cu2O前駆体を例示することができる。ここで、触媒を含浸させれば、反応速度を高度に制御した触媒とすることができる。 The pharmaceutical compound selected as the active substance is not particularly limited, and examples thereof include analgesics, antipyretic drugs, antibiotics, anti-inflammatory drugs, anti-ulcer drugs, anti-pressure drugs, neuroleptic drugs, antidepressants and the like. . When impregnated with a pharmaceutical compound, an excellent DDS pharmaceutical composition having sustained release properties can be obtained. Cosmetic compounds are physiologically active ingredients of cosmetic compounds, and have mild pharmacological effects that are incorporated into cosmetics and medicinal cosmetics, whitening agents, hair restorers, anti-inflammatory agents, anti-wrinkle agents, acne. Examples include care agents, itching prevention agents, and odor prevention agents. Even when these cosmetic compounds are impregnated, since sustained release is obtained, it is expected to reduce irritation at the start of use and to exert an effect for a long time. The catalyst precursor is preferably a metal precursor and / or a metal oxide precursor. Specifically, a Pt precursor, Rh precursor, Au precursor, Pd precursor, Ir precursor, Ru Precursor, CeO 2 precursor, RhO 2 precursor, Rh 2 O 3 precursor, RuO 2 precursor, TiO 2 precursor, SnO 2 precursor, ZnO precursor, Nb 2 O 5 precursor, NbO 2 precursor , InO 3 precursor, ZrO 2 precursor, La 2 O 3 precursor, Ta 2 O 5 precursor, WO 3 precursor, Fe 2 O 3 precursor, SiO 2 precursor, NiO precursor, Cu 2 O precursor The body can be exemplified. Here, if the catalyst is impregnated, a catalyst with a highly controlled reaction rate can be obtained.

この本発明の多孔性配位高分子複合体に含浸される有効物質は、その物質の大きさが、含浸工程に用いる有機溶媒や、超臨界二酸化炭素と有機溶媒との混合流体下でナノサイズの大きさとなる、ナノ粒子であることが好ましい。ここで、本発明に用いられる多孔性配位高分子自体が細孔維持された状態でも、その細孔の大きさは、多孔性配位高分子の種類にもよるが、約0.4nm〜6nm(4〜60Å)である。すなわち、マイクロポア〜メソポアの領域にある。よって、これに含浸される有効物質も各多孔性配位高分子の細孔の大きさにあわせたものとなる。このナノ粒子の具体的な大きさとしては、その下限値は、有効物質の分子の大きさ以上であり、好ましくは粒子として0.3nm以上である。また、その上限値は、多孔性配位高分子の細孔は、柔軟性を持つため、細孔の入り口の大きさを超えた物質もその内部に含浸することができることから、好ましくは20nm以下、より好ましくは10nm以下とすることができる。   The effective substance to be impregnated in the porous coordination polymer composite of the present invention is such that the size of the substance is nano-sized in an organic solvent used in the impregnation process or a mixed fluid of supercritical carbon dioxide and organic solvent. It is preferable that it is a nanoparticle which becomes the magnitude | size of. Here, even when the porous coordination polymer itself used in the present invention is maintained in pores, the size of the pores depends on the kind of the porous coordination polymer, but it is about 0.4 nm to 6 nm (4 to 60 mm). That is, it is in the region of micropores to mesopores. Therefore, the effective substance impregnated therein is also adapted to the pore size of each porous coordination polymer. As a specific size of the nanoparticle, the lower limit value is not less than the size of the molecule of the effective substance, and preferably not less than 0.3 nm as the particle. Further, the upper limit value is preferably 20 nm or less because the pores of the porous coordination polymer have flexibility, so that a substance exceeding the pore entrance size can be impregnated therein. More preferably, it can be 10 nm or less.

