JP2016016823A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2016016823A
JP2016016823A JP2014142458A JP2014142458A JP2016016823A JP 2016016823 A JP2016016823 A JP 2016016823A JP 2014142458 A JP2014142458 A JP 2014142458A JP 2014142458 A JP2014142458 A JP 2014142458A JP 2016016823 A JP2016016823 A JP 2016016823A
Authority
JP
Japan
Prior art keywords
tire
ribs
groove
rib
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014142458A
Other languages
Japanese (ja)
Other versions
JP6348008B2 (en
Inventor
聡一 高橋
Soichi Takahashi
聡一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2014142458A priority Critical patent/JP6348008B2/en
Publication of JP2016016823A publication Critical patent/JP2016016823A/en
Application granted granted Critical
Publication of JP6348008B2 publication Critical patent/JP6348008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To make it possible to reduce air column tube resonance sound thereby reducing noise during travelling.SOLUTION: A pneumatic tire includes plural major grooves 12, in which groove positions and groove widths are symmetrically provided with respect to a tire equator plane CL, and plural ribs 14, 16, 16 formed between the major grooves in a tread part 10. In the pneumatic tire, ground planes of the plural ribs are bulged in a tire radial direction outer side Ko with respect to a reference contour line L of the tread part, and bulging amounts H, H1, H2 of respective ribs 14, 16, 16 with respect to the reference contour line L are so made as to be different from one another.SELECTED DRAWING: Figure 1

Description

本発明は、空気入りタイヤに関する。   The present invention relates to a pneumatic tire.

空気入りタイヤのトレッド部には、タイヤ周方向に延びる複数の主溝がタイヤ赤道面に対して溝位置及び溝幅が対称になるように設けているのが一般的である。このようなタイヤでは、タイヤ赤道面に対して対称位置にある一対の主溝間でタイヤ走行時における管共鳴周波数が一致するため、1kHz付近の高周波数域での騒音性能の悪化が懸念される。特に、近年、低燃費性と操縦安定性の両立のための、ブロックパターンよりも、タイヤ周方向に延びるリブを主体としたリブ基調のトレッドパターンが多く、リブを横断する横溝が設けられていないため、気柱管共鳴による走行時の騒音の問題がより顕在化しやすい。   In the tread portion of a pneumatic tire, a plurality of main grooves extending in the tire circumferential direction are generally provided so that the groove position and the groove width are symmetrical with respect to the tire equatorial plane. In such a tire, the pipe resonance frequency coincides between the pair of main grooves located symmetrically with respect to the tire equatorial plane, so that there is a concern that the noise performance deteriorates in a high frequency region near 1 kHz. . In particular, in recent years, there are more tread patterns based on ribs mainly composed of ribs extending in the tire circumferential direction than block patterns to achieve both low fuel consumption and steering stability, and there are no transverse grooves across the ribs. Therefore, the problem of noise during traveling due to air column resonance is more likely to become obvious.

特許文献1には、走行時の騒音を提言するために、中央陸部とショルダー陸部の間に形成される中間陸部の接地面を、中央陸部とショルダー陸部の接地面を含む仮想線よりも低くして、中間陸部の接地長を中央陸部及びショルダー陸部の接地長よりも短くすることが開示されている。   In Patent Document 1, in order to propose a noise during traveling, a ground contact surface of an intermediate land portion formed between a central land portion and a shoulder land portion is assumed, and a virtual surface including a ground contact surface of the central land portion and the shoulder land portion is included. It is disclosed that the ground contact length of the intermediate land portion is shorter than the contact lengths of the central land portion and the shoulder land portion, which is lower than the line.

一方、特許文献2には、トレッド部のタイヤ幅方向全体での接地性を改善し操縦安定性を向上するために、中央陸部と中間陸部の接地面をトレッド部の基準輪郭線に対してそれぞれタイヤ径方向外方に所定量膨出させるとともに、中間陸部よりも中央陸部で膨出量が大きくなるように形成することが開示されている。   On the other hand, in Patent Document 2, in order to improve the ground contact property in the entire tire width direction of the tread part and improve the steering stability, the ground contact surfaces of the central land part and the intermediate land part are defined with respect to the reference contour line of the tread part. It is disclosed that a predetermined amount is bulged outwardly in the tire radial direction and that the bulge amount is larger in the central land portion than in the intermediate land portion.

また、特許文献3には、コーナリング時の操縦安定性を向上するために、主溝間に形成されるリブの接地面を、ショルダーリブの接地面を通る外輪郭線に対してタイヤ径方向外方に膨出させ、各リブの膨出頂点を各リブの中心線に対して車両装着時内側にずらして配置することが開示されている。   Further, in Patent Document 3, in order to improve steering stability during cornering, the ground contact surface of the rib formed between the main grooves is outside the tire radial direction with respect to the outer contour line passing through the ground contact surface of the shoulder rib. It is disclosed that the bulging vertices of the ribs are displaced inward when the vehicle is mounted with respect to the center line of the ribs.

特開平08−091015号公報Japanese Patent Application Laid-Open No. 08-091015 特開2013−189121号公報JP 2013-189121 A 特開2005−263180号公報JP 2005-263180 A

上記特許文献1〜3に開示の構成では、タイヤ赤道面に対して対称位置にある主溝同士でタイヤ接地時に路面との間で形成される管長が同じであるため、気柱管共鳴の周波数が一致しており、高周波数域での騒音を抑制する効果が得られない。   In the configurations disclosed in Patent Documents 1 to 3, since the tube lengths formed between the main grooves located symmetrically with respect to the tire equatorial plane and the road surface at the time of tire contact are the same, the frequency of air column resonance Therefore, the effect of suppressing noise in a high frequency range cannot be obtained.

本発明は、気柱管共鳴音を低減して走行時の騒音を低減することができる空気入りタイヤを提供することを目的とする。   An object of the present invention is to provide a pneumatic tire that can reduce air columnar resonance noise and reduce noise during traveling.

第1の実施形態に係る空気入りタイヤは、タイヤ赤道面に対して溝位置及び溝幅が対称に設けられたタイヤ周方向に延びる複数の主溝と、前記主溝間に形成されたリブであって当該リブを横断する横溝が設けられていない複数のリブと、をトレッド部に備える空気入りタイヤにおいて、前記主溝間に形成された複数のリブの全て又は当該複数のリブのうちの1本のリブを除く他のリブは、接地面が前記トレッド部の基準輪郭線に対してタイヤ径方向外方へ膨出しており、かつ、各リブの前記基準輪郭線に対する膨出量が互いに異なるものである。   The pneumatic tire according to the first embodiment includes a plurality of main grooves extending in the tire circumferential direction in which groove positions and groove widths are provided symmetrically with respect to the tire equatorial plane, and ribs formed between the main grooves. In the pneumatic tire having a plurality of ribs that are not provided with a transverse groove that crosses the ribs, and the tread portion includes all of the plurality of ribs formed between the main grooves or one of the plurality of ribs. The ribs other than the ribs of the ribs have a ground contact surface bulging outward in the tire radial direction with respect to the reference contour line of the tread portion, and the bulge amounts of the ribs with respect to the reference contour line are different from each other. Is.

