JP2016013955A - Ceramic sintered compact and electronic component - Google Patents

Ceramic sintered compact and electronic component Download PDF

Info

Publication number
JP2016013955A
JP2016013955A JP2014137798A JP2014137798A JP2016013955A JP 2016013955 A JP2016013955 A JP 2016013955A JP 2014137798 A JP2014137798 A JP 2014137798A JP 2014137798 A JP2014137798 A JP 2014137798A JP 2016013955 A JP2016013955 A JP 2016013955A
Authority
JP
Japan
Prior art keywords
dielectric
ceramic sintered
low resistance
electronic component
internal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014137798A
Other languages
Japanese (ja)
Other versions
JP6430732B2 (en
Inventor
誠一郎 平原
Seiichiro Hirahara
誠一郎 平原
積 洋二
Yoji Seki
洋二 積
智之 小野
Tomoyuki Ono
智之 小野
史人 古内
Fumito Kouchi
史人 古内
麻衣子 永吉
Maiko Nagayoshi
麻衣子 永吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014137798A priority Critical patent/JP6430732B2/en
Publication of JP2016013955A publication Critical patent/JP2016013955A/en
Application granted granted Critical
Publication of JP6430732B2 publication Critical patent/JP6430732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic sintered compact capable of reducing failures due to simultaneous baking of a dielectric and a metal conductor, and to provide an electronic component.SOLUTION: A ceramic sintered compact 1 includes a dielectric part 3 and a low resistor part 2, which are integrated with each other. In the ceramic sintered compact 1, the composition of metal elements constituting the dielectric part 3 and the composition of metal elements constituting the low resistor part 2 are substantially the same, and the crystal structure of the dielectric part 3 and the crystal structure of the low resistor part 2 are also substantially the same. There is provided the electronic component having an external electrode on a surface of the dielectric part 3 or a side surface of a laminate formed by laminating the ceramic sintered compact 1.

Description

本発明は、セラミック焼結体および電子部品に関するものである。   The present invention relates to a ceramic sintered body and an electronic component.

コンデンサ、圧電素子、ヒーター、電池などの電子部品は、種々の電子機器に用いられており、その多くは、セラミックスなどの誘電体と金属の内部電極とを積層した積層構造を有している。このような電子部品は、例えばセラミックグリーンシートおよび内部電極を同時焼成することで作製されている(例えば、特許文献1を参照)。   Electronic parts such as capacitors, piezoelectric elements, heaters, and batteries are used in various electronic devices, and most of them have a laminated structure in which a dielectric such as ceramics and a metal internal electrode are laminated. Such an electronic component is produced, for example, by simultaneously firing a ceramic green sheet and an internal electrode (see, for example, Patent Document 1).

国際公開2012/023334号International Publication No. 2012/023334

しかしながら、セラミックスと金属という異種材料を同時焼成すると、熱膨張及び収縮挙動の差異から、クラックやデラミネーション(層間剥離)等の欠陥が生じたり、残留応力が生じるという不具合があった。また、異種材料間の反応や元素拡散などにより所望の特性が得られないなど、種々の課題があった。   However, when different materials such as ceramic and metal are fired at the same time, defects such as cracks and delamination (delamination) and residual stress occur due to differences in thermal expansion and contraction behavior. In addition, there are various problems such that desired characteristics cannot be obtained due to reaction between different materials or element diffusion.

本発明は上記の課題に鑑みなされたもので、誘電体と金属導体とを同時焼成することによる不具合を低減できるセラミック焼結体および電子部品を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a ceramic sintered body and an electronic component that can reduce problems caused by simultaneous firing of a dielectric and a metal conductor.

本発明のセラミック焼結体は、誘電体部と低抵抗体部とを備え、前記誘電体部を構成する金属元素の組成と、前記低抵抗体部を構成する金属元素の組成とが、実質的に同一であり、前記誘電体部の結晶構造と、前記低抵抗体部の結晶構造とが、実質的に同一であるとともに、前記誘電体部および前記低抵抗体部が一体化していることを特徴とする。   The ceramic sintered body of the present invention comprises a dielectric part and a low resistance part, and the composition of the metal element constituting the dielectric part and the composition of the metal element constituting the low resistance part are substantially The crystal structure of the dielectric portion and the crystal structure of the low resistance portion are substantially the same, and the dielectric portion and the low resistance portion are integrated. It is characterized by.

本発明の電子部品は、上述のセラミック焼結体と、前記誘電体部上であって、前記低抵抗体部と対向する位置に設けられた外部電極と、を備えることを特徴とする。   The electronic component according to the present invention includes the ceramic sintered body described above and an external electrode provided on the dielectric portion and at a position facing the low resistance portion.

また、本発明の電子部品は、上述のセラミック焼結体を複数積層してなる積層体と、該積層体の表面に設けられた外部電極と、を備え、前記積層体が、前記誘電体部からなる複数の誘電体層と、積層方向において前記複数の誘電体層間に位置する内部電極層と、を有し、該内部電極層が、前記積層体の積層方向に位置する一対の主面に隣接する側面において前記外部電極と電気的に接続されていることを特徴とする。   The electronic component of the present invention includes a laminate formed by laminating a plurality of the ceramic sintered bodies described above, and an external electrode provided on the surface of the laminate, and the laminate includes the dielectric portion. A plurality of dielectric layers, and internal electrode layers positioned between the plurality of dielectric layers in the stacking direction, and the internal electrode layers are formed on a pair of main surfaces positioned in the stacking direction of the stack. It is electrically connected with the said external electrode in the adjacent side surface.

