JP2016014800A - Zoom lens and optical instrument having the same - Google Patents

Zoom lens and optical instrument having the same Download PDF

Info

Publication number
JP2016014800A
JP2016014800A JP2014137286A JP2014137286A JP2016014800A JP 2016014800 A JP2016014800 A JP 2016014800A JP 2014137286 A JP2014137286 A JP 2014137286A JP 2014137286 A JP2014137286 A JP 2014137286A JP 2016014800 A JP2016014800 A JP 2016014800A
Authority
JP
Japan
Prior art keywords
lens group
lens
wide
object side
conditional expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014137286A
Other languages
Japanese (ja)
Inventor
茂宣 杉田
Shigenobu Sugita
茂宣 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014137286A priority Critical patent/JP2016014800A/en
Publication of JP2016014800A publication Critical patent/JP2016014800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wide-angle zoom lens having a bright and uniform open F value throughout the whole zoom range and an optical instrument having the same, in which a drop in peripheral light intensity at the wide angle end is made less noticeable and whose performance is made high.SOLUTION: A zoom lens has a positive lens group arranged closest to the image side. At the position closest to the image side of a lens group adjacent to the object side of the positive lens group, a variable diaphragm is provided which determines an F value during open use times at least at the wide angle end, and a surface apex position on the object side of the positive lens group is arranged closer to the image side than the variable diaphragm position at the wide angle end and arranged closer to the object side than the variable diaphragm position at the telephoto end.

Description

本発明は、ズームレンズ及びそれを有する光学機器に関し、例えば一眼レフカメラ・デジタルスチルカメラ、デジタルビデオカメラ等の撮影レンズに好適なものである。   The present invention relates to a zoom lens and an optical apparatus having the same, and is suitable for a photographing lens such as a single-lens reflex camera, a digital still camera, and a digital video camera.

従来より、一眼レフカメラ等の撮影光学系は、用途に応じて様々なスペックの光学系が要望されている。その1つに、全画角80度以上の広角域からの変倍が可能な、広角ズームレンズがある。   2. Description of the Related Art Conventionally, optical systems having various specifications are required for photographing optical systems such as single-lens reflex cameras depending on applications. One of them is a wide-angle zoom lens capable of zooming from a wide-angle region with a full field angle of 80 degrees or more.

また一方で、F値が2.8程度と明るく、更にズーミングによって露出変化が生じないよう、ズーム全域で開放F値を同値で使用できるズームレンズも求められている。   On the other hand, there is also a demand for a zoom lens that has a bright F value of about 2.8 and can use the same open F value throughout the entire zoom range so that exposure changes do not occur due to zooming.

特許文献1では、負の第1レンズ群、正の第2レンズ群より成る、広角端での全画角113度で、1.7倍程度の変倍比を持ち、かつ開放F値がズーム全域で2.8である広角ズームレンズを紹介している。   In Patent Document 1, the zoom lens has a zoom ratio of about 1.7 times and a zoom ratio of about 1.7 times with a total angle of view of 113 degrees at the wide angle end, which includes a negative first lens group and a positive second lens group. Introducing a wide-angle zoom lens that is 2.8 throughout.

特許文献2では、負の第1レンズ群、正の第2レンズ群、負の第3レンズ群、正の第4レンズ群より成る、広角端での全画角106度で、2.1倍程度の変倍比を持ち、かつ開放F値がズーム全域で2.8である広角ズームレンズを紹介している。   In Patent Document 2, the total angle of view at a wide angle end of 106 degrees, which is composed of a negative first lens group, a positive second lens group, a negative third lens group, and a positive fourth lens group, is 2.1 times. A wide-angle zoom lens having a zoom ratio of about 2.8 and an open F value of 2.8 over the entire zoom range is introduced.

特開2008−233284号公報JP 2008-233284 A 特開2008−046208号公報JP 2008-046208 A

通常、広角レンズは、射出瞳位置より物体側に負の合成パワーのレンズ群、また像側に正の合成パワーのレンズ群を配置する、レトロフォーカスタイプの光学系が用いられる。レトロフォーカスタイプの光学系では、物体側のレンズ群の最も物体側のレンズで、有効径が最も大きくなり、それがレンズ本体の外径を決定する要因となっている。そのため、通常、広角レンズで小型化を図る際、物体側のレンズ群の外径を極力小さくするべく、撮影時に弊害が出ない範囲で周辺光量比を減らしている。特許文献1または2に示す広角ズームレンズにおいても、広角端の最周辺の光量を中心に対して30%以下としている。   Normally, a wide-angle lens uses a retrofocus type optical system in which a lens group having a negative combined power is disposed on the object side from the exit pupil position and a lens group having a positive combined power is disposed on the image side. In the retrofocus type optical system, the effective diameter is the largest in the most object-side lens of the object-side lens group, and this is a factor that determines the outer diameter of the lens body. For this reason, normally, when downsizing with a wide-angle lens, the peripheral light amount ratio is reduced within a range that does not cause adverse effects during photographing so as to minimize the outer diameter of the object-side lens group. Also in the wide-angle zoom lens disclosed in Patent Document 1 or 2, the amount of light at the outermost periphery at the wide-angle end is set to 30% or less with respect to the center.

このように、広角レンズにおいて最周辺の光量比を落とすと、例えば空などの均一な輝度面を撮影した時等に、撮影画像の最周辺の光量落ちが目で見て判別できてしまい、撮影写真の品位を損ねる場合がある。特に、特許文献1や2のような開放F値が全ズーム域で一律な広角ズームレンズの広角端において、周辺減光が目立つ傾向にあった。   As described above, when the light amount ratio at the outermost periphery is reduced in the wide-angle lens, for example, when a uniform luminance surface such as the sky is photographed, the light amount drop at the outermost periphery of the photographed image can be visually discriminated. The quality of the photo may be impaired. In particular, peripheral dimming tends to be conspicuous at the wide-angle end of a wide-angle zoom lens in which the open F value is uniform in the entire zoom range as in Patent Documents 1 and 2.

また、一般的に軸外光束の光量をカットする程、各レンズでの収差補正の負担が軽減され、高性能化することが出来る。ところが、特許文献1または2に示すような、開放F値が全ズーム域で一律な広角ズームレンズの広角端では、中間像高での光束が十分にカットされておらず、高性能化が困難な特徴を有していた。   In general, as the light amount of the off-axis light beam is cut, the burden of aberration correction at each lens is reduced and the performance can be improved. However, as shown in Patent Document 1 or 2, at the wide angle end of a wide-angle zoom lens in which the open F value is uniform in the entire zoom range, the light flux at the intermediate image height is not sufficiently cut, and high performance is difficult. It had the following characteristics.

そこで本発明では、開放F値が明るく全ズーム域で一律の広角ズームレンズ及びそれを有する光学機器において、広角端の周辺光量落ちを目立たなくし、かつ高性能化することを目的としている。   In view of the above, the present invention has an object to make a wide-angle zoom lens having a wide open F value and uniform in the entire zoom range and an optical apparatus having the same so as to make the peripheral light amount drop at the wide-angle end inconspicuous and to improve performance.

本発明に係るズームレンズの構成は、最も像側に正のレンズ群を有し、正レンズ群の物体側に隣接するレンズ群中の最も像側に、少なくとも広角端での開放使用時のF値を決定する可変絞りを有し、かつ正レンズ群の物体側の面頂点位置は、広角端においては可変絞り位置より像側に、望遠端においては可変絞り位置より物体側に配置することを特徴とする。   The zoom lens structure according to the present invention has a positive lens group closest to the image side, and is at least at the wide-angle end when the lens is adjacent to the object side of the positive lens group. It has a variable aperture for determining the value, and the surface apex position on the object side of the positive lens group is located closer to the image side than the variable aperture position at the wide angle end, and closer to the object side than the variable aperture position at the telephoto end. Features.

本発明によれば、開放F値が明るく全ズーム域で一律の広角ズームレンズ及びそれを有する光学機器において、広角端の周辺光量落ちを目立たなくし、かつ高性能化することができる。   According to the present invention, in a wide-angle zoom lens having a wide open F value and uniform in the entire zoom range and an optical apparatus having the same, it is possible to make the peripheral light amount drop at the wide-angle end inconspicuous and to improve performance.