前記含浸工程の混合流体の有機溶媒は、細孔維持された多孔性配位高分子の構造を破壊しないもので、有効物質を効率よく含浸させるような溶解性や揮発性等を有するものが選択される。この有機溶媒は、有効物質の溶解性等を考慮し極性の有無等から選択されるが、具体的には、メタノール、エタノール、プロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ベンゼン、トルエン等の芳香族炭化水素類、ヘキサン、オクタン、ペンタン等のアルカン類等が挙げられる。また、複数の溶媒を混合して用いてもよい。前述した溶媒の中でも、エタノール、アセトン、プロパノール等は人体への毒性が低いことから、医薬品化合物や化粧品化合物を有効物質として含浸させようとする場合に好ましい溶媒である。また、このような有機溶媒と、超臨界二酸化炭素との混合流体として、多孔性配位高分子内への有効物質の含浸を促進する。この有機溶媒は、揮散しやすい溶媒としておくと、含浸工程の後に除去しやすい。なお、この超臨界二酸化炭素自体は、前述の乾燥工程に用いられる超臨界二酸化炭素と同様のものである。   The organic solvent of the mixed fluid in the impregnation step is selected so that it does not destroy the structure of the porous coordination polymer that maintains the pores, and has solubility and volatility so as to efficiently impregnate the active substance. Is done. This organic solvent is selected based on the presence or absence of polarity in consideration of the solubility of the active substance. Specifically, alcohols such as methanol, ethanol and propanol, ketones such as acetone and methyl ethyl ketone, benzene and toluene And aromatic hydrocarbons such as hexane, octane, pentane and the like. A plurality of solvents may be mixed and used. Among the solvents described above, ethanol, acetone, propanol and the like are low in toxicity to the human body, and are therefore preferable solvents when impregnating pharmaceutical compounds and cosmetic compounds as active substances. Moreover, the impregnation of the effective substance into the porous coordination polymer is promoted as a mixed fluid of such an organic solvent and supercritical carbon dioxide. This organic solvent can be easily removed after the impregnation step if it is a solvent that is easily volatilized. The supercritical carbon dioxide itself is the same as the supercritical carbon dioxide used in the above-described drying process.

本発明の、含浸工程の混合流体に対する有機溶媒の量比は適宜好ましい範囲とすればよいが、例えばその量比(有機溶媒(mol)/(有機溶媒(mol)+二酸化炭素(mol)))が、0.05〜50とすることができる。また、その処理時間も有効物質が含浸される範囲で適宜設定することができ、その組み合わせ等によっても異なるが、例えば30分〜20時間程度で多孔性配位高分子の細孔に十分に有効物質を含浸することができる。この含浸工程においては、磁気撹拌機等を用いて内部が撹拌されることが好ましい。そして、所定の含浸処理時間が経過したのち、徐々に大気圧に戻して、適宜、含浸工程に用いた混合流体の有機溶媒を揮散させる(乾燥工程)等することで、多孔性配位高分子複合体の固体を得ることができる。   The amount ratio of the organic solvent to the mixed fluid in the impregnation step of the present invention may be suitably set as appropriate. For example, the amount ratio (organic solvent (mol) / (organic solvent (mol) + carbon dioxide (mol))) However, it can be 0.05-50. In addition, the treatment time can be appropriately set within a range in which the active substance is impregnated, and varies depending on the combination thereof, but is sufficiently effective for the pores of the porous coordination polymer, for example, in about 30 minutes to 20 hours. The substance can be impregnated. In this impregnation step, the inside is preferably stirred using a magnetic stirrer or the like. And after predetermined | prescribed impregnation processing time passes, it returns to atmospheric pressure gradually, and volatilizes the organic solvent of the mixed fluid used for the impregnation process (drying process) etc. suitably, Porous coordination polymer A composite solid can be obtained.

本発明は、このような多孔性配位高分子複合体の製造方法により得られる有効物質を高濃度で含浸する多孔性配位高分子複合体である。この多孔性配位高分子複合体は、含浸させた有効物質単独よりも優れた効果を奏することができる。   The present invention is a porous coordination polymer composite impregnated with an active substance at a high concentration obtained by such a method for producing a porous coordination polymer composite. This porous coordination polymer composite can exhibit an effect superior to that of the impregnated active substance alone.

以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is changed.

[イブプロフェンを含浸させた徐放性を有する多孔性配位高分子複合体の製造]
本発明の方法により、有効物質として様々な鎮痛効果を有することが知られているイブプロフェンを、トリメシン酸を用いた多孔性配位高分子に含浸させた多孔性配位高分子複合体を製造した。この製造等に関する各工程で得られた物質等について評価を行った結果を以下の実施例および比較例に示す。
[Production of Porous Coordination Polymer Composite with Sustained Release Impregnated with Ibuprofen]
By the method of the present invention, a porous coordination polymer composite was produced by impregnating a porous coordination polymer using trimesic acid with ibuprofen, which is known to have various analgesic effects as an active substance. . The results of evaluating the substances and the like obtained in each process relating to the production and the like are shown in the following Examples and Comparative Examples.