本発明によれば、誘電体と金属導体とを同時焼成することによる不具合を低減できるセラミック焼結体および電子部品を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the ceramic sintered compact and electronic component which can reduce the malfunction by baking a dielectric and a metal conductor simultaneously can be provided.

本発明のセラミック焼結体の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the ceramic sintered compact of this invention. (A)は、本発明のセラミック焼結体の別の例を模式的に示す断面図、(B)は、(A)に端子電極を設けた場合の断面図である。(A) is sectional drawing which shows another example of the ceramic sintered compact of this invention typically, (B) is sectional drawing at the time of providing a terminal electrode in (A). 本発明の別の例である(A)は円柱状、(B)および(C)は円筒状のセラミック焼結体を模式的に示した斜視図である。(A) which is another example of this invention is a cylindrical shape, (B) and (C) are the perspective views which showed typically the cylindrical ceramic sintered compact. 本発明の電子部品の第1実施形態を模式的に示す断面図である。It is sectional drawing which shows typically 1st Embodiment of the electronic component of this invention. 本発明の電子部品の第2実施形態を模式的に示す断面図である。It is sectional drawing which shows typically 2nd Embodiment of the electronic component of this invention. 第2実施形態において、第3の内部電極層を有する場合の断面図である。In 2nd Embodiment, it is sectional drawing in the case of having a 3rd internal electrode layer. 本発明の電子部品の第3実施形態を模式的に示す断面図である。It is sectional drawing which shows typically 3rd Embodiment of the electronic component of this invention. 第3実施形態において、第3の内部電極層を有する場合の断面図である。In 3rd Embodiment, it is sectional drawing in the case of having a 3rd internal electrode layer.

本発明のセラミック焼結体の具体的な実施形態について、図を参照しつつ詳細に説明する。   Specific embodiments of the ceramic sintered body of the present invention will be described in detail with reference to the drawings.

本実施形態のセラミック焼結体1は、一体化した低抵抗体部2と誘電体部3とを備えており、低抵抗体部2を構成する金属元素の組成と、誘電体部3を構成する金属元素の組成とが、実質的に同一であるとともに、低抵抗体部2の結晶構造と、誘電体部3の結晶構造とが、実質的に同一である。換言すれば、本発明の焼結体においては、同一材料でありながら電気的特性の異なる部位すなわち低抵抗体部2と誘電体部3とが共存している。   The ceramic sintered body 1 of the present embodiment includes an integrated low-resistance body portion 2 and a dielectric portion 3, and the composition of the metal element constituting the low-resistance body portion 2 and the dielectric portion 3 are configured. The composition of the metal element to be performed is substantially the same, and the crystal structure of the low-resistance part 2 and the crystal structure of the dielectric part 3 are substantially the same. In other words, in the sintered body of the present invention, the portions having different electrical characteristics, that is, the low resistance portion 2 and the dielectric portion 3 coexist even though they are the same material.

ここで、低抵抗体部2は、電気抵抗率が1×10Ω・m以下であるものとし、誘電体部3は、電気抵抗率が、1×10Ω・m以上であるものとする。なお、低抵抗体部2の電気抵抗率は1×10−6〜1×10Ω・m、誘電体部3の電気抵抗率は1×10〜1×1011Ω・mの範囲とすることが好ましい。また、低抵抗体部2と誘電体部3との間に電気抵抗率が1×10Ω・mよりも大きく1×10Ω・mよりも小さい領域が介在していてもよい。 Here, it is assumed that the low resistance portion 2 has an electrical resistivity of 1 × 10 6 Ω · m or less, and the dielectric portion 3 has an electrical resistivity of 1 × 10 8 Ω · m or more. To do. The electrical resistance of the low resistance portion 2 is in the range of 1 × 10 −6 to 1 × 10 6 Ω · m, and the electrical resistivity of the dielectric portion 3 is in the range of 1 × 10 8 to 1 × 10 11 Ω · m. It is preferable to do. Further, a region having an electrical resistivity larger than 1 × 10 6 Ω · m and smaller than 1 × 10 8 Ω · m may be interposed between the low resistance portion 2 and the dielectric portion 3.

ここで、低抵抗体部2を構成する金属元素の組成と、誘電体部3を構成する金属元素の組成とが、実質的に同一であるとは、例えばいずれも酸化物材料からなる場合、低抵抗体部2を構成する酸化物の金属元素の組成と、誘電体部3を構成する酸化物の金属元素の組成との差が、例えばエネルギー分散型X線分光(EDS)、高周波誘導結合プラズマ(ICP)発光分光、蛍光X線(XRF)およびX線光電子分光(XPS)などの元素分析において、測定誤差の範囲内で一致することをいう。   Here, the composition of the metal element constituting the low resistance portion 2 and the composition of the metal element constituting the dielectric portion 3 are substantially the same, for example, when both are made of an oxide material, The difference between the composition of the metal element of the oxide composing the low resistance part 2 and the composition of the metal element of the oxide composing the dielectric part 3 is, for example, energy dispersive X-ray spectroscopy (EDS), high frequency inductive coupling In elemental analysis such as plasma (ICP) emission spectroscopy, fluorescent X-ray (XRF), and X-ray photoelectron spectroscopy (XPS), it means that they coincide within a measurement error.