第2の実施形態に係る空気入りタイヤは、タイヤ赤道面に対して溝位置及び溝幅が対称に設けられたタイヤ周方向に延びる一対のセンター主溝と、前記センター主溝のタイヤ幅方向外側において前記タイヤ赤道面に対して溝位置及び溝幅が対称に設けられたタイヤ周方向に延びる一対のショルダー主溝と、前記一対のセンター主溝の間に形成された中央リブと、前記センター主溝と前記ショルダー主溝の間に形成された一対の中間リブと、前記一対のショルダー主溝のタイヤ幅方向外側に形成された一対のショルダーリブと、をトレッド部に備える空気入りタイヤにおいて、前記一対の中間リブのうち少なくとも車両装着時外側の中間リブと前記中央リブは、接地面が前記トレッド部の基準輪郭線に対してタイヤ径方向外方へ膨出しており、前記基準輪郭線からの膨出量が、前記車両装着時外側の中間リブよりも前記中央リブで大きく、かつ車両装着時内側の中間リブよりも前記車両装着時外側の中間リブで大きいものである。   The pneumatic tire according to the second embodiment includes a pair of center main grooves extending in the tire circumferential direction in which a groove position and a groove width are provided symmetrically with respect to the tire equatorial plane, and an outer side in the tire width direction of the center main groove. A pair of shoulder main grooves extending in the tire circumferential direction provided symmetrically with respect to the tire equatorial plane, a center rib formed between the pair of center main grooves, and the center main In a pneumatic tire provided in a tread portion, a pair of intermediate ribs formed between a groove and the shoulder main groove, and a pair of shoulder ribs formed outside the pair of shoulder main grooves in the tire width direction, Of the pair of intermediate ribs, at least the outer intermediate rib and the central rib when mounted on the vehicle have a ground contact surface that bulges outward in the tire radial direction with respect to the reference contour line of the tread portion, The amount of bulging from the reference contour is larger at the central rib than the outer intermediate rib when mounted on the vehicle, and larger at the outer intermediate rib when mounted on the vehicle than the inner intermediate rib when mounted on the vehicle. .

本実施形態によれば、主溝間に形成された各リブにおいてタイヤ接地時の接地長が互いに異なるため、タイヤ走行時における気柱管共鳴の周波数帯を分散させることができ、気柱管共鳴音を低減することができる。また、特に第2の実施形態によれば、タイヤ接地時における中央リブの接地長を長くして低荷重域での操縦安定性を向上できるとともに、車両装着時外側の中間リブの接地長を長くして高荷重域での操縦安定性を向上でき、そのため、気柱管共鳴音を低減しつつ操縦安定性を向上することができる。   According to the present embodiment, the ribs formed between the main grooves have different contact lengths at the time of tire contact with each other, so that the frequency band of air column resonance at the time of tire traveling can be dispersed, and air column resonance Sound can be reduced. In particular, according to the second embodiment, the contact length of the central rib at the time of tire contact can be increased to improve the handling stability in the low load range, and the contact length of the outer intermediate rib can be increased when the vehicle is mounted. As a result, the steering stability in a high load range can be improved, and therefore the steering stability can be improved while reducing the air column resonance noise.

一実施形態に係る空気入りタイヤのトレッド部の幅方向断面図。1 is a cross-sectional view in the width direction of a tread portion of a pneumatic tire according to an embodiment. 図1のトレッド部の要部拡大断面図。The principal part expanded sectional view of the tread part of FIG. 同空気入りタイヤの接地形状を示す図。The figure which shows the contact shape of the pneumatic tire. 他の実施形態に係る空気入りタイヤのトレッド部の幅方向断面図。Sectional drawing of the width direction of the tread part of the pneumatic tire which concerns on other embodiment. 図4のトレッド部の要部拡大断面図。The principal part expanded sectional view of the tread part of FIG. 比較例の空気入りタイヤの接地形状を示す図。The figure which shows the contact shape of the pneumatic tire of a comparative example.

図1は、一実施形態に係る空気入りタイヤのトレッド部10を示すタイヤ幅方向W(子午線方向)に沿った断面図である。このタイヤは、乗用車用空気入りラジカルタイヤであって、トレッド部10とともに左右一対のビード部(不図示)及びサイドウォール部を備えてなり、トレッド部10は左右のサイドウォール部1,1のタイヤ径方向Kにおける外端部同士を連結するように設けられている。図中、CLはタイヤ赤道面を示し、タイヤの幅方向Wの中心に相当する。   FIG. 1 is a cross-sectional view along a tire width direction W (meridian direction) showing a tread portion 10 of a pneumatic tire according to an embodiment. This tire is a pneumatic radical tire for passenger cars, and includes a tread portion 10 and a pair of left and right bead portions (not shown) and sidewall portions, and the tread portion 10 is a tire of left and right sidewall portions 1 and 1. The outer end portions in the radial direction K are provided so as to be connected to each other. In the figure, CL indicates the tire equator plane and corresponds to the center in the width direction W of the tire.

空気入りタイヤには、一対のビード部間にまたがって延びる少なくとも1枚のカーカスプライからなるカーカス2が埋設されている。カーカス2は、トレッド部10からサイドウォール部1を通って延在し、ビード部において両端部が係止されている。トレッド部10におけるカーカス2の外周側にはベルト3が設けられている。ベルト3は、ベルトコードをタイヤ周方向に対し浅い角度で傾斜配列してなる複数枚のベルトプライからなり、この例では、2枚のベルトプライで構成されている。ベルト3の外周側には、繊維コードをタイヤ周方向に沿って配設してなるベルト補強層4が設けられている。   A carcass 2 composed of at least one carcass ply extending across a pair of bead portions is embedded in the pneumatic tire. The carcass 2 extends from the tread portion 10 through the sidewall portion 1, and both end portions are locked at the bead portion. A belt 3 is provided on the outer peripheral side of the carcass 2 in the tread portion 10. The belt 3 is composed of a plurality of belt plies formed by inclining a belt cord at a shallow angle with respect to the tire circumferential direction. In this example, the belt 3 is composed of two belt plies. On the outer peripheral side of the belt 3, a belt reinforcing layer 4 in which fiber cords are arranged along the tire circumferential direction is provided.

