JP2016017040A - Hydroxamic acid derivatives and hdac8 inhibitors - Google Patents

Hydroxamic acid derivatives and hdac8 inhibitors Download PDF

Info

Publication number
JP2016017040A
JP2016017040A JP2014139425A JP2014139425A JP2016017040A JP 2016017040 A JP2016017040 A JP 2016017040A JP 2014139425 A JP2014139425 A JP 2014139425A JP 2014139425 A JP2014139425 A JP 2014139425A JP 2016017040 A JP2016017040 A JP 2016017040A
Authority
JP
Japan
Prior art keywords
compound
hdac8
mmol
hydroxamic acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014139425A
Other languages
Japanese (ja)
Inventor
孝禎 鈴木
Takayoshi Suzuki
孝禎 鈴木
幸裕 伊藤
Yukihiro Ito
幸裕 伊藤
直樹 宮田
Naoki Miyata
直樹 宮田
秀彦 中川
Hidehiko Nakagawa
秀彦 中川
彩子 正木
Ayako Masaki
彩子 正木
真介 飯田
Shinsuke Iida
真介 飯田
政樹 李
Masaki Ri
政樹 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Prefectural Public Univ Corp
Nagoya City University
MySkin Corp
Original Assignee
Kyoto Prefectural Public Univ Corp
Nagoya City University
Tak Circulator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Prefectural Public Univ Corp, Nagoya City University, Tak Circulator Co Ltd filed Critical Kyoto Prefectural Public Univ Corp
Priority to JP2014139425A priority Critical patent/JP2016017040A/en
Publication of JP2016017040A publication Critical patent/JP2016017040A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide compounds that are highly active and can highly selectively inhibit HDAC8 functionality, and HDAC8 inhibitors.SOLUTION: Each hydroxamic acid derivative comprise a compound of the general formula (1) in the figure, where φ represents a benzene ring that may have substituents, or a pharmaceutically acceptable salt, hydrate, solvate or prodrug thereof. These hydroxamic acid derivatives (1) can selectively inhibit HDAC8 enzyme activity.SELECTED DRAWING: None

Description

本発明は、HDAC8の機能を選択的に阻害することのできるヒドロキサム酸誘導体及びそれを用いたHDAC8阻害剤に関する。   The present invention relates to a hydroxamic acid derivative capable of selectively inhibiting the function of HDAC8 and an HDAC8 inhibitor using the same.

ヒストンは、真核生物においてDNAを折りたたんでクロマチン構造を形成するタンパク質であり、様々な酵素の働きによって化学修飾され、これによりクロマチン構造が変化し、遺伝子の発現が制御されると考えられている。近年、こうしたエピジェネティックな遺伝子制御に関する様々な知見が発見されている。   Histones are proteins that fold DNA in eukaryotes to form a chromatin structure, and are chemically modified by the action of various enzymes, which are thought to change the chromatin structure and control gene expression. . In recent years, various knowledge about such epigenetic gene regulation has been discovered.

最近発見されたHistone Deacetylase(以下「HDAC」という)は、アセチル化されたヒストンのリシン残基を脱アセチル化する反応を触媒し、多くの遺伝子発現を制御している。ヒストンのリシン残基のε−アミノ基がアセチル化されると、ヒストンの正電荷が中和されてヌクレオソーム構造が弛緩する。すなわち、そのプロモータ領域には転写調節因子がアクセスし易くなり、結果的に転写が活性化する。また、逆にヒストンの脱アセチル化が亢進するとヌクレオソーム構造が凝縮し、転写が抑制される。   Recently discovered Histone Deacetylase (hereinafter referred to as “HDAC”) catalyzes the reaction of deacetylating lysine residues of acetylated histones and controls the expression of many genes. When the ε-amino group of a histone lysine residue is acetylated, the histone positive charge is neutralized and the nucleosome structure relaxes. That is, a transcriptional regulatory factor is easily accessible to the promoter region, and as a result, transcription is activated. Conversely, when histone deacetylation is enhanced, the nucleosome structure is condensed and transcription is suppressed.

HDACにはHDAC1〜HDAC11までの11種類のアイソフォームが知られており、最近の研究によると、HDAC8を阻害することによって血液系がん細胞の増殖抑制や、神経芽細胞腫の分化誘導が可能となることが報告されている(非特許文献1、非特許文献2)。   Eleven isoforms from HDAC1 to HDAC11 are known for HDAC. According to recent research, inhibition of blood system cancer cells and induction of differentiation of neuroblastoma are possible by inhibiting HDAC8. (Non-Patent Document 1, Non-Patent Document 2).

しかし、HDAC8が生体にどのような影響を与えるかなど、生物学的意義に関しては未だ不明な点も多い。このため、HDAC8の触媒作用を阻害する物質(すなわちHDAC8阻害剤)を見つければ、これをHDAC8の機能を調べるためのバイオプローブとして用いたり、新しいタイプの抗がん剤として利用したりすることが期待できる。   However, there are still many unclear points regarding the biological significance, such as how HDAC8 affects the living body. For this reason, if a substance that inhibits the catalytic action of HDAC8 (ie, an HDAC8 inhibitor) is found, it can be used as a bioprobe to investigate the function of HDAC8 or as a new type of anticancer agent. I can expect.

これまでに報告されたHDAC8を阻害する化合物として、SAHA(非特許文献3)、PCI-34051(非特許文献1)等が挙げられる。
本発明者らにおいても、Huisgen反応を利用してHDAC8阻害活性を有する化合物の探索を網羅的に行い、HDAC8を選択的に阻害する化合物を見出している(特許文献1)。
Examples of the compounds that inhibit HDAC8 reported so far include SAHA (Non-patent Document 3), PCI-34051 (Non-patent Document 1), and the like.
The present inventors have also exhaustively searched for compounds having HDAC8 inhibitory activity using the Huisgen reaction, and have found compounds that selectively inhibit HDAC8 (Patent Document 1).

以下にこれまで報告されている、HDAC8阻害活性を有する化合物を挙げる。これらの中でも、特許文献1において報告されている化合物7(略称「NCC-149」)は、HDAC8に対して優れた阻害活性と選択性とを有している。
The compounds reported so far with HDAC8 inhibitory activity are listed below. Among these, the compound 7 (abbreviation “NCC-149”) reported in Patent Document 1 has excellent inhibitory activity and selectivity for HDAC8.

WO2011/089995WO2011 / 089995

Leukemia 2008, 22, 1026-1034Leukemia 2008, 22, 1026-1034 Clin Cancer Res 2009, 15, 91-99Clin Cancer Res 2009, 15, 91-99 Proc. Natl. Acad. Sci. USA 95, 3003-3007, 1998Proc. Natl. Acad. Sci. USA 95, 3003-3007, 1998

本発明は、上記従来の実情に鑑みてなされたものであり、高活性であって且つ高選択的にHDAC8の機能を阻害することのできる化合物及びHDAC8阻害剤を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional circumstances, and a problem to be solved by providing a compound and an HDAC8 inhibitor that are highly active and can selectively inhibit the function of HDAC8. It is said.

本発明者らは、HDAC8とNCC149の相互作用について、計算化学ソフトウェアGlide-Macromodelを用いて解析した。その結果、NCC149に存在するトリアゾール環のπ電子はHDAC8のPhe152のベンジル位水素との間で相互作用が働いており、このことが阻害活性及び選択性に深く関わっているということが示唆された(図1参照)。このため、NCC149におけるトリアゾール環部分に代えて、π電子共役系を有する他の環状構造とした様々な化合物を合成し、HDAC8に対する阻害特性を調べた。その結果、HDAC8阻害活性を選択的に発揮する新たな化合物を見出し、本発明を完成するに至った。   The present inventors analyzed the interaction between HDAC8 and NCC149 using computational chemistry software Glide-Macromodel. As a result, it was suggested that the π-electron of the triazole ring present in NCC149 interacts with the benzylic hydrogen of Phe152 of HDAC8, which is deeply related to inhibitory activity and selectivity. (See FIG. 1). Therefore, various compounds having other cyclic structures having a π-electron conjugated system were synthesized in place of the triazole ring moiety in NCC149, and the inhibitory properties against HDAC8 were investigated. As a result, a new compound that selectively exhibits HDAC8 inhibitory activity was found and the present invention was completed.

すなわち、本発明のヒドロキサム酸誘導体は、下記一般式(1)又はその薬学上許容される塩、水和物、溶媒和物若しくはプロドラッグからなることを特徴とする特徴とする。
That is, the hydroxamic acid derivative of the present invention is characterized by comprising the following general formula (1) or a pharmaceutically acceptable salt, hydrate, solvate or prodrug thereof.

本発明のヒドロキサム酸誘導体(1)は、HDAC8の酵素活性を選択的に阻害することができる。このため、HDAC8の機能を調べるための生物学的ツールとして好適に用いることができる。また、癌細胞増殖抑制作用も有しており、抗がん剤として利用することも期待される。なお、プロドラッグとは、生体内で加水分解されてヒドロキサム酸誘導体(1)を再生する化合物をいう。   The hydroxamic acid derivative (1) of the present invention can selectively inhibit the enzyme activity of HDAC8. For this reason, it can be suitably used as a biological tool for examining the function of HDAC8. It also has cancer cell growth inhibitory action and is expected to be used as an anticancer agent. The prodrug refers to a compound that is hydrolyzed in vivo to regenerate the hydroxamic acid derivative (1).

φは置換基のないベンゼン環であってもよい。発明者らはφが置換基のないベンゼン環である場合、HDAC8阻害剤として確実に高活性及び高選択性となることを確認している。特に、トリアゾール環がNCC149とは逆向きで炭素に結合しており、その他の構造部分はNCC149と同じである化合物は、HDAC8阻害剤としてNCC149よりも高活性及び高選択性であった。   φ may be an unsubstituted benzene ring. The inventors have confirmed that when φ is an unsubstituted benzene ring, it is surely highly active and highly selective as an HDAC8 inhibitor. In particular, a compound in which the triazole ring is bonded to carbon in the opposite direction to NCC149 and the other structural parts are the same as NCC149 was more active and more selective than NCC149 as an HDAC8 inhibitor.