本発明における実施形態1の光学系の断面図Sectional drawing of the optical system of Embodiment 1 in this invention 本発明における実施形態1の光学系の、像高と周辺光量の関係を表すグラフThe graph showing the relationship between the image height and the peripheral light amount of the optical system according to the first embodiment of the present invention. 本発明における数値実施例1の光学系をmm単位で表した時の、広角端の物体距離無限時における収差図Aberration diagram at the infinite object distance at the wide-angle end when the optical system of Numerical Example 1 according to the present invention is expressed in mm. 本発明における数値実施例1の光学系をmm単位で表した時の、望遠端の物体距離無限時における収差図Aberration diagram when the object distance at the telephoto end is infinite when the optical system of Numerical Example 1 according to the present invention is expressed in mm. 本発明における実施形態2の光学系の断面図Sectional drawing of the optical system of Embodiment 2 in this invention 本発明における実施形態2の光学系の、像高と周辺光量の関係を表すグラフThe graph showing the relationship between the image height and the peripheral light amount of the optical system according to the second embodiment of the present invention. 本発明における数値実施例2の光学系をmm単位で表した時の、広角端の物体距離無限時における収差図Aberration diagram at infinite object distance at the wide-angle end when the optical system of Numerical Example 2 according to the present invention is expressed in mm. 本発明における数値実施例2の光学系をmm単位で表した時の、望遠端の物体距離無限時における収差図Aberration diagram when the object distance at the telephoto end is infinite when the optical system of Numerical Example 2 according to the present invention is expressed in mm. 一般的な、F値が明るくズーム全域で不変である広角ズームレンズの光線図Ray diagram of a general wide-angle zoom lens that has a bright F value and is invariable throughout the entire zoom range 像高と周辺光量の関係を表すグラフと、均一輝度面を撮影した時の撮像面上の輝度分布イメージ(撮影画像を上下左右に4等分した時の右上の部分)の比較Comparison of the graph showing the relationship between the image height and the amount of peripheral light, and the brightness distribution image on the imaging surface when photographing a uniform luminance surface (upper right part when the photographed image is divided into four parts vertically and horizontally)

図9に、F値がズーム全域で2.8である広角ズームレンズの例を示す。通常、一眼レフカメラ用交換レンズ等で使用する広角ズームレンズは、長いバックフォーカスを確保する必要があるため、広角端での後側主点位置が最も像側のレンズよりも像側に配置される。そのため、最終レンズ群を強い正のパワーとし、可能な限り像側に配置する。広角端から望遠端へのズーミングに際しては、後側主点位置を物体側に移動するために、正レンズ群を大きく物体側に移動する。また、その際のオーバー側への像面変動を抑えるべく、物体側に隣接するレンズ群との間隔を狭めている。   FIG. 9 shows an example of a wide-angle zoom lens having an F value of 2.8 over the entire zoom range. Normally, wide-angle zoom lenses used for interchangeable lenses for single-lens reflex cameras, etc. need to ensure a long back focus, so the rear principal point at the wide-angle end is located closer to the image side than the image-side lens. The Therefore, the final lens group is set to have a strong positive power and is arranged on the image side as much as possible. During zooming from the wide-angle end to the telephoto end, in order to move the rear principal point position to the object side, the positive lens group is largely moved to the object side. In addition, the distance from the lens group adjacent to the object side is narrowed in order to suppress the fluctuation of the image plane toward the over side at that time.

図9に示すようなF値が明るい広角ズームレンズでは、最終レンズ群中の像側寄りのレンズと第1レンズ群を除いては、望遠端の軸上光束が各レンズの有効径を決定していることが分かる。その最終レンズ群中の像側寄りのレンズと第1レンズ群については、広角端の最周辺光束が有効径を決定している。そのため通常、本体外径の小型化を図るためには、第1レンズ群で最周辺光束の下線を可能な限りカットする方法を採る。   In a wide-angle zoom lens with a bright F-number as shown in FIG. 9, the axial light beam at the telephoto end determines the effective diameter of each lens except for the image side lens and the first lens group in the final lens group. I understand that For the lens near the image side and the first lens group in the final lens group, the outermost peripheral light beam at the wide angle end determines the effective diameter. Therefore, normally, in order to reduce the outer diameter of the main body, a method of cutting the underline of the most peripheral light beam as much as possible in the first lens group is employed.

また、高性能化のためには各レンズ群のブロック長を極力短くし、各群の移動スペースを確保する必要がある。   Further, in order to improve performance, it is necessary to shorten the block length of each lens group as much as possible to secure a moving space for each group.

最終レンズ群中の正の要素は、ペッツバール和を小さくし、かつ広角端での倍率色収差と望遠端での軸上色収差を良好に補正するために、低屈折率低分散の異常部分分散硝子を使用し、その効果を十分に発揮するべく、曲率が大きい両凸形状とする。曲率が大きい両凸形状は、有効径が大きくなる程、中心肉厚が極度に厚くなり、ブロック長が長くなってしまい、各レンズ群の移動スペースを圧迫してしまう。そのため、広角端の最周辺光束の上線についても、可能な限りカットすることで、両凸レンズの有効径を下げて肉厚を薄くし、高性能化を図っている。   The positive element in the final lens group is an extraordinary partial dispersion glass with low refractive index and low dispersion in order to reduce the Petzval sum and correct lateral chromatic aberration at the wide-angle end and axial chromatic aberration at the telephoto end. Use a biconvex shape with a large curvature in order to use the effect sufficiently. In the biconvex shape having a large curvature, as the effective diameter increases, the center thickness becomes extremely thick, the block length becomes long, and the moving space of each lens group is compressed. For this reason, the uppermost peripheral light flux at the wide-angle end is also cut as much as possible to reduce the effective diameter of the biconvex lens to reduce the wall thickness and to improve performance.

次に、F値は、焦点距離をf、後側主点位置での開口径をDとした時、FNO=|f/D|で表わされるため、開放F値がズーム全域で一律の広角ズームレンズでは、図9からも分かるように、望遠端の開口径が、広角端の開口径に対して大きくなっている。   Next, the F value is represented by FNO = | f / D |, where f is the focal length and D is the aperture diameter at the rear principal point position. In the lens, as can be seen from FIG. 9, the aperture diameter at the telephoto end is larger than the aperture diameter at the wide-angle end.

逆に言うと、広角端の開放使用時は、開放状態とは言っても軸上光束を何らかの方法で絞る必要がある。   In other words, when the wide-angle end is used in an open state, it is necessary to narrow the axial light beam by some method even though it is in the open state.

図9や特許文献1のズームレンズでは、外部からの命令で絞り径を変化させる絞り(以下、主絞り)自体の径をズーミングに応じて変化させることで、広角端の軸上光束を絞っている。この方法では、広角端の開放時における絞り径に対し、絞り付近に配置される硝子径が大きい状態になるため、中間像高の光束が上線、下線共に絞り周辺の硝子でカットされにくく、光量が多く入り込んでいた。   In the zoom lens of FIG. 9 and Patent Document 1, the diameter of an aperture (hereinafter referred to as a main aperture) itself that changes the aperture diameter by an external command is changed according to zooming, thereby narrowing the axial light beam at the wide-angle end. Yes. In this method, the diameter of the glass placed near the aperture is larger than the aperture at the wide-angle end, so that the light beam at the intermediate image height is hard to be cut by the glass around the aperture on both the upper and lower lines. There were many.

特許文献2のズームレンズでは、主絞り以外に、第3レンズ群の像側に、ズーミングに連動して有効径が変化する可変絞りを有しており、ズーミングに応じて開放F値が一律になるよう、軸上光束をカットしている。この方法では、可変絞りで広角端の軸上光束を決定すると同時に、中間像高の上線をある程度カットしており、図9や特許文献1の方法に比べると、中間像高の光束をカットできていた。   In addition to the main aperture, the zoom lens of Patent Document 2 has a variable aperture whose effective diameter changes in conjunction with zooming on the image side of the third lens group, and the open F value is uniform according to zooming. The axial luminous flux is cut so that In this method, the axial light beam at the wide-angle end is determined by the variable stop, and at the same time, the upper line of the intermediate image height is cut to some extent. Compared with the method of FIG. It was.