ベルト3の外周側(詳細にはベルト補強層4の外周側)にはトレッドゴム5が設けられており、該トレッドゴム5によりタイヤ接地面を構成するトレッド部10の表面が形成されている。   A tread rubber 5 is provided on the outer peripheral side of the belt 3 (specifically, the outer peripheral side of the belt reinforcing layer 4), and the tread rubber 5 forms a surface of a tread portion 10 that constitutes a tire contact surface.

トレッド部10の表面には、タイヤ赤道面CLに対して溝位置及び溝幅が対称に設けられたタイヤ周方向に延びる複数(この例では4本)のストレート状の主溝12が設けられている。具体的には、主溝12は、タイヤ赤道面CLを挟んだ両側において溝位置及び溝幅がタイヤ赤道面CLに対称に設けられた一対のセンター主溝12A,12Aと、一対のセンター主溝12A,12Aのタイヤ幅方向外側Woにおいてタイヤ赤道面CLに対して溝位置及び溝幅が対称に設けられた一対のショルダー主溝12B,12Bとから構成されている。ここで、溝位置とはタイヤ赤道面CLを基準としたタイヤ幅方向Wでの主溝12の位置であり、溝幅とは各主溝12の幅である。そのため、一対のセンター主溝12A、12Aは、互いに溝幅が等しく、かつタイヤ赤道面CLからの距離が同じ位置に設けられており、一対のショルダー主溝12B,12Bは、互いに溝幅が等しく、かつタイヤ赤道面CLからの距離が同じ位置に設けられている。なお、タイヤ幅方向外側Woとは、タイヤ幅方向Wにおいてタイヤ赤道面CLから離れる側をいう。   The surface of the tread portion 10 is provided with a plurality of (four in this example) straight main grooves 12 extending in the tire circumferential direction in which groove positions and groove widths are provided symmetrically with respect to the tire equatorial plane CL. Yes. Specifically, the main groove 12 includes a pair of center main grooves 12A and 12A in which the groove position and the groove width are provided symmetrically with the tire equatorial plane CL on both sides of the tire equatorial plane CL, and a pair of center main grooves. 12A and 12A are composed of a pair of shoulder main grooves 12B and 12B which are provided symmetrically with respect to the tire equatorial plane CL on the tire width direction outer side Wo. Here, the groove position is the position of the main groove 12 in the tire width direction W with respect to the tire equatorial plane CL, and the groove width is the width of each main groove 12. Therefore, the pair of center main grooves 12A and 12A have the same groove width and are provided at the same distance from the tire equatorial plane CL, and the pair of shoulder main grooves 12B and 12B have the same groove width. And the distance from the tire equatorial plane CL is provided at the same position. The tire width direction outer side Wo refers to a side away from the tire equatorial plane CL in the tire width direction W.

上記の4本の主溝12により、トレッド部10には、左右一対のセンター主溝12A,12Aの間に形成された中央リブ14と、センター主溝12Aとショルダー主溝12Bの間に形成された左右一対の中間リブ16,16と、左右一対のショルダー主溝12B,12Bのタイヤ幅方向外側Woに形成された左右一対のショルダーリブ18,18と、が設けられている。   By the four main grooves 12, the tread portion 10 is formed between the center rib 14 formed between the pair of left and right center main grooves 12A and 12A, and between the center main groove 12A and the shoulder main groove 12B. A pair of left and right intermediate ribs 16, 16 and a pair of left and right shoulder ribs 18, 18 formed on the outer side Wo in the tire width direction of the pair of left and right shoulder main grooves 12B, 12B are provided.

図3に接地形状を示すように、各リブ14,16,18には当該リブを横断する横溝が設けられていない。すなわち、リブ14,16,18には、主溝12に対して交差する方向に延びて当該リブの両側を連通させる横溝が設けられておらず、従って、リブ12,14,16は、タイヤ周方向Cに分断されておらず、タイヤ周方向Cの全周にわたって連続して形成されている。   As shown in FIG. 3, each rib 14, 16, 18 is not provided with a transverse groove that crosses the rib. That is, the ribs 14, 16, and 18 are not provided with lateral grooves that extend in a direction intersecting the main groove 12 and communicate with both sides of the ribs. It is not divided in the direction C, and is formed continuously over the entire circumference in the tire circumferential direction C.

中央リブ14と一対の中間リブ16,16は、図1及び図2に示すように、トレッド部10の基準輪郭線Lに対してタイヤ径方向外方Koへ膨出しており、蒲鉾形状に形成されている。一方、ショルダーリブ18,18については基準輪郭線Lから膨出しておらず、すなわち、ショルダーリブ18の接地面19は基準輪郭線L上にある。   As shown in FIGS. 1 and 2, the central rib 14 and the pair of intermediate ribs 16 and 16 bulge outward in the tire radial direction Ko with respect to the reference contour line L of the tread portion 10, and are formed in a bowl shape. Has been. On the other hand, the shoulder ribs 18 and 18 do not bulge from the reference contour L, that is, the ground contact surface 19 of the shoulder rib 18 is on the reference contour L.

ここで、基準輪郭線Lは、タイヤ幅方向Wに沿った断面においてトレッド面を規定する基準となる曲線であり、一般に複数の円弧が共通の接線を持つ接点において接続された曲線からなるタイヤトレッドの設計プロファイルと同一視することもできる。具体的には、基準輪郭線Lは、各主溝12の開口端(各リブ14,16,18のエッジ)を通過して滑らかに連続する1又は複数の円弧からなる曲線であり、例えば、全ての主溝12の開口端が単一の円弧上にあるときには当該円弧が基準輪郭線Lとなる。但し、通常は全ての主溝12の開口端は単一の円弧上にはないので基準輪郭線Lは複数の円弧から形成され、次のように定められる。図2に示すように、中央リブ14においては、当該リブ14の両エッジa,bとセンター主溝12Aを挟んで隣接する中間リブ16のエッジc,dを求めて、点a,b,cを通る円弧と点a,b,dを通る円弧のうち、曲率半径の大きな円弧を基準輪郭線Lとする。中央リブ14は基本的に曲率半径が大きいため、曲率半径の大きな円弧の方が一般に中央リブ14での設計プロファイルに近いからである。中間リブ16においては、当該リブ16の両エッジd,eとセンター主溝12Aを挟んで隣接する中央リブ14のエッジbとの3点b,d,eを通る円弧を基準輪郭線Lとする。設計プロファイルはタイヤ赤道面CLから離れるに従って曲率半径が小さい円弧で構成されるため、中間リブ16での基準輪郭線Lを外側に隣接するショルダーリブ18のエッジfを通る円弧で定義すると、設計プロファイルの円弧よりも小さくなりすぎることがある。そのため、内側に隣接する中央リブ14のエッジbを用いて定義する。   Here, the reference contour line L is a curve that serves as a reference for defining a tread surface in a cross section along the tire width direction W, and is generally a tire tread that is formed by a curve in which a plurality of arcs are connected at a contact point having a common tangent line. It can also be identified with the design profile. Specifically, the reference contour line L is a curve composed of one or a plurality of arcs smoothly passing through the open ends of the main grooves 12 (edges of the ribs 14, 16, 18), for example, When the open ends of all the main grooves 12 are on a single arc, the arc becomes the reference contour L. However, since the open ends of all the main grooves 12 are not usually on a single arc, the reference contour line L is formed from a plurality of arcs and is defined as follows. As shown in FIG. 2, in the central rib 14, the edges a, b, c of the intermediate rib 16 adjacent to both edges a, b of the rib 14 and the center main groove 12A are obtained. Among the arcs passing through and the points a, b, d, let the arc having a large curvature radius be the reference contour line L. This is because the central rib 14 basically has a large radius of curvature, and thus an arc having a large radius of curvature is generally closer to the design profile of the central rib 14. In the intermediate rib 16, an arc passing through three points b, d, e between both edges d, e of the rib 16 and the edge b of the adjacent central rib 14 across the center main groove 12 </ b> A is defined as a reference contour L. . Since the design profile is formed by an arc having a smaller curvature radius as the distance from the tire equatorial plane CL increases, the design profile is defined by defining the reference contour line L at the intermediate rib 16 as an arc passing through the edge f of the shoulder rib 18 adjacent to the outside. May be smaller than the arc. Therefore, it defines using the edge b of the center rib 14 adjacent inside.