計算化学ソフトウェアGlide-Macromodelを用いて解析したNCC149とHDACとのπ電子間の相互作用を示す図である。It is a figure which shows the interaction between the pi electrons of NCC149 and HDAC analyzed using the computational chemistry software Glide-Macromodel. Western blot analysisにおける電気泳動の結果を示す写真である。It is a photograph which shows the result of the electrophoresis in Western blot analysis. MTSアッセイの原理を示す図である。It is a figure which shows the principle of an MTS assay.

<分子設計>
前述したように、NCC149のトリアゾール環はHDAC8のPhe152のベンジル位水素との間で相互作用が働いていると考えられる(図1参照)。そこで、NCC149のトリアゾール環を6員環であるベンゼン環に変換した化合物8や、トリアゾール環と同じ5員環で電子密度の異なるヘテロ環に変換した化合物9、10、12や、トリアゾール環がNCC149とは逆向きで炭素に結合しており、その他の構造部分はNCC149と同じである化合物11を合成した(下記構造式参照)。以下にその合成方法を詳細に述べる。
<Molecular design>
As described above, the triazole ring of NCC149 is considered to interact with the benzylic hydrogen of Phe152 of HDAC8 (see FIG. 1). Therefore, Compound 8 in which the triazole ring of NCC149 is converted into a 6-membered benzene ring, Compounds 9, 10, and 12 in which the 5-membered ring is the same as the triazole ring and is converted to a heterocycle having a different electron density, and the triazole ring are NCC149 Compound 11 was synthesized in which it was bonded to carbon in the opposite direction and the other structural parts were the same as NCC149 (see the structural formula below). The synthesis method is described in detail below.

測定方法
融点はヤナギモト・ミクロ融点測定装置またはBuehi 545融点測定装置を用いて測定した。1H-NMR及び13C NMRはJEOL JNM-LA500またはJEOL JNM-A500を用いた。 化学シフト(δ)は、内部標準としてTMSを用いて測定した。元素分析は、Yanaco CHN CORDER NT-5 analyzer,を用いて測定した。 ElMS分析は、JEOL JMS-SX102A質量分析計を用いた。FTIRは島津FTIR84005を用いて測定した。試薬及び溶媒は、アルドリッチ、東京化成工業、和光純薬工業、関東化学から購入しやものを、精製することなくそのまま用いた。フラッシュ・カラムクロマトグラフィーはMerk社製のシリカゲル60を使って行った(粒径:0.046-0.063 mm)。
Measuring method Melting points were measured using a willow moto micro melting point measuring apparatus or a Buehi 545 melting point measuring apparatus. For 1 H-NMR and 13 C NMR, JEOL JNM-LA500 or JEOL JNM-A500 was used. Chemical shift (δ) was measured using TMS as an internal standard. Elemental analysis was performed using a Yanaco CHN CORDER NT-5 analyzer. For ElMS analysis, a JEOL JMS-SX102A mass spectrometer was used. FTIR was measured using Shimadzu FTIR84005. Reagents and solvents purchased from Aldrich, Tokyo Chemical Industry, Wako Pure Chemical Industries, and Kanto Chemical were used as they were without purification. Flash column chromatography was performed using Merk silica gel 60 (particle size: 0.046-0.063 mm).

(実施例1)
実施例1では化合物8を以下の合成経路によって調製した。以下、詳細に説明する。
Example 1
In Example 1, compound 8 was prepared by the following synthetic route. Details will be described below.

・化合物15の合成
3-ヨードベンジルアルコール13 (2.72g, 11.6mmol)と3-(メトキシカルボニル)フェニルボロン酸(14) (2.009, 11.1 mmol)とPd(OAc)2 (56.2ng, 0.250 mmol)のDMF (7 mL)溶液に1MのNa2CO3 (34 mL)水溶液を加えて55℃で1.5時間加熱した。反応溶液をクロロホルムで希釈し、ろ過した。そしてクロロホルム層を分離し、水及び食塩水で洗ってから、無水硫酸ナトリウムで乾燥させた。さらに、真空濃縮し、シリカゲルフラッシュカラムで精製することにより(溶離液は0-80% 酢酸エチル/n−ヘキサン)淡褐色オイルとして化合物15を3.85 g得た。
lH NMR (500 MHz,CDCl3) :δ=8.27 (t, J=1.7 Hz, 1H), 8.00 (dt, J=1.5, 7.5 Hz, 1H), 7.78(dt, J= 1.6, 7.8 Hz, 1H), 7.63 (5, 1H). 7.57-7.48 (m, 2H). 7.43 (t, J=7.7 Hz, 1H), 7.37 (d, J=7.0 Hz, 1H), 4.76 (d, J=6.0 Hz, 2H).3.94 ppm (s, 3H)
ElMS: m/z 242 [M+].
・ Synthesis of Compound 15
DMF (7 mL) of 3-iodobenzyl alcohol 13 (2.72 g, 11.6 mmol) and 3- (methoxycarbonyl) phenylboronic acid (14) (2.009, 11.1 mmol) and Pd (OAc) 2 (56.2 ng, 0.250 mmol) ) 1M Na 2 CO 3 (34 mL) aqueous solution was added to the solution and heated at 55 ° C. for 1.5 hours. The reaction solution was diluted with chloroform and filtered. The chloroform layer was separated, washed with water and brine, and dried over anhydrous sodium sulfate. Further, the residue was concentrated in vacuo and purified by silica gel flash column (eluent: 0-80% ethyl acetate / n-hexane) to obtain 3.85 g of compound 15 as a light brown oil.
l H NMR (500 MHz, CDCl 3 ): δ = 8.27 (t, J = 1.7 Hz, 1H), 8.00 (dt, J = 1.5, 7.5 Hz, 1H), 7.78 (dt, J = 1.6, 7.8 Hz, 1H), 7.63 (5, 1H) .7.57-7.48 (m, 2H) .7.43 (t, J = 7.7 Hz, 1H), 7.37 (d, J = 7.0 Hz, 1H), 4.76 (d, J = 6.0 Hz, 2H) .3.94 ppm (s, 3H)
ElMS: m / z 242 [M + ].

・化合物16の合成
窒素気流下0℃において、PBr3(0.6 mL, 6.38 mmol)をアルコール15 (3.85 g, 15.9mmol)の10ml無水ジオキサン溶液に滴下する。反応溶液を0℃で1.5時間撹拌した後、氷と飽和炭酸水素ナトリウム溶液の混合物中に注ぐ。そして、反応液をエチルエーテルで抽出し、水及び食塩水で洗ってから、無水硫酸ナトリウムで乾燥させた。そして、真空濃縮し、黄色オイルとして化合物16を4.01 g (収率83%)得た。
lH NMR (500 MHz, CDCl3) : δ=8.26 (s, 1H), 8.02 (d, )=7.5 Hz, 1H), 7.76 (d, J=8.0 Hz, 1H), 7.63 (5,1H), 7.56-7.47 (111,2 H), 7.44-7.38 (m, 2H), 4.55 (s, 2H), 3.94ppm (5,3H); ElMS: m/z 304, 306 [M+].
- In a nitrogen gas stream under 0 ℃ compound 16, PBr 3 (0.6 mL, 6.38 mmol) is added dropwise alcohol 15 (3.85 g, 15.9mmol) in 10ml of anhydrous dioxane. The reaction solution is stirred at 0 ° C. for 1.5 hours and then poured into a mixture of ice and saturated sodium bicarbonate solution. The reaction solution was extracted with ethyl ether, washed with water and brine, and then dried over anhydrous sodium sulfate. Concentration in vacuo gave 4.01 g (83% yield) of compound 16 as a yellow oil.
l H NMR (500 MHz, CDCl3): δ = 8.26 (s, 1H), 8.02 (d,) = 7.5 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.63 (5,1H), 7.56-7.47 (111,2 H), 7.44-7.38 (m, 2H), 4.55 (s, 2H), 3.94 ppm (5,3H); ElMS: m / z 304, 306 [M + ].

・化合物17の合成
ナトリウムチオフェノール(2.07 g, 15.7 mmol) の水溶液 (15 mL) とトリエチルアミン(5 mL)とを化合物16 (3.70g, 12.1 mmol)のアセトン(35mL)溶液中に加えた。この混合物を室温下で19.5時間撹拌した。溶媒を留去させた後、残留物を水中に注ぎ、クロロホルムで抽出した。有機層を水及び食塩水で洗ってから、無水硫酸ナトリウムで乾燥させた。そして、真空濃縮し、シリカゲルフラッシュカラムで精製することにより(溶離液は0-30%酢酸エチル/n−ヘキサン) 無色オイルとして化合物172.02g(収率50%)を3.85 g得た。
lH NMR (500 MHz, CDCl3:δ=8.20 (t,J= 1.7 Hz, 1H), 7.99 (dt, J= 1.4, 7.7 Hz, 1H), 7.68 (dt, J= 1.2, 7.2 Hz,1H), 7.47-7.44 trn, 3H), 7.35-7.18 (rn, 7H), 4.14 (s, 2H), 3.92ppm (s,3H); ElMS: m/z 334[M+].
-Synthesis of Compound 17 An aqueous solution (15 mL) of sodium thiophenol (2.07 g, 15.7 mmol) and triethylamine (5 mL) were added to a solution of Compound 16 (3.70 g, 12.1 mmol) in acetone (35 mL). The mixture was stirred at room temperature for 19.5 hours. After the solvent was distilled off, the residue was poured into water and extracted with chloroform. The organic layer was washed with water and brine and then dried over anhydrous sodium sulfate. Then, it was concentrated in vacuo and purified by a silica gel flash column (eluent: 0-30% ethyl acetate / n-hexane) to obtain 3.85 g of compound 172.02 g (yield 50%) as a colorless oil.
l H NMR (500 MHz, CDCl 3 : δ = 8.20 (t, J = 1.7 Hz, 1H), 7.99 (dt, J = 1.4, 7.7 Hz, 1H), 7.68 (dt, J = 1.2, 7.2 Hz, 1H ), 7.47-7.44 trn, 3H), 7.35-7.18 (rn, 7H), 4.14 (s, 2H), 3.92 ppm (s, 3H); ElMS: m / z 334 [M + ].