[評価項目]
[結晶構造解析]
多孔性配位高分子(以下、「PCP」)の結晶構造を以下のX線回折装置を用いて測定した。
装置:理学電気(株)製 X線回折装置(XRD)“RAD−IIc”(CuKα:40KV、20mA)
測定条件:ガラス試料板(深さ0.3mm)に、表面が平滑となるように試料を充填し、2θ=1〜30degの範囲を、0.01deg毎に走査して測定した。
[Evaluation item]
[Crystal structure analysis]
The crystal structure of a porous coordination polymer (hereinafter “PCP”) was measured using the following X-ray diffractometer.
Apparatus: X-ray diffractometer (XRD) “RAD-IIc” manufactured by Rigaku Corporation (CuKα: 40 KV, 20 mA)
Measurement conditions: A glass sample plate (depth 0.3 mm) was filled with a sample so that the surface was smooth, and a range of 2θ = 1 to 30 deg was scanned and measured every 0.01 deg.

[表面構造観察]
PCPの表面構造を以下のSEMを用いて観察した。
装置:(株)エリオニクス製 FE−SEM“ERA−8900FE”
測定条件:カーボンテープを用いて、銅板の基板に粉末試料を貼り付け、金蒸着したものを観察した。
[Surface structure observation]
The surface structure of PCP was observed using the following SEM.
Equipment: FE-SEM “ERA-8900FE” manufactured by Elionix Co., Ltd.
Measurement conditions: A carbon tape was used to affix a powder sample to a copper plate substrate, and the gold deposited was observed.

[比表面積測定]
PCPの比表面積を以下の測定装置を用いて、BET比表面積として求めた。
装置:島津製作所(株)製 高機能比表面積/細孔分布測定装置“ASAP−2020”
測定条件:測定温度77Kにて窒素吸着法にて測定した。なお測定値から試料の窒素吸着等温線を決定し、BET法により試料の比表面積を求めた。
[Specific surface area measurement]
The specific surface area of PCP was determined as the BET specific surface area using the following measuring device.
Apparatus: Shimadzu Corporation high functional specific surface area / pore distribution measuring apparatus “ASAP-2020”
Measurement conditions: Measured by a nitrogen adsorption method at a measurement temperature of 77K. The nitrogen adsorption isotherm of the sample was determined from the measured value, and the specific surface area of the sample was determined by the BET method.

[イブプロフェン含有量]
多孔性配位高分子複合体に含有されるイブプロフェン量を測定するために以下の熱重量測定装置を用いた。
装置:島津製作所(株)製 熱重量測定装置“TGA−50”
測定条件:R.T.(室温)から500℃まで昇温時の熱重量減少量をプロットし、イブプロフェン単独、PCP単独の場合の重量減少と比較し、多孔性配位高分子複合体に含有されるイブプロフェン量を測定した。
[Ibuprofen content]
In order to measure the amount of ibuprofen contained in the porous coordination polymer composite, the following thermogravimetry apparatus was used.
Equipment: Thermogravimetric measurement device “TGA-50” manufactured by Shimadzu Corporation
Measurement conditions: R.I. T.A. The amount of thermal weight loss when the temperature was raised from (room temperature) to 500 ° C. was plotted, and the amount of ibuprofen contained in the porous coordination polymer composite was measured in comparison with the weight loss in the case of ibuprofen alone and PCP alone. .

[イブプロフェン濃度]
溶液中のイブプロフェン濃度を以下の条件のHPLC試験にて、イブプロフェンのピーク面積より測定した。
検出器:日立製紫外吸光光度計“L−4000 UV Detector”(測定波長:273.12nm)
カラム:資生堂製“CAPCELL CORE C18”
ポンプ:日立製“L−6250 Intelligent Pump”
移動相:アセトニトリル/リン酸二水素ナトリウム溶液(pH2.6 0.05mol/L)混合液(アセトニトリル:リン酸二水素ナトリウム=3:2)
流量:1mL/min
カラム温度:40℃
[Ibuprofen concentration]
The ibuprofen concentration in the solution was measured from the peak area of ibuprofen in an HPLC test under the following conditions.
Detector: Hitachi UV spectrophotometer “L-4000 UV Detector” (measurement wavelength: 273.12 nm)
Column: “CAPCELL CORE C18” manufactured by Shiseido
Pump: Hitachi “L-6250 Intelligent Pump”
Mobile phase: acetonitrile / sodium dihydrogen phosphate solution (pH 2.6, 0.05 mol / L) mixed solution (acetonitrile: sodium dihydrogen phosphate = 3: 2)
Flow rate: 1 mL / min
Column temperature: 40 ° C