また、低抵抗体部2の結晶構造と誘電体部3の結晶構造とが実質的に同一であるとは、低抵抗体部2と誘電体部3とが同じ結晶構造(たとえばペロブスカイト型、ルチル型、スピネル型など)の型を有していることをいう。結晶構造は、X線回折(XRD)測定または透過型電子顕微鏡(TEM)により確認できる。たとえば、低抵抗体部2のXRDパターン(回折ピークの回折角と相対強度)と誘電体部3のXRDパターンとが測定誤差の範囲内で一致する場合、または低抵抗体部2と誘電体部3とを同時に分析した際に、低抵抗体部2に起因する回折ピークと誘電体部3に起因する回折ピークとを明確に分離できない場合、低抵抗体部2と誘電体部3とは結晶構造が実質的に同一であるとみなす。なお、格子定数(回折ピークの回折角)については、構成元素の価数変化や酸素欠陥の量などにより変動する場合があるため、若干異なっていてもよい。   In addition, the crystal structure of the low resistance portion 2 and the crystal structure of the dielectric portion 3 are substantially the same. The low resistance portion 2 and the dielectric portion 3 have the same crystal structure (for example, perovskite type, rutile). Type, spinel type, etc.). The crystal structure can be confirmed by X-ray diffraction (XRD) measurement or transmission electron microscope (TEM). For example, when the XRD pattern (diffraction angle and relative intensity of the diffraction peak) of the low resistance portion 2 and the XRD pattern of the dielectric portion 3 match within a measurement error range, or the low resistance portion 2 and the dielectric portion 3, when the diffraction peak due to the low resistance portion 2 and the diffraction peak due to the dielectric portion 3 cannot be clearly separated, the low resistance portion 2 and the dielectric portion 3 are crystallized. The structure is considered to be substantially the same. Note that the lattice constant (diffraction angle of the diffraction peak) may vary slightly because it may vary depending on the valence change of the constituent elements, the amount of oxygen defects, and the like.

このようなセラミック焼結体1においては、一つのセラミック焼結体1中に同一の組成、同一の結晶構造を有する低抵抗体部2と誘電体部3とが共存していることから、たとえば、セラミックス材料と金属材料という異種材料を同時焼成した場合に生じる、両者の焼結温度の違いからくる変形や不均一、欠陥の発生や、異種材料間の反応や元素拡散による特性の変動などの不具合を低減できる。   In such a ceramic sintered body 1, since the low resistance part 2 and the dielectric part 3 having the same composition and the same crystal structure coexist in one ceramic sintered body 1, for example, , Such as deformation and non-uniformity caused by the difference in sintering temperature between the two materials, ceramic materials and metal materials, the occurrence of defects, fluctuations in characteristics due to reactions between different materials and element diffusion, etc. Defects can be reduced.

このような構造を実現できる材料としては、例えばルチル型の結晶構造を有するチタニア系の材料(ただし、Tiのほか、2価および3価のいずれかの価数をとる金属元素と、
5価および6価のいずれかの価数をとる金属元素とを、金属元素の総量に対して合計で10mol%以下程度含む)が挙げられる。
As a material that can realize such a structure, for example, a titania-based material having a rutile-type crystal structure (however, in addition to Ti, a metal element having a valence of either bivalent or trivalent,
And a metal element having a valence of either pentavalent or hexavalent in total of about 10 mol% or less with respect to the total amount of metal elements).