・化合物18の合成
メチルエステル17(2.02 g, 6.04 mmol)をメタノール (20mL),THF(10mL)及びCHCl3(10 mL)の混合溶媒中に溶解し、水酸化ナトリウム水溶液(2N.12mL,24.0 mmol)を注いだ。反応溶液を室温で5時間撹拌した。溶媒を除去後、残渣を2Nの水酸化ナトリウム水溶液に注ぎ、クロロホルムで抽出し、有機層を水及び食塩水で洗ってから、無水硫酸ナトリウムで乾燥させた。そして、真空濃縮し、シリカゲルフラッシュカラムで精製することにより(溶離は0-40%酢酸エチル/n−ヘキサンの後0-40% メタノール/CHCl3で溶出)白色固体として化合物18を957mg (収率50%)得た。
IH NMR(500 MHz,CDCl3) : δ=8.26 (5,1 H), 8.07 (d, J=7.5 Hz, 1H), 7.77 (d, J=8.0 Hz, 1H), 7.53-7.21(m, 10H), 4.18 ppm (s, 2H); ElMS: m/z 320 [M+]..
Synthesis of compound 18Methyl ester 17 (2.02 g, 6.04 mmol) was dissolved in a mixed solvent of methanol (20 mL), THF (10 mL) and CHCl 3 (10 mL), and an aqueous sodium hydroxide solution (2N.12 mL, 24.0 mmol) was poured. The reaction solution was stirred at room temperature for 5 hours. After removing the solvent, the residue was poured into 2N aqueous sodium hydroxide solution and extracted with chloroform. The organic layer was washed with water and brine, and then dried over anhydrous sodium sulfate. It was then concentrated in vacuo and purified on a silica gel flash column (elution was 0-40% ethyl acetate / n-hexane followed by 0-40% methanol / CHCl 3 ) 957 mg of compound 18 as a white solid (yield 50%).
I H NMR (500 MHz, CDCl 3 ): δ = 8.26 (5,1 H), 8.07 (d, J = 7.5 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.53-7.21 (m , 10H), 4.18 ppm (s, 2H); ElMS: m / z 320 [M + ] ..

・化合物19の合成
化合物18 (0.957 g, 2.99 mmol), EDCl・HCl (1.70 g, 8.85 mmol)及びHOBt・H2O(1.39 g, 9.08 mmol)のDMF(25 mL)溶液にNH2OTHP (1.00 g, 8.55 mmol)を加える。そして、混合物を室温で30時間撹拌した後、飽和炭酸水素ナトリウム水溶液に注ぎ、エチルエーテルで抽出する。有機層を水及び食塩水で洗ってから、無水硫酸ナトリウムで乾燥させた。そして、真空濃縮し、シリカゲルフラッシュカラムで精製することにより(溶離液は10-50%酢酸エチル/n−ヘキサン)淡黄色非結晶固体として化合物19を1.06 g (収率84%)得た。
lH NMR (500 MHz, CDCl3) : δ = 8.90 (s, 1H),7.88 (s, 1H), 7.70 (d, J = 7.5 Hz, 1H), 7.66 (d, J= 8.0 Hz, 1H), 7.497.45(m, 3H), 7.37-7.27 (m, 6H), 7.21 (m, 1H), 5.11 (s, 1H), 4.16 (s,2H), 4.02 (t, J=10.2 Hz, 1 H), 3.68-3.66 (m, 1 H), 1.91-1.86 (m, 3H)1.87-1.59 ppm (m, 3H); ElMS: m/z 419 [M+].
- Compound 18 Compound 19 (0.957 g, 2.99 mmol) , EDCl · HCl (1.70 g, 8.85 mmol) and HOBt · H 2 O (1.39 g , 9.08 mmol) DMF (25 mL) of the solution to NH 2 OTHP ( 1.00 g, 8.55 mmol). The mixture is stirred at room temperature for 30 hours, then poured into a saturated aqueous sodium bicarbonate solution and extracted with ethyl ether. The organic layer was washed with water and brine and then dried over anhydrous sodium sulfate. Then, it was concentrated in vacuo and purified by a silica gel flash column (eluent: 10-50% ethyl acetate / n-hexane) to obtain 1.06 g (yield 84%) of Compound 19 as a pale yellow amorphous solid.
l H NMR (500 MHz, CDCl 3 ): δ = 8.90 (s, 1H), 7.88 (s, 1H), 7.70 (d, J = 7.5 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H) , 7.497.45 (m, 3H), 7.37-7.27 (m, 6H), 7.21 (m, 1H), 5.11 (s, 1H), 4.16 (s, 2H), 4.02 (t, J = 10.2 Hz, 1 H), 3.68-3.66 (m, 1 H), 1.91-1.86 (m, 3H) 1.87-1.59 ppm (m, 3H); ElMS: m / z 419 [M + ].

・化合物8の合成
化合物19(264 mg, 0.630 mmol)のメタノール (30 mL)溶液にTsOH・H20 (12.0 mg, 63μmol)を加え混合物を室温で5.5時間撹拌する。溶媒を除去して得られた固体を酢酸エチル中に懸濁させ、ろ過することにより、白色固体として化合物8を85.1 mg (収率40%)で得た。さらにこれをTHF中で再結晶させ、無色結晶の化合物8を51 mg得た。
mp: 167-168℃;lH NMR (500 MHz, [D6]DMSO): δ= 11.33 (s, 1H), 9.12 (s,1 H), 7.98 (s, 1H), 7.76-7.73 (m, 2 H), 7.69 (s, 1H), 7.59-7.53 (m, 2 H),7.44-7.37 (m, 4H), 7.31 (t, J=7.7 Hz, 2H), 7.19 (t, J=7.2 Hz, 1H),4.33 ppm (s, 2H); 13C NMR (125 MHz, [D6]DMSO): δ= 164.1, 140.0,139.5, 138.4, 136.0, 133.5, 129.3, 129.2, 129.1, 129.0, 128.5, 128.3,127.4, 126.1, 126.0, 125.6, 125.1, 36.7 ppm; ElMS: m/z 335 [M+];元素分析C20H17NO2S・0.5H2Oとしての計算値: C 69.74, H 5.27, N 4.07, 実測値: C69.72, H 5.12, N 4.17.
- Compound 19 (264 mg, 0.630 mmol) of the compound 8 methanol (30 mL) was added TsOH · H 2 0 (12.0 mg , 63μmol) and stirred 5.5 hours at room temperature was added the mixture. The solid obtained by removing the solvent was suspended in ethyl acetate and filtered to obtain 85.1 mg (yield 40%) of Compound 8 as a white solid. Further, this was recrystallized in THF to obtain 51 mg of colorless crystals of Compound 8.
mp: 167-168 ° C; l H NMR (500 MHz, [D 6 ] DMSO): δ = 11.33 (s, 1H), 9.12 (s, 1 H), 7.98 (s, 1H), 7.76-7.73 (m , 2 H), 7.69 (s, 1H), 7.59-7.53 (m, 2 H), 7.44-7.37 (m, 4H), 7.31 (t, J = 7.7 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 4.33 ppm (s, 2H); 13 C NMR (125 MHz, [D 6 ] DMSO): δ = 164.1, 140.0, 139.5, 138.4, 136.0, 133.5, 129.3, 129.2, 129.1, 129.0, 128.5 , 128.3,127.4, 126.1, 126.0, 125.6, 125.1, 36.7 ppm; ElMS: m / z 335 [M + ]; elemental analysis calculated as C 20 H 17 NO 2 S ・ 0.5H 2 O: C 69.74, H 5.27, N 4.07, found: C69.72, H 5.12, N 4.17.

(実施例2)
実施例2では化合物9を以下の合成経路によって調製した。以下、詳細に説明する。
(Example 2)
In Example 2, compound 9 was prepared by the following synthetic route. Details will be described below.

・化合物21の合成
3-アセチル安息香酸20(2.02 g,12.3 mmol) のメタノール(60mL)溶液に濃硫酸(4 mL) を加え、26.5時間撹拌しながら還流した。溶媒を除去後、残渣を水に投入し、エチルエーテルで抽出し、有機層を水及び食塩水で洗ってから、無水硫酸ナトリウムで乾燥させた。そして、ろ過物を真空濃縮し、白色個体として化合物21を2.12 g (収率97%)得た。
1H NMR(500 MHz, CDCl3) : δ=8.60 (s, 1H), 8.24 (t, J=7.5 Hz, 1H), 8.17 (d,J = 7.5 Hz, 1H), 7.57 (t, J = 7.7 Hz, 1 H), 3.96 (s, 3 H), 2.66 ppm (s,3H);ElMS: m/z 178 [M+].
・ Synthesis of compound 21
Concentrated sulfuric acid (4 mL) was added to a solution of 3-acetylbenzoic acid 20 (2.02 g, 12.3 mmol) in methanol (60 mL), and the mixture was refluxed with stirring for 26.5 hours. After removing the solvent, the residue was poured into water and extracted with ethyl ether. The organic layer was washed with water and brine, and then dried over anhydrous sodium sulfate. The filtrate was concentrated in vacuo to obtain 2.12 g (yield 97%) of compound 21 as a white solid.
1 H NMR (500 MHz, CDCl 3 ): δ = 8.60 (s, 1H), 8.24 (t, J = 7.5 Hz, 1H), 8.17 (d, J = 7.5 Hz, 1H), 7.57 (t, J = 7.7 Hz, 1 H), 3.96 (s, 3 H), 2.66 ppm (s, 3H); ElMS: m / z 178 [M + ].

・化合物22の合成
化合物21 (1.11 g, 6.24 mmol)のクロロホルム(5 mL)溶液を0℃とし、Br2 (0.3 mL,5.82 mmol)と触媒量の25%HBr-AcOHを加える。反応溶液を室温にて2時間撹拌し、飽和炭酸水素ナトリウム水溶液に注ぎ、クロロホルムで抽出する。有機層を水及び食塩水で洗ってから、無水硫酸ナトリウムで乾燥させた。そして、ろ過し、真空濃縮し、白色個体として化合物22を1.48 g得た。
ElMS: m/z 256, 258[M+].
- Compound 21 (1.11 g, 6.24 mmol) of compound 22 as a 0 ℃ chloroform (5 mL) solution of, Br 2 (0.3 mL, 5.82 mmol) is added 25% HBr-AcOH in a catalytic amount. The reaction solution is stirred at room temperature for 2 hours, poured into a saturated aqueous sodium hydrogen carbonate solution and extracted with chloroform. The organic layer was washed with water and brine and then dried over anhydrous sodium sulfate. Then, it was filtered and concentrated in vacuo to obtain 1.48 g of compound 22 as a white solid.
ElMS: m / z 256, 258 [M + ].