[徐放特性試験]
(錠剤成型) 試料0.3gをプレス機で打錠成型し錠剤化した。
(緩衝液内で撹拌) 錠剤化した試料を、Na2HPO4/クエン酸緩衝液(pH5.47)100mLに加え、撹拌速度50rpmにて撹拌した(パドル法)。
(溶出液のサンプリング) 緩衝液内で撹拌した液から、規定時間ごとに25μLずつ採取した。
(溶出液中のイブプロフェン濃度の測定) 規定時間ごとにサンプリングした溶出液中のイブプロフェン濃度を、前述のHPLCを用いるイブプロフェン濃度の測定方法で測定した。
[Slow release characteristics test]
(Tablet molding) A 0.3 g sample was tableted and formed into a tablet with a press.
(Stirring in buffer solution) The tableted sample was added to 100 mL of Na 2 HPO 4 / citrate buffer (pH 5.47) and stirred at a stirring speed of 50 rpm (paddle method).
(Sampling of eluate) From the solution stirred in the buffer, 25 μL was sampled every specified time.
(Measurement of concentration of ibuprofen in eluate) The concentration of ibuprofen in the eluate sampled every specified time was measured by the above-described measuring method of ibuprofen concentration using HPLC.

[PCPの合成]
[合成工程(1):MIL−53(Fe)の合成]
有機配位子としてテレフタル酸を用い、金属イオンとしてFeのイオンより合成されるMIL−53(Fe)を、以下の表1に示す原料の混合モル比率で仕込み、以下のソルボサーマル反応により合成した。前述したモル比率の原料をテフロン(登録商標)製の容器に仕込み、この容器を耐圧性を有するステンレスジャケットにて密封し、150℃で15時間加熱処理することでPCPである「MIL−53(Fe)」を合成した。
[Synthesis of PCP]
[Synthesis Step (1): Synthesis of MIL-53 (Fe)]
Using terephthalic acid as an organic ligand, MIL-53 (Fe) synthesized from Fe ions as metal ions was charged in a mixed molar ratio of raw materials shown in Table 1 below, and synthesized by the following solvothermal reaction. . The above-mentioned molar ratio of the raw material was charged into a Teflon (registered trademark) container, this container was sealed with a pressure-resistant stainless steel jacket, and heat-treated at 150 ° C. for 15 hours, so that “MIL-53 ( Fe) ".

[合成工程(2):MIL−100(Fe)の合成]
有機配位子としてトリメシン酸を用い、金属イオンとしてFeのイオンを用いて合成されるMIL−100(Fe)を、以下の表2に示す原料の混合モル比率で仕込み、以下のソルボサーマル反応により合成した。前述したモル比率の原料をテフロン(登録商標)製の容器に仕込み、この容器を耐圧性を有するステンレスジャケットにて密封し、150℃で6日間加熱処理することでPCPである「MIL−53(Fe)」を合成した。
[Synthesis Step (2): Synthesis of MIL-100 (Fe)]
MIL-100 (Fe) synthesized using trimesic acid as the organic ligand and Fe ions as the metal ions was charged in the mixed molar ratio of the raw materials shown in Table 2 below, and the following solvothermal reaction was performed. Synthesized. The above-mentioned molar ratio raw materials are charged into a Teflon (registered trademark) container, this container is sealed with a pressure-resistant stainless steel jacket, and subjected to heat treatment at 150 ° C. for 6 days to obtain “MIL-53 (PCP). Fe) ".

[PCPの乾燥]
[乾燥工程(1)]
(超臨界CO2による乾燥)
前述した合成工程により得られたPCPを、水に24時間浸漬させた後エタノールに24時間浸漬させる工程を1サイクルとし、これを3サイクル行うことで合成に用いた溶媒を置換洗浄した。洗浄後のPCP約2gを、容積50cm3の耐圧容器に移し、20MPa・353K下の超臨界二酸化炭素を流通させる装置(Flow Rate 2.0mL/min)を用いて、70℃にて5時間乾燥した。
[Drying PCP]
[Drying step (1)]
(Drying with supercritical CO 2 )
The step of immersing the PCP obtained in the above-described synthesis step in water for 24 hours and then in ethanol for 24 hours was defined as one cycle, and this was performed for three cycles to replace and wash the solvent used in the synthesis. About 2 g of PCP after washing is transferred to a pressure-resistant container with a capacity of 50 cm 3 and dried at 70 ° C. for 5 hours using a device (Flow Rate 2.0 mL / min) that circulates supercritical carbon dioxide under 20 MPa · 353 K. did.

[乾燥工程(2)]
(減圧加熱処理による乾燥)
前述した合成工程により得られたPCPを、エタノールで洗浄し、減圧加熱処理することで乾燥した。
[Drying step (2)]
(Drying by heat treatment under reduced pressure)
PCP obtained by the synthesis process described above was washed with ethanol and dried by heat treatment under reduced pressure.

