JP2016014578A - Automatic analysis device - Google Patents

Automatic analysis device Download PDF

Info

Publication number
JP2016014578A
JP2016014578A JP2014136403A JP2014136403A JP2016014578A JP 2016014578 A JP2016014578 A JP 2016014578A JP 2014136403 A JP2014136403 A JP 2014136403A JP 2014136403 A JP2014136403 A JP 2014136403A JP 2016014578 A JP2016014578 A JP 2016014578A
Authority
JP
Japan
Prior art keywords
capacitor
liquid level
voltage
reagent
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014136403A
Other languages
Japanese (ja)
Inventor
英嗣 田上
Eiji Tagami
英嗣 田上
洋一郎 鈴木
Yoichiro Suzuki
洋一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2014136403A priority Critical patent/JP2016014578A/en
Publication of JP2016014578A publication Critical patent/JP2016014578A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid level detection device that detects a liquid level position with high sensitivity and high accuracy irrespective of manufacturing variations in a probe or a change in the installed environment.SOLUTION: A liquid level detection device comprises: a plurality of first switches for controlling electrical continuity between a first capacitor and a prescribed voltage; a plurality of second switches for controlling electrical continuity between the first capacitor and a second capacitor; a control unit for controlling the open/close operations of the first and second switches so as to repeat at random; a measurement unit for measuring a voltage that develops in the second capacitor as the charge accumulated in the first capacitor while the first switch is closed moves from the first capacitor to the second capacitor due to that the first switch is opened and the second switch is closed; and a determination unit for comparing the voltage value measured by the measurement unit with a prescribed threshold and determining whether a probe is in contact with a liquid level.

Description

本発明は、血液,尿等の生体試料の定性,定量分析を行う自動分析装置に関する。
The present invention relates to an automatic analyzer that performs qualitative and quantitative analysis of biological samples such as blood and urine.

血液,尿等の生体由来試料中の対象成分の定性・定量分析を行うため、試料(サンプル)に試薬を添加して反応を生じさせることによって濃度を測定する自動分析装置は、測定結果の再現性向上,測定の迅速化が図れるため、大病院,検査センタ等に普及している。その理由の一つとして、分析に必要なサンプルと試薬とを、用手法と比較して高精度かつ迅速に自動分注可能な分注装置が用いられていることが挙げられる。   In order to perform qualitative and quantitative analysis of target components in biological samples such as blood and urine, an automatic analyzer that measures the concentration by adding a reagent to the sample (sample) and causing a reaction is used to reproduce the measurement results. It is widely used in large hospitals, inspection centers, etc. because it can improve performance and speed up measurement. One of the reasons is that a dispensing apparatus that can automatically dispense a sample and a reagent necessary for analysis with high accuracy and speed in comparison with a method of use is used.

特に所定量の試薬あるいはサンプルを捕捉する場合、それらのプローブ外壁への付着量のばらつきは、分注先容器、あるいは次回以降のサンプル容器への確率的な持ち込み、プローブ外壁洗浄不足などを引き起こし、分析再現性のばらつき量やサンプル間のクロスコンタミネーションの増大を引き起こす可能性がある。そのため、プローブ外壁への付着量とばらつきを最小限にするため、試薬あるいはサンプルへのプローブの突入量を最小限に制御することによって、高精度かつ迅速に分注を行うための、液面高さ検出技術として、ブリッジ回路や微分回路を用いて、特定の周波数成分を持った入力信号を分注プローブに印加し、その際の静電容量値の変化に基づいて、液面位置を検出する技術が開示されている。(特許文献1,2)。   In particular, when capturing a certain amount of reagent or sample, the variation in the amount of adhesion to the outer wall of the probe causes a probable carry-in to the dispensing destination container or the sample container after the next time, insufficient cleaning of the outer wall of the probe, etc. There is a possibility of causing a variation in analytical reproducibility and an increase in cross contamination between samples. Therefore, in order to minimize the amount and dispersion of the probe on the outer wall of the probe, the liquid level is high enough to perform dispensing with high accuracy and speed by controlling the amount of probe entry into the reagent or sample to a minimum. As a detection technique, a bridge circuit or differentiation circuit is used to apply an input signal having a specific frequency component to the dispensing probe, and the liquid level position is detected based on the change in capacitance value at that time. Technology is disclosed. (Patent Documents 1 and 2).

また、複数本の試薬分注プローブを用いて試薬を分注することで、単位時間あたりに処理可能なテスト数を増加させる自動分析装置が特許文献3に開示されている。
Further, Patent Document 3 discloses an automatic analyzer that increases the number of tests that can be processed per unit time by dispensing reagents using a plurality of reagent dispensing probes.

特開平8−122126号公報JP-A-8-122126 特開平2−59619号公報Japanese Patent Laid-Open No. 2-59619 特開2004−45112号公報JP 2004-45112 A

特許文献1,2に記載されている液面検出技術では、これらの検出器を動作させるには、検知対象と静電容量値がほぼ等価となり、バランスさせるための回路網が必要である。これは、検出器を固定する構造物や、検出器自体のばらつきが存在した場合、検出器のダイナミックレンジを最大限確保することや、ばらつきによる信号変化量の相殺を目的として物理的にバランスさせるためのトリマ容量を保有するための回路である。   In the liquid level detection techniques described in Patent Documents 1 and 2, in order to operate these detectors, the detection target and the capacitance value are substantially equivalent, and a circuit network for balancing is required. This means that if there is a variation in the structure that fixes the detector or the detector itself, the balance is physically balanced in order to ensure the maximum dynamic range of the detector and to offset the amount of signal change due to the variation. It is a circuit for holding a trimmer capacity for the purpose.