このようなセラミック焼結体1は、例えば、次のようにして作製できる。酸化チタンの粉末に、2価または3価となる金属元素の酸化物や炭酸塩、例えばMgO、MgCO、CaO、CaCO、SrO、SrCO、NiO、Co、Co、Inなどの粉末、および5価または6価となる金属元素の酸化物、例えばV、Nb、Ta、WOなどの粉末を、所定量配合して混合粉末とする。混合粉末にバインダを加え、所定の形状に成形して成形体を得る。得られた成形体をジルコニアなどのセッター上に配置し、匣鉢に収納した状態で、まず大気雰囲気中にて300〜600℃でバインダ除去処理を行い、次いで、大気雰囲気中において1300〜1400℃で5〜10時間焼成することで、表面に誘電体部3、内部に低抵抗体部2を有し、表面・内部いずれも金属元素の組成が同一でルチル型結晶構造を有するチタニア系のセラミック焼結体1が得られる。匣鉢の材質としては、例えばアルミナ、マグネシア、ムライトなどを用いればよい。なお、必要に応じ、混合粉末を大気雰囲気中において800〜1000℃で2〜5時間仮焼して仮焼粉末とし、この仮焼粉末にバインダ等を加えて所定の形状に成形したのち、上述の条件で焼成してもよい。 Such a ceramic sintered body 1 can be produced, for example, as follows. Dioxide or trivalent metal element oxides or carbonates such as MgO, MgCO 3 , CaO, CaCO 3 , SrO, SrCO 3 , NiO, Co 2 O 3 , Co 3 O 4 , titanium oxide powder, A predetermined amount of powders such as In 2 O 3 and oxides of metal elements that are pentavalent or hexavalent, such as V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 , and WO 3 are blended in a predetermined amount. Mix powder. A binder is added to the mixed powder and molded into a predetermined shape to obtain a molded body. The obtained molded body was placed on a setter such as zirconia and stored in a mortar, and then the binder removal treatment was first performed at 300 to 600 ° C. in the air atmosphere, and then 1300 to 1400 ° C. in the air atmosphere. The titania-based ceramic having a dielectric part 3 on the surface and a low-resistance part 2 on the inside, the same composition of the metal elements on the surface and inside, and a rutile crystal structure. A sintered body 1 is obtained. For example, alumina, magnesia, mullite or the like may be used as the material of the mortar. If necessary, the mixed powder is calcined at 800 to 1000 ° C. in an air atmosphere for 2 to 5 hours to obtain a calcined powder, and after adding the binder to the calcined powder and forming it into a predetermined shape, the above-mentioned You may bake on the conditions of.

このようにして得られたセラミック焼結体1は、表面に電気抵抗率が1×10〜1×1011Ω・mの誘電体部3、内部に電気抵抗率が1×10−6〜1×10Ω・mの低抵抗体部2を有する構造を備え、低抵抗体部2および誘電体部3の金属元素の組成および結晶構造が同一のものとなる。低抵抗体部2と誘電体部3とは、酸素の含有量が異なり、誘電体部3は低抵抗体部2よりも酸素含有量が多い、換言すれば、低抵抗体部2には酸素欠陥が多く存在することから、金属元素の組成と結晶構造が同じでありながら電気抵抗率の異なる領域が形成されているものと考えられる。 The ceramic sintered body 1 thus obtained has a dielectric part 3 with an electrical resistivity of 1 × 10 8 to 1 × 10 11 Ω · m on the surface and an electrical resistivity of 1 × 10 −6 to A structure having a low resistance portion 2 of 1 × 10 6 Ω · m is provided, and the composition and crystal structure of the metal elements of the low resistance portion 2 and the dielectric portion 3 are the same. The low-resistance part 2 and the dielectric part 3 have different oxygen contents, and the dielectric part 3 has a higher oxygen content than the low-resistance part 2, in other words, the low-resistance part 2 contains oxygen. Since there are many defects, it is considered that regions having different electrical resistivity are formed while the composition and crystal structure of the metal element are the same.

このようなセラミック焼結体1は、低抵抗体部2および誘電体部3の金属元素の組成および結晶構造が同一であることから、異種材料を同時焼成した時に熱膨張率及び収縮挙動の差異から生じるようなクラックやデラミネーション(層間剥離)、残留応力等の不具合が少ない、低抵抗体部2と誘電体部3とが一体化したものとなる。   Such a ceramic sintered body 1 has the same composition and crystal structure of the metal elements of the low-resistance part 2 and the dielectric part 3, and therefore the difference in thermal expansion coefficient and shrinkage behavior when different materials are fired simultaneously. Thus, the low resistance portion 2 and the dielectric portion 3 are integrated with less defects such as cracks, delamination (delamination), and residual stress.

セラミック焼結体1の低抵抗体部2、および誘電体部3の特性は、例えばセラミック焼結体1を低抵抗体部2と誘電体部3とに分離加工してそれぞれの特性を評価すればよい。また、低抵抗体部2または誘電体部2のいずれかが非常に薄く、分離加工が困難な場合は、低抵抗体部2と誘電体部3とが一体となった状態で評価すればよい。   The characteristics of the low resistance part 2 and the dielectric part 3 of the ceramic sintered body 1 are evaluated by separating the ceramic sintered body 1 into a low resistance part 2 and a dielectric part 3, for example. That's fine. If either the low resistance portion 2 or the dielectric portion 2 is very thin and separation processing is difficult, the low resistance portion 2 and the dielectric portion 3 may be evaluated in an integrated state. .

例えば、電気抵抗率を評価する場合、まず、低抵抗体部2と誘電体部3とが一体となったセラミック焼結体1全体の電気抵抗率を測定し、次いでセラミック焼結体1から誘電体部3を研削加工などにより除去し、残った低抵抗体部2の電気抵抗率を測定する。得られたセラミック焼結体1全体の電気抵抗率と、低抵抗体部2電気抵抗率から、誘電体部3の電気抵抗率を求めればよい。なお、セラミック焼結体1から低抵抗部2を除去して誘電体部3の電気抵抗率を測定し、得られた測定値から低抵抗部2の電気抵抗率を求めてもよい。   For example, when the electrical resistivity is evaluated, first, the electrical resistivity of the entire ceramic sintered body 1 in which the low resistance portion 2 and the dielectric portion 3 are integrated is measured, and then the dielectric is calculated from the ceramic sintered body 1. The body part 3 is removed by grinding or the like, and the electrical resistivity of the remaining low resistance part 2 is measured. What is necessary is just to obtain | require the electrical resistivity of the dielectric material part 3 from the electrical resistivity of the whole ceramic sintered compact 1 obtained, and the low resistance part 2 electrical resistivity. Alternatively, the low resistance portion 2 may be removed from the ceramic sintered body 1 to measure the electrical resistivity of the dielectric portion 3, and the electrical resistivity of the low resistance portion 2 may be obtained from the obtained measurement value.