しかしながら、最終レンズ群の物体側方向への移動量を確保するために、可変絞りを第3レンズ群の最も像側のレンズ面に極力近い位置に配置せざるを得ず、中間像高の上線をカットする効果が十分とは言えなかった。   However, in order to secure the amount of movement of the final lens group in the object side direction, the variable aperture must be disposed as close as possible to the lens surface closest to the image side of the third lens group, and the upper line of the intermediate image height is exceeded. The effect of cutting was not sufficient.

また、可変絞りを配置するスペースの分だけ、最終レンズ群の移動量も制限してしまい、必ずしも高性能化に繋がってはいなかった。   In addition, the amount of movement of the final lens group is limited by the space where the variable aperture is arranged, which does not necessarily lead to high performance.

以上より、従来の広角ズームレンズは、中間像高の光束が余分に入るため、中間像高から周辺像高にかけて周辺光量が急峻に落ちて減光が目立つ上に、中間光束の収差補正負担が増加して、高性能化に際して負担となっていたことが分かる。   From the above, the conventional wide-angle zoom lens has extra light flux at the intermediate image height, so the amount of peripheral light falls off sharply from the intermediate image height to the peripheral image height, and the attenuation is conspicuous. It increases, and it turns out that it became a burden in performance enhancement.

そこで本発明では、最終レンズ群の最も物体側の面を物体側に強い凸面を向けた形状にした。その上で、物体側に隣接するレンズ群中の最も像側に可変絞りを配置し、可変絞りの位置を最も像側のレンズ面からある程度離れた位置に配置することで、広角端での中間光束を効果的にカットした。更に望遠端において、可変絞りが開いた際に、最終レンズ群の最も物体側の強い凸面が、周辺部では可変絞りとの接触を避けつつ、中心部では可変絞りを潜らせることで、隣接するレンズ群の像側の面との間隔を極限まで詰めた。   Therefore, in the present invention, the most object side surface of the final lens group is shaped to have a strong convex surface facing the object side. In addition, the variable stop is arranged on the most image side in the lens group adjacent to the object side, and the position of the variable stop is arranged at a position somewhat away from the lens surface on the most image side, so that it is intermediate at the wide-angle end. Effectively cut the luminous flux. Further, when the variable aperture is opened at the telephoto end, the strongest convex surface on the most object side of the final lens group is adjacent to the central portion by avoiding contact with the variable aperture while allowing the variable aperture to be hidden in the center. The distance from the image side surface of the lens group was reduced to the limit.

そうすることで、可変絞りを最も効果的な位置に配置しつつ、レンズ群の移動スペースを十分に確保することに成功した。   By doing so, we succeeded in securing a sufficient space for moving the lens group while arranging the variable stop at the most effective position.

その結果、広角端での中間像高が効果的にカットされ、広角端の周辺光量落ちを周辺付近で目立たなくすると同時に、高性能化も達成した。   As a result, the intermediate image height at the wide-angle end is effectively cut, the peripheral light amount drop at the wide-angle end is made inconspicuous near the periphery, and at the same time, high performance is achieved.

尚、本発明者は、本発明を実施するに当たり、最大像高での周辺光量が同じであっても、最大像高に向けての減光率が大きい方が、周辺減光が目立つという仮説を立て、その検証も行っている。   The present inventor hypothesized that, in carrying out the present invention, even if the peripheral light amount at the maximum image height is the same, the peripheral light reduction is more conspicuous when the light attenuation rate toward the maximum image height is large. And verifying it.

それは、人間の目が、絶対的な明るさを測る精度が鈍く、逆に相対的な明るさの変化に対して敏感であることに基づいている。   It is based on the fact that the human eye is less accurate in measuring absolute brightness and, on the contrary, is sensitive to relative changes in brightness.

その仮説に基づくと、周辺光量の落ち方は、像高変化に対して常に同じ割合で減衰する特性にすると、減光が目立たないことになる。具体的に数式にすると、下記のようになる。   Based on this hypothesis, the amount of decrease in the amount of peripheral light will not be noticeable if the characteristic is always attenuated at the same rate with respect to the change in image height. Specifically, it is as follows.

= R (y/Y)
Y:最大像高
y:評価像高
:最大像高での周辺光量
この仮説を検証するべく、最大像高の周辺光量比が同じで、減光特性が異なる3つのモデルを用意し、実際に撮影画像シミュレーションを行った。シミュレーション画像は、撮影画面を上下左右に4等分した時の、右上の部分を表している。よって、シミュレーション画像の左下の隅が撮影画像中心、右上の隅が撮影画像の最周辺となっている。
R y = R Y (y / Y)
Y: Maximum image height y: Evaluation image height R Y : Peripheral light intensity at maximum image height Three models with the same peripheral light intensity ratio at the maximum image height and different dimming characteristics are prepared to verify this hypothesis. A photographed image simulation was actually performed. The simulation image represents the upper right portion when the shooting screen is divided into four equal parts in the vertical and horizontal directions. Therefore, the lower left corner of the simulation image is the center of the captured image, and the upper right corner is the outermost periphery of the captured image.

図10(a)に示す第1のモデルは、特許文献1や2のように、中間像高の光量が多く、周辺に向かって急激に減光する特性である。図10(b)に示す第2のモデルは、最大像高に向かい、線形で減衰する特性である。図10(c)に示す第3のモデルは、前述の数式に従う特性である。   The first model shown in FIG. 10A has a characteristic that, as in Patent Documents 1 and 2, the amount of light at the intermediate image height is large and the light is rapidly reduced toward the periphery. The second model shown in FIG. 10B is a characteristic that linearly attenuates toward the maximum image height. The third model shown in FIG. 10C has characteristics according to the above-described mathematical formula.

これらの撮影画像シミュレーションから一目瞭然で、本件の仮説に従う第3のモデルにおいて、周辺部の減光が目立ちにくいことが分かる。任意の像高での周辺光量比Tは、その像高での画角をθ、開口効率をEとした時、T=E×cosθで表わされる。 It can be seen from these captured image simulations that in the third model that follows the hypothesis of the present case, it is difficult for the peripheral portion to be dimmed. The peripheral light quantity ratio T at an arbitrary image height is represented by T = E × cos 4 θ, where θ is the angle of view at the image height and E is the aperture efficiency.

開口効率について簡易的に説明すると、像面上の該当像高と光軸位置から、それぞれ物体側に光線トレースを行い、物体側の光軸と垂直な任意の非結像面における、それらのボケ像の面積比率を表したものとなる。   Briefly describing the aperture efficiency, ray tracing is performed on the object side from the corresponding image height and optical axis position on the image plane, and those blurs on any non-imaging plane perpendicular to the optical axis on the object side are detected. It represents the area ratio of the image.

軸外光束の口径食がなく、上線と下線が共に、軸上光束を決定する絞りと同じ絞りで決定される場合、開口効率は1/cosθで表わされる。この時、周辺光量比はT=cosθで表わされ、この特性は前述した理想的な周辺減光特性と異なり、中間像高から最周辺に向けて、減光率が大きくなっている。そのため、理想的な周辺減光特性にするには、いかに中間像高の開口効率を落とすかがポイントとなってくる。 When there is no vignetting of the off-axis light beam, and both the upper line and the underline are determined by the same stop as that for determining the on-axis light beam, the aperture efficiency is expressed by 1 / cos 3 θ. At this time, the peripheral light amount ratio is represented by T = cos θ, and this characteristic is different from the ideal peripheral dimming characteristic described above, and the dimming rate increases from the intermediate image height toward the most peripheral area. Therefore, in order to obtain an ideal peripheral dimming characteristic, it is important to reduce the aperture efficiency at the intermediate image height.

また近年、レンズの周辺減光のデータを使用し、光学機器側の画像処理で周辺減光を補正する手法が一般的となりつつある。その場合、周辺光量比の逆数を補正ゲインとすることで、全域で周辺光量落ちをなくすことができるが、この時、特許文献1や2のように急激な周辺光量落ちが有る場合、その補正ゲインも急激に上がったものになる。   In recent years, a method of correcting peripheral light reduction by image processing on the optical device side using data on peripheral light reduction of a lens is becoming common. In that case, by using the reciprocal of the peripheral light amount ratio as the correction gain, it is possible to eliminate the peripheral light amount drop over the entire area. At this time, if there is a sudden drop in the peripheral light amount as in Patent Documents 1 and 2, the correction is performed. Gain will also increase sharply.