・化合物24の合成
フェニルチオ酢酸23 (3.01 g,17.9 mmol)と塩化オキサリル(4 mL, 46.6 mmol)の乾燥THF(20 mL)溶液を0℃とし、触媒量のDMFを加える。混合物を0℃で 0.5時間撹拌した後、溶媒を減圧下で留去させ、対応する酸塩化物を黄色固体として得た。この酸塩化物のTHF(40ml)溶液を0℃とし、25%アンモニア水溶液(20 mL)を加え、1.5時間経過後、反応溶液を飽和炭酸水素ナトリウム水溶液に注ぎ、酢酸エチルで抽出する。有機層を水及び食塩水で洗ってから、無水硫酸ナトリウムで乾燥させた。そして、ろ過し、真空濃縮し、白色個体としてアミド24を2.46g(収率83%) 得た。
lH NMR (500 MHz, CDCl3) : δ=7.34-7.30(m,3H), 7.25-7.21 (m,2H), 6.69 (broad s,1H), 5.45 (broad s,1H), 3.63 ppm (s,2H); ElMS: m/z 167 [M+].
Synthesis of Compound 24 A solution of phenylthioacetic acid 23 (3.01 g, 17.9 mmol) and oxalyl chloride (4 mL, 46.6 mmol) in dry THF (20 mL) is brought to 0 ° C., and a catalytic amount of DMF is added. After the mixture was stirred at 0 ° C. for 0.5 h, the solvent was evaporated under reduced pressure to give the corresponding acid chloride as a yellow solid. The acid chloride in THF (40 ml) is brought to 0 ° C., 25% aqueous ammonia (20 mL) is added, and after 1.5 hours, the reaction solution is poured into saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The organic layer was washed with water and brine and then dried over anhydrous sodium sulfate. Then, it was filtered and concentrated in vacuo to obtain 2.46 g (yield 83%) of amide 24 as a white solid.
l H NMR (500 MHz, CDCl 3 ): δ = 7.34-7.30 (m, 3H), 7.25-7.21 (m, 2H), 6.69 (broad s, 1H), 5.45 (broad s, 1H), 3.63 ppm ( s, 2H); ElMS: m / z 167 [M + ].

・化合物25の合成
アミド24 (2.46 g,14.7 mmol) の乾燥トルエン (100 mL)溶液へ窒素気流下、ローソン試薬((2.84 g,7.02 mmol) を加え、80℃で3.5時間撹拌する。そして、溶媒を留去後、残渣をシリカゲルフラッシュカラムで精製することにより(溶離液は15-50%酢酸エチル/n−ヘキサン)粗白色固体として化合物25を554 mg(収率21%)得た。ElMS: m/z 183 [M+]
-Synthesis of Compound 25 Lawson's reagent ((2.84 g, 7.02 mmol) was added to a dry toluene (100 mL) solution of amide 24 (2.46 g, 14.7 mmol) under a nitrogen stream, and the mixture was stirred at 80 ° C for 3.5 hours. After the solvent was distilled off, the residue was purified by a silica gel flash column (eluent: 15-50% ethyl acetate / n-hexane) to obtain 554 mg (yield 21%) of compound 25 as a crude white solid. : m / z 183 [M + ]

・化合物26の合成
チオアミド25 (555mg, 2.16 mmol)のエタノール(10mL)溶液を化合物22 (1.52 g, 8.31 mmol)と3オングストロームの活性化モレキュラシーブが混合されたエタノール (10 mL)及びクロロホルム(10mL)の溶液中に窒素気流下で加える。混合物を70℃で3時間撹拌し、ろ過した後、溶媒を留去させ、残渣飽和炭酸水素ナトリウム水溶液に注ぎ、酢酸エチルで抽出する。有機層を水及び食塩水で洗ってから、無水硫酸ナトリウムで乾燥させた。そして、残渣をシリカゲルフラッシュカラムで精製することにより(溶離液は0-30%酢酸エチル/n−ヘキサン)白色固体として化合物26を636 mg(収率78%)得た。
'H NMR (500MHz,CDCl3) : δ=8.45 (s, 2H), 8.11 (d, J=7.5 Hz, 1H), 7.63-7.61 (m,2H),7.48 (d, J= 7.5 Hz, 2 H), 7.34 (t, J= 7.0 Hz, 2 H), 7.29-7.28 (m, 1H),6.92 (s, 1H), 4.9" (s, 2H), 3.97 ppm (s, 3H); ElMS: m/z 341 [M+].
Synthesis of compound 26 Ethanol (10 mL) and chloroform (10 mL) mixed with compound 22 (1.52 g, 8.31 mmol) and 3 angstrom activated molecular sieve in ethanol (10 mL) solution of thioamide 25 (555 mg, 2.16 mmol) Into the solution under a stream of nitrogen. The mixture is stirred at 70 ° C. for 3 hours and filtered, and then the solvent is distilled off. The residue is poured into a saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. The organic layer was washed with water and brine and then dried over anhydrous sodium sulfate. The residue was purified by a silica gel flash column (eluent: 0-30% ethyl acetate / n-hexane) to obtain 636 mg (yield 78%) of Compound 26 as a white solid.
'H NMR (500MHz, CDCl 3 ): δ = 8.45 (s, 2H), 8.11 (d, J = 7.5 Hz, 1H), 7.63-7.61 (m, 2H), 7.48 (d, J = 7.5 Hz, 2 H), 7.34 (t, J = 7.0 Hz, 2 H), 7.29-7.28 (m, 1H), 6.92 (s, 1H), 4.9 "(s, 2H), 3.97 ppm (s, 3H); ElMS: m / z 341 [M + ].

・化合物9の合成
化合物8の合成方法と同様の方法により、化合物26を原料として化合物29を合成した。
mp:56-60℃;lH NMR(500 MHz, CD3OD):δ=8.25 (s, 1H), 8.02 (d, J=8.0 Hz, 1H), 7.711 (s, 1H), 7.69 (d, J= 7.5 Hz, 1H), 7.50 (t, J= 7.7 Hz,lH), 7.41 (d, J=8.0Hz, 2H), 7.28 (t, J=7.5Hz, 2H), 7.21 (t, J=8.0 Hz, 1H), 4.53 ppm (s, 2 H);
13C NMR (125 MHz, CD3OD):δ=171.1, 168.0, 1~.5.2, 136.1, 135.9, 134.2, 131.3, 130.4, 130.2, 130.1,128.2, 127.6, l:~6.0, 116.3, 36.5 ppm;
ElMS: m/z 343 [M+];
元素分析C7H14N2O2S2・H2Oとして計算値C56.65,H4.47,N7.77, 実測値 C56.65,H4.42,N7.76.
Synthesis of Compound 9 Compound 29 was synthesized from Compound 26 as a starting material by the same method as the synthesis method of Compound 8.
mp: 56-60 ° C; l H NMR (500 MHz, CD 3 OD): δ = 8.25 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.711 (s, 1H), 7.69 (d , J = 7.5 Hz, 1H), 7.50 (t, J = 7.7 Hz, lH), 7.41 (d, J = 8.0Hz, 2H), 7.28 (t, J = 7.5Hz, 2H), 7.21 (t, J = 8.0 Hz, 1H), 4.53 ppm (s, 2 H);
13 C NMR (125 MHz, CD 3 OD): δ = 171.1, 168.0, 1 ~ .5.2, 136.1, 135.9, 134.2, 131.3, 130.4, 130.2, 130.1,128.2, 127.6, l: ~ 6.0, 116.3, 36.5 ppm ;
ElMS: m / z 343 [M + ];
Elemental analysis C 7 H 14 N 2 O 2 S 2 · H 2 O Calculated C56.65, H4.47, N7.77, Found C56.65, H4.42, N7.76.

(実施例3)
実施例3では化合物10を以下の合成経路によって調製した。以下、詳細に説明する。
(Example 3)
In Example 3, compound 10 was prepared by the following synthetic route. Details will be described below.

・化合物28の合成
NH2OH・HO (3.70 g, 53.3 mmol) とKOH (3.00 g, 53.5 mmol)の混合物をメタノール(10 mL)中で30分、室温下で撹拌する。フェニルチオアセトニトリル27(2.00 g, 13.4 mmol) のメタノール(14 mL)溶液を加え、さらに20時間、室温下で撹拌を行う。混合物をろ過した後、溶媒を減圧下で留去させ、残渣をシリカゲルフラッシュカラムで精製することにより(溶離液は30-50%酢酸エチル/n−ヘキサン)茶色オイルとして化合物28を1.04mg(収率43%)得た。
'H NMR (500MHz, [D6DMSO]: d = 9.18 (5, 1H), 7.39 (d, J=8.5 Hz, 2H), 7.2g (t, J=7.7 Hz, 2H), 7.17 (t, J=6.7 Hz, 1H), 5.50 (s,2H), 3.56 ppm (s, 2H); ElMS: m/z 182 [M+].
Synthesis of compound 28
A mixture of NH 2 OH · HO (3.70 g, 53.3 mmol) and KOH (3.00 g, 53.5 mmol) is stirred in methanol (10 mL) for 30 minutes at room temperature. A solution of phenylthioacetonitrile 27 (2.00 g, 13.4 mmol) in methanol (14 mL) is added, and the mixture is further stirred at room temperature for 20 hours. After the mixture was filtered, the solvent was distilled off under reduced pressure, and the residue was purified by a silica gel flash column (eluent: 30-50% ethyl acetate / n-hexane). 43%).
'H NMR (500MHz, [D 6 DMSO]: d = 9.18 (5, 1H), 7.39 (d, J = 8.5 Hz, 2H), 7.2g (t, J = 7.7 Hz, 2H), 7.17 (t, J = 6.7 Hz, 1H), 5.50 (s, 2H), 3.56 ppm (s, 2H); ElMS: m / z 182 [M + ].