金属元素の組成は、X線光電子分光(XPS)分析を用いることで、厚さ数nmの薄層部の評価が可能である。結晶構造は、薄膜X線回折(小角散乱)を利用することで、厚さ100nm程度の薄層部の結晶構造を分析することができる。   The composition of the metal element can be evaluated for a thin layer having a thickness of several nm by using X-ray photoelectron spectroscopy (XPS) analysis. The crystal structure can be analyzed by using thin film X-ray diffraction (small angle scattering) to analyze the crystal structure of a thin layer having a thickness of about 100 nm.

誘電体部3は、図2(A)に示すように、低抵抗体部2を被覆している、すなわち、セラミック焼結体1の外表面が誘電体部3により構成されていることが好ましい。   As shown in FIG. 2A, the dielectric part 3 covers the low resistance part 2, that is, the outer surface of the ceramic sintered body 1 is preferably constituted by the dielectric part 3. .

このようなセラミック焼結体1は、例えば平板状として図2(B)に示すように誘電体部3の一方の表面または側面の一部に、セラミック焼結体1の内部に存在する低抵抗体部2に電気的に接続する端子電極4を設けることにより、誘電体部3の他方の表面を吸着面とする静電吸着装置を構成することができる。   Such a ceramic sintered body 1 is, for example, a flat plate having a low resistance existing inside the ceramic sintered body 1 on one surface or a part of a side surface of the dielectric portion 3 as shown in FIG. By providing the terminal electrode 4 that is electrically connected to the body part 2, it is possible to configure an electrostatic adsorption device having the other surface of the dielectric part 3 as an adsorption surface.

なお、セラミック焼結体1は、平板状に限らず、棒状、柱状、筒状、箱状等、他の種々の形状を有していても構わない。例えば、図3(A)のように柱状の低抵抗体部2の外周面に誘電体部3を備えるもの、図3(B)のように筒状の低抵抗体部2の外周面に誘電体部3を備えるもの、図3(C)のように筒状の低抵抗体部2の外周面および内周面に誘電体部3を備えるもの、なども用いることができる。これらは、例えばコンデンサ、フィルタ、またはアンテナ等として利用される。   The ceramic sintered body 1 is not limited to a flat plate shape, and may have other various shapes such as a rod shape, a column shape, a cylindrical shape, and a box shape. For example, as shown in FIG. 3A, the outer peripheral surface of the columnar low-resistance body 2 is provided with the dielectric portion 3, and as shown in FIG. 3B, the dielectric is formed on the outer peripheral surface of the cylindrical low-resistance body 2. The thing provided with the body part 3, the thing provided with the dielectric part 3 in the outer peripheral surface and inner peripheral surface of the cylindrical low resistance body part 2 like FIG.3 (C), etc. can be used. These are used as, for example, a capacitor, a filter, or an antenna.

<第1実施形態>
また、このようなセラミック焼結体1は、図4に示すように、その外表面を構成する誘電体部3上の、誘電体部3を介して低抵抗体部2と対向する位置に外部電極4を設けることで、電子部品として種々の用途に適用できる。例えば、平板状のセラミック焼結体1の場合、誘電体部3の特性に応じて、単層または積層型のコンデンサ、抵抗、圧電素子等の電子部品として用いることができる。なお、図4(A)においては外部電極4の面積が低抵抗体部2の面積よりも大きい場合、図4(B)においては外部電極4と低抵抗体部2の面積が同じ場合を示したが、外部電極4および低抵抗体部2の面積の比率や配置は、電子部品の用途に応じて適宜設定すればよい。
<First Embodiment>
In addition, as shown in FIG. 4, such a ceramic sintered body 1 is externally disposed on the dielectric portion 3 constituting the outer surface thereof at a position facing the low resistance portion 2 via the dielectric portion 3. By providing the electrode 4, it can be applied to various uses as an electronic component. For example, in the case of a flat ceramic sintered body 1, it can be used as an electronic component such as a single-layer or multilayer capacitor, resistor, and piezoelectric element depending on the characteristics of the dielectric portion 3. 4A shows the case where the area of the external electrode 4 is larger than the area of the low resistance portion 2, and FIG. 4B shows the case where the area of the external electrode 4 and the low resistance portion 2 is the same. However, the ratio and arrangement of the areas of the external electrode 4 and the low-resistance body portion 2 may be appropriately set according to the use of the electronic component.