光学系の製造誤差や防振機能等により光軸ずれが生じた場合、周辺光量が急激に落ちる箇所と、補正ゲインが急激に上がる箇所がずれて、著しい補正エラーが生じてしまう。   When an optical axis shift occurs due to an optical system manufacturing error, an image stabilization function, or the like, a location where the peripheral light amount falls sharply and a location where the correction gain rises suddenly deviate, resulting in a significant correction error.

その観点からも、本件の理想的な周辺減光に近い特性であると、補正ゲインも滑らかに推移し、良好な補正ができるため好ましい。   From this point of view, it is preferable that the characteristic is close to the ideal peripheral dimming of the present case because the correction gain also changes smoothly and good correction can be made.

次に、本発明の具体的な構成要件について説明する。本発明の広角ズームレンズは、最も像側に正のレンズ群を有し、正レンズ群の物体側に隣接するレンズ群の最も像側に、少なくとも広角端での開放使用時のF値を決定する可変絞りを有し、かつ正レンズ群の最も物体側の面頂点位置は、広角端においては可変絞り位置より像側であり、望遠端においては可変絞り位置より物体側に配置している。正レンズ群の面頂点位置が、望遠端において可変絞りより物体側に配置されると言うことは、面頂点が可変絞りを潜り込んで、より物体側にまで移動していることを表している。   Next, specific configuration requirements of the present invention will be described. The wide-angle zoom lens according to the present invention has a positive lens unit closest to the image side, and determines an F value at the wide-angle end when the lens is adjacent to the object side of the positive lens unit, at least at the wide-angle end. The surface apex position of the positive lens unit closest to the object side is located closer to the image side than the variable aperture position at the wide-angle end, and closer to the object side than the variable aperture position at the telephoto end. The fact that the surface vertex position of the positive lens group is disposed closer to the object side than the variable aperture at the telephoto end indicates that the surface vertex has penetrated the variable aperture and moved further to the object side.

次に、本発明を実施するに当たり、より好ましい条件について説明する。本発明の広角ズームレンズは、下記条件式(1)を満たすと良い。   Next, more preferable conditions for implementing the present invention will be described. The wide-angle zoom lens of the present invention preferably satisfies the following conditional expression (1).

0.50 < Rp/Svt < 1.50・・・(1)
・Rp:最終レンズ群の最も物体側の面の曲率半径
・Svt:前記可変絞りの望遠端における有効径
条件式(1)は、最終レンズ群の最も物体側の面の曲率を強くし、面頂点が可変絞りを潜り易くするための条件式である。条件式(1)の上限値を逸脱すると、凸面が緩くなり、面の周辺部で可変絞りとの干渉を避けた時、面中心部が可変絞りを潜り込む量が小さくなってしまい、物体側に隣接するレンズ群との間隔を詰められなくなってしまう。条件式(1)の下限値を逸脱すると、凸面が強くなり過ぎ、望遠端での球面収差が大きくなってしまう。条件式(1)は、より好ましくは条件式(1)’を満たすと良い。
0.50 <Rp / Svt <1.50 ... (1)
Rp: radius of curvature of the most object side surface of the last lens
Svt: Effective diameter of the variable stop at the telephoto end Conditional expression (1) is a conditional expression for increasing the curvature of the surface closest to the object side in the final lens group and making the surface apex easy to dive the variable stop. If the upper limit value of conditional expression (1) is deviated, the convex surface becomes loose, and when the interference with the variable aperture is avoided at the periphery of the surface, the amount of the center of the surface that enters the variable aperture decreases, and the object side It becomes impossible to close the space between the adjacent lens groups. If the lower limit of conditional expression (1) is deviated, the convex surface becomes too strong and the spherical aberration at the telephoto end becomes large. Conditional expression (1) preferably satisfies conditional expression (1) ′.

0.60 < Rp/Svt < 1.20・・・(1)’
次に、本発明のズームレンズは、下記条件式(2),(3)を満たすことが好ましい。
0.60 <Rp / Svt <1.20 ... (1) '
Next, the zoom lens of the present invention preferably satisfies the following conditional expressions (2) and (3).

1.40 < Ndp < 1.58・・・(2)
0.020 < θgFp−0.6438+0.001682×νdp < 0.100・・・(3)
・Ndp:最終レンズ群の最も物体側の正レンズの屈折率
・νdp:最終レンズ群の最も物体側の正レンズのアッベ数
・θgFp:最終レンズ群の最も物体側の正レンズのg線の異常部分分散比
条件式(2)は、正のパワーの最終レンズ群でペッツバール和を小さくし、像面湾曲を良好にするための条件式である。条件式(2)の上限値を逸脱すると、ペッツバール和が大きくなり、像面湾曲が大きくなってしまう。条件式(2)の下限値を逸脱すると、最も物体側の正レンズの曲率が大きくなり過ぎ、ブロック長が大きくなってしまう。
1.40 <Ndp <1.58 (2)
0.020 <θgFp−0.6438 + 0.001682 × νdp <0.100 (3)
Ndp: refractive index of the positive lens closest to the object side in the final lens group
Νdp: Abbe number of the positive lens closest to the object side in the final lens group
・ ΘgFp: Abnormal partial dispersion ratio of the g-line of the positive lens closest to the object side in the final lens group Conditional expression (2) is for reducing the Petzval sum and improving the field curvature in the final lens group with positive power. This is a conditional expression. When deviating from the upper limit value of the conditional expression (2), the Petzval sum increases and the field curvature increases. If the lower limit value of conditional expression (2) is deviated, the curvature of the positive lens closest to the object side becomes too large and the block length becomes large.

条件式(2)は、より好ましくは、下記条件式(2)’を満たすと良い。   Conditional expression (2) more preferably satisfies the following conditional expression (2) ′.

1.42 < Ndp < 1.52・・・(2)’
尚、条件式(2)を満たす正レンズを最終レンズ群の最も物体側に配置したことで、条件式(1)の強い曲率を得やすくしている。
1.42 <Ndp <1.52 ... (2) '
The positive lens satisfying the conditional expression (2) is arranged on the most object side of the final lens group, thereby making it easy to obtain the strong curvature of the conditional expression (1).

次に条件式(3)は、望遠端の軸上色収差と広角端の倍率色収差を効果的に補正するための条件式である。条件式(3)の上限値を逸脱すると、異常部分分散性が強過ぎ、望遠端の軸上色収差と広角端の倍率色収差が過補正になってしまう。条件式(3)の下限値を逸脱すると、異常部分分散性が弱過ぎ、望遠端の軸上色収差と広角端の倍率色収差が補正不足になってしまう。   Conditional expression (3) is a conditional expression for effectively correcting axial chromatic aberration at the telephoto end and lateral chromatic aberration at the wide-angle end. If the upper limit of conditional expression (3) is deviated, the anomalous partial dispersion is too strong, and the axial chromatic aberration at the telephoto end and the lateral chromatic aberration at the wide-angle end are overcorrected. When deviating from the lower limit value of conditional expression (3), the anomalous partial dispersion is too weak, and the axial chromatic aberration at the telephoto end and the lateral chromatic aberration at the wide-angle end are insufficiently corrected.

条件式(3)は、より好ましくは条件式(3)’を満たすと良い。   Conditional expression (3) more preferably satisfies conditional expression (3) ′.

0.025 < θgFp−0.6438+0.001682×νdp < 0.070・・・(3)’
次に、本発明のズームレンズは、下記条件式(4)を満たすと良い。
0.025 <θgFp−0.6438 + 0.001682 × νdp <0.070 ... (3) '
Next, the zoom lens according to the present invention preferably satisfies the following conditional expression (4).

0.15 < Svt / En < 0.80・・・(4)
・En:光学系中の最大有効径
条件式(4)は、可変絞りを配置しても、本体の外径が大きくならないための条件式である。条件式(4)の上限値を逸脱すると、可変絞りの径が、その外側に配置される可変絞りの駆動機構と合わせた時にレンズの最大有効径を越えてしまい、本体が大型化してしまう。また、条件式(4)の下限値を逸脱する場合、小型化には好ましいが、可変絞り前後の正のパワーを強くする必要があり、球面収差が発生してしまうため好ましくない。
0.15 <Svt / En <0.80 ... (4)
• En: Maximum effective diameter in the optical system Conditional expression (4) is a conditional expression for preventing the outer diameter of the main body from increasing even when a variable aperture is disposed. If the upper limit value of the conditional expression (4) is deviated, the diameter of the variable diaphragm exceeds the maximum effective diameter of the lens when combined with the variable diaphragm drive mechanism arranged on the outside thereof, and the main body becomes large. Further, when deviating from the lower limit value of the conditional expression (4), it is preferable for downsizing, but it is not preferable because positive power before and after the variable aperture needs to be increased and spherical aberration occurs.