中央リブ14と一対の中間リブ16,16は、幅方向Wの中央部が最も突出するように基準輪郭線Lよりタイヤ径方向外方Koへ膨出している。これにより、中央リブ14及び中間リブ16の接地面14A,16Aは、タイヤ幅方向Wの中央部に頂点14A1,16A1が位置する円弧状の断面形状をなしている。   The central rib 14 and the pair of intermediate ribs 16, 16 bulge outwardly in the tire radial direction Ko from the reference contour line L so that the central portion in the width direction W protrudes most. Thereby, the ground contact surfaces 14A and 16A of the center rib 14 and the intermediate rib 16 have an arcuate cross-sectional shape in which the vertices 14A1 and 16A1 are located at the center in the tire width direction W.

中央リブ14と一対の中間リブ16,16の基準輪郭線Lに対する膨出量は互いに異なる。詳細には、本実施形態に係る空気入りタイヤは、車両装着時に内側になる面と外側になる面が定められたタイヤであり、図において車両装着時内側となる側を「車両内側」、車両装着時外側となる側を「車両外側」と示している。中央リブ14の基準輪郭線Lからの膨出量(即ち、中央リブ14の頂点14A1から基準輪郭線Lまでの距離)をHとし、車両装着時外側の中間リブ16−1の基準輪郭線Lからの膨出量(即ち、該中間リブ16−1の頂点16A1−1から基準輪郭線Lまでの距離)をH1とし、車両装着時内側の中間リブ16−2の基準輪郭線Lからの膨出量(即ち、該中間リブ16−2の頂点16A1−2から基準輪郭線Lまでの距離)をH2とする。このとき、H>H1>H2となるように形成されている。   The bulge amounts of the central rib 14 and the pair of intermediate ribs 16 and 16 with respect to the reference contour line L are different from each other. Specifically, the pneumatic tire according to the present embodiment is a tire in which a surface that is on the inside and a surface that is on the outside when the vehicle is mounted is determined. In FIG. The side that is the outer side at the time of mounting is indicated as “the vehicle outer side”. The bulging amount of the central rib 14 from the reference contour L (that is, the distance from the apex 14A1 of the central rib 14 to the reference contour L) is H, and the reference contour L of the intermediate rib 16-1 outside when the vehicle is mounted. Bulge amount from the reference contour line L of the intermediate rib 16-2 on the inner side when the vehicle is mounted is defined as H1 (ie, the distance from the vertex 16A1-1 of the intermediate rib 16-1 to the reference contour line L). The amount of protrusion (that is, the distance from the vertex 16A1-2 of the intermediate rib 16-2 to the reference contour line L) is H2. At this time, it is formed so that H> H1> H2.

これらの膨出量の値は特に限定されないが、中央リブ14での膨出量Hが0.5〜1.5mmであることが好ましい。中間リブ16−1及び16−2での膨出量H1,H2は、H>H1>H2の関係を満足するように適宜に設定することができる。   Although the value of these bulging amounts is not particularly limited, the bulging amount H at the central rib 14 is preferably 0.5 to 1.5 mm. The bulging amounts H1 and H2 at the intermediate ribs 16-1 and 16-2 can be appropriately set so as to satisfy the relationship of H> H1> H2.

基準輪郭線L及び各リブ14,16の膨出量は、空気入りタイヤを正規リムに装着して正規内圧を充填した無負荷の正規状態でのものであり、この状態でのタイヤ形状をレーザー形状測定装置で計測することにより得られる。正規リムとは、JATMA規格における「標準リム」、TRA規格における「Design Rim」、又はETRTO規格における「Measuring Rim」である。正規内圧とは、JATMA規格における「最高空気圧」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の「最大値」、又はETRTO規格における「INFLATION PRESSURE」である。   The bulging amount of the reference contour line L and each of the ribs 14 and 16 is that in a normal state of no load in which a pneumatic tire is mounted on a regular rim and filled with a regular internal pressure. It is obtained by measuring with a shape measuring device. The regular rim is “standard rim” in JATMA standard, “Design Rim” in TRA standard, or “Measuring Rim” in ETRTO standard. The normal internal pressure is “maximum air pressure” in JATMA standard, “maximum value” described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” in TRA standard, or “INFLATION PRESSURE” in ETRTO standard.

本実施形態によれば、主溝12に挟まれた各リブ14,16−1,16−2において、上記のように接地面14A,16A,16Aをタイヤ径方向外方Koに膨出させ、かつ膨出量の異なるリブとして形成したので、図3に示すように、タイヤ接地時における周方向Cでの接地長が各リブ14,16−1,16−2で互いに異なる。これにより、タイヤ走行時における気柱管共鳴の周波数帯を分散させることができ、気柱管共鳴音を低減することができる。   According to the present embodiment, in each of the ribs 14, 16-1 and 16-2 sandwiched between the main grooves 12, the ground contact surfaces 14 </ b> A, 16 </ b> A and 16 </ b> A are bulged outward in the tire radial direction as described above. Since the ribs are formed with different bulge amounts, the contact lengths in the circumferential direction C at the time of tire contact are different between the ribs 14, 16-1, and 16-2 as shown in FIG. As a result, the frequency band of air column resonance at the time of running of the tire can be dispersed, and air column resonance noise can be reduced.