<第2実施形態>
図5は、平板状のセラミック焼結体1a、1bを複数積層してなる積層体5、および積層体5の表面に設けられた外部電極4a、4bを備える積層型の電子部品を示している。積層体5は、誘電体部3からなる複数の誘電体層3と、積層体5の積層方向において誘電体層3間に位置する内部電極層6a、6bとを有している。
Second Embodiment
FIG. 5 shows a multilayer electronic component including a multilayer body 5 formed by laminating a plurality of flat ceramic sintered bodies 1 a and 1 b and external electrodes 4 a and 4 b provided on the surface of the multilayer body 5. . The multilayer body 5 includes a plurality of dielectric layers 3 composed of the dielectric portions 3 and internal electrode layers 6 a and 6 b located between the dielectric layers 3 in the stacking direction of the multilayer body 5.

図5(A)に示す電子部品では、低抵抗体部2からなる内部電極層6a、6bが、積層体5の積層方向の主面に隣接する側面に露出し、当該側面において外部電極4a、4bに電気的に接続されている。ここで、第1の内部電極層6aと第2の内部電極層6bとは、誘電体層3を介して交互に積層されており、第1の内部電極層6aは、積層体の第1の側面に露出して第1の外部電極4aに接続され、第2の内部電極6bは、積層体の第2の側面に露出して第2の外部電極4bに接続されている。また、第1の側面と第2の側面は、積層体5を介して互いに対向している。   In the electronic component shown in FIG. 5A, the internal electrode layers 6a and 6b made of the low-resistance body 2 are exposed on the side surface adjacent to the main surface in the stacking direction of the stacked body 5, and the external electrode 4a, 4b is electrically connected. Here, the first internal electrode layers 6a and the second internal electrode layers 6b are alternately stacked via the dielectric layers 3, and the first internal electrode layers 6a are the first layers of the stacked body. The second internal electrode 6b is exposed to the side surface and connected to the first external electrode 4a, and the second internal electrode 6b is exposed to the second side surface of the multilayer body and connected to the second external electrode 4b. Further, the first side surface and the second side surface are opposed to each other with the stacked body 5 interposed therebetween.

第1の内部電極層6aと第2の内部電極層6bは、それぞれ積層体5の側面の異なる部位に露出していれば良く、たとえば同一側面の異なる部位に露出するものであってもよい。   The first internal electrode layer 6a and the second internal electrode layer 6b may be exposed to different portions on the side surface of the multilayer body 5, and may be exposed to different portions on the same side surface, for example.

また、積層体5を形成するセラミック焼結体1a、1bは、図5(A)に示すように低抵抗体部2の両面に誘電体部3を備えていてもよいし、図5(B)に示すように低抵抗体部2の片面にのみ誘電体部3を備えるものであってもよい。低抵抗体部2の片面にのみ誘電体部3を備えるセラミック焼結体1が積層されている場合は、一方のセラミック焼結体1の低抵抗体部2側の面と、他方のセラミック焼結体1の誘電体部3側の面とが対向するように積層されていることが好ましい。   Further, the ceramic sintered bodies 1a and 1b forming the laminated body 5 may be provided with dielectric portions 3 on both surfaces of the low resistance portion 2 as shown in FIG. The dielectric part 3 may be provided only on one surface of the low resistance part 2 as shown in FIG. When the ceramic sintered body 1 provided with the dielectric part 3 is laminated only on one surface of the low-resistance body part 2, the surface on the low-resistance body part 2 side of one ceramic sintered body 1 and the other ceramic fired body It is preferable that the laminated body 1 is laminated so as to face the surface on the dielectric part 3 side.

なお、積層体5の積層方向の表面には、低抵抗体部2と誘電体部3のいずれが露出していてもよく、電子部品の用途によっていずれかを選択すればよい。なお、積層体5の積層
方向の表面は、両方が低抵抗体部2の露出面であるか、または両方が誘電体部3の露出面であることが好ましいが、用途により一方の表面を低抵抗体部2、他方の表面を誘電体部3としてもよい。
Note that either the low resistance portion 2 or the dielectric portion 3 may be exposed on the surface of the laminate 5 in the stacking direction, and either one may be selected depending on the application of the electronic component. In addition, it is preferable that both of the surfaces in the stacking direction of the stacked body 5 are exposed surfaces of the low-resistance body portion 2 or both are exposed surfaces of the dielectric portion 3. The resistor portion 2 and the other surface may be the dielectric portion 3.

また、第1の内部電極層6aと第2の内部電極層6bとの間に、低抵抗体部2からなり、外部電極4a、4bと電気的に接続されない第3の内部電極層6cを有していてもよい(図6)。第3の内部電極6cを有することにより、本実施形態の電子部品の耐電圧を高めることができる。   In addition, a third internal electrode layer 6c that includes the low resistance portion 2 and is not electrically connected to the external electrodes 4a and 4b is provided between the first internal electrode layer 6a and the second internal electrode layer 6b. (FIG. 6). By having the third internal electrode 6c, the withstand voltage of the electronic component of the present embodiment can be increased.