一方、近年の技術的傾向として、社会的な医療費負担を低減させるための、検査室効率化に対する要求が高まってきている。そのため、一つの試薬ディスクに多数かつ多種類の試薬を搭載し、何十種類もの対象成分を測定可能とした自動分析装置がある。このような自動分析装置では、試薬ボトルを架設可能な空間は限られており、相対的に個々の試薬ボトルの形状は小型化するため、液面を検知する場合の静電容量信号の変化が小さくなり、検出器の感度を向上させる必要がある。また、静電容量方式で液面高さを検知するためには、検出可能な静電容量値の変化を生じさせるよう、試薬ボトル内に一定以上の液量が残っている必要がある。試薬ボトルの小型化に伴って必然的に試薬ボトル内に残存するデッドボリュームの比率が大きくなる可能性があるため、経済性を高めるためにも液面検知センサの感度を向上させる要求がある。   On the other hand, as a technical trend in recent years, there has been an increasing demand for improving laboratory efficiency in order to reduce social medical costs. For this reason, there are automatic analyzers in which a large number and many types of reagents are mounted on one reagent disk and dozens of types of target components can be measured. In such an automatic analyzer, the space in which reagent bottles can be installed is limited, and the shape of each reagent bottle is relatively miniaturized, so that the capacitance signal changes when detecting the liquid level. There is a need to reduce the sensitivity of the detector. Further, in order to detect the liquid level by the electrostatic capacity method, it is necessary that a liquid amount of a certain level or more remains in the reagent bottle so as to cause a change in the detectable electrostatic capacity value. Since the ratio of the dead volume remaining in the reagent bottle may inevitably increase with the miniaturization of the reagent bottle, there is a demand for improving the sensitivity of the liquid level detection sensor in order to improve the economy.

しかし、液面検知の感度を向上させようとして、単に液面センサの感度を上げた場合、検出器を固定する装置構造物によるばらつきに起因する変動や検出器自体の個体差の変動が大きく、装置毎や検出器ごとの物理的なトリマ容量の調整が必要になってしまう。これは自動分析装置の製造時や据付、定期的なメンテナンス時に調整が必要となってしまい非常に手間となる。   However, in order to improve the sensitivity of the liquid level detection, if the sensitivity of the liquid level sensor is simply increased, the fluctuation due to the variation due to the device structure fixing the detector and the fluctuation of the individual difference of the detector itself are large. It is necessary to adjust the physical trimmer capacity for each device and each detector. This is very troublesome because adjustments are required during the manufacture, installation, and regular maintenance of the automatic analyzer.

さらに、複数プローブを用いて分注する場合、試薬容器を介した回路網を介してプローブ間で電荷が移動してしまい、検知器の検知信号に干渉電圧が発生してしまう。結果、液面接触前後での静電容量変化による正味の信号変化が不明瞭となり、サンプルや試薬液面への突入量ばらつきや誤検知を発生させる可能性がある。
Furthermore, when dispensing using a plurality of probes, the charge moves between the probes via the circuit network via the reagent container, and an interference voltage is generated in the detection signal of the detector. As a result, the net signal change due to the capacitance change before and after the liquid level contact becomes unclear, and there is a possibility that the amount of intrusion into the sample or reagent liquid level and erroneous detection may occur.

上記課題を鑑みた本願発明の構成は以下の通りである。すなわち、分析に使用する液体を収容する複数の容器と、前記複数の容器から液体を吸引する複数のプローブと、前記複数のプローブとグラウンド電圧との間に夫々設けられた複数の第一のコンデンサと、前記複数のプローブとグランド電圧の間に夫々設けられ、既知の静電容量値を持つ複数の第二のコンデンサと、前記第一のコンデンサに電圧を印加する規定電圧と、前記第一のコンデンサと前記規定電圧の間での電気的導通を制御する複数の第一のスイッチと、前記第一のコンデンサと前記第二のコンデンサの間での電気的導通を制御する複数の第二のスイッチと,前記第一のスイッチおよび前記第二のスイッチの開閉動作をランダムに繰り返すよう制御する制御部と、前記第一のスイッチが閉じた状態で前記第一のコンデンサに蓄積された電荷が、前記第一のスイッチが開き、かつ、前記第二のスイッチが閉じることにより、前記第一のコンデンサから前記第二のコンデンサに移動するに伴って前記第二のコンデンサに発生する電圧を測定する計測部と、前記計測部で計測される電圧値を所定の閾値と比較してプローブが液面に接触しているか否かを判定する判定部と、を備えたことを特徴としている。
In view of the above problems, the configuration of the present invention is as follows. That is, a plurality of containers for storing liquid used for analysis, a plurality of probes for sucking liquid from the plurality of containers, and a plurality of first capacitors provided between the plurality of probes and a ground voltage, respectively. A plurality of second capacitors provided between the plurality of probes and the ground voltage, each having a known capacitance value, a specified voltage for applying a voltage to the first capacitor, and the first A plurality of first switches for controlling electrical conduction between a capacitor and the specified voltage; and a plurality of second switches for controlling electrical conduction between the first capacitor and the second capacitor. And a controller for controlling the opening and closing operations of the first switch and the second switch to be repeated at random, and the first capacitor stored in the first capacitor with the first switch closed. The voltage generated in the second capacitor as it moves from the first capacitor to the second capacitor when the first switch is opened and the second switch is closed. And a determination unit that compares the voltage value measured by the measurement unit with a predetermined threshold value and determines whether or not the probe is in contact with the liquid surface. .

本発明によれば上記手段により、プローブの製造ばらつきや搭載環境が変化しても、高感度かつ高精度に液面位置を検出することが可能となる。
According to the present invention, it is possible to detect the position of the liquid surface with high sensitivity and high accuracy by the above-described means even if the manufacturing variation of the probe or the mounting environment changes.