・化合物29の合成
カルボニルジイミダゾール(CDI)(0.871 g, 5.37 mmol) のDMF(3 mL)溶液をイソフタル酸モノメチル (0.937 g,5.26 mmol) のDMF(4mL)溶液に加える。混合物を室温下で30分撹拌した後、化合物28 (0.979 g, 5.37 mmol)のDMF (7mL)溶液を加え、室温下で一昼夜撹拌する。混合物を電子レンジ(140℃, 2分間450 W)で加熱する。混合物を水中に投入し、エチルエーテルで抽出する。有機層を水及び食塩水で洗ってから、無水硫酸ナトリウムで乾燥させた。そして、ろ過し、減圧下で濃縮し、シリカゲルフラッシュカラムで精製することにより(溶離液は5-50%酢酸エチル/n−ヘキサン)黄色固体として化合物29を557 mg(収率33%)得た。
1H NMR (500 MHz, CDCl3) : δ=8.79 (s,1H), 8.30 (d, J'=7.5Hz, 1H), 8.26 (d, J=7.0Hz, 1H), 7.62 (t, J=8.0 Hz, 1H), 7.41.5 (d, J=7.5 Hz, 2H), 7.31 (t, J=7.7 Hz, 2H), 7.267.24(m, 1H), 4.22 (s, 2H), 3.97 ppm (s, 3H); ElMS: m/z 326 [M+].
-Synthesis of Compound 29 A solution of carbonyldiimidazole (CDI) (0.871 g, 5.37 mmol) in DMF (3 mL) is added to a solution of monomethyl isophthalate (0.937 g, 5.26 mmol) in DMF (4 mL). The mixture is stirred at room temperature for 30 minutes, then a solution of compound 28 (0.979 g, 5.37 mmol) in DMF (7 mL) is added, and the mixture is stirred overnight at room temperature. Heat the mixture in a microwave oven (140 ° C, 450 W for 2 minutes). The mixture is poured into water and extracted with ethyl ether. The organic layer was washed with water and brine and then dried over anhydrous sodium sulfate. Then, it was filtered, concentrated under reduced pressure, and purified by silica gel flash column (eluent was 5-50% ethyl acetate / n-hexane) to obtain 557 mg (yield 33%) of compound 29 as a yellow solid. .
1 H NMR (500 MHz, CDCl 3 ): δ = 8.79 (s, 1H), 8.30 (d, J '= 7.5Hz, 1H), 8.26 (d, J = 7.0Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.41.5 (d, J = 7.5 Hz, 2H), 7.31 (t, J = 7.7 Hz, 2H), 7.267.24 (m, 1H), 4.22 (s, 2H), 3.97 ppm (s, 3H); ElMS: m / z 326 [M + ].

・化合物10の合成
化合物10は化合物29を原料として化合物8の合成法と同様の方法により得た(収率17%)
mp: 157-158°C:1HNMR (500 MHz, CDCl3) :δ=8.48 (t,J = 1.5 Hz, 1H), 8.26 (d, J= 8.0 Hz, 1H), 8.01 (dt, J= 1.5, 8.0 Hz, 1H),7.69 (t, J=8.0 Hz. 1H), 7.44 (d, J=7.0 Hz, 2H), 7.30 (t, 1=7.5 Hz,2H), 7.23 (t, J= 7.5 Hz, 1H), 4.26 ppm (s, 2 H);
13C NMR (125 MHz,CD3OD):δ= 176.6, 170.3, 166.6, 135.8, 135.0, 132.5, 131.9, 131.8,130.9, 130.2, 128.3, 127.7, 125.7, 29.8 ppm; ElMS: m/z 327 [M+];
元素分析C16H13N3O3Sとして計算値: C 58.70, H 4.00, N 12.84, 実測値 C58.31, H 4.14, N 12.53.
Synthesis of Compound 10 Compound 10 was obtained by the same method as the synthesis method of Compound 8 using Compound 29 as a starting material (yield 17%)
mp: 157-158 ° C: 1 HNMR (500 MHz, CDCl 3 ): δ = 8.48 (t, J = 1.5 Hz, 1H), 8.26 (d, J = 8.0 Hz, 1H), 8.01 (dt, J = 1.5, 8.0 Hz, 1H), 7.69 (t, J = 8.0 Hz. 1H), 7.44 (d, J = 7.0 Hz, 2H), 7.30 (t, 1 = 7.5 Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 4.26 ppm (s, 2 H);
13 C NMR (125 MHz, CD 3 OD): δ = 176.6, 170.3, 166.6, 135.8, 135.0, 132.5, 131.9, 131.8, 130.9, 130.2, 128.3, 127.7, 125.7, 29.8 ppm; ElMS: m / z 327 [ M + ];
Elemental analysis Calculated as C 16 H 13 N 3 O 3 S: C 58.70, H 4.00, N 12.84, measured C58.31, H 4.14, N 12.53.

(実施例4)
実施例4では以下の合成経路にしたがって化合物11を調製した。以下、詳細に説明する。
Example 4
In Example 4, Compound 11 was prepared according to the following synthetic route. Details will be described below.

・化合物31の合成
NaNO2(3.69 g, 53.4 mmol)の水溶液(30 mL)を、0℃下、3-アミノ安息香酸エチル30 (2.02 g, 12.2 mmol)のTFA(17 mL)溶液中に加える。そして、ナトリウムアジド(4.05 g, 62.3 mmol)水溶液を加え、室温で2.5時間撹拌する。反応溶液を2Nの塩酸中に注ぎ、エチルエーテルにて抽出する。有機層を水及び食塩水で洗ってから、無水硫酸ナトリウムで乾燥させた。そして、ろ過し、減圧下で濃縮し、シリカゲルフラッシュカラムで精製することにより(溶離液は2-20%酢酸エチル/n−ヘキサン)黄色オイルとして化合物31を2.20 g (収率94%)得た。
1H NMR(500 MHz, CDCl3) : δ= 7.82 (dt, J= 1.0, 8.5 Hz. 1H), 7.70 (t, 1= 1.7 Hz,1H), 7.68 (d, J=8.0 Hz, 1H), 7.42 (t, J=8.0 Hz, 1H), 7.19 (ddd, J=0.9, 2.4, 6.4 Hz, 1H), 4.39 (q, J = 7.3 Hz, 2 H), 1.40ppm (t, 1= 7.0 Hz,3H); FTIR (neat): ν=2102 cm-1
Synthesis of compound 31
An aqueous solution (30 mL) of NaNO 2 (3.69 g, 53.4 mmol) is added at 0 ° C. to a solution of ethyl 3-aminobenzoate 30 (2.02 g, 12.2 mmol) in TFA (17 mL). Then, an aqueous solution of sodium azide (4.05 g, 62.3 mmol) is added and stirred at room temperature for 2.5 hours. The reaction solution is poured into 2N hydrochloric acid and extracted with ethyl ether. The organic layer was washed with water and brine and then dried over anhydrous sodium sulfate. Then, it was filtered, concentrated under reduced pressure, and purified by silica gel flash column (eluent was 2-20% ethyl acetate / n-hexane) to obtain 2.20 g (yield 94%) of Compound 31 as a yellow oil. .
1 H NMR (500 MHz, CDCl 3 ): δ = 7.82 (dt, J = 1.0, 8.5 Hz. 1H), 7.70 (t, 1 = 1.7 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H) , 7.42 (t, J = 8.0 Hz, 1H), 7.19 (ddd, J = 0.9, 2.4, 6.4 Hz, 1H), 4.39 (q, J = 7.3 Hz, 2 H), 1.40 ppm (t, 1 = 7.0 Hz, 3H); FTIR (neat): ν = 2102 cm -1

・化合物32の合成
硫酸銅(83.7 mg,523 μmol)とアスコルビン酸ナトリウム(0.585 g, 2.95 mmol)の水溶液 (10mL) をフェニルプロパギルスルフィド(0.775g,5.23 mmol) とアジド31(0.980g,5.12mmol)のメタノール(10mL)溶液に加える。反応混合物を室温下で21時間撹拌し、混合物をセライトろ過した後、溶媒を留去させ、残渣をシリカゲルフラッシュカラムで精製することにより(溶離液は5-40%酢酸エチル/n−ヘキサン)白色個体として化合物32を1.17g(収率67%)得た。
1H NMR (500 MHz, CDCl3): δ = 8.27 (t, 1= 1.7 Hz, 1H),8.10 (dt, 1= 1.2, 8.0 Hz, 1H), 7.95 (ddd, 1= 1.0, 2.2, 6.2 Hz, 1H), 7.84(s, 1H), 7.60 (t, J = 8.0 Hz, 1H), 7.38 (d, J = 7.5 Hz, 2 H),7.30 (t. 1=7.7 Hz, 2 H), 7.22 (t, J= 7.5 Hz, 1H), 4.43 (q, J = 7.3 Hz, 2H), 4.33 (s,2H), 1.43ppm (t, 1=7.2 Hz, 3H); ElMS: m/z 339 [M+].
Synthesis of Compound 32 An aqueous solution (10 mL) of copper sulfate (83.7 mg, 523 μmol) and sodium ascorbate (0.585 g, 2.95 mmol) was added to phenylpropargyl sulfide (0.775 g, 5.23 mmol) and azide 31 (0.980 g, 5.12). mmol) in methanol (10 mL). The reaction mixture was stirred at room temperature for 21 hours, the mixture was filtered through Celite, the solvent was evaporated, and the residue was purified by silica gel flash column (eluent: 5-40% ethyl acetate / n-hexane). As a solid, 1.17 g (yield 67%) of compound 32 was obtained.
1 H NMR (500 MHz, CDCl 3 ): δ = 8.27 (t, 1 = 1.7 Hz, 1H), 8.10 (dt, 1 = 1.2, 8.0 Hz, 1H), 7.95 (ddd, 1 = 1.0, 2.2, 6.2 Hz, 1H), 7.84 (s, 1H), 7.60 (t, J = 8.0 Hz, 1H), 7.38 (d, J = 7.5 Hz, 2 H), 7.30 (t. 1 = 7.7 Hz, 2 H), 7.22 (t, J = 7.5 Hz, 1H), 4.43 (q, J = 7.3 Hz, 2H), 4.33 (s, 2H), 1.43 ppm (t, 1 = 7.2 Hz, 3H); ElMS: m / z 339 [M + ].