詳細には、各リブ14,16−1,16−2の接地面を膨出させていない比較例のタイヤでは、図6に示すように、左右の中間リブ16−1,16−2の接地長Sm1,Sm2は同一であり(Sm1=Sm2)、そのため、一対のセンター主溝12A,12Aにおいて、タイヤ接地時に路面との間で形成される管長が等しく、管共鳴周波数が一致する。また、一対のショルダー主溝12B,12Bでも、タイヤ接地時に路面との間で形成される管長が等しく、管共鳴周波数が一致する。そのため、気柱管共鳴音による騒音の原因となる。   In detail, in the tire of the comparative example in which the ground contact surfaces of the ribs 14, 16-1 and 16-2 are not bulged, as shown in FIG. 6, the grounding of the left and right intermediate ribs 16-1 and 16-2 is performed. The lengths Sm1 and Sm2 are the same (Sm1 = Sm2). Therefore, in the pair of center main grooves 12A and 12A, the tube lengths formed with the road surface at the time of tire contact are equal, and the tube resonance frequencies coincide. The pair of shoulder main grooves 12B and 12B also have the same tube length formed between the road surface and the road surface, and the tube resonance frequencies match. Therefore, it causes noise due to air columnar resonance.

これに対し、本実施形態であると、上記のように各リブ14,16−1,16−2を膨出させたことにより、図3に示すように、中央リブ14の接地長Scが最も長く、次いで車両装着時外側の中間リブ16−1の接地長Sm1、車両装着時内側の中間リブ16−2の接地長Sm2、更にショルダーリブ18,18の接地長Ssの順となる(Sc>Sm1>Sm2>Ss)。そのため、左右対称位置にあるセンター主溝12A,12Aにおいて、タイヤ接地時に路面との間で形成される管長が相違することになるので、一対のセンター主溝12A,12A間で管共鳴周波数が一致せずにずれる。左右対称位置にあるショルダー主溝12B,12Bについても、同様に管長が相違することになるので、一対のショルダー主溝12B,12B間で管共鳴周波数が一致せずにずれる。そのため、タイヤ走行時における気柱管共鳴の周波数帯を分散させることができ、高周波数域での気柱管共鳴音による騒音を低減することができる。   On the other hand, in this embodiment, as shown in FIG. 3, the ground contact length Sc of the central rib 14 is the longest because the ribs 14, 16-1, 16-2 are bulged as described above. Next, the contact length Sm1 of the outer intermediate rib 16-1 when mounted on the vehicle, the contact length Sm2 of the inner intermediate rib 16-2 when mounted on the vehicle, and then the contact length Ss of the shoulder ribs 18 and 18 (Sc>). Sm1> Sm2> Ss). For this reason, the center main grooves 12A and 12A in the left and right symmetrical positions have different tube lengths from the road surface at the time of tire contact, so that the pipe resonance frequencies coincide between the pair of center main grooves 12A and 12A. It shifts without doing. The shoulder main grooves 12B and 12B at the left and right symmetrical positions also have different tube lengths, so that the tube resonance frequencies are not matched between the pair of shoulder main grooves 12B and 12B. Therefore, the frequency band of the air column resonance at the time of running the tire can be dispersed, and noise due to the air column resonance sound in the high frequency region can be reduced.

本実施形態によれば、また、タイヤ接地時における中央リブ14の接地長Scを最も長くしたことにより、低荷重域での操縦安定性を向上することができる。また、高荷重域に荷重がかかりやすい車両装着時外側の中間リブ16−1の接地長Sm1を次に長くしたことにより、高荷重域での操縦安定性を向上することができる。そのため、気柱管共鳴音を低減しつつ操縦安定性を効果的に高めることができる。   According to the present embodiment, since the contact length Sc of the central rib 14 at the time of tire contact is made the longest, the steering stability in a low load region can be improved. Further, by increasing the ground contact length Sm1 of the intermediate rib 16-1 on the outside when the vehicle is likely to be loaded in the high load region, the steering stability in the high load region can be improved. Therefore, it is possible to effectively improve steering stability while reducing air columnar resonance noise.

上記実施形態では、車両装着時内側の中間リブ16−2についても基準輪郭線Lに対してタイヤ径方向外方Koへ膨出させたが、車両装着時内側の中間リブ16−2については基準輪郭線Lから膨出させなくてもよい(即ち、H2=0mm)。膨出させなくても、各リブ14,16−1,16−2の接地長を互いに異ならせることができるので、同様の効果が得られる。   In the above embodiment, the intermediate rib 16-2 on the inner side when the vehicle is mounted is also bulged outward in the tire radial direction Ko with respect to the reference contour line L. It is not necessary to bulge from the contour line L (that is, H2 = 0 mm). Since the contact lengths of the ribs 14, 16-1, and 16-2 can be made different from each other without bulging, the same effect can be obtained.

上記実施形態において、各リブ14,16−1,16−2の膨出量H,H1,H2については、膨出量の比を等分に近い値として、各リブ14,16−1,16−2の接地長の比を等分に近い値とするため、例えば、H1をHの0.4〜0.6倍とし、H2をHの0〜0.3倍としてもよい。接地長の比を等分に近い値とすることにより、気柱管共鳴の周波数帯を均等に分散させることができ、気柱管共鳴音の低減効果を高めることができる。   In the above embodiment, for the bulging amounts H, H1, and H2 of the ribs 14, 16-1, and 16-2, the ratio of the bulging amount is set to a value that is nearly equal, and the ribs 14, 16-1, and 16 For example, H1 may be set to 0.4 to 0.6 times H and H2 may be set to 0 to 0.3 times H in order to make the ratio of the contact length of -2 close to equal. By setting the ratio of the contact lengths to a value close to equality, the frequency band of air column resonance can be evenly distributed, and the effect of reducing air column resonance noise can be enhanced.

また、例えば、センター主溝12Aの溝幅waがショルダー主溝12Bの溝幅wbに対して十分に小さい場合、中央リブ14と中間リブ16との膨出量の差が小さいと、センター主溝12Aとショルダー主溝12Bの間の管共鳴周波数が近くなり、騒音低減効果が小さくなることがある。そのため、例えば、センター主溝12Aの溝幅waがショルダー主溝12Bの溝幅wbの1/2以下(wa/wb≦0.5)の場合には、車両装着時外側の中間リブ16−1での膨出量H1を、中央リブ14での膨出量Hの1/3以下(H1/H≦1/3)に設定することが好ましい。このように中央リブ14と中間リブ16の膨出量の差を大きく設定することにより、センター主溝12Aとショルダー主溝12Bの間の管共鳴周波数の差を大きくして、騒音低減効果を高めることができる。   Further, for example, when the groove width wa of the center main groove 12A is sufficiently smaller than the groove width wb of the shoulder main groove 12B, if the difference in bulging amount between the center rib 14 and the intermediate rib 16 is small, the center main groove The tube resonance frequency between 12A and the shoulder main groove 12B becomes close, and the noise reduction effect may be reduced. Therefore, for example, when the groove width wa of the center main groove 12A is ½ or less (wa / wb ≦ 0.5) of the groove width wb of the shoulder main groove 12B, the intermediate rib 16-1 on the outer side when the vehicle is mounted. It is preferable to set the bulging amount H1 at 1/3 or less (H1 / H ≦ 1/3) of the bulging amount H at the central rib 14. Thus, by setting a large difference in the amount of bulging between the central rib 14 and the intermediate rib 16, the difference in tube resonance frequency between the center main groove 12A and the shoulder main groove 12B is increased, and the noise reduction effect is enhanced. be able to.