単一のプローブにおける液面検知装置およびスイッチ開閉タイミングを示す図The figure which shows the liquid level detection device and switch opening and closing timing in the single probe 複数のプローブにおける液面検知装置およびスイッチ開閉タイミングを示す図The figure which shows the liquid level detection apparatus and switch opening / closing timing in several probes 本特許における液面検知装置の第一の実施例を説明する図The figure explaining the 1st Example of the liquid level detection apparatus in this patent 本特許における液面検知装置の第二の実施例を説明する図The figure explaining the 2nd Example of the liquid level detection apparatus in this patent

以下、本発明の実施例について、添付図面を参照して説明する。自動分析装置については公知なので装置内の各装置についての機能などの説明は省略する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Since automatic analyzers are well known, descriptions of functions and the like of each device in the device will be omitted.

図1〜第3図に基づいて本発明の第1の実施例を説明する。   A first embodiment of the present invention will be described with reference to FIGS.

試薬プローブは試薬容器上部から、試薬プローブ先端が試薬に接触するまで下降動作する。試薬プローブが試薬に接触したかの判定は以下動作によって行う。   The reagent probe moves down from the upper part of the reagent container until the tip of the reagent probe contacts the reagent. Whether the reagent probe has come into contact with the reagent is determined by the following operation.

制御部aはSWa1,SWa2の開閉動作を制御している。試薬プローブが液面に接触していない状態において、試薬プローブa(101)は装置筐体(GND電圧)との間に静電容量CpaのコンデンサCpaを持つ。図1で示したSWa1,SWa2の開閉に従い、SWa2を開いた状態でSWa1を閉じると規定電圧V0がコンデンサCpaに印加され電荷Qが蓄積される。次に、電荷Qが蓄積された状態でSWa1を開としSWa2を閉じると、電荷Qが既知の静電容量CaのコンデンサCaに移動する。このとき電圧計測部aで計測される電圧をVとする。   The controller a controls the opening / closing operation of SWa1 and SWa2. In a state where the reagent probe is not in contact with the liquid surface, the reagent probe a (101) has a capacitor Cpa having an electrostatic capacity Cpa between the apparatus case (GND voltage). In accordance with the opening / closing of SWa1 and SWa2 shown in FIG. 1, when SWa1 is closed while SWa2 is opened, the specified voltage V0 is applied to the capacitor Cpa and the charge Q is accumulated. Next, when SWa1 is opened and SWa2 is closed while the charge Q is accumulated, the charge Q moves to a capacitor Ca having a known capacitance Ca. At this time, the voltage measured by the voltage measuring unit a is V.

一方、プローブが液に接触している状態では、試薬プローブは試薬容器と筐体との間に静電容量Cmaを持つが、静電容量Cmaの値は静電容量Cpaの値と比べて大きい。このときSWa2を開いた状態でSWa1を閉じると規定電圧V0が静電容量Cmaに印加され電荷Qaが蓄積されるが、静電容量Cmaの値は静電容量Cpaの値と比べて大きいため、Qa=CmaxV0、Q=CpaxV0と計算できることから、QaはQの値よりも大きい。さらに電荷Qaが蓄積された状態でSWa1を開としSWa2を閉じると、電荷Qaが既知の静電容量Caに移動する。このとき電圧計測部aで計測される電圧、VaはVa=Qa/Caであることから、Vaは試薬プローブが試薬に接触していないときに観察されたVの値、V=Q/Caよりも大きい値となる。   On the other hand, when the probe is in contact with the liquid, the reagent probe has a capacitance Cma between the reagent container and the housing, but the value of the capacitance Cma is larger than the value of the capacitance Cpa. . At this time, when SWa1 is closed while SWa2 is open, the specified voltage V0 is applied to the capacitance Cma and the charge Qa is accumulated, but the value of the capacitance Cma is larger than the value of the capacitance Cpa. Since Qa = CmaxV0 and Q = CpaxV0 can be calculated, Qa is larger than the value of Q. Further, when SWa1 is opened and SWa2 is closed while the charge Qa is accumulated, the charge Qa moves to a known capacitance Ca. At this time, the voltage measured by the voltage measuring unit a, Va is Va = Qa / Ca, so Va is the value of V observed when the reagent probe is not in contact with the reagent, and V = Q / Ca Is also a large value.

試薬プローブa(101)は下降を継続している時間常に、上記SWa1,SWa2の開閉動作を繰り返すことで、計測部aで計測される電圧値とVの値との比較を判定部aにて実施する。V0が変化し、ある判定基準V1を超える電圧となった場合、プローブが液と接触したと判定し、試薬プローブの下降を停止する。   The reagent probe a (101) continues to descend, and the switching operation of the SWa1 and SWa2 is repeated at all times, so that the determination unit a compares the voltage value measured by the measurement unit a with the V value. carry out. When V0 changes and becomes a voltage exceeding a certain criterion V1, it is determined that the probe has come into contact with the liquid, and the lowering of the reagent probe is stopped.

試薬プローブは、プローブや回路を保持する全ての構造物との間に静電容量を持つため、試薬プローブが液に接触していない状態に測定される電圧Vにばらつきが発生する。この場合、判定基準V1との差にばらつきが発生することになり感度のばらつきとなり分注精度への影響が懸念される。そこで装置電源を立ち上げて一定の時間経過後の電圧Vを測定し、その値に応じてV1を決定することにより感度ばらつきを低減することが可能である。   Since the reagent probe has a capacitance between all the structures holding the probe and the circuit, the voltage V measured in a state where the reagent probe is not in contact with the liquid varies. In this case, variation occurs in the difference from the determination criterion V1, resulting in variation in sensitivity, and there is a concern about influence on dispensing accuracy. Therefore, it is possible to reduce the sensitivity variation by starting up the apparatus power supply, measuring the voltage V after a predetermined time has elapsed, and determining V1 according to the measured value.