[PCPへの含浸]
[含浸工程(1)]
(混合流体による含浸)
容積50cm3の耐圧容器に、PCP0.5gと、イブプロフェン0.5gと、ヘキサン50mLとを混合した。ここに、20MPa・333K下の超臨界二酸化炭素を充填することで、超臨界二酸化炭素とヘキサンとの混合流体による含浸をおこなった。この含浸中、耐圧容器内の混合物を磁気撹拌機で6時間混合した。含浸後、30分かけて徐々に大気圧に戻し、サンプルを取り出した。その後、ろ過することで溶媒中に残存するイブプロフェンを取り除き、残存するヘキサンを80℃(大気圧下)で揮発させて除去した。
[Impregnation into PCP]
[Impregnation step (1)]
(Impregnation with mixed fluid)
A pressure vessel volume 50 cm 3, was mixed with PCP0.5G, ibuprofen 0.5g, and hexane 50 mL. Here, impregnation with a mixed fluid of supercritical carbon dioxide and hexane was performed by filling supercritical carbon dioxide under 20 MPa · 333 K. During the impregnation, the mixture in the pressure vessel was mixed with a magnetic stirrer for 6 hours. After impregnation, the pressure was gradually returned to atmospheric pressure over 30 minutes, and a sample was taken out. Thereafter, ibuprofen remaining in the solvent was removed by filtration, and the remaining hexane was volatilized and removed at 80 ° C. (under atmospheric pressure).

[含浸工程(2)]
(ヘキサン溶液中での含浸)
容積50cm3の容器に、PCP0.5gと、イブプロフェン0.5gと、ヘキサン50mLとを混合した。この容器内の混合物を磁気撹拌機で6時間混合することで含浸させた。含浸後、ろ過することで溶媒中に残存するイブプロフェンを取り除き、残存するヘキサンを80℃(大気圧下)で揮発させて除去した。
[Impregnation step (2)]
(Impregnation in hexane solution)
In a container having a volume of 50 cm 3 , 0.5 g of PCP, 0.5 g of ibuprofen, and 50 mL of hexane were mixed. The mixture in the container was impregnated by mixing with a magnetic stirrer for 6 hours. After impregnation, the ibuprofen remaining in the solvent was removed by filtration, and the remaining hexane was volatilized and removed at 80 ° C. (under atmospheric pressure).

[製造したサンプル]
上記した、合成工程、乾燥工程、含浸工程を組み合わせて製造したサンプルの一覧を表3に示す。
[Manufactured samples]
Table 3 shows a list of samples manufactured by combining the above-described synthesis process, drying process, and impregnation process.

[評価結果]
[細孔維持されたPCPの構造]
細孔維持される乾燥を行った参考例1および参考例2により得られるPCPの構造と、細孔維持されない乾燥を行った比較例3および比較例4の条件により得られるPCPの構造を分析した結果を以下に表す。
(1)PCPの外観(光学写真像およびSEM像)
得られたPCPの光学写真像(各像右上)およびSEM像を図1に示す。細孔維持されたPCPである参考例1,2(図中(a−1)、(b−1))は、細かく柔らかい粉末状で、SEMで確認した微細構造にも多くの空洞が観察される。一方、細孔維持されていないPCPである比較例3,4(図中(図a−2)、(b−2))は、硬い粒状に固まりやすく、SEMで観察下微細構造では密に凝集している。
(2)結晶構造(XRDパターン)
得られたPCPのXRDパターン解析結果を図2に示す。細孔維持の有無に関わらず、MIL−53(Fe)、MIL−100(Fe)とでそれぞれのXRDパターンが観察され、結晶構造は変化していないことが確認される。
(3)BET比表面積
得られたPCPのBET比表面積の評価結果を図3に示す。MIL−53(Fe)系(参考例1/比較例3)の場合、超臨界CO2による乾燥を行うことでBET比表面積がおよそ17倍大きくなることが確認された。一方、MIL−100(Fe)系(参考例2/比較例4)の場合、超臨界CO2による乾燥を行うことでBET比表面積がおよそ1.2倍大きくなることが確認された。
[Evaluation results]
[Structure of PCP with pore maintenance]
The structure of the PCP obtained by Reference Example 1 and Reference Example 2 in which the pore-maintained drying was performed and the structure of the PCP obtained by the conditions of Comparative Example 3 and Comparative Example 4 in which the drying was not maintained by the pore were analyzed. The results are shown below.
(1) Appearance of PCP (optical photographic image and SEM image)
An optical photographic image (upper right of each image) and an SEM image of the obtained PCP are shown in FIG. Reference Examples 1 and 2 (PCs (a-1) and (b-1) in the figure), which are PCPs with fine pores, are fine and soft powders, and many cavities are observed in the microstructure confirmed by SEM. The On the other hand, Comparative Examples 3 and 4 (in the figure (FIGS. A-2) and (b-2)), which are PCPs in which pores are not maintained, tend to harden into hard particles, and are densely aggregated in the microstructure as observed by SEM. doing.
(2) Crystal structure (XRD pattern)
The XRD pattern analysis result of the obtained PCP is shown in FIG. Regardless of the presence or absence of pore maintenance, respective XRD patterns are observed for MIL-53 (Fe) and MIL-100 (Fe), confirming that the crystal structure has not changed.
(3) BET specific surface area The evaluation result of the BET specific surface area of the obtained PCP is shown in FIG. In the case of the MIL-53 (Fe) system (Reference Example 1 / Comparative Example 3), it was confirmed that the BET specific surface area was increased about 17 times by drying with supercritical CO 2 . On the other hand, in the case of the MIL-100 (Fe) system (Reference Example 2 / Comparative Example 4), it was confirmed that the BET specific surface area was increased by about 1.2 times by drying with supercritical CO 2 .