・化合物11の合成
化合物11は化合物32を原料として化合物8の合成法と同様の方法により得た(収率48%)
mp: 179-180°C: 1H NMR (500 MHz, [D6]DMSO): δ=11.40(s, 1H), 9.22 (s, 1H), 8.74 (5, 1H), 8.22 (s, 1H), 8.01 (d, 1= 8.0 Hz.1H), 7.84 (d, J=7.5Hz, lH), 7.67 (d, J=8.0Hz, 1H), 7.41 (d, J=8.0 Hz, 2H), 7.33 (t, 1= 7.7 Hz, 2 H), 7.20 (t, 1= 7.2 Hz, 1H), 4.39 ppm(s, 2H);
13CNMR (125 MHz, [D6]DMSO):δ=162.8, 144.9, 136.4,135.5, 134.3, 130.1, 129.0, 128.2, 126.8, 126.0, 122.4, 121.5, 118.3, 27.1 ppm; ElMS: m/z 326 [M+]; 元素分析C16H14N4O2Sとして計算値: C58.88, H 4.32, N 17.17, 実測値: C 58.69, H 4.54, N 17.00.
Synthesis of Compound 11 Compound 11 was obtained by the same method as the synthesis method of Compound 8 using Compound 32 as a raw material (yield 48%).
mp: 179-180 ° C: 1 H NMR (500 MHz, [D6] DMSO): δ = 11.40 (s, 1H), 9.22 (s, 1H), 8.74 (5, 1H), 8.22 (s, 1H) , 8.01 (d, 1 = 8.0 Hz.1H), 7.84 (d, J = 7.5Hz, lH), 7.67 (d, J = 8.0Hz, 1H), 7.41 (d, J = 8.0 Hz, 2H), 7.33 (t, 1 = 7.7 Hz, 2 H), 7.20 (t, 1 = 7.2 Hz, 1H), 4.39 ppm (s, 2H);
13 CNMR (125 MHz, [D6] DMSO): δ = 162.8, 144.9, 136.4,135.5, 134.3, 130.1, 129.0, 128.2, 126.8, 126.0, 122.4, 121.5, 118.3, 27.1 ppm; ElMS: m / z 326 [ M + ]; Elemental analysis Calculated as C 16 H 14 N 4 O 2 S: C58.88, H 4.32, N 17.17, Found: C 58.69, H 4.54, N 17.00.

(実施例5)
実施例5では化合物12を以下の合成経路によって調製した。以下、詳細に説明する。
(Example 5)
In Example 5, compound 12 was prepared by the following synthetic route. Details will be described below.

・化合物34の合成
化合物34は3-(メトキシカルボニル)フェニルボロン酸14と、2-ヨード-3-メチルチオフェン33を原料とし、化合物15の合成法と同様の方法により合成した。
1H NMR(500 MHz, CDCl3): δ= 8.22 (s, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.72 (d,1=7.5 Hz, 1H), 7.42 (t, 1=7.7 Hz, 1H), 7.18 (d, J=3.5 Hz, 1H), 6.756.74(m, 1H), 3.94 (s, 3H), 2.52 ppm (s, 3H); ElMS: m/z 232 [M+]).
Synthesis of Compound 34 Compound 34 was synthesized by the same method as the synthesis method of Compound 15 using 3- (methoxycarbonyl) phenylboronic acid 14 and 2-iodo-3-methylthiophene 33 as raw materials.
1 H NMR (500 MHz, CDCl 3 ): δ = 8.22 (s, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.72 (d, 1 = 7.5 Hz, 1H), 7.42 (t, 1 = 7.7 Hz, 1H), 7.18 (d, J = 3.5 Hz, 1H), 6.756.74 (m, 1H), 3.94 (s, 3H), 2.52 ppm (s, 3H); ElMS: m / z 232 [M + ]).

・化合物35の合成
化合物34 (0.601 g, 2.61 mmol)のクロロホルム溶液(20 mL)中にNBS (0.554 g, 3.11 mmol) とAIBN (19.2 mg, 0.116 mmol) を加え、この混合物を還流しながら1時間撹拌した。そして四塩化炭素で希釈し、ろ過した。ろ液をエバポレートし、水中に注ぎ、酢酸エチルで抽出した。有機層を採取し、水と食塩水とで洗い、無水硫酸ナトリウムにて乾燥した。そして、ろ過し、真空濃縮し、化合物35を茶色オイルとして811 mg 得た。
1H NMR (500 MHz, CDCL3) : δ= 8.24 (s, 1H), 7.96 (dt, J= 1.4, 7.7 Hz,1H), 7.74 (ddd,.f= 1.2,2.0,6.1 Hz, 1H), 7.21 (d, 1=4.0 Hz, 1H), 7.10(d, 1=3.5 Hz, 1 ;),4.75 (s, 2H), 3.95 ppm (s, 3H); ElMS: m/z 310,312 [M+].
・ Synthesis of Compound 35 NBS (0.554 g, 3.11 mmol) and AIBN (19.2 mg, 0.116 mmol) were added to a chloroform solution (20 mL) of Compound 34 (0.601 g, 2.61 mmol), and this mixture was refluxed with 1 Stir for hours. And it diluted with carbon tetrachloride and filtered. The filtrate was evaporated, poured into water and extracted with ethyl acetate. The organic layer was collected, washed with water and brine, and dried over anhydrous sodium sulfate. Then, it was filtered and concentrated in vacuo to obtain 811 mg of compound 35 as a brown oil.
1 H NMR (500 MHz, CDCL3): δ = 8.24 (s, 1H), 7.96 (dt, J = 1.4, 7.7 Hz, 1H), 7.74 (ddd, .f = 1.2, 2.0, 6.1 Hz, 1H), 7.21 (d, 1 = 4.0 Hz, 1H), 7.10 (d, 1 = 3.5 Hz, 1;), 4.75 (s, 2H), 3.95 ppm (s, 3H); ElMS: m / z 310,312 [M + ] .

・化合物12の合成
化合物12は化合物35を原料とし、化合物8を合成した方法と同様の方法で合成した(収率36%)。
mp154-155°C: 1H NMR (500 MHz, [D6]DMSO): δ= 11.32 (s, 1H), 7.92 (s,1H), 7.72 (d, J =7.5 Hz, 1H), 7.65 (d, 1= 8.5 Hz, 1H), 7.47 (t, J =7.5 Hz, l H), 7.40-7.36 (rn, 3H), 7.32 o. J=7.7Hz, 2H), 7.21 (t,1=7.2 Hz, 1H), 7.(11 (d, J = 3.5 Hz, 1H), 4.51 ppm (s, 2H); 13C NMR(125 MHz, CDCl3) δ= 163.6, 141.5, 141.5, 135.2, 133.7, 133.4, 129.2,128.9, 128.6, 1~7.9, 127.5, 126.2, 125.8, 123.7, 123.2, 31.6 ppm;
ElMS: m/z 341 [M+];元素分析C18H15NO2S2・0.5H20:として計算値 C 61.19, H
4.60, N 4.00, 実測値: C 61.77, H 4.76, N 4.10.
-Synthesis | combination of compound 12 Compound 12 was synthesize | combined by the method similar to the method of synthesize | combining compound 8 using compound 35 as a raw material (36% of yield).
mp154-155 ° C: 1 H NMR (500 MHz, [D 6 ] DMSO): δ = 11.32 (s, 1H), 7.92 (s, 1H), 7.72 (d, J = 7.5 Hz, 1H), 7.65 ( d, 1 = 8.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, l H), 7.40-7.36 (rn, 3H), 7.32 o. J = 7.7Hz, 2H), 7.21 (t, 1 = 7.2 Hz, 1H), 7. (11 (d, J = 3.5 Hz, 1H), 4.51 ppm (s, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ = 163.6, 141.5, 141.5, 135.2, 133.7, 133.4, 129.2,128.9, 128.6, 1-7.9, 127.5, 126.2, 125.8, 123.7, 123.2, 31.6 ppm;
ElMS: m / z 341 [M + ]; elemental analysis C 18 H 15 NO 2 S 2 0.5H 2 0: Calculated as C 61.19, H
4.60, N 4.00, found: C 61.77, H 4.76, N 4.10.

−評 価−
<蛍光酵素アッセイによる評価>
以上のようにして合成した実施例1〜5の化合物8〜12について、各種HDAC(HDACS、HDAC1、HDAC2、HDAC3、HDAC4、HDAC6及びHDAC8)に対する阻害作用を蛍光酵素アッセイ法によって調べ、各HDACアイソザイムのIC50を求めた。また、比較例1として化合物7(NCC149)についても同様の測定を行った。さらには、比較例2として、FADにおいて皮膚T細胞リンパ腫に対して効果が認められ承認されているvorinostat(商品名:ZOLINZA、旧名:SAHA)についても同様の測定を行った。
蛍光酵素アッセイ法では、HDACの基質として蛍光物質標識されたアセチル化リシンアナログを用いた。そして、HDACがその蛍光標識された基質を脱アセチル化すると、リシンエンドペプチダーゼ(LEP)が脱アセチル化されたリシンを認識し、リシン後方のアミド結合を加水分解することによって蛍光物質AMCが遊離する。こうして遊離したAMCの蛍光強度を測定し、controlの蛍光強度に対する割合を計算することにより、酵素活性を評価するものである。
HDAC活性の測定は、HDACs/HDAC8脱アセチル化酵素蛍光分析キット(CY-1150/CY-1158、Cyclex Compary社)、(HDAC1/HDAC6蛍光活性drug discoverly kit(AK-511 I AK-516、BIOMOl Research Laboratories)、Fluorescent SIRT1 Activity Assay/Drug Discovery(AK-555,BIOMOL研究所))、又はFluorogenic HDAC Class2α Assay Klt(BPS Bioscience社)、総HDACs(CY-1150、Cyde社)、HDAC1(SE456、BIOMOL Research Laboratories)、HDAC2(SE-500、BIOMOL Research Laboratories),HDAC3/NCOR1 complwx(SE-515、BIOMOL Research Laboratories),HDAC4(BPS Bioscience社)、HDAC6(SE508,BIOMOL研究所)及びHDAC8(CY-1158、Cydex CompanyLimited)を使用し、メーカーの指示書に従って測定した。蛍光測定は励起波長を160nmとし、検出波長は460nmとした。50%阻害活性(IC50)における濃度は、各濃度のlog対阻害活性%のグラフから求めた。Cohesinや a-tubulinやH3K9のアセチル化活性度は常法に従って測定した。各測定は少なくとも2回行った。結果を表1に示す。
-Evaluation-
<Evaluation by fluorescent enzyme assay>
About the compound 8-12 of Examples 1-5 synthesize | combined as mentioned above, the inhibitory effect with respect to various HDACs (HDACS, HDAC1, HDAC2, HDAC3, HDAC4, HDAC6, and HDAC8) was investigated by the fluorescent enzyme assay, and each HDAC isozyme IC 50 was sought. As Comparative Example 1, the same measurement was performed for Compound 7 (NCC149). Furthermore, as Comparative Example 2, the same measurement was performed for vorinostat (trade name: ZOLINZA, former name: SAHA), which was approved and approved for cutaneous T cell lymphoma in FAD.
In the fluorescent enzyme assay, an acetylated lysine analog labeled with a fluorescent substance was used as a substrate for HDAC. When HDAC deacetylates the fluorescently labeled substrate, lysine endopeptidase (LEP) recognizes the deacetylated lysine and hydrolyzes the amide bond behind lysine, releasing the fluorescent substance AMC. . The enzyme activity is evaluated by measuring the fluorescence intensity of the released AMC and calculating the ratio of control to the fluorescence intensity.
HDAC activity was measured using HDACs / HDAC8 deacetylase fluorescence analysis kit (CY-1150 / CY-1158, Cyclex Compary), (HDAC1 / HDAC6 fluorescence activity drug discoverly kit (AK-511 I AK-516, BIOMOL Research). Laboratories), Fluorescent SIRT1 Activity Assay / Drug Discovery (AK-555, BIOMOL Laboratories)), or Fluorogenic HDAC Class2α Assay Klt (BPS Bioscience), Total HDACs (CY-1150, Cyde), HDAC1 (SE456, BIOMOL Research) Laboratories), HDAC2 (SE-500, BIOMOL Research Laboratories), HDAC3 / NCOR1 complwx (SE-515, BIOMOL Research Laboratories), HDAC4 (BPS Bioscience), HDAC6 (SE508, BIOMOL Laboratories) and HDAC8 (CY-1158, Cydex Company Limited) and measured according to the manufacturer's instructions. In the fluorescence measurement, the excitation wavelength was 160 nm, and the detection wavelength was 460 nm. The concentration at 50% inhibitory activity (IC 50 ) was determined from a graph of log vs. inhibitory activity at each concentration. The acetylation activity of Cohesin, a-tubulin and H3K9 was measured according to a conventional method. Each measurement was performed at least twice. The results are shown in Table 1.