上記実施形態では、4本の主溝12により中央リブ14と一対の中間リブ16,16と一対のショルダーリブ18,18とを設けた場合について説明したが、主溝間に形成されたリブ(即ち、主溝に挟まれたリブ)を複数有するものであれば、主溝の本数は4本に限定されるものではなく、例えば3本や5本でもよい。主溝が3本や5本の場合についても、上記実施形態と同様に、主溝間に形成された複数のリブについて、その全て又は1本のリブを除く他の全てのリブを、接地面がトレッド部の基準輪郭線に対してタイヤ径方向外方へ膨出し、かつ、各リブの上記基準輪郭線に対する膨出量が互いに異なるように設定することができ、騒音低減効果が得られる。   In the above embodiment, the case where the central rib 14, the pair of intermediate ribs 16, 16 and the pair of shoulder ribs 18, 18 are provided by the four main grooves 12 has been described, but ribs formed between the main grooves ( That is, the number of main grooves is not limited to four as long as it has a plurality of ribs sandwiched between main grooves, and may be three or five, for example. Even in the case of three or five main grooves, as in the above-described embodiment, all of the plurality of ribs formed between the main grooves or all other ribs except one rib are used as the ground plane. With respect to the reference contour line of the tread portion, it can bulge outward in the tire radial direction, and the bulge amounts of the ribs with respect to the reference contour line can be set to be different from each other, and a noise reduction effect can be obtained.

また、5本の主溝を設ける場合、図4及び図5に示すように、タイヤ赤道面CL上に1本の主溝12Cを設けて、中央リブ14を該主溝12Cで左右に分割するように構成してもよい。この場合、分割された中央リブ14−1,14−2については、両者を一体として、図1に示す実施形態の中央リブ14と同様に取り扱うことができる。例えば、中央リブ14−1,14−2の基準輪郭線Lからの膨出量H(即ち、分割された中央リブ14−1,14−2の頂点(最高点)14A1から基準輪郭線Lまでの距離)について、H>H1>H2を満足するように設定すればよい。   When five main grooves are provided, as shown in FIGS. 4 and 5, one main groove 12C is provided on the tire equatorial plane CL, and the central rib 14 is divided into left and right by the main groove 12C. You may comprise as follows. In this case, the divided central ribs 14-1 and 14-2 can be handled in the same manner as the central rib 14 of the embodiment shown in FIG. For example, the bulging amount H of the central ribs 14-1 and 14-2 from the reference contour L (that is, from the vertex (highest point) 14A1 of the divided central ribs 14-1 and 14-2 to the reference contour L) The distance) may be set so as to satisfy H> H1> H2.

上記実施形態では、リブ14,16,18に横溝を設けない場合について説明したが、リブ14,16,18には、当該リブを横断しない範囲で横溝を、タイヤ周方向に並設してもよい。また、リブ14,16,18には、当該リブを横断するサイプを設けてもよい。ここで、サイプとは、微小な溝幅(通常は1mm以下)を持つ切れ込みをいい、タイヤの通常荷重での接地時に閉じるものである。一方、横溝とは、サイプよりも溝幅の大きいものであって、通常荷重での接地時に閉じないものである。このようにリブ14,16,18には、横溝やサイプが設けられてもよく、本実施形態に係るタイヤのトレッドパターンは、これら横溝やサイプを含めてタイヤ赤道面CLに対して左右対称なトレッドパターンでもよく、横溝やサイプの配置等を変えることでタイヤ赤道面CLに対して非対称なトレッドパターンであってもよい。ここで、通常荷重とは、正規荷重の80%の荷重であり、正規荷重とは、JATMA規格における「最大負荷能力」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の「最大値」、又はETRTO規格における「LOAD CAPACITY」である。   In the above embodiment, the case where the ribs 14, 16, and 18 are not provided with the lateral grooves has been described. However, the ribs 14, 16, and 18 may be provided side by side in the tire circumferential direction so long as they do not cross the ribs. Good. The ribs 14, 16, and 18 may be provided with sipes that cross the ribs. Here, sipe refers to a notch having a minute groove width (usually 1 mm or less), and is closed when the tire is brought into contact with a normal load. On the other hand, a lateral groove has a groove width larger than that of a sipe, and does not close when contacting with a normal load. Thus, the ribs 14, 16, and 18 may be provided with lateral grooves and sipes, and the tread pattern of the tire according to this embodiment is symmetrical with respect to the tire equatorial plane CL including these lateral grooves and sipes. It may be a tread pattern or a tread pattern that is asymmetric with respect to the tire equatorial plane CL by changing the arrangement of lateral grooves and sipes. Here, the normal load is a load that is 80% of the normal load, and the normal load is the “maximum load capacity” in the JATMA standard, and the “maximum load” described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” in the TRA standard. Value "or" LOAD CAPACITY "in the ETRTO standard.

以上、いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。   Although some embodiments have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention.

上記実施形態の効果を示すために、実施例1〜4及び比較例の乗用車用空気入りラジアルタイヤ(サイズ:225/45R17)を試作した。各試作タイヤは、基本的なトレッドパターンとタイヤ内部構造は同一とし、表1に示す諸元を変更して作製した。詳細には、比較例がコントロールタイヤであり、中央リブ14と中間リブ16,16の接地面を膨出させずにトレッド表面の全体を基準輪郭線L通りに形成した例である。実施例1〜3は、比較例に対して中央リブ14と中間リブ16,16の接地面を膨出させた例である。実施例4は、比較例に対してセンター主溝12Aとショルダー主溝12Bの溝幅を変更するとともに、中央リブ14と中間リブ16,16の接地面を膨出させた例である。   In order to show the effect of the embodiment, pneumatic radial tires for passenger cars of Examples 1 to 4 and Comparative Example (size: 225 / 45R17) were prototyped. Each prototype tire was manufactured by changing the specifications shown in Table 1 with the same basic tread pattern and tire internal structure. Specifically, the comparative example is a control tire, which is an example in which the entire tread surface is formed in the reference contour line L without causing the grounding surfaces of the central rib 14 and the intermediate ribs 16 and 16 to bulge. Examples 1 to 3 are examples in which the ground planes of the central rib 14 and the intermediate ribs 16 and 16 are expanded relative to the comparative example. Example 4 is an example in which the groove widths of the center main groove 12A and the shoulder main groove 12B are changed as compared with the comparative example, and the grounding surfaces of the central rib 14 and the intermediate ribs 16 and 16 are bulged.