また、条件式(4)は、より好ましくは下記条件式(4)’を満たすと良い。   In addition, it is preferable that the conditional expression (4) satisfies the following conditional expression (4) ′.

0.20 < Svt / En < 0.60・・・(4)’
次に、本発明のズームレンズは、下記条件式(5)を満たすように、バックフォーカスを有る程度確保する必要があるズームレンズにおいて、最も効果を得られる。
0.20 <Svt / En <0.60 ... (4) '
Next, the zoom lens according to the present invention is most effective in a zoom lens that needs to ensure a certain degree of back focus so as to satisfy the following conditional expression (5).

1.00 < bkw / fw < 4.00・・・(5)
条件式(5)は、広角端の後側主点位置が、最も像側のレンズより像側にある、レトロフォーカスのパワー配置が有る程度強い条件である。
1.00 <bkw / fw <4.00 ... (5)
Conditional expression (5) is a condition that the rear principal point position at the wide-angle end is closer to the image side than the image-side lens and is strong enough to have a retrofocus power arrangement.

例えば、最終レンズ面から撮像素子までの間に反射ミラーを配置する必要がある、一眼レフカメラや、色合成プリズムを配置する必要がある投影装置等に使用されるズームレンズにおいて、特に好適である。勿論、それ以外の光学機器にも種々適用可能である。   For example, it is particularly suitable for a zoom lens used in a single-lens reflex camera, a projection apparatus or the like in which a color synthesizing prism needs to be disposed, in which a reflecting mirror needs to be disposed between the last lens surface and the image sensor. . Of course, the present invention can be variously applied to other optical devices.

尚、本発明で言うレンズ群とは、光学系の最前面または、前方に隣接するレンズとの間隔が変倍で変化する面から、光学系の最後面または、後方に隣接するレンズとの間隔が変倍で変化する面までを言うものとする。   The lens group referred to in the present invention refers to the distance between the front surface of the optical system or the surface where the distance between the lens adjacent to the front and the lens adjacent to the front changes by zooming, and the lens adjacent to the rear surface or the rear of the optical system. Suppose that the surface changes by zooming.

以下、本発明の実施形態について、図面を参照しながら説明する。図1、5は、本発明における実施形態1及び2の光学系の、広角端及び望遠端での光路図である。図2、6は、本発明における実施形態1及び2の、広角端における周辺光量比の像高特性である。図3、7は、本発明における実施形態1及び2の、広角端の物体距離無限時の収差図である。図4、8は、本発明における実施形態1及び2の、望遠端の物体距離無限時の収差図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 5 are optical path diagrams at the wide-angle end and the telephoto end of the optical systems according to Embodiments 1 and 2 of the present invention. 2 and 6 show the image height characteristics of the peripheral light amount ratio at the wide-angle end in the first and second embodiments of the present invention. FIGS. 3 and 7 are aberration diagrams of the first and second embodiments of the present invention when the object distance at the wide angle end is infinite. 4 and 8 are aberration diagrams of the first and second embodiments of the present invention when the object distance at the telephoto end is infinite.

それぞれの収差図は、左から順に、球面収差(軸上色収差)、非点収差、歪曲、倍率色収差を表している。球面収差と倍率色収差を示す図において、実線はd線(587.6nm)、破線はg線(435.8nm)を表している。また、非点収差を示す図において、実線はd線のサジタル方向、破線はd線のメリディオナル方向を表している。また、歪曲を示す図は、d線における歪曲を表している。数値実施例1及び2に、この実施形態1及び2の光学系のレンズデータを示す。   Each aberration diagram represents spherical aberration (axial chromatic aberration), astigmatism, distortion, and lateral chromatic aberration in order from the left. In the diagrams showing spherical aberration and lateral chromatic aberration, the solid line represents the d line (587.6 nm), and the broken line represents the g line (435.8 nm). In the diagram showing astigmatism, the solid line represents the sagittal direction of the d line, and the broken line represents the meridional direction of the d line. Moreover, the figure which shows distortion represents the distortion in d line | wire. Numerical examples 1 and 2 show lens data of the optical systems of the first and second embodiments.

これらの数値実施例では、物体側からの各面の順序、各光学面の曲率半径r、各光学面の間隔d、各光学部材のd線における屈折率nd、アッベ数νd、光線有効径を示している。   In these numerical examples, the order of each surface from the object side, the radius of curvature r of each optical surface, the distance d between each optical surface, the refractive index nd of each optical member at the d-line, the Abbe number νd, and the effective beam diameter. Show.

また、焦点距離、Fナンバー等のスペックに加え、画角は全系の半画角、像高は半画角を決定する最大像高、レンズ全長は第1レンズ面から最終レンズ面までの距離、BFは最終レンズ面から像面までの長さを示している。   In addition to specifications such as focal length and F number, the angle of view is the half angle of view of the entire system, the image height is the maximum image height that determines the half angle of view, and the total lens length is the distance from the first lens surface to the final lens surface , BF represents the length from the final lens surface to the image plane.

また、ズーム群データは、各レンズ群の焦点距離、光軸上の長さ、前側主点位置、後側主点位置を表している。   The zoom group data represents the focal length of each lens group, the length on the optical axis, the front principal point position, and the rear principal point position.

非球面は、光軸に垂直な方向にR離れた位置での、光軸方向の面位置をSag(R)とした時、
The aspherical surface is Sag (R) when the surface position in the optical axis direction at a position R apart in the direction perpendicular to the optical axis is

の関係を満足する形状であり、各非球面の非球面係数を各表に記す。 The aspherical coefficient of each aspherical surface is shown in each table.

また、各光学面の間隔dが(可変)となっている部分は、ズーミングに際して変化するものであり、別表に焦点距離に応じた面間隔を記している。また、各光学面の有効径が(可変)となっている部分は、ズーミングに際して変化するものであり、別表に焦点距離に応じた有効径を記している。尚、以下に記載する数値実施例1及び2のレンズデータに基づく、各条件式の計算結果を表1に示す。   Also, the portion where the distance d between the optical surfaces is (variable) changes during zooming, and the surface distance corresponding to the focal length is shown in the separate table. In addition, the portion where the effective diameter of each optical surface is (variable) changes during zooming, and the effective diameter corresponding to the focal length is shown in the separate table. Table 1 shows the calculation results of the conditional expressions based on the lens data of Numerical Examples 1 and 2 described below.



(数値実施例1)

単位 mm

面データ
面番号 r d nd vd 有効径
1 ∞ 1.50 73.23
2* ∞ 2.70 1.88300 40.8 55.40
3* 20.815 6.44 37.98
4* 28.682 2.50 1.49710 81.6 37.90
5* 24.899 9.80 35.42
6 -59.892 1.80 1.88300 40.8 35.34
7 151.068 1.83 35.84
8 68.843 6.99 1.71736 29.5 37.14
9 -78.402 (可変) 37.23
10 212.989 3.17 1.90366 31.3 29.01
11 -218.328 0.15 29.17
12 74.874 1.50 1.80809 22.8 29.66
13 21.208 8.39 1.72825 28.5 29.40
14 359.085 (可変) 29.52
15 60.043 1.60 1.78472 25.7 30.40
16 38.161 6.42 1.59522 67.7 29.98
17 -83.207 (可変) 29.84
18(絞り) ∞ 2.48 24.88
19 -76.055 1.30 1.83400 37.2 24.37
20 23.026 4.85 1.80809 22.8 24.18
21 94.090 3.50 24.15
22 ∞ (可変) (可変)
23 21.485 8.41 1.43875 94.9 25.13
24 -45.039 0.15 24.57
25* 151.495 1.40 1.85400 40.4 24.10
26 17.150 9.45 1.49700 81.5 23.76
27 -63.520 25.26


非球面データ
第2面
K = 0.00000e+000 A 4= 1.67816e-005 A 6=-1.95957e-008 A 8= 1.12167e-011 A10= 8.37907e-016 A12=-2.75787e-018