表1に示すように、比較例2の化合物7(NCC149)は、HDAC8阻害剤として汎用されている比較例1のvorinostatよりも、優れた阻害活性及び優れた阻害選択性を示した(HDAC8ではIC50=0.070μMであるのに対して、HDACsではIC50=54μM、HDAC1ではIC50=38μM、HDAC2ではIC50>100μM、HDAC3では68μM、HDAC4ではIC50=44μM、HDAC6ではIC50=2.4μM)。
また、比較例2の化合物7(NCC149)におけるトリアゾール環をベンゼン環に代えた実施例1の化合物8では、比較例1の1/20のHDAC8阻害活性ではあるが、選択的にHDAC8活性を阻害することが分かった。
一方、実施例2〜5の化合物9〜12は優れたHDAC8阻害活性を示した。これらの結果から、実施例2〜5の化合物9〜12が有している5員環は、HDAC8のCap部位への結合に有利に働き、それが優れた阻害活性及び優れた選択性に貢献していることが示唆された。
特に、実施例4に化合物11では、NCC149(7)よりも大きなHDAC8阻害活性を示すことが分かった(化合物11ではIC50=0.053μMであるのに対し化合物7ではIC50=0.070)。
さらに、実施例2〜5の化合物9〜12はHDAC8活性を選択的に阻害することが分かった。特に、実施例4の化合物11は、NCC149(7)よりもHDAC8阻害活性に対する選択性が優れていた(11: HDAC1 ICsolHDAC8 ICso 1900; HDAC4 IC50 HDAC8 IC50 1900; HDAC6 ICsolHDAC8 IC50=42。 7: HDAC1 ICsolHDAC8 ICso=540; HDAC4 ICso/HDAC8 ICso=630; HDAC6 ICsolHDAC8 IC50= 34)。以上の結果は、5員環を有するヘテロアリール環の小さな幾何学的な違いがHDAC8阻害活性だけでなくHDAC8選択性にも影響を及ぼすことを示唆した。
以上の結果から、実施例4の化合物11は、HDAC8阻害剤として比較例1の化合物7(NCC149)より強力であり選択性を優れていることが分かった。
As shown in Table 1, Compound 7 (NCC149) of Comparative Example 2 showed superior inhibitory activity and superior inhibitory selectivity compared to vorinostat of Comparative Example 1, which is widely used as an HDAC8 inhibitor (in HDAC8) whereas a IC 50 = 0.070μM, HDACs in IC 50 = 54μM, HDAC1 in IC 50 = 38μM, HDAC2 the IC 50> 100 [mu] M, in HDAC3 68μM, the HDAC4 IC 50 = 44μM, the HDAC6 IC 50 = 2.4 μM).
Further, Compound 8 of Example 1 in which the triazole ring in Compound 7 (NCC149) of Comparative Example 2 is replaced with a benzene ring is 1/20 of HDAC8 inhibitory activity of Comparative Example 1, but selectively inhibits HDAC8 activity. I found out that
On the other hand, compounds 9 to 12 of Examples 2 to 5 showed excellent HDAC8 inhibitory activity. From these results, the 5-membered ring possessed by the compounds 9 to 12 of Examples 2 to 5 works favorably for binding to the Cap site of HDAC8, which contributes to excellent inhibitory activity and excellent selectivity. It was suggested that
In particular, compound 11 in Example 4 was found to exhibit greater HDAC8 inhibitory activity than NCC149 (7) (compound 11 had an IC 50 = 0.053 μM, whereas compound 7 had an IC 50 = 0.070).
Furthermore, compounds 9-12 of Examples 2-5 were found to selectively inhibit HDAC8 activity. In particular, the compound 11 of Example 4 was more selective for HDAC8 inhibitory activity than NCC149 (7) (11: HDAC1 ICsolHDAC8 ICso 1900; HDAC4 IC50 HDAC8 IC50 1900; HDAC6 ICsolHDAC8 IC50 = 42. 7: HDAC1 ICsolHDAC8 ICso = 540; HDAC4 ICso / HDAC8 ICso = 630; HDAC6 ICsolHDAC8 IC50 = 34). These results suggested that small geometric differences in heteroaryl rings with 5-membered rings affect not only HDAC8 inhibitory activity but also HDAC8 selectivity.
From the above results, it was found that the compound 11 of Example 4 was more potent and selective than the compound 7 (NCC149) of Comparative Example 1 as an HDAC8 inhibitor.

<細胞内におけるHDAC8阻害の評価>
細胞内におけるHDAC8阻害の選択性を調べるために、実施例2〜4の化合物9〜11及び比較例1の化合物7について、Western blot analysis による評価を行った。HDAC8はコヒーシンの脱アセチル化酵素であり、HDAC8に対する阻害作用はヒーラー細胞でアセチル化されたコヒーシンの量を測定することによって評価した。
図2に示すように、実施例2〜4の化合物9〜11及び比較例1の化合物7は、全てアセチル化されたコヒーシンの増加を誘発し、細胞内で強いHDAC8阻害作用を示した。代表的な汎HDAC阻害剤であるtrichostatin A はヒーラー細胞でアセチル化H3K9をかなり増やすと報告されているが、実施例2〜4の化合物9〜11及び比較例1の化合物7はH3K9(すなわち、核HDACs(例えばHDAC1とHDAC2)の主要なサブストレート)のアセチル化を促進しなかった。アセチル化α-tubullnやHDAC6については、比較例1の化合物7及び実施例3、4の化合物10,11が10μM以上の濃度でα-tubullnの誘発を促したが、実施例2の化合物9では、α-tubullnが誘発されなかった。これらの結果から、実施例2の化合物9では、細胞内に含まれる他のHDACsよりもHDAC8を選択的に妨げることが分かった。
<Evaluation of intracellular HDAC8 inhibition>
In order to examine the selectivity of HDAC8 inhibition in cells, the compounds 9 to 11 of Examples 2 to 4 and the compound 7 of Comparative Example 1 were evaluated by Western blot analysis. HDAC8 is a cohesin deacetylase, and its inhibitory effect on HDAC8 was evaluated by measuring the amount of cohesin acetylated in Healer cells.
As shown in FIG. 2, the compounds 9 to 11 of Examples 2 to 4 and the compound 7 of Comparative Example 1 all induced an increase in acetylated cohesin and showed a strong HDAC8 inhibitory action in cells. While trichostatin A, a representative pan-HDAC inhibitor, has been reported to significantly increase acetylated H3K9 in Healer cells, compounds 9-11 of Examples 2-4 and compound 7 of Comparative Example 1 are H3K9 (ie, It did not promote acetylation of nuclear HDACs (eg, major substrates of HDAC1 and HDAC2). For acetylated α-tubulln and HDAC6, Compound 7 of Comparative Example 1 and Compounds 10 and 11 of Examples 3 and 4 promoted α-tubulln induction at a concentration of 10 μM or more. Α-tubulln was not induced. From these results, it was found that Compound 9 of Example 2 selectively prevents HDAC8 over other HDACs contained in cells.

<T細胞性腫瘍細胞系に対する増殖抑制試験>
HDAC8選択的阻害薬として知られるPCI-34051はT細胞性腫瘍に対し、細胞増殖阻害活性を示すことが報告されている。そこで、実施例2〜4の化合物9〜11及び比較例1の化合物7について、T細胞性腫瘍細胞系に対する増殖抑制試験(MTSアッセイ)を行った。
<Proliferation inhibition test against T cell tumor cell line>
PCI-34051, known as an HDAC8 selective inhibitor, has been reported to show cell growth inhibitory activity against T cell tumors. Therefore, a growth inhibition test (MTS assay) on T cell tumor cell lines was performed for compounds 9 to 11 of Examples 2 to 4 and compound 7 of Comparative Example 1.