本実施形態においては、複数のセラミック焼結体1a〜1cは外部電極4により側面で接合され積層体5として一体化しているが、各セラミック焼結体1a〜1cの積層面と対向する他のセラミック焼結体1a〜1cの積層面とが、例えば接着剤等により接合されていてもよい。   In the present embodiment, the plurality of ceramic sintered bodies 1a to 1c are joined together on the side surface by the external electrode 4 and integrated as a laminated body 5. However, the other ceramic facing bodies 1a to 1c are opposed to the laminated surface. The laminated surfaces of the ceramic sintered bodies 1a to 1c may be joined by, for example, an adhesive.

<第3実施形態>
図7では、平板状のセラミック焼結体1aが複数、導電性材料7を介して積層され、第1の内部電極層6aは低抵抗体部2からなり、第2の内部電極層6bは導電性材料7からなる。これらの内部電極層6a、6bは積層体5の積層方向の主面に隣接する側面に露出し、当該側面において外部電極4a、4bに電気的に接続されている。なお、第1の内部電極層6aと第2の内部電極層6bとは、誘電体層3を介して交互に積層されている。
<Third Embodiment>
In FIG. 7, a plurality of flat ceramic sintered bodies 1a are laminated via a conductive material 7, the first internal electrode layer 6a is composed of the low resistance portion 2, and the second internal electrode layer 6b is conductive. It consists of a material 7. These internal electrode layers 6a and 6b are exposed on the side surface adjacent to the main surface in the stacking direction of the multilayer body 5, and are electrically connected to the external electrodes 4a and 4b on the side surfaces. Note that the first internal electrode layers 6 a and the second internal electrode layers 6 b are alternately stacked via the dielectric layers 3.

ここで、第1の内部電極層6aは、積層体5の第1の側面に露出して第1の外部電極4aに接続され、第2の内部電極層6bは、積層体5の第2の側面に露出して第2の外部電極4bに接続されている。また、第1の側面と第2の側面は、積層体5を介して互いに対向している。   Here, the first internal electrode layer 6 a is exposed to the first side surface of the multilayer body 5 and connected to the first external electrode 4 a, and the second internal electrode layer 6 b is the second internal electrode layer 6 b of the multilayer body 5. It is exposed to the side surface and connected to the second external electrode 4b. Further, the first side surface and the second side surface are opposed to each other with the stacked body 5 interposed therebetween.

第1の内部電極層6aと第2の内部電極層6bは、それぞれ積層体5の側面の異なる部位に露出していれば良く、たとえば同一側面の異なる部位に露出するものであってもよい。   The first internal electrode layer 6a and the second internal electrode layer 6b may be exposed to different portions on the side surface of the multilayer body 5, and may be exposed to different portions on the same side surface, for example.

本実施形態においては、セラミック焼結体1aが、低抵抗体部2の両面に誘電体部3を備えていることが好ましい。   In the present embodiment, it is preferable that the ceramic sintered body 1 a includes the dielectric portion 3 on both surfaces of the low resistance portion 2.

また、第1の内部電極層6aと第2の内部電極層6bとの間に、低抵抗部2または導電性材料7からなり、外部電極4a、4bと電気的に接続されない第3の内部電極層6cを有していてもよい。図8に、低抵抗部2からなる第3の内部電極層6cを有する場合の一例を示す。   Also, a third internal electrode made of the low resistance portion 2 or the conductive material 7 and not electrically connected to the external electrodes 4a and 4b between the first internal electrode layer 6a and the second internal electrode layer 6b. The layer 6c may be included. FIG. 8 shows an example in which the third internal electrode layer 6c made of the low resistance portion 2 is provided.

なお、導電性材料7としては、導電性接着剤、ガラスを含む導体ペーストを焼き付けたものなどを用いればよい。導電性材料7に含まれる導体としては、例えば銀、金、白金、パラジウムなどを用いればよい。   Note that as the conductive material 7, a conductive adhesive, a material obtained by baking a conductive paste containing glass, or the like may be used. For example, silver, gold, platinum, palladium, or the like may be used as a conductor included in the conductive material 7.

また、積層体5におけるセラミック焼結体1a〜1cの積層数や組合せ、積層順等は、上述の第2実施形態または第3実施形態で示した例に限定されるものではなく、目的に応じて適宜変更可能なことは言うまでもない。   Further, the number and combination of ceramic sintered bodies 1a to 1c in the multilayer body 5, the order of lamination, and the like are not limited to the examples shown in the second embodiment or the third embodiment described above, and depend on the purpose. Needless to say, it can be changed as appropriate.

以下、本発明のセラミック焼結体について、実施例に基づき詳細に説明する。   Hereinafter, the ceramic sintered body of the present invention will be described in detail based on examples.