第3面
K = 0.00000e+000 A 4=-1.30662e-005 A 6= 5.37976e-008 A 8=-9.33801e-011 A10= 8.35718e-015 A12= 1.70966e-016

第4面
K = 0.00000e+000 A 4=-3.07990e-005 A 6= 6.18939e-008 A 8= 5.32496e-011 A10=-2.03073e-013 A12=-1.65934e-020

第5面
K =-5.07911e-001 A 4= 3.47138e-006 A 6=-3.20927e-010 A 8= 1.66488e-010 A10=-5.79829e-013 A12= 1.25393e-019

第25面
K = 0.00000e+000 A 4=-1.05418e-005 A 6=-1.55453e-008 A 8=-1.43527e-011 A10=-1.53317e-014 A12=-1.54462e-016

各種データ
ズーム比 2.06

広角 中間 望遠
焦点距離 16.48 23.60 33.95
Fナンバー 2.90 2.91 2.91
画角 52.70 42.51 32.51
像高 21.64 21.64 21.64
レンズ全長 175.98 164.19 160.08
BF 37.99 44.61 56.87

d 9 30.11 12.12 1.00
d14 15.75 12.84 5.16
d17 1.00 7.96 13.22
d22 4.81 0.33 -2.50

ea22 17.14 19.60 24.55



(数値実施例2)

単位 mm

面データ
面番号 r d nd vd 有効径
1 209.053 2.10 1.84666 23.8 65.93
2 75.294 7.06 1.77250 49.6 62.34
3 339.444 0.15 61.46
4 56.915 6.73 1.77250 49.6 56.42
5 154.669 (可変) 54.97
6* 113.791 1.60 1.88300 40.8 33.10
7 17.096 8.15 24.68
8 -42.698 1.15 1.59522 67.7 23.02
9 23.718 4.05 1.88300 40.8 21.07
10 111.835 0.79 20.58
11 -433.154 3.11 1.59270 35.3 20.61
12 -36.335 1.32 20.91
13 -21.892 1.15 1.72916 54.7 20.89
14 438.081 3.08 1.84666 23.8 23.19
15 -60.156 (可変) 24.15
16(絞り) ∞ 1.90 (可変)
17 38.427 8.95 1.49700 81.5 28.47
18 -50.859 0.93 29.09
19 53.285 3.50 1.58313 59.4 28.75
20* 144.845 3.62 28.17
21 -39.498 1.40 1.72047 34.7 28.13
22 -242.790 2.50 28.82
23 ∞ (可変) (可変)
24 27.659 9.30 1.43875 94.9 30.29
25 -56.801 0.20 29.75
26 73.911 6.46 1.49700 81.5 28.19
27 -59.314 0.15 26.93
28* -51.050 2.10 1.85400 40.4 26.65
29* 1270.569 1.96 25.86
30 -115.600 1.40 1.83400 37.2 25.90
31 74.664 9.09 1.51742 52.4 26.80
32 -40.258 29.29


非球面データ
第6面
K = 0.00000e+000 A 4= 7.32729e-006 A 6=-7.39275e-009 A 8= 1.73961e-011 A10=-3.16147e-014 A12= 7.73415e-017

第20面
K = 0.00000e+000 A 4= 2.47012e-006 A 6= 7.87983e-009 A 8=-3.87316e-011 A10= 1.67858e-013 A12=-9.43064e-017

第28面
K = 0.00000e+000 A 4= 3.25623e-005 A 6=-1.71295e-007 A 8= 4.91327e-010 A10=-9.18257e-013 A12= 6.95925e-016

第29面
K = 0.00000e+000 A 4= 4.89882e-005 A 6=-1.42530e-007 A 8= 4.38496e-010 A10=-6.15162e-013 A12= 2.53228e-016

各種データ
ズーム比 2.77

広角 中間 望遠
焦点距離 24.76 34.99 68.45
Fナンバー 2.90 3.34 4.28
画角 41.15 31.73 17.54
像高 21.64 21.64 21.64
レンズ全長 155.43 163.05 187.00
BF 38.45 47.15 64.31

d 5 2.72 11.70 30.33
d15 13.74 7.75 0.26
d23 6.61 2.54 -1.80

ea16 18.46 20.48 25.20
ea23 19.22 22.37 29.55




(Numerical example 1)

Unit mm

Surface data surface number rd nd vd Effective diameter
1 ∞ 1.50 73.23
2 * ∞ 2.70 1.88300 40.8 55.40
3 * 20.815 6.44 37.98
4 * 28.682 2.50 1.49710 81.6 37.90
5 * 24.899 9.80 35.42
6 -59.892 1.80 1.88300 40.8 35.34
7 151.068 1.83 35.84
8 68.843 6.99 1.71736 29.5 37.14
9 -78.402 (variable) 37.23
10 212.989 3.17 1.90366 31.3 29.01
11 -218.328 0.15 29.17
12 74.874 1.50 1.80809 22.8 29.66
13 21.208 8.39 1.72825 28.5 29.40
14 359.085 (variable) 29.52
15 60.043 1.60 1.78472 25.7 30.40
16 38.161 6.42 1.59522 67.7 29.98
17 -83.207 (variable) 29.84
18 (Aperture) ∞ 2.48 24.88
19 -76.055 1.30 1.83400 37.2 24.37
20 23.026 4.85 1.80809 22.8 24.18
21 94.090 3.50 24.15
22 ∞ (variable) (variable)
23 21.485 8.41 1.43875 94.9 25.13
24 -45.039 0.15 24.57
25 * 151.495 1.40 1.85400 40.4 24.10
26 17.150 9.45 1.49700 81.5 23.76
27 -63.520 25.26


Aspheric data 2nd surface
K = 0.00000e + 000 A 4 = 1.67816e-005 A 6 = -1.95957e-008 A 8 = 1.12167e-011 A10 = 8.37907e-016 A12 = -2.75787e-018

Third side
K = 0.00000e + 000 A 4 = -1.30662e-005 A 6 = 5.37976e-008 A 8 = -9.33801e-011 A10 = 8.35718e-015 A12 = 1.70966e-016

4th page
K = 0.00000e + 000 A 4 = -3.07990e-005 A 6 = 6.18939e-008 A 8 = 5.32496e-011 A10 = -2.03073e-013 A12 = -1.65934e-020

5th page
K = -5.07911e-001 A 4 = 3.47138e-006 A 6 = -3.20927e-010 A 8 = 1.66488e-010 A10 = -5.79829e-013 A12 = 1.25393e-019

25th page
K = 0.00000e + 000 A 4 = -1.05418e-005 A 6 = -1.55453e-008 A 8 = -1.43527e-011 A10 = -1.53317e-014 A12 = -1.54462e-016

Various data Zoom ratio 2.06

Wide angle Medium telephoto focal length 16.48 23.60 33.95
F number 2.90 2.91 2.91
Angle of view 52.70 42.51 32.51
Image height 21.64 21.64 21.64
Total lens length 175.98 164.19 160.08
BF 37.99 44.61 56.87

d 9 30.11 12.12 1.00
d14 15.75 12.84 5.16
d17 1.00 7.96 13.22
d22 4.81 0.33 -2.50

ea22 17.14 19.60 24.55



(Numerical example 2)

Unit mm

Surface data surface number rd nd vd Effective diameter
1 209.053 2.10 1.84666 23.8 65.93
2 75.294 7.06 1.77250 49.6 62.34
3 339.444 0.15 61.46
4 56.915 6.73 1.77250 49.6 56.42
5 154.669 (variable) 54.97
6 * 113.791 1.60 1.88300 40.8 33.10
7 17.096 8.15 24.68
8 -42.698 1.15 1.59522 67.7 23.02
9 23.718 4.05 1.88300 40.8 21.07
10 111.835 0.79 20.58
11 -433.154 3.11 1.59270 35.3 20.61
12 -36.335 1.32 20.91
13 -21.892 1.15 1.72916 54.7 20.89
14 438.081 3.08 1.84666 23.8 23.19
15 -60.156 (variable) 24.15
16 (Aperture) ∞ 1.90 (Variable)
17 38.427 8.95 1.49700 81.5 28.47
18 -50.859 0.93 29.09
19 53.285 3.50 1.58313 59.4 28.75
20 * 144.845 3.62 28.17
21 -39.498 1.40 1.72047 34.7 28.13
22 -242.790 2.50 28.82
23 ∞ (variable) (variable)
24 27.659 9.30 1.43875 94.9 30.29
25 -56.801 0.20 29.75
26 73.911 6.46 1.49700 81.5 28.19
27 -59.314 0.15 26.93
28 * -51.050 2.10 1.85400 40.4 26.65
29 * 1270.569 1.96 25.86
30 -115.600 1.40 1.83400 37.2 25.90
31 74.664 9.09 1.51742 52.4 26.80
32 -40.258 29.29