次に、図2で複数プローブが隣接する試薬容器への同時に下降を行い液面検出によって下降停止する場合を説明する。説明を簡単にするため2本の試薬プローブの場合を説明する。2本目の試薬プローブb(202)では、制御部bがSWb1,SWb2の開閉動作を制御する。試薬プローブb(202)が液面に接触していない状態において、試薬プローブb(202)は装置筐体との間に静電容量CpbのコンデンサCpbを持つ。SWb2を開いた状態でSWb1を閉じると規定電圧V0がコンデンサCpbに印加され電荷Qが蓄積される。電荷Qが蓄積された状態でSWb1を開としSWb2を閉じると、電荷Qが既知の静電容量CbのコンデンサCbに移動する。このとき電圧計測部bで計測される電圧をVとする。   Next, a case will be described in which a plurality of probes are simultaneously lowered to adjacent reagent containers and stopped by liquid level detection in FIG. In order to simplify the description, the case of two reagent probes will be described. In the second reagent probe b (202), the controller b controls the opening / closing operation of SWb1 and SWb2. In a state where the reagent probe b (202) is not in contact with the liquid surface, the reagent probe b (202) has a capacitor Cpb having a capacitance Cpb between the reagent probe b (202) and the apparatus housing. When SWb1 is closed while SWb2 is open, the specified voltage V0 is applied to the capacitor Cpb and the charge Q is accumulated. When SWb1 is opened and SWb2 is closed while the charge Q is accumulated, the charge Q moves to the capacitor Cb having a known capacitance Cb. At this time, V is a voltage measured by the voltage measuring unit b.

プローブb(202)が液に接触している状態では、試薬プローブb(202)は試薬容器と筐体との間の静電容量Cmbを持つが、静電容量Cmbの値は静電容量Cpbの値と比べて大きい。このときSWb2を開いた状態でSWb1を閉じると、規定電圧V0が静電容量Cmbに印加され電荷Qbが蓄積されるが、静電容量Cmbの値は静電容量Cpbの値と比べて大きいため、Qb=CmaxV0、Q=CpaxV0と計算できることから、QbはQの値よりも大きい。さらに電荷Qbが蓄積された状態でSWb1を開としSWb2を閉じると、電荷Qbが既知の静電容量Cbに移動する。このとき電圧計測部bで計測される電圧、VbはVb=Qb/Cbであることから、Vbは試薬プローブが試薬に接触していないときに観察されたVの値、V=Q/Cbよりも大きい値となる。   In a state where the probe b (202) is in contact with the liquid, the reagent probe b (202) has a capacitance Cmb between the reagent container and the housing, but the value of the capacitance Cmb is the capacitance Cpb. Larger than the value of. If SWb1 is closed while SWb2 is open at this time, the specified voltage V0 is applied to the capacitance Cmb and the charge Qb is accumulated, but the value of the capacitance Cmb is larger than the value of the capacitance Cpb. Qb = CmaxV0 and Q = CpaxV0, Qb is larger than the value of Q. Further, when SWb1 is opened and SWb2 is closed while the charge Qb is accumulated, the charge Qb moves to a known capacitance Cb. Since the voltage measured by the voltage measuring unit b at this time, Vb is Vb = Qb / Cb, Vb is the value of V observed when the reagent probe is not in contact with the reagent, and V = Q / Cb Is also a large value.

試薬プローブb(202)は下降を継続している時間常に、上記SWb1,SWb2の開閉動作を繰り返すことで、計測部bで計測される電圧値とVの値との比較を判定部bにて実施する。Vbが変化しある判定基準V1を超える電圧となった場合、プローブが液と接触したと判定し、試薬プローブの下降を停止する。   The reagent probe b (202) always repeats the opening / closing operation of the SWb1 and SWb2 for the time that the descent continues, so that the determination unit b compares the voltage value measured by the measurement unit b with the V value. carry out. When Vb changes and becomes a voltage exceeding a certain criterion V1, it is determined that the probe has come into contact with the liquid, and the descent of the reagent probe is stopped.

次に試薬プローブa(201)と試薬プローブb(202)が同時に下降した場合、上記それぞれの動作において干渉が発生する典型例を説明する。試薬プローブa(201)と試薬プローブb(202)はそれぞれ独立した制御部a,制御部bを保有しているため、図2に示すような開閉タイミングが発生しうる。SWa2とSwb1試薬プローブa(201)、試薬プローブb(202)が共に試薬に接触している場合、本来であればSWa2がCm,Cmaに蓄積された電荷QaをCaに転送することができるが、SWa2が閉じている時間帯にSwb1によりCm,Cmbに電荷蓄積動作が入るため、十分な電荷を静電容量Caに転送することができない。この場合計測部aで計測した電圧が判定部aで液接触を判定するための判定基準V1を超える電圧とならず試薬との接触を判定することができなくなる。   Next, a typical example in which interference occurs in each of the above operations when the reagent probe a (201) and the reagent probe b (202) are simultaneously lowered will be described. Since the reagent probe a (201) and the reagent probe b (202) have the independent control part a and control part b, respectively, the opening / closing timing as shown in FIG. 2 may occur. When both SWa2 and Swb1 reagent probe a (201) and reagent probe b (202) are in contact with the reagent, SWa2 can transfer the charge Qa accumulated in Cm and Cma to Ca. Since the charge accumulation operation is performed on Cm and Cmb by Swb1 while SWa2 is closed, sufficient charge cannot be transferred to the capacitance Ca. In this case, the voltage measured by the measurement unit a does not exceed the determination reference V1 for determining liquid contact by the determination unit a, and contact with the reagent cannot be determined.