(MTSアッセイの手順)
([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)- 2H-tetrazolium, inner salt])は、細胞内ミトコンドリアの中にある脱水素酵素(NADH)と電子キャリアーであるPMS(フェナジンメトサルフェート)共存化で酸化還元反応を起こし、還元されFormazanとなる(図3参照)。NADHは呼吸鎖に関係する酵素であるため、この反応によるFormazan量は生存細胞数に対応する。このFormazan量を比色定量することで細胞数を定量化し、GI50を算出した。
(MTS assay procedure)
([3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethoxyphenyl) -2- (4-sulfophenyl) -2H-tetrazolium, inner salt]) is dehydrated in intracellular mitochondria Oxidation enzyme (NADH) and electron carrier PMS (phenazine methosulfate) coexist to cause an oxidation-reduction reaction, which is reduced to formazan (see FIG. 3). Since NADH is an enzyme related to the respiratory chain, the amount of Formazan resulting from this reaction corresponds to the number of viable cells. The number of cells was quantified by colorimetric determination of this amount of Formazan, and GI 50 was calculated.

(結 果)
MTSアッセイの結果を表2に示す。実施例2及び実施例3の化合物9及び化合物10はJurkat, HH, MT4,及びHeLa細胞に対し比較例1の化合物7(NCC149)よりも強い細胞増殖抑制作用を示した。また、実施例2の化合物9はK562, HUT78細胞においても比較例1の化合物7(NCC149)と同等の細胞増殖抑制作用を示した。一方、HDAC8へのアイソザイム選択性が向上し実施例3の化合物10は比較例1の化合物7(NCC149)よりも細胞増殖抑制作用が低下した。また、実施例2及び実施例3の化合物9及び化合物10は、現在まで最も優れたHDAC8選択的阻害剤として知られているPCI-34051よりも強い細胞増殖抑制作用を示した。
(Result)
The results of the MTS assay are shown in Table 2. Compound 9 and Compound 10 of Example 2 and Example 3 showed stronger cell growth inhibitory action against Jurkat, HH, MT4, and HeLa cells than Compound 7 (NCC149) of Comparative Example 1. Moreover, the compound 9 of Example 2 showed the cell growth inhibitory effect equivalent to the compound 7 (NCC149) of the comparative example 1 also in K562 and HUT78 cell. On the other hand, the isozyme selectivity to HDAC8 was improved, and the compound 10 of Example 3 had a cell growth inhibitory action lower than that of Compound 7 (NCC149) of Comparative Example 1. Moreover, the compound 9 and the compound 10 of Example 2 and Example 3 showed stronger cell growth inhibitory action than PCI-34051 which is known as the most excellent HDAC8 selective inhibitor to date.

<DAOY,Daudi及びA549に対するMTTアッセイによる評価>
DAOY(ヒト髄芽細胞腫細胞株), Daudi(悪性リンパ腫細胞株)及び A549(ヒト肺胞基底上皮腺癌細胞株)についても、前述したMTSアッセイと同様の手法により、MTTアッセイを行った。アッセイは各化合物について少なくとも3回行った。
<Evaluation with DATT, Daudi and A549 by MTT assay>
DATT (human medulloblastoma cell line), Daudi (malignant lymphoma cell line), and A549 (human alveolar basal epithelial adenocarcinoma cell line) were also subjected to the MTT assay by the same method as the MTS assay described above. The assay was performed at least three times for each compound.

(結 果)
MTTアッセイの結果を表3に示す。実施例3の化合物9はDAOY,Daudi及びA549全ての細胞に対して比較例1の化合物7(NCC149)よりも強い細胞増殖抑制作用を示した。また、実施例4の化合物10はDaudi及びA549について比較例1の化合物7(NCC149)よりも強い細胞増殖抑制作用を示した。さらに、実施例5の化合物11は、DAOY,Daudi及びA549全ての細胞に対して比較例1の化合物7(NCC149)と同程度の細胞増殖抑制作用を示した。
(Result)
The results of the MTT assay are shown in Table 3. Compound 9 of Example 3 showed stronger cell growth inhibitory action than Compound 7 (NCC149) of Comparative Example 1 on all DAOY, Daudi and A549 cells. Moreover, the compound 10 of Example 4 showed the stronger cell growth inhibitory effect about Daudi and A549 than the compound 7 (NCC149) of the comparative example 1. Furthermore, the compound 11 of Example 5 showed the cell growth inhibitory effect comparable to the compound 7 (NCC149) of the comparative example 1 with respect to all the cells of DAOY, Daudi, and A549.

HDAC8の機能を調べるための生物学的ツールとして好適に用いることができる。   It can be suitably used as a biological tool for examining the function of HDAC8.

Claims (3)

下記一般式(1)又はその薬学上許容される塩、水和物、溶媒和物若しくはプロドラッグからなることを特徴とするヒドロキサム酸誘導体。
A hydroxamic acid derivative comprising the following general formula (1) or a pharmaceutically acceptable salt, hydrate, solvate or prodrug thereof:
前記φは置換基のないベンゼン環である請求項1に記載のヒドロキサム酸誘導体。   The hydroxamic acid derivative according to claim 1, wherein φ is an unsubstituted benzene ring. 請求項1又は2に記載のヒドロキサム酸誘導体を有効成分として含有することを特徴とするHDAC8阻害剤。   An HDAC8 inhibitor comprising the hydroxamic acid derivative according to claim 1 or 2 as an active ingredient.
JP2014139425A 2014-07-07 2014-07-07 Hydroxamic acid derivatives and hdac8 inhibitors Pending JP2016017040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014139425A JP2016017040A (en) 2014-07-07 2014-07-07 Hydroxamic acid derivatives and hdac8 inhibitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014139425A JP2016017040A (en) 2014-07-07 2014-07-07 Hydroxamic acid derivatives and hdac8 inhibitors

Publications (1)

Publication Number Publication Date
JP2016017040A true JP2016017040A (en) 2016-02-01

Family

ID=55232523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014139425A Pending JP2016017040A (en) 2014-07-07 2014-07-07 Hydroxamic acid derivatives and hdac8 inhibitors

Country Status (1)

Country Link
JP (1) JP2016017040A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336875A (en) * 2017-08-15 2019-02-15 江苏工程职业技术学院 A kind of synthetic method of canagliflozin
CN109336829A (en) * 2017-08-23 2019-02-15 沈阳药科大学 Aryl methanamide compounds of the triazole structure containing 1,2,3- and application thereof
WO2019235501A1 (en) * 2018-06-06 2019-12-12 塩野義製薬株式会社 Histone deacetylase inhibitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336875A (en) * 2017-08-15 2019-02-15 江苏工程职业技术学院 A kind of synthetic method of canagliflozin
CN109336829A (en) * 2017-08-23 2019-02-15 沈阳药科大学 Aryl methanamide compounds of the triazole structure containing 1,2,3- and application thereof
CN109336829B (en) * 2017-08-23 2022-03-01 沈阳药科大学 Aryl formamide compound containing 1,2, 3-triazole structure and application thereof
WO2019235501A1 (en) * 2018-06-06 2019-12-12 塩野義製薬株式会社 Histone deacetylase inhibitor

Similar Documents

Publication Publication Date Title
Cai et al. Discovery and preliminary evaluation of 2-aminobenzamide and hydroxamate derivatives containing 1, 2, 4-oxadiazole moiety as potent histone deacetylase inhibitors
RU2453536C2 (en) Histone deacetylase inhibitors
Spencer et al. Click JAHAs: conformationally restricted ferrocene-based histone deacetylase inhibitors
JP5725475B2 (en) Hydroxamic acid derivative and HDAC8 inhibitor using the same
KR20080020566A (en) Indoline-sulfonamides compounds
KR20150000901A (en) Histone deacetylases(hdacs) inhibitors
AU2008309269B2 (en) Novel histone deacetylase inhibitors
JP2019520369A5 (en)
JP2008515840A (en) Semi-synthetic method for the preparation of 10-deacetyl-N-debenzoyl-paclitaxel
JP2016017040A (en) Hydroxamic acid derivatives and hdac8 inhibitors
Cheng et al. Critical modifications of the ISO-1 scaffold improve its potent inhibition of macrophage migration inhibitory factor (MIF) tautomerase activity
JP2016147807A (en) Hydroxamic acid derivative and salt thereof
Wang et al. Synthesis and biological evaluation of novel quinolone derivatives dual targeting histone deacetylase and tubulin polymerization as antiproliferative agents
Liu et al. 1-Arylsulfonyl-5-(N-hydroxyacrylamide) tetrahydroquinolines as potent histone deacetylase inhibitors suppressing the growth of prostate cancer cells
EP2773653A1 (en) Fluorescent substrates for determining lysine modifying enzyme activity
Xie et al. An efficient method for the synthesis of substituted 5-aminotetrazoles from selenoureas using PhI (OAc) 2
Sonwane et al. Synthesis and antimicrobial activity of 2-(2′-arylidene-hydrazino-acetyl-amino)-4-phenyl-1, 3-thiazoles and 2-[2′-{4′′-substituted-aryl-3′′-chloro-2′′-oxo-azetidine}-acetyl-amino]-4-phenyl-1, 3-thiazoles
RS50594B (en) Process for synthesizing (7+methoxy-1-naphthyl) acetonitrile and its application in synthesis of agomelatine
Khamooshi et al. Solvent-free preparation of arylaminotetrazole derivatives using aluminum (III) hydrogensulfate as an effective catalyst
Nahakpam et al. Diacetoxyiodobenzene assisted C–O bond formation via sequential acylation and deacylation process: synthesis of benzoxazole amides and their mechanistic study by DFT
Kumar et al. Design and synthesis of optically pure 3-aryl-6-methyl-2-thioxotetrahydropyrimidin-4 (1 H)-ones as anti-prostate cancer agents
Tikhonova et al. Sulfur-mediated synthesis of unsymmetrically substituted N-aryl oxalamides by the cascade thioamidation/cyclocondensation and hydrolysis reaction
Ramesh et al. Novel synthesis of indolylquinoline derivatives via the C-alkylation of Baylis–Hillman adducts
Kartasasmita et al. NO‐Donors (VII [1]): Synthesis and Cyclooxygenase Inhibitory Properties of N‐and S‐Nitrooxypivaloyl‐cysteine Derivatives of Naproxen—A Novel Type of NO‐NSAID
Abdellatif et al. Novel (E)-2-(aryl)-3-(4-methanesulfonylphenyl) acrylic ester prodrugs possessing a diazen-1-ium-1, 2-diolate moiety: Design, synthesis, cyclooxygenase inhibition, and nitric oxide release studies

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151028

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151028