Aspheric data 6th surface
K = 0.00000e + 000 A 4 = 7.32729e-006 A 6 = -7.39275e-009 A 8 = 1.73961e-011 A10 = -3.16147e-014 A12 = 7.73415e-017

20th page
K = 0.00000e + 000 A 4 = 2.47012e-006 A 6 = 7.87983e-009 A 8 = -3.87316e-011 A10 = 1.67858e-013 A12 = -9.43064e-017

28th page
K = 0.00000e + 000 A 4 = 3.25623e-005 A 6 = -1.71295e-007 A 8 = 4.91327e-010 A10 = -9.18257e-013 A12 = 6.95925e-016

29th page
K = 0.00000e + 000 A 4 = 4.89882e-005 A 6 = -1.42530e-007 A 8 = 4.38496e-010 A10 = -6.15162e-013 A12 = 2.53228e-016

Various data Zoom ratio 2.77

Wide angle Medium Telephoto focal length 24.76 34.99 68.45
F number 2.90 3.34 4.28
Angle of View 41.15 31.73 17.54
Image height 21.64 21.64 21.64
Total lens length 155.43 163.05 187.00
BF 38.45 47.15 64.31

d 5 2.72 11.70 30.33
d15 13.74 7.75 0.26
d23 6.61 2.54 -1.80

ea16 18.46 20.48 25.20
ea23 19.22 22.37 29.55


以下、各実施形態における詳細な構成について説明する。実施形態1は、物体側より順に、負の第1レンズ群L1、正の第2レンズ群L2、正の第3レンズ群L3、負の第4レンズ群L4、正の第5レンズ群L5より構成される、広角端の全画角が105度で、変倍比2.1倍であり、ズーム全域で開放F値が2.9である5群ズームレンズを紹介している。第5レンズ群L5の像側の面から、像面までの距離は、条件式(5)を満たしており、それにより強いレトロフォーカスのパワー配置になっている。   Hereinafter, a detailed configuration in each embodiment will be described. In the first embodiment, in order from the object side, a negative first lens unit L1, a positive second lens unit L2, a positive third lens unit L3, a negative fourth lens unit L4, and a positive fifth lens unit L5. A 5-group zoom lens having a wide angle of view of 105 degrees, a zoom ratio of 2.1 times, and an open F value of 2.9 over the entire zoom range is introduced. The distance from the image side surface of the fifth lens unit L5 to the image surface satisfies the conditional expression (5), thereby providing a strong retrofocus power arrangement.

各群は、広角端から望遠端への変倍で、L1とL2の間隔を狭め、L2とL3の間隔を狭め、L3とL4の間隔を広げ、L4とL5の間隔を狭めるように駆動している。また、正の第2レンズ群L2を像側に移動することでフォーカシングを行っている。   Each group is driven by zooming from the wide-angle end to the telephoto end, narrowing the distance between L1 and L2, narrowing the distance between L2 and L3, widening the distance between L3 and L4, and narrowing the distance between L4 and L5. ing. Further, focusing is performed by moving the positive second lens unit L2 to the image side.

L4の像側に可変絞りを有しており、広角端から望遠端までのF値を決定している。可変絞りの位置は、L4の最も像側の面からやや離れた位置となっており、広角端での中間像高の上線を効果的にカットしている。また、望遠端では可変絞りが開き、条件式(1)を満たすL5の最も物体側の凸面が、可変絞りを潜ってL4の像側のレンズ面との間隔を狭めている。数値実施例1で、第23面の間隔が、望遠端においてマイナスになっていることが、それを表している。そうすることで、各レンズ群の駆動スペースを圧迫することなく、効果的に中間光束をカットしている。   A variable stop is provided on the image side of L4, and the F value from the wide-angle end to the telephoto end is determined. The position of the variable aperture is a position slightly away from the surface closest to the image side of L4, and effectively cuts the upper line of the intermediate image height at the wide-angle end. At the telephoto end, the variable aperture is opened, and the most object-side convex surface of L5 that satisfies the conditional expression (1) is narrowed away from the lens surface on the image side of L4 through the variable aperture. In Numerical Example 1, this indicates that the distance between the 23rd surfaces is negative at the telephoto end. By doing so, the intermediate luminous flux is effectively cut without pressing the driving space of each lens group.

また、L5の最も物体側のレンズは、条件式(2)(3)を満たしており、それにより全ズーム域での像面湾曲補正、広角端での倍率色収差補正、望遠端での軸上色収差補正を効果的に行うと同時に、条件式(1)を満たす凸面形状を効果的に得ている。   Further, the lens closest to the object side of L5 satisfies the conditional expressions (2) and (3), thereby correcting the curvature of field in the entire zoom range, correcting the chromatic aberration of magnification at the wide angle end, and on the axis at the telephoto end. At the same time that the chromatic aberration correction is effectively performed, a convex shape that satisfies the conditional expression (1) is effectively obtained.

次に、可変絞りの径は条件式(4)を満たしており、本体の外径を大きくすることなく、可変絞りを配置している。   Next, the diameter of the variable diaphragm satisfies the conditional expression (4), and the variable diaphragm is disposed without increasing the outer diameter of the main body.

実施形態2は、物体側より順に、正の第1レンズ群L1、負の第2レンズ群L2、正の第3レンズ群L3、正の第4レンズ群L4より構成される、広角端の全画角が82度で、変倍比2.8倍であり、ズーム全域で開放F値が2.9である4群ズームレンズを紹介している。第4レンズ群L4の像側の面から、像面までの距離は、条件式(5)を満たしており、それにより強いレトロフォーカスのパワー配置になっている。   In Embodiment 2, the first lens unit L1, the second lens unit L2, the third lens unit L3, and the fourth lens unit L4, which are configured in order from the object side, include all the wide-angle ends. A four-group zoom lens with an angle of view of 82 degrees, a zoom ratio of 2.8 times, and an open F value of 2.9 over the entire zoom range is introduced. The distance from the image side surface of the fourth lens unit L4 to the image surface satisfies the conditional expression (5), thereby providing a strong retrofocus power arrangement.

ここで、実施形態2はポジティブリード型ではあるが、L1の正のパワーは非常に弱く、射出瞳位置より物体側の合成パワーは強い負となっているため、レトロフォーカス型と表現している。各群は、広角端から望遠端への変倍で、L1とL2の間隔を広げ、L2とL3の間隔を狭め、L3とL4の間隔を狭めるように駆動している。また、負の第2レンズ群L2を物体側に移動することでフォーカシングを行っている。   Here, although Embodiment 2 is a positive lead type, the positive power of L1 is very weak, and the combined power on the object side from the exit pupil position is a strong negative, so it is expressed as a retrofocus type. . Each group is driven by zooming from the wide-angle end to the telephoto end to widen the interval between L1 and L2, narrow the interval between L2 and L3, and narrow the interval between L3 and L4. Further, focusing is performed by moving the negative second lens unit L2 toward the object side.

L3の像側に可変絞りを有しており、広角端から望遠端までのF値を決定している。可変絞りの位置は、L3の最も像側の面からやや離れた位置となっており、広角端での中間像高の上線を効果的にカットしている。   A variable stop is provided on the image side of L3, and the F value from the wide angle end to the telephoto end is determined. The position of the variable stop is a position slightly away from the most image side surface of L3 and effectively cuts the upper line of the intermediate image height at the wide angle end.

また、望遠端では可変絞りが開き、条件式(1)を満たすL4の最も物体側の凸面が、可変絞りを潜ってL3の像側のレンズ面との間隔を狭めている。   At the telephoto end, the variable aperture is opened, and the most object-side convex surface of L4 that satisfies the conditional expression (1) goes under the variable aperture and narrows the distance from the L3 image-side lens surface.