そこで本実施例1の構成においては、図3のようなスイッチ動作とする。SWa1、SWa2、SWb1、SWb2のスイッチON(閉)時間は閉スイッチOFF(開)時間に比べて短い時間とする。例えばスイッチ動作の繰り返し動作の単位が200usとした場合、各スイッチのON(閉)時間は1usとする。また、SWa1とSWa2の動作間隔は短ければ短いほどよいが、電気的に回路が分離される時間を確保すれば問題なく、極端に言えば1nsでもよい。さらに先に説明したSWa2とSwb1のような動作時間が重なる場合を回避するため、SWa1とSWa2の動作、またSWb1とSWb2の動作を繰り返し動作単位の時間内においてランダムな時間にON(閉)動作するよう、制御部aおよび制御部bが制御する。   Therefore, in the configuration of the first embodiment, the switching operation as shown in FIG. 3 is performed. The switch ON (closed) time of SWa1, SWa2, SWb1, and SWb2 is shorter than the closed switch OFF (open) time. For example, when the unit of the repeated operation of the switch operation is 200 us, the ON (closed) time of each switch is 1 us. Further, the shorter the operation interval between SWa1 and SWa2, the better. However, there is no problem as long as the time for electrically separating the circuits is ensured, and it may be 1 ns in an extreme case. Further, in order to avoid the case where the operation times such as SWa2 and Swb1 described above overlap, the operation of SWa1 and SWa2, and the operation of SWb1 and SWb2 are repeated at random times within the time of the operation unit. Control part a and control part b control so that it may do.

この場合、SWa2とSWb1が時間的に重なる確率は低く(約1%)液面位置の判定不良が生じる可能性は非常に低い。仮に、SWa2とSWb1のタイミングが重なりにより干渉が生じ、正常に液面位置の検出が動作しなかったとしても、連続した次の繰り返し動作の時間内に再度SWa2とSWb1が時間的に重なる確率はさらに低く(0.01%以下)、n回連続して干渉が発生する確率は指数関数的に減少する。制御部a、制御部bによりランダムにスイッチを動作させることにより、実用上プローブ(301)(302)が液接触にも関わらず検知できなくなる事態は皆無に等しくすることが可能である。   In this case, the probability that SWa2 and SWb1 overlap in time is low (about 1%), and the possibility of occurrence of a liquid surface position determination failure is very low. Even if the timing of SWa2 and SWb1 overlap, interference occurs, and even if the detection of the liquid surface position does not operate normally, the probability that SWa2 and SWb1 will overlap in time again within the time of the next consecutive repetitive operation is Further lower (0.01% or less), the probability that interference occurs continuously n times decreases exponentially. By operating the switches at random by the control unit a and the control unit b, it is possible to make the situation in which the probes (301) and (302) become practically impossible to detect in spite of the liquid contact.

なお、本実施例では試薬分注プローブに対して本発明を適用した例を示したが、試薬の液面検出に限る技術ではなく、検体、サンプル、洗浄液等の自動分析装置において使用される可能性のある液体全般に対して適用可能である。   In this embodiment, an example in which the present invention is applied to a reagent dispensing probe has been described. However, the present invention is not limited to the liquid level detection of a reagent, and can be used in an automatic analyzer such as a specimen, a sample, and a washing liquid Applicable to all kinds of liquids.

図4は、本発明の第2の実施例を示したものである。   FIG. 4 shows a second embodiment of the present invention.

試薬プローブa(401)および試薬プローブb(402)は試薬容器上部から下降し試薬プローブ先端が試薬に接触するまで下降動作する。試薬プローブが試薬に接触したかの判定は以下動作によって行う。   Reagent probe a (401) and reagent probe b (402) descend from the upper part of the reagent container and move downward until the tip of the reagent probe contacts the reagent. Whether the reagent probe has come into contact with the reagent is determined by the following operation.

制御部はSWa1,SWa2の開閉動作を制御している。試薬プローブ(401)が液面に接触していない状態において、試薬プローブa(401)は装置筐体との間に静電容量Cpaを持つ。図1で示したSWa1,SWa2の開閉に従い、SWa2を開いた状態でSWa1を閉じると規定電圧V0が静電容量Cpaに印加され電荷Qが蓄積される。次に、電荷Qが蓄積された状態でSWa1をOFF(開)としSWa2をON(閉)とすると、電荷Qが既知の静電容量Caに移動する。このとき電圧計測部aで計測される電圧をVとする。   The control unit controls the opening / closing operation of SWa1 and SWa2. In a state where the reagent probe (401) is not in contact with the liquid surface, the reagent probe a (401) has a capacitance Cpa between itself and the apparatus casing. In accordance with the opening / closing of SWa1 and SWa2 shown in FIG. 1, when SWa1 is closed while SWa2 is opened, the specified voltage V0 is applied to the capacitance Cpa and the charge Q is accumulated. Next, when SWa1 is turned off (opened) and SWa2 is turned on (closed) with the charge Q accumulated, the charge Q moves to a known capacitance Ca. At this time, the voltage measured by the voltage measuring unit a is V.