実施例1〜4と比較例の各空気入りタイヤについて、騒音性能と操縦安定性を評価した。評価方法は以下のとおりである。   About each pneumatic tire of Examples 1-4 and a comparative example, noise performance and steering stability were evaluated. The evaluation method is as follows.

(1)騒音性能
試験タイヤを正規リムに組み付け正規内圧を充填して、速度を60km/hとしたときのノイズをJASO規格に準じて1kHz時の音圧を測定し、その逆数を指数化して評価した。比較例1の結果を100とし、指数が大きいほどノイズが小さく騒音性能に優れていることを示す。
(1) Noise performance When a test tire is assembled on a regular rim and filled with a regular internal pressure, the noise when the speed is 60 km / h is measured according to the JASO standard and the sound pressure at 1 kHz is measured, and the reciprocal number is indexed. evaluated. The result of Comparative Example 1 is set to 100, and the larger the index, the smaller the noise and the better the noise performance.

(2)操縦安定性
正規リムに組み付け正規内圧を充填した試験タイヤを試験車両に装着し、乾燥した路面で直進走行やコーナリング走行を実施し、ドライバーの官能試験により評価した。評価は、比較例の結果を「4」とした7段階評価であり、数字大きいほど操縦安定性に優れていることを示す。
(2) Steering stability A test tire assembled with a regular rim and filled with a regular internal pressure was mounted on a test vehicle, and the vehicle was subjected to straight running and cornering running on a dry road surface. The evaluation is a seven-step evaluation with the result of the comparative example being “4”, and the larger the number, the better the steering stability.

結果は、表1に示す通りであり、実施例1では、中央リブと一対の中間リブにおいてそれぞれ異なる膨出量で接地面を膨出させたことにより、膨出させていない比較例に対して高周波数域での気柱管共鳴音による騒音が低減された。実施例2では、これらの膨出量について、中央リブの膨出量H>車両装着時外側の中間リブの膨出量H1>車両装着時内側の中間リブの膨出量H2なる関係としたことにより、実施例1に対して騒音低減効果を維持しつつ、操縦安定性が改善された。実施例3では、これら3つの膨出量の比を等分に近い値としたことにより、気柱管共鳴の周波数帯を均等に分散させることができ、実施例2に対して騒音低減効果が更に向上した。実施例4では、センター主溝の溝幅waがショルダー主溝の溝幅wbの1/2と小さい場合でありながら、車両装着時外側の中間リブの膨出量H1を中央リブの膨出量Hの1/3以下に設定したので、センター主溝とショルダー主溝の間の管共鳴周波数の差を大きくして、騒音低減効果を高めることができた。   The results are as shown in Table 1. In Example 1, the contact surface was bulged with different bulge amounts in the central rib and the pair of intermediate ribs, so that the comparative example was not bulged. Noise due to air column resonance in the high frequency range was reduced. In the second embodiment, the bulge amount H of the central rib> the bulge amount H1 of the outer intermediate rib when the vehicle is mounted> the bulge amount H2 of the inner intermediate rib when the vehicle is mounted in the second embodiment. Thus, the steering stability was improved while maintaining the noise reduction effect with respect to Example 1. In the third embodiment, the ratio of these three bulge amounts is set to a value that is almost equally divided, whereby the frequency band of the air column resonance can be evenly distributed, and the noise reduction effect is achieved with respect to the second embodiment. Further improved. In Example 4, although the groove width wa of the center main groove is as small as ½ of the groove width wb of the shoulder main groove, the bulging amount H1 of the outer intermediate rib when the vehicle is mounted is set to the bulging amount of the central rib. Since it was set to 1/3 or less of H, the difference in tube resonance frequency between the center main groove and the shoulder main groove was increased, and the noise reduction effect could be enhanced.

Figure 2016016823
Figure 2016016823

10…トレッド部、12…主溝、12A…センター主溝、12B…ショルダー主溝、14…中央リブ、14A…中央リブの接地面、16…中間リブ、16A…中間リブの接地面、16−1…車両装着時外側の中間リブ、16−2…車両装着時内側の中間リブ、18…ショルダーリブ、CL…タイヤ赤道面、C…タイヤ周方向、H…中央リブの膨出量、H1…車両装着時外側の中間リブの膨出量、H2…車両装着時内側の中間リブの膨出量、Ko…タイヤ径方向外方、L…基準輪郭線、Wo…タイヤ幅方向外側、 DESCRIPTION OF SYMBOLS 10 ... Tread part, 12 ... Main groove, 12A ... Center main groove, 12B ... Shoulder main groove, 14 ... Center rib, 14A ... Ground surface of center rib, 16 ... Intermediate rib, 16A ... Ground surface of intermediate rib, 16- DESCRIPTION OF SYMBOLS 1 ... Outer intermediate rib at the time of vehicle mounting, 16-2 ... Inner intermediate rib at the time of vehicle mounting, 18 ... Shoulder rib, CL ... Tire equatorial plane, C ... Tire circumferential direction, H ... Swelling amount of central rib, H1 ... The amount of bulging of the outer intermediate rib when mounted on the vehicle, H2: The amount of bulging of the inner intermediate rib when mounted on the vehicle, Ko ... outer in the tire radial direction, L ... reference contour line, Wo ... outer in the tire width direction,

Claims (3)