[イブプロフェン含浸濃度]
実施例1、2および比較例1、2、5、6の条件により得られるイブプロフェンを多孔性配位高分子に複合した複合体に含浸されたイブプロフェン濃度をTGAの分析結果から求めた結果を表4に示す。本発明の含浸を行うことでより多くのイブプロフェンを含浸させることができた。
[Ibuprofen impregnation concentration]
The result which calculated | required the ibuprofen density | concentration impregnated in the composite_body | complex which compounded the ibuprofen obtained by the conditions of Example 1, 2 and Comparative Examples 1, 2, 5, 6 with the porous coordination polymer from the analysis result of TGA is shown. 4 shows. More ibuprofen could be impregnated by the impregnation of the present invention.

[イブプロフェン徐放性]
実施例1および比較例1、5の条件により得られるイブプロフェンを多孔性配位高分子(MIL−53(Fe))に複合した複合体に含浸されたイブプロフェンの徐放性を評価した結果を図4に示す。また、実施例2および比較例2、6の条件により得られるイブプロフェンを多孔性配位高分子(MIL−100(Fe))に複合した複合体に含浸されたイブプロフェンの徐放性を評価した結果を図5に示す。
[Ibuprofen sustained release]
The results of evaluating the sustained release properties of ibuprofen impregnated in a composite obtained by combining ibuprofen obtained in Example 1 and Comparative Examples 1 and 5 with a porous coordination polymer (MIL-53 (Fe)) are shown in the figure. 4 shows. Moreover, the result of evaluating the sustained release property of ibuprofen impregnated in a composite obtained by combining ibuprofen obtained in Example 2 and Comparative Examples 2 and 6 with a porous coordination polymer (MIL-100 (Fe)). Is shown in FIG.

本発明の工程により得られた多孔性配位高分子複合体は、イブプロフェンを高濃度含浸しており、かつ含浸しているイブプロフェンを数日かけて徐放するものであった。   The porous coordination polymer composite obtained by the process of the present invention was impregnated with a high concentration of ibuprofen and gradually released the impregnated ibuprofen over several days.

本発明によれば、有効物質を多孔性配位高分子に高濃度で含浸させた多孔性配位高分子複合体およびその製造方法が提供される。例えば、この有効物質として、医薬品化合物を採用することで、従来にはなかったドラッグデリバリーシステムを達成する高機能医薬品としたり、触媒を採用することで、従来よりも優れた触媒活性の高機能触媒としたりすることができ産業上の利用可能性を有する。   ADVANTAGE OF THE INVENTION According to this invention, the porous coordination polymer composite which impregnated the effective substance with the porous coordination polymer at high concentration is provided, and its manufacturing method. For example, by adopting a pharmaceutical compound as this active substance, it becomes a highly functional drug that achieves a drug delivery system that has not been available before, or by using a catalyst, a highly functional catalyst with superior catalytic activity than before And has industrial applicability.