一方、プローブが液に接触している状態では、試薬プローブa(401)は試薬容器と筐体との間の静電容量Cmaを持つが、静電容量Cmaの値は静電容量Cpaの値と比べて大きい。このときSWa2を開いた状態でSWa1を閉じると規定電圧V0が静電容量Cmaに印加され電荷Qaが蓄積されるが、静電容量Cmaの値は静電容量Cpaの値と比べて大きいため、Qa=CmaxV0はQ=CpaxV0と計算できることから、QaはQの値よりも大きい。さらに電荷Qaが蓄積された状態でSWa1をOFF(開)としSWa2をON(閉)とすると、電荷Qaが既知の静電容量Caに移動する。このとき電圧計測部aで計測される電圧、VaはVa=Qa/Caであることから、Vaは試薬プローブが試薬に接触していないときに観察されたVの値、V=Q/Caよりも大きい値となる。   On the other hand, when the probe is in contact with the liquid, the reagent probe a (401) has a capacitance Cma between the reagent container and the housing, but the value of the capacitance Cma is the value of the capacitance Cpa. Bigger than that. At this time, when SWa1 is closed while SWa2 is open, the specified voltage V0 is applied to the capacitance Cma and the charge Qa is accumulated, but the value of the capacitance Cma is larger than the value of the capacitance Cpa. Since Qa = CmaxV0 can be calculated as Q = CpaxV0, Qa is larger than the value of Q. Further, when SWa1 is turned off (opened) and SWa2 is turned on (closed) with the charge Qa accumulated, the charge Qa moves to a known capacitance Ca. At this time, the voltage measured by the voltage measuring unit a, Va is Va = Qa / Ca, so Va is the value of V observed when the reagent probe is not in contact with the reagent, and V = Q / Ca Is also a large value.

試薬プローブ(401)は下降を継続している時間常に、上記SWa1,SWa2の開閉動作を繰り返すことで計測部aで計測される電圧値とVの値との比較を判定部aにて実施する。V0が変化しある判定基準V1を超える電圧となった場合、プローブが液と接触したと判定し、試薬プローブの下降を停止する。   The determination unit a compares the voltage value measured by the measuring unit a with the V value by repeating the opening / closing operation of the SWa1 and SWa2 at all times while the reagent probe (401) continues to descend. . When V0 changes and becomes a voltage exceeding a certain criterion V1, it is determined that the probe has come into contact with the liquid, and the descent of the reagent probe is stopped.

試薬プローブはプローブや回路を保持する全ての構造物との間に静電容量を持つため、試薬プローブが液に接触していない状態に測定される電圧Vにばらつきが発生する。この場合判定基準V1との差にばらつきが発生することになり感度のばらつきとなり分注精度への影響が懸念される。そこで装置電源を立ち上げて一定の時間経過後の電圧Vを測定しその値に応じてV1を決定することにより感度ばらつきを低減することが可能である。   Since the reagent probe has capacitance between all the structures that hold the probe and the circuit, the voltage V measured in a state where the reagent probe is not in contact with the liquid varies. In this case, the difference from the determination criterion V1 varies, and the sensitivity varies, which may cause an influence on the dispensing accuracy. Therefore, it is possible to reduce the sensitivity variation by starting up the apparatus power supply, measuring the voltage V after a predetermined time has elapsed, and determining V1 according to the measured value.

次に、複数の試薬プローブa(401)および試薬プローブb(402)が隣接する試薬容器への同時に下降を行い液面検出によって下降停止する場合を説明する。説明を簡単にするため2本の試薬プローブの場合を説明する。2本目の試薬プローブb(402)では、制御部がSWb1,SWb2の開閉動作を制御する。試薬プローブb(402)が液面に接触していない状態において、試薬プローブb(402)は装置筐体との間に静電容量Cpbを持つ。SWb2を開いた状態でSWb1を閉じると規定電圧V0が静電容量Cpbに印加され電荷Qが蓄積される。電荷Qが蓄積された状態でSWb1を開としSWb2を閉じると、電荷Qが既知の静電容量Cbに移動する。このとき電圧計測部bで計測される電圧をVとする。   Next, a case will be described in which a plurality of reagent probes a (401) and reagent probes b (402) are simultaneously lowered to adjacent reagent containers and stopped by liquid level detection. In order to simplify the description, the case of two reagent probes will be described. In the second reagent probe b (402), the control unit controls the opening / closing operation of SWb1 and SWb2. In a state where the reagent probe b (402) is not in contact with the liquid surface, the reagent probe b (402) has a capacitance Cpb between itself and the apparatus housing. When SWb1 is closed while SWb2 is open, the specified voltage V0 is applied to the capacitance Cpb and the charge Q is accumulated. When SWb1 is opened and SWb2 is closed while the charge Q is accumulated, the charge Q moves to a known capacitance Cb. At this time, V is a voltage measured by the voltage measuring unit b.

一方、試薬プローブb(402)が液に接触している状態では、試薬プローブb(402)は試薬容器と筐体との間の静電容量Cmbを持つが、静電容量Cmbの値は静電容量Cpbの値と比べて大きい。このときSWb2を開いた状態でSWb1を閉じると規定電圧V0が静電容量Cmbに印加され電荷Qbが蓄積されるが、静電容量Cmbの値は静電容量Cpbの値と比べて大きいため、Qb=CmaxV0、Q=CpaxV0と計算できることから、QbはQの値よりも大きい。さらに電荷Qbが蓄積された状態でSWb1を開としSWb2を閉じると、電荷Qbが既知の静電容量Cbに移動する。このとき電圧計測部bで計測される電圧、VbはVb=Qb/Cbであることから、Vbは試薬プローブb(402)が試薬に接触していないときに観察されたVの値、V=Q/Cbよりも大きい値となる。   On the other hand, when the reagent probe b (402) is in contact with the liquid, the reagent probe b (402) has a capacitance Cmb between the reagent container and the housing, but the value of the capacitance Cmb is static. Larger than the value of the capacitance Cpb. At this time, when SWb1 is closed while SWb2 is open, the specified voltage V0 is applied to the capacitance Cmb and the charge Qb is accumulated, but the value of the capacitance Cmb is larger than the value of the capacitance Cpb. Since Qb = CmaxV0 and Q = CpaxV0 can be calculated, Qb is larger than the value of Q. Further, when SWb1 is opened and SWb2 is closed while the charge Qb is accumulated, the charge Qb moves to a known capacitance Cb. At this time, since the voltage measured by the voltage measuring unit b, Vb is Vb = Qb / Cb, Vb is the value of V observed when the reagent probe b (402) is not in contact with the reagent, V = The value is larger than Q / Cb.