数値実施例2で、第23面の間隔が、望遠端においてマイナスになっていることが、それを表している。そうすることで、各レンズ群の駆動スペースを圧迫することなく、効果的に中間光束をカットしている。   In Numerical Example 2, this indicates that the interval between the 23rd surfaces is negative at the telephoto end. By doing so, the intermediate luminous flux is effectively cut without pressing the driving space of each lens group.

また、L4の最も物体側のレンズは、条件式(2)(3)を満たしており、それにより全ズーム域での像面湾曲補正、広角端での倍率色収差補正、望遠端での軸上色収差補正を効果的に行うと同時に、条件式(1)を満たす凸面形状を効果的に得ている。   Further, the lens on the most object side of L4 satisfies the conditional expressions (2) and (3), thereby correcting the curvature of field in the entire zoom range, correcting the chromatic aberration of magnification at the wide angle end, and on the axis at the telephoto end. At the same time that the chromatic aberration correction is effectively performed, a convex shape that satisfies the conditional expression (1) is effectively obtained.

次に、可変絞りの径は条件式(4)を満たしており、本体の外径を大きくすることなく、可変絞りを配置している。   Next, the diameter of the variable diaphragm satisfies the conditional expression (4), and the variable diaphragm is disposed without increasing the outer diameter of the main body.

以上、本発明の好ましい光学系の実施例について説明したが、本発明はこれらの実施例に限定されないことは言うまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although the Example of the preferable optical system of this invention was described, it cannot be overemphasized that this invention is not limited to these Examples, A various deformation | transformation and change are possible within the range of the summary.

STO 外部からの駆動命令で駆動する絞り(主絞り)、STV 可変絞り、
IP 撮像面、L1〜L6 第1レンズ群〜第6レンズ群、
Focus フォーカシングで移動する群と、その移動方向
STO Aperture driven by external drive command (main aperture), STV variable aperture,
IP imaging surface, L1 to L6 first lens group to sixth lens group,
The group that moves by Focus Focusing and its moving direction

Claims (6)

最も像側に正のレンズ群を有し、正レンズ群の物体側に隣接するレンズ群の最も像側に、少なくとも広角端での開放使用時のF値を決定する可変絞りを有し、かつ正レンズ群の物体側の面頂点位置は、広角端においては可変絞り位置より像側に、望遠端においては可変絞り位置より物体側に配置されることを特徴とするズームレンズ。   A positive lens group on the most image side, a variable stop for determining an F value at the wide-angle end when the lens is adjacent to the most image side of the lens group adjacent to the object side of the positive lens group, and A zoom lens, wherein the object side surface vertex position of the positive lens group is disposed closer to the image side than the variable aperture position at the wide-angle end, and closer to the object side than the variable aperture position at the telephoto end. 下記条件式を満たすことを特徴とする請求項1に記載のズームレンズ。
0.50 < Rp/Svt < 1.50
・Rp:正のレンズ群の最も物体側の面の曲率半径
・Svt:前記可変絞りの望遠端における有効径
2. The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
0.50 <Rp / Svt <1.50
Rp: radius of curvature of the surface closest to the object side in the positive lens group
Svt: Effective diameter of the variable aperture at the telephoto end
下記条件式を満たすことを特徴とする請求項1又は請求項2に記載のズームレンズ。
1.40 < Ndp < 1.58
0.020 < θgFp−0.6438+0.001682×νdp < 0.100
・Ndp:最終レンズ群の最も物体側の正レンズの屈折率
・νdp:最終レンズ群の最も物体側の正レンズのアッベ数
・θgFp:最終レンズ群の最も物体側の正レンズのg線の異常部分分散比
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
1.40 <Ndp <1.58
0.020 <θgFp−0.6438 + 0.001682 × νdp <0.100
Ndp: refractive index of the positive lens closest to the object side in the final lens group
Νdp: Abbe number of the positive lens closest to the object side in the final lens group
・ ΘgFp: Abnormal partial dispersion ratio of the g-line of the positive lens closest to the object side in the final lens group
下記条件式を満たすことを特徴とする請求項1乃至請求項3の何れか一項に記載のズームレンズ。
0.15 < Svt / En < 0.80
・En:光学系中の最大有効径、
The zoom lens according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.15 <Svt / En <0.80
En: Maximum effective diameter in the optical system,
下記条件式を満たすことを特徴とする請求項1又は請求項4に記載のズームレンズ。
1.00 < bkw / fw < 4.00
The zoom lens according to claim 1, wherein the following conditional expression is satisfied.
1.00 <bkw / fw <4.00
請求項1乃至請求項5の何れか一項に記載のズームレンズを有することを特徴とする光学機器。   An optical apparatus comprising the zoom lens according to any one of claims 1 to 5.
JP2014137286A 2014-07-03 2014-07-03 Zoom lens and optical instrument having the same Pending JP2016014800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137286A JP2016014800A (en) 2014-07-03 2014-07-03 Zoom lens and optical instrument having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137286A JP2016014800A (en) 2014-07-03 2014-07-03 Zoom lens and optical instrument having the same

Publications (1)

Publication Number Publication Date
JP2016014800A true JP2016014800A (en) 2016-01-28

Family

ID=55231017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137286A Pending JP2016014800A (en) 2014-07-03 2014-07-03 Zoom lens and optical instrument having the same

Country Status (1)

Country Link
JP (1) JP2016014800A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045184A (en) * 2016-02-08 2017-08-15 富士胶片株式会社 Imaging lens system and camera device
JP2018106102A (en) * 2016-12-28 2018-07-05 キヤノン株式会社 Zoom lens and imaging device having the same
JP2020042221A (en) * 2018-09-13 2020-03-19 株式会社シグマ Wide-angle lens system
JP2020129054A (en) * 2019-02-08 2020-08-27 キヤノン株式会社 Zoom lens and optical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045184A (en) * 2016-02-08 2017-08-15 富士胶片株式会社 Imaging lens system and camera device
CN107045184B (en) * 2016-02-08 2020-10-27 富士胶片株式会社 Imaging lens and imaging device
JP2018106102A (en) * 2016-12-28 2018-07-05 キヤノン株式会社 Zoom lens and imaging device having the same
JP2020042221A (en) * 2018-09-13 2020-03-19 株式会社シグマ Wide-angle lens system
JP7160326B2 (en) 2018-09-13 2022-10-25 株式会社シグマ Wide-angle lens system
JP2020129054A (en) * 2019-02-08 2020-08-27 キヤノン株式会社 Zoom lens and optical device
JP7183065B2 (en) 2019-02-08 2022-12-05 キヤノン株式会社 Zoom lenses, optics, and imaging devices

Similar Documents

Publication Publication Date Title
JP5777592B2 (en) Zoom lens and imaging apparatus having the same
US8792182B2 (en) Zoom lens and image pickup apparatus having zoom lens
KR102385167B1 (en) Zoom lens and image pickup apparatus including same
JP6172947B2 (en) Zoom lens and imaging apparatus having the same
TWI307813B (en) Zoom lens
JP6261299B2 (en) Zoom lens and imaging apparatus having the same
JP5455572B2 (en) Zoom lens and imaging apparatus having the same
JP6222969B2 (en) Zoom lens and imaging apparatus having the same
JP6314471B2 (en) Zoom lens system
JP2011141364A (en) Optical system and image pickup apparatus having the same
JP2014134703A5 (en)
JP5774055B2 (en) Zoom lens and imaging apparatus having the same
US9964743B2 (en) Zoom lens and image pickup apparatus including the same
JP2020008629A (en) Lens device and imaging apparatus including the same
JP2012242739A (en) Zoom lens and imaging device including the same
JP2019158961A (en) Zoom lens and image capturing device
JP2016014800A (en) Zoom lens and optical instrument having the same
JP2011170086A (en) Large aperture zoom lens with anti-vibration function
JP6570239B2 (en) Optical system and optical apparatus having the same
JP6436680B2 (en) Viewfinder optical system, observation apparatus having the same, and imaging apparatus
JP5084534B2 (en) Zoom lens and imaging apparatus having the same
JP2017116702A (en) Zoom lens and imaging apparatus including the same
JP2012252253A (en) Zoom lens and imaging device with the same
JP4817551B2 (en) Zoom lens
JP6452405B2 (en) Zoom lens and imaging apparatus having the same