Claims (5)

多孔性配位高分子を溶媒中で合成する多孔性配位高分子の合成工程と、
前記合成工程で合成される多孔性配位高分子を超臨界二酸化炭素により乾燥することで細孔維持された多孔性配位高分子を得る乾燥工程と、
前記乾燥工程で得られる細孔維持された多孔性配位高分子と有効物質とを混合した混合物質を、超臨界二酸化炭素および有機溶媒の混合流体により処理することで、前記細孔維持された多孔性配位高分子に、前記有効物質を含浸させる含浸工程とを有することを特徴とする
有効物質を多孔性配位高分子に高濃度で含浸させた多孔性配位高分子複合体の製造方法。
A process for synthesizing a porous coordination polymer in a solvent; and
A drying step of obtaining a porous coordination polymer in which pores are maintained by drying the porous coordination polymer synthesized in the synthesis step with supercritical carbon dioxide;
The pores were maintained by treating a mixed material obtained by mixing the porous coordination polymer with pores maintained in the drying step and the active substance with a mixed fluid of supercritical carbon dioxide and an organic solvent. A porous coordination polymer composite comprising a porous coordination polymer impregnated in a high concentration with an effective substance, characterized by comprising an impregnation step of impregnating the porous coordination polymer with the effective substance. Method.
前記多孔性配位高分子が、ジカルボン酸および/またはトリカルボン酸からなる群から選択される少なくとも1以上の有機配位子と、Cr、Mn、Fe、Co、Ni、Cu、Zn、Al、Mgからなる群から選択される少なくとも1以上の金属のイオンからなる多孔性配位高分子である請求項1記載の多孔性配位高分子複合体の製造方法。   The porous coordination polymer is at least one organic ligand selected from the group consisting of dicarboxylic acid and / or tricarboxylic acid, and Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, Mg The method for producing a porous coordination polymer composite according to claim 1, which is a porous coordination polymer comprising at least one metal ion selected from the group consisting of: 前記含浸工程の前記混合物質に混合される有効物質が、医薬品化合物、化粧品化合物、触媒前駆体からなる群から選択される少なくとも1以上の有効物質である請求項1または2に記載の多孔性配位高分子複合体の製造方法。   The porous material according to claim 1 or 2, wherein the active substance mixed with the mixed substance in the impregnation step is at least one active substance selected from the group consisting of a pharmaceutical compound, a cosmetic compound, and a catalyst precursor. Of manufacturing a polymer composite. 前記含浸工程の混合流体の有機溶媒が、アルコール類、ケトン類、芳香族炭化水素類、アルカン類からなる群から選択される少なくとも1以上の有機溶媒である請求項1〜3のいずれか一項に記載の多孔性配位高分子複合体の製造方法。   The organic solvent of the mixed fluid in the impregnation step is at least one organic solvent selected from the group consisting of alcohols, ketones, aromatic hydrocarbons, and alkanes. A method for producing a porous coordination polymer composite as described in 1. 請求項1〜4のいずれか一項に記載の多孔性配位高分子複合体の製造方法によって得られてなる多孔性配位高分子複合体。   The porous coordination polymer composite obtained by the manufacturing method of the porous coordination polymer composite as described in any one of Claims 1-4.
JP2014141597A 2014-07-09 2014-07-09 Method for producing porous coordination polymer composite Active JP6320207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141597A JP6320207B2 (en) 2014-07-09 2014-07-09 Method for producing porous coordination polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141597A JP6320207B2 (en) 2014-07-09 2014-07-09 Method for producing porous coordination polymer composite

Publications (2)

Publication Number Publication Date
JP2016017055A true JP2016017055A (en) 2016-02-01
JP6320207B2 JP6320207B2 (en) 2018-05-09

Family

ID=55232536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141597A Active JP6320207B2 (en) 2014-07-09 2014-07-09 Method for producing porous coordination polymer composite

Country Status (1)