タイヤ赤道面に対して溝位置及び溝幅が対称に設けられたタイヤ周方向に延びる複数の主溝と、前記主溝間に形成されたリブであって当該リブを横断する横溝が設けられていない複数のリブと、をトレッド部に備える空気入りタイヤにおいて、
前記主溝間に形成された複数のリブの全て又は当該複数のリブのうちの1本のリブを除く他のリブは、接地面が前記トレッド部の基準輪郭線に対してタイヤ径方向外方へ膨出しており、かつ、各リブの前記基準輪郭線に対する膨出量が互いに異なることを特徴とする空気入りタイヤ。
There are provided a plurality of main grooves extending in the tire circumferential direction in which groove positions and groove widths are provided symmetrically with respect to the tire equatorial plane, and ribs formed between the main grooves and crossing the ribs. In a pneumatic tire having a plurality of ribs not provided in the tread portion,
All of the plurality of ribs formed between the main grooves, or other ribs except for one of the plurality of ribs, the ground contact surface is radially outward with respect to the reference contour line of the tread portion. A pneumatic tire characterized in that the amount of bulge with respect to the reference contour line of each rib is different from each other.
タイヤ赤道面に対して溝位置及び溝幅が対称に設けられたタイヤ周方向に延びる一対のセンター主溝と、前記センター主溝のタイヤ幅方向外側において前記タイヤ赤道面に対して溝位置及び溝幅が対称に設けられたタイヤ周方向に延びる一対のショルダー主溝と、前記一対のセンター主溝の間に形成された中央リブと、前記センター主溝と前記ショルダー主溝の間に形成された一対の中間リブと、前記一対のショルダー主溝のタイヤ幅方向外側に形成された一対のショルダーリブと、をトレッド部に備える空気入りタイヤにおいて、
前記一対の中間リブのうち少なくとも車両装着時外側の中間リブと前記中央リブは、接地面が前記トレッド部の基準輪郭線に対してタイヤ径方向外方へ膨出しており、前記基準輪郭線からの膨出量が、前記車両装着時外側の中間リブよりも前記中央リブで大きく、かつ車両装着時内側の中間リブよりも前記車両装着時外側の中間リブで大きいことを特徴とする空気入りタイヤ。
A pair of center main grooves extending in the tire circumferential direction in which a groove position and a groove width are provided symmetrically with respect to the tire equatorial plane, and a groove position and a groove with respect to the tire equatorial plane outside the center main groove in the tire width direction. A pair of shoulder main grooves extending in the tire circumferential direction provided symmetrically in width, a central rib formed between the pair of center main grooves, and formed between the center main groove and the shoulder main grooves In a pneumatic tire provided with a pair of intermediate ribs and a pair of shoulder ribs formed on the outer side in the tire width direction of the pair of shoulder main grooves in the tread portion,
Of the pair of intermediate ribs, at least the outer intermediate rib and the central rib when mounted on the vehicle have a ground contact surface bulging outward in the tire radial direction with respect to the reference contour line of the tread portion, and from the reference contour line The bulging amount of the pneumatic tire is larger at the central rib than at the outer intermediate rib when mounted on the vehicle, and larger at the outer intermediate rib when mounted on the vehicle than the inner intermediate rib when mounted on the vehicle. .
前記センター主溝の溝幅が前記ショルダー主溝の溝幅の1/2以下であり、前記車両装着時外側の中間リブでの前記基準輪郭線からの膨出量が、前記中央リブでの前記基準輪郭線からの膨出量の1/3以下である請求項2記載の空気入りタイヤ。   The groove width of the center main groove is less than or equal to ½ of the groove width of the shoulder main groove, and the amount of bulging from the reference contour line at the outer intermediate rib when the vehicle is mounted is the height at the central rib. The pneumatic tire according to claim 2, wherein the amount is not more than 1/3 of the bulging amount from the reference contour line.
JP2014142458A 2014-07-10 2014-07-10 Pneumatic tire Active JP6348008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014142458A JP6348008B2 (en) 2014-07-10 2014-07-10 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014142458A JP6348008B2 (en) 2014-07-10 2014-07-10 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2016016823A true JP2016016823A (en) 2016-02-01
JP6348008B2 JP6348008B2 (en) 2018-06-27

Family

ID=55232360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014142458A Active JP6348008B2 (en) 2014-07-10 2014-07-10 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP6348008B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100168A (en) * 2018-12-19 2020-07-02 横浜ゴム株式会社 Pneumatic tire
EP4000907A1 (en) * 2020-11-19 2022-05-25 Sumitomo Rubber Industries, Ltd. Tire mold, production method for tire, and tire
EP3900957A4 (en) * 2018-12-19 2022-08-31 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193914B2 (en) 2017-11-17 2022-12-21 ローム株式会社 Variable delay circuit, PLL frequency synthesizer, Electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655811U (en) * 1993-01-13 1994-08-02 株式会社ブリヂストン Pneumatic tire
US20110079334A1 (en) * 2009-10-02 2011-04-07 Andreas Bott Tire tread having improved contact pressure distribution
US20130240101A1 (en) * 2012-03-14 2013-09-19 The Yokohama Rubber Co., Ltd. Pneumatic Tire
JP2014069587A (en) * 2012-09-27 2014-04-21 Yokohama Rubber Co Ltd:The Pneumatic tire
US20140166169A1 (en) * 2012-12-19 2014-06-19 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655811U (en) * 1993-01-13 1994-08-02 株式会社ブリヂストン Pneumatic tire
US20110079334A1 (en) * 2009-10-02 2011-04-07 Andreas Bott Tire tread having improved contact pressure distribution
US20130240101A1 (en) * 2012-03-14 2013-09-19 The Yokohama Rubber Co., Ltd. Pneumatic Tire
JP2013189121A (en) * 2012-03-14 2013-09-26 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2014069587A (en) * 2012-09-27 2014-04-21 Yokohama Rubber Co Ltd:The Pneumatic tire
US20140166169A1 (en) * 2012-12-19 2014-06-19 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2014118123A (en) * 2012-12-19 2014-06-30 Sumitomo Rubber Ind Ltd Pneumatic tire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100168A (en) * 2018-12-19 2020-07-02 横浜ゴム株式会社 Pneumatic tire
EP3900957A4 (en) * 2018-12-19 2022-08-31 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP7238383B2 (en) 2018-12-19 2023-03-14 横浜ゴム株式会社 pneumatic tire
EP4000907A1 (en) * 2020-11-19 2022-05-25 Sumitomo Rubber Industries, Ltd. Tire mold, production method for tire, and tire
US11865800B2 (en) 2020-11-19 2024-01-09 Sumitomo Rubber Industries, Ltd. Tire mold and production method for tire using a tire mold

Also Published As

Publication number Publication date
JP6348008B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP5667614B2 (en) Pneumatic tire
JP6293610B2 (en) Pneumatic tire
JP6234891B2 (en) Pneumatic tire
JP5333510B2 (en) Pneumatic tire
JP5614515B1 (en) Pneumatic tire
WO2016051651A1 (en) Run-flat tire
US11203234B2 (en) Pneumatic tire
JP2012228992A (en) Pneumatic tire
JP6433760B2 (en) Pneumatic tire
CN106515316B (en) Pneumatic tire
WO2016013368A1 (en) Pneumatic tire
WO2010137347A1 (en) Run-flat tire
JP2016074391A (en) Pneumatic tire
JP6450224B2 (en) Pneumatic tire
JP6348008B2 (en) Pneumatic tire
JP2016074390A (en) Pneumatic tire
WO2020009049A1 (en) Pneumatic tire
JP2017159752A (en) Pneumatic tire
JP2016074388A (en) Pneumatic tire
JPWO2019117091A1 (en) Pneumatic tires
JP2011255685A (en) Pneumatic tire
JP6421652B2 (en) Pneumatic tire
JP2016007973A (en) Pneumatic tire
JP6230968B2 (en) Pneumatic tire
WO2015033839A1 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180530

R150 Certificate of patent or registration of utility model

Ref document number: 6348008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250