試薬プローブaおよび試薬プローブbは下降を継続している間中常に、上記SWa1、SWa2、SWb1,SWb2の開閉動作を繰り返すことで計測部aおよび計測部bで計測される電圧値とVの値との比較を判定部a、判定部bにて実施する。V0が変化しある判定基準V1を超える電圧となった場合、プローブが液と接触したと判定し、試薬プローブの下降を停止する。   While the reagent probe a and the reagent probe b continue to descend, the voltage value and the V value measured by the measuring unit a and the measuring unit b by repeating the opening / closing operation of the SWa1, SWa2, SWb1, and SWb2 are always performed. Is compared by the determination unit a and the determination unit b. When V0 changes and becomes a voltage exceeding a certain criterion V1, it is determined that the probe has come into contact with the liquid, and the descent of the reagent probe is stopped.

次に試薬プローブa(401)と試薬プローブb(402)が同時に下降した場合、上記それぞれの動作において干渉が発生する典型例を説明する。図2に示すような開閉タイミングが発生すると、SWa2とSwb1試薬プローブa(401)、試薬プローブb(402)が共に試薬に接触している場合、本来であればSWa2がCm,Cmaに蓄積された電荷QaをCaに転送することができるが、SWa2が閉じている時間帯にSwb1によりCm,Cmbに電荷蓄積動作が入るため、十分な電荷を静電容量Caに転送することができない。この場合計測部aで計測した電圧が判定部aで液接触を判定するための判定基準V1を超える電圧とならず試薬との接触を判定することができなくなる。   Next, a typical example in which interference occurs in each of the above operations when the reagent probe a (401) and the reagent probe b (402) are simultaneously lowered will be described. When the opening / closing timing as shown in FIG. 2 occurs, if both SWa2, Swb1 reagent probe a (401), and reagent probe b (402) are in contact with the reagent, SWa2 is originally stored in Cm and Cma. The charge Qa can be transferred to Ca. However, since the charge accumulation operation is performed on Cm and Cmb by Swb1 during the time period in which SWa2 is closed, sufficient charge cannot be transferred to the capacitance Ca. In this case, the voltage measured by the measurement unit a does not exceed the determination reference V1 for determining liquid contact by the determination unit a, and contact with the reagent cannot be determined.

そこで本実施例2の構成においては、図4のようなスイッチ動作とする。SWa1、SWa2、SWb1、SWb2のスイッチON(閉)時間はOFF(開)時間に比べて短い時間とする。例えばスイッチ動作の繰り返し動作の単位が200usとした場合、各スイッチのON(閉)時間は1usとする。また、SWa1とSWa2の動作間隔は短ければ短いほどよいが、電気的に回路が分離される時間を確保すれば問題なく、極端に言えば1nsでもよい。さらにSWa1とSWa2の動作、またSWb1とSWb2の動作を動作時間が重なならいよう共通の制御部が開閉を制御することで、複数のプローブ間での干渉が発生せず、高感度かつ高精度な液面検出が可能となる。
Therefore, in the configuration of the second embodiment, the switching operation as shown in FIG. 4 is performed. The switch ON (closed) time of SWa1, SWa2, SWb1, and SWb2 is shorter than the OFF (open) time. For example, when the unit of the repeated operation of the switch operation is 200 us, the ON (closed) time of each switch is 1 us. Further, the shorter the operation interval between SWa1 and SWa2, the better. However, there is no problem as long as the time for electrically separating the circuits is ensured, and it may be 1 ns in an extreme case. In addition, the common control unit controls the opening and closing of the SWa1 and SWa2 operations and the SWb1 and SWb2 operations so that the operation time does not overlap. Liquid level detection is possible.

101 プローブa
102 試薬容器a
103 装置筐体
201 プローブa
202 プローブb
203 試薬容器a
204 試薬容器b
205 装置筐体
301 プローブa
302 プローブb
303 試薬容器a
304 試薬容器b
305 装置筐体
401 プローブa
402 プローブb
403 試薬容器a
404 試薬容器b
405 装置筐体
101 Probe a
102 Reagent container a
103 Device housing 201 Probe a
202 Probe b
203 Reagent container a
204 Reagent container b
205 Device housing 301 Probe a
302 Probe b
303 Reagent container a
304 Reagent container b
305 Device housing 401 Probe a
402 Probe b
403 Reagent container a
404 Reagent container b
405 Device housing

Claims (4)