Country Link
JP (1) JP6320207B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208316B1 (en) * 2016-11-24 2017-10-04 アドバンス理工株式会社 Method and apparatus for supporting metal nanoparticles
JP2019030827A (en) * 2017-08-04 2019-02-28 独立行政法人国立高等専門学校機構 Catalyst using palladium-ruthenium composite fine particle, and method of producing the same
JP2019218310A (en) * 2018-06-20 2019-12-26 株式会社ニックス Functional sustained-release composition and molding
CN115044049A (en) * 2022-04-13 2022-09-13 山西师范大学 Metal organic cage based on tetranuclear In cluster and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540600A (en) * 2007-10-01 2010-12-24 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) Iron carboxylate organic / inorganic hybrid nanoparticles
US20110144367A1 (en) * 2009-12-10 2011-06-16 Northwestern University Activation of porous MOF materials
JP2014047178A (en) * 2012-08-31 2014-03-17 Sumitomo Chemical Co Ltd Porous metal complex, method for manufacturing porous metal complex, storage material, and optically functional material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540600A (en) * 2007-10-01 2010-12-24 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) Iron carboxylate organic / inorganic hybrid nanoparticles
US20110144367A1 (en) * 2009-12-10 2011-06-16 Northwestern University Activation of porous MOF materials
JP2014047178A (en) * 2012-08-31 2014-03-17 Sumitomo Chemical Co Ltd Porous metal complex, method for manufacturing porous metal complex, storage material, and optically functional material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GREEN CHEMISTRY, vol. 13(8), JPN6017039159, 2011, pages 2078-2082 *
J. AM. CHEM. SOC., vol. 131, JPN6017039160, 2009, pages 458-460 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208316B1 (en) * 2016-11-24 2017-10-04 アドバンス理工株式会社 Method and apparatus for supporting metal nanoparticles
JP2018083163A (en) * 2016-11-24 2018-05-31 アドバンス理工株式会社 Metal nanoparticle supporting method and device thereof
JP2019030827A (en) * 2017-08-04 2019-02-28 独立行政法人国立高等専門学校機構 Catalyst using palladium-ruthenium composite fine particle, and method of producing the same
JP7017730B2 (en) 2017-08-04 2022-02-09 学校法人福岡工業大学 Method for manufacturing a catalyst using palladium-ruthenium composite fine particles
JP2019218310A (en) * 2018-06-20 2019-12-26 株式会社ニックス Functional sustained-release composition and molding
WO2019244921A1 (en) * 2018-06-20 2019-12-26 株式会社ニックス Composition with sustained-release function and molded object
JP7150305B2 (en) 2018-06-20 2022-10-11 株式会社ニックス Functional sustained-release composition and molded article
CN115044049A (en) * 2022-04-13 2022-09-13 山西师范大学 Metal organic cage based on tetranuclear In cluster and preparation method and application thereof

Also Published As

Publication number Publication date
JP6320207B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
Zhang et al. Microenvironment of MOF channel coordination with Pt NPs for selective hydrogenation of unsaturated aldehydes
Stolar et al. Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks
Jeong et al. Coordination-chemistry control of proton conductivity in the iconic metal–organic framework material HKUST-1
Gong et al. Interrogating kinetic versus thermodynamic topologies of metal–organic frameworks via combined transmission electron microscopy and X-ray diffraction analysis
Forgan Modulated self-assembly of metal–organic frameworks
Zhang et al. Hierarchical Zn/Ni‐MOF‐2 nanosheet‐assembled hollow nanocubes for multicomponent catalytic reactions
Hu et al. Void engineering in metal–organic frameworks via synergistic etching and surface functionalization
Haouas et al. In situ NMR, ex situ XRD and SEM study of the hydrothermal crystallization of nanoporous aluminum trimesates MIL-96, MIL-100, and MIL-110
Müller et al. Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: properties of Cu/ZnO@ MOF-5 as catalyst for methanol synthesis
Ragon et al. In situ energy-dispersive X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66
Stock et al. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites
Bara et al. Kinetic control of interpenetration in Fe–Biphenyl-4, 4′-dicarboxylate metal–organic frameworks by coordination and oxidation modulation
Hu et al. A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs
Lopez-Periago et al. Metal–organic frameworks precipitated by reactive crystallization in supercritical CO2
Wei et al. Nanoparticle core/shell architectures within MOF crystals synthesized by reaction diffusion
Gordon et al. MIL-53 (Fe), MIL-101, and SBA-15 porous materials: potential platforms for drug delivery
Zanchetta et al. ZnO as an efficient nucleating agent for rapid, room temperature synthesis and patterning of Zn-based metal–organic frameworks
Hu et al. Synthesis of superparamagnetic nanoporous iron oxide particles with hollow interiors by using Prussian blue coordination polymers
JP6320207B2 (en) Method for producing porous coordination polymer composite
JP2020508288A (en) Low temperature method for the synthesis of MOF carboxylate nanoparticles
Chu et al. A gold nanocluster constructed mixed-metal metal–organic network film for combating implant-associated infections
Sun et al. A tale of two membranes: from poly (ionic liquid) to metal–organic framework hybrid nanoporous membranes via pseudomorphic replacement
Liu et al. Harnessing structural dynamics in a 2D manganese–benzoquinoid framework to dramatically accelerate metal transport in diffusion-limited metal exchange reactions
Hou et al. Strategies for induced defects in metal–organic frameworks for enhancing adsorption and catalytic performance
Huelsenbeck et al. Generalized approach for rapid aqueous MOF synthesis by controlling solution pH

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180403

R150 Certificate of patent or registration of utility model

Ref document number: 6320207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150