分析に使用する液体を収容する複数の容器と、
前記複数の容器から液体を吸引する複数のプローブと、
前記複数のプローブとグラウンド電圧との間に夫々設けられた複数の第一のコンデンサと、
前記複数のプローブとグランド電圧の間に夫々設けられ、既知の静電容量値を持つ複数の第二のコンデンサと、
前記第一のコンデンサに電圧を印加する規定電圧と、
前記第一のコンデンサと前記規定電圧の間での電気的導通を制御する複数の第一のスイッチと、
前記第一のコンデンサと前記第二のコンデンサの間での電気的導通を制御する複数の第二のスイッチと,
前記第一のスイッチおよび前記第二のスイッチの開閉動作をランダムに繰り返すよう制御する制御部と、
前記第一のスイッチが閉じた状態で前記第一のコンデンサに蓄積された電荷が、前記第一のスイッチが開き、かつ、前記第二のスイッチが閉じることにより、前記第一のコンデンサから前記第二のコンデンサに移動するに伴って前記第二のコンデンサに発生する電圧を測定する計測部と、
前記計測部で計測される電圧値を所定の閾値と比較してプローブが液面に接触しているか否かを判定する判定部と、を備えたことを特徴とする液面検知装置。
A plurality of containers containing liquids used for analysis;
A plurality of probes for sucking liquid from the plurality of containers;
A plurality of first capacitors respectively provided between the plurality of probes and a ground voltage;
A plurality of second capacitors each provided between the plurality of probes and a ground voltage, each having a known capacitance value;
A specified voltage for applying a voltage to the first capacitor;
A plurality of first switches for controlling electrical conduction between the first capacitor and the specified voltage;
A plurality of second switches for controlling electrical conduction between the first capacitor and the second capacitor;
A control unit for controlling the opening and closing operations of the first switch and the second switch to be repeated at random;
The electric charge accumulated in the first capacitor with the first switch closed causes the first switch to open and the second switch to close so that the first capacitor A measuring unit for measuring a voltage generated in the second capacitor as it moves to the second capacitor;
A liquid level detection apparatus comprising: a determination unit that compares a voltage value measured by the measurement unit with a predetermined threshold value to determine whether or not the probe is in contact with the liquid level.
請求項1記載の液面検知装置において、
前記第一のスイッチおよび前記第二のスイッチが開く時間は、これらのスイッチが閉じている時間よりも短いことを特徴とする液面検知装置。
In the liquid level detection apparatus according to claim 1,
The liquid level detection device according to claim 1, wherein the first switch and the second switch are open for a shorter time than the time during which the switches are closed.
請求項2記載の液面検知装置において、
複数の第一のスイッチおよび複数の第二のスイッチを個別に制御する複数の制御部を備えたことを特徴とする液面検知装置。
In the liquid level detection apparatus according to claim 2,
A liquid level detection device comprising a plurality of control units for individually controlling a plurality of first switches and a plurality of second switches.
請求項1〜3のいずれかに記載の液面検知装置を備えた自動分析装置。   The automatic analyzer provided with the liquid level detection apparatus in any one of Claims 1-3.
JP2014136403A 2014-07-02 2014-07-02 Automatic analysis device Pending JP2016014578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014136403A JP2016014578A (en) 2014-07-02 2014-07-02 Automatic analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014136403A JP2016014578A (en) 2014-07-02 2014-07-02 Automatic analysis device

Publications (1)

Publication Number Publication Date
JP2016014578A true JP2016014578A (en) 2016-01-28

Family

ID=55230883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014136403A Pending JP2016014578A (en) 2014-07-02 2014-07-02 Automatic analysis device

Country Status (1)

Country Link
JP (1) JP2016014578A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163582A1 (en) * 2016-03-24 2017-09-28 株式会社日立ハイテクノロジーズ Automated analyzer
CN112798076A (en) * 2020-12-25 2021-05-14 深圳市爱康生物科技有限公司 Multi-channel capacitance detection method, system, storage medium and equipment
CN115127966A (en) * 2022-08-26 2022-09-30 北京博汇特环保科技股份有限公司 Measuring device and measuring method for sludge sedimentation performance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163582A1 (en) * 2016-03-24 2017-09-28 株式会社日立ハイテクノロジーズ Automated analyzer
CN108780109A (en) * 2016-03-24 2018-11-09 株式会社日立高新技术 Automatic analysing apparatus
JPWO2017163582A1 (en) * 2016-03-24 2018-12-27 株式会社日立ハイテクノロジーズ Automatic analyzer
EP3435093A4 (en) * 2016-03-24 2019-11-20 Hitachi High-Technologies Corporation Automated analyzer
US10884009B2 (en) 2016-03-24 2021-01-05 Hitachi High-Tech Corporation Automated analyzer
CN108780109B (en) * 2016-03-24 2022-03-08 株式会社日立高新技术 Automatic analyzer
CN112798076A (en) * 2020-12-25 2021-05-14 深圳市爱康生物科技有限公司 Multi-channel capacitance detection method, system, storage medium and equipment
CN115127966A (en) * 2022-08-26 2022-09-30 北京博汇特环保科技股份有限公司 Measuring device and measuring method for sludge sedimentation performance

Similar Documents

Publication Publication Date Title
JP5703376B2 (en) Automatic analyzer
US7150190B2 (en) Method and apparatus for capacitively determining the uppermost level of a liquid in a container
US11199433B2 (en) Method for the automated classification of a liquid as well as method for the automated adaption of presettings for a capacitive liquid level measurement
EP2031409B1 (en) Automatic multi-purpose analyser
US7823447B2 (en) Method and apparatus for sensing a liquid level
US9733115B2 (en) Analyzer, and method of detection liquid level in an analyzer
JP6945973B2 (en) How to detect pipette needle contact
JP2009512838A (en) Method and apparatus for detecting the level of liquid in a liquid containment
JP2015203699A5 (en)
JP5830395B2 (en) Liquid dispensing device
JP2016014578A (en) Automatic analysis device
WO2017033910A1 (en) Automatic analysis device, dispensing method, and liquid surface detection method
US8841925B2 (en) Method for testing a laboratory device and correspondingly equipped laboratory device
JP3664456B2 (en) Analyzer with liquid level detection function
EP3435093B1 (en) Automated analyzer
EP4202443A1 (en) Method and device for detecting contact of a pipette tip with a liquid as well as a laboratory system with such a device
JP2009281877A (en) Dispensing apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170804