酸化チタン、炭酸マグネシウム、五酸化タンタルの粉末を準備した。金属元素(Ti、
Mg、Ta)の総量に対するモル比率にして、Mgが0.01、Taが0.02、残部がTiとなるように各粉末を配合した。配合した原料粉末にイソプロピルアルコール(IPA)を加えてボールミルにより約12時間の湿式混合を行い、スラリーを調製した。次に、調製したスラリーに、原料粉末に対して5質量%のパラフィンワックスを加えて乾燥させることにより顆粒を作製した。この顆粒を金型プレスにより成形し、円板状の成形体を作製した。作製した成形体を、大気雰囲気中にて400℃でバインダ除去処理を行った後、大気雰囲気中において1350℃で10時間焼成し、直径12.5mm、厚さ0.76mmの円板状のチタニア焼結体を得た。
Titanium oxide, magnesium carbonate, and tantalum pentoxide powder were prepared. Metal elements (Ti,
Each powder was blended so that the molar ratio with respect to the total amount of Mg, Ta) was 0.01 for Mg, 0.02 for Ta, and Ti for the balance. Isopropyl alcohol (IPA) was added to the blended raw material powder and wet mixed for about 12 hours by a ball mill to prepare a slurry. Next, granules were prepared by adding 5% by mass of paraffin wax to the prepared slurry and drying. This granule was molded by a mold press to produce a disk-shaped molded body. The formed body was subjected to binder removal treatment at 400 ° C. in an air atmosphere, and then fired at 1350 ° C. for 10 hours in the air atmosphere to obtain a disc-shaped titania having a diameter of 12.5 mm and a thickness of 0.76 mm. A sintered body was obtained.

得られたチタニア焼結体について、以下のような分析を行った。   The obtained titania sintered body was analyzed as follows.

円板状のチタニア焼結体の両面にIn−Gaを塗布して電極とし、電気抵抗率を測定した。その後、チタニア焼結体の一方の表面を数μm研削し、研削面に再度In−Gaを塗布して電極とし、再度電気抵抗率を測定した。研削面をさらに数μm研削して当該研削面にIn−Gaを塗布して電気抵抗率を測定することを繰り返した結果、チタニア焼結体の表面から30μmまでの領域は、電気抵抗率が1×10Ω・m以上の誘電体部であることを確認した。なお、チタニア焼結体の他方の表面についても同様に電気抵抗率を測定し、同様な結果を得た。また、チタニア焼結体の両表面から30μm以上離れた領域は、電気抵抗率が1×10Ω・m以下の低抵抗体部であり、特に両表面から240μm以上離れた領域では、電気抵抗率が1Ω・mとなった。なお、チタニア焼結体の誘電体部は白色、低抵抗体部は灰色であった。 In-Ga was applied to both surfaces of the disc-shaped titania sintered body to form electrodes, and the electrical resistivity was measured. Thereafter, one surface of the titania sintered body was ground by several μm, In-Ga was applied again to the ground surface to form an electrode, and the electrical resistivity was measured again. As a result of repeating grinding the ground surface by several μm, applying In—Ga to the ground surface and measuring the electrical resistivity, the electrical resistivity is 1 in the region from the surface of the titania sintered body to 30 μm. It was confirmed that it was a dielectric part of × 10 8 Ω · m or more. In addition, the electrical resistivity was similarly measured about the other surface of the titania sintered compact, and the same result was obtained. In addition, the region separated from both surfaces of the titania sintered body by 30 μm or more is a low resistance portion having an electrical resistivity of 1 × 10 6 Ω · m or less, and particularly in the region separated by 240 μm or more from both surfaces. The rate was 1 Ω · m. The dielectric part of the titania sintered body was white and the low resistance part was gray.

焼結体の断面において、低抵抗体部と誘電体部とをそれぞれX線光電子分光(XPS)により分析し、構成元素を比較した。分析誤差の範囲内で、両者の組成は一致していた。   In the cross section of the sintered body, the low resistance portion and the dielectric portion were analyzed by X-ray photoelectron spectroscopy (XPS), and the constituent elements were compared. Within the range of analysis error, the compositions of both were in agreement.

チタニア焼結体の誘電体部である表面、およびチタニア焼結体を研削加工して低抵抗体部を露出させた面について、薄膜X線回折測定を行った、得られた回折パターンはいずれもルチル型結晶構造を示していた。   Thin-film X-ray diffraction measurement was performed on the surface that is the dielectric part of the titania sintered body and the surface on which the low-resistance part was exposed by grinding the titania sintered body. It showed a rutile crystal structure.

1:セラミック焼結体
2:低抵抗体部
3:誘電体部、誘電体層
4:端子電極、外部電極
5:積層体
6:内部電極層
7:導電性材料
1: Ceramic sintered body 2: Low resistance part 3: Dielectric part, dielectric layer 4: Terminal electrode, external electrode 5: Laminate 6: Internal electrode layer 7: Conductive material

Claims (7)

誘電体部と低抵抗体部とを備え、
前記誘電体部を構成する金属元素の組成と、前記低抵抗体部を構成する金属元素の組成とが、実質的に同一であり、
前記誘電体部の結晶構造と、前記低抵抗体部の結晶構造とが、実質的に同一であるとともに、
前記誘電体部および前記低抵抗体部が一体化していることを特徴とするセラミック焼結体。
It has a dielectric part and a low resistance part,
The composition of the metal element constituting the dielectric part and the composition of the metal element constituting the low resistance part are substantially the same,
The crystal structure of the dielectric part and the crystal structure of the low resistance part are substantially the same,
The ceramic sintered body, wherein the dielectric portion and the low resistance portion are integrated.
前記誘電体部が、前記低抵抗体部を被覆していることを特徴とする請求項1に記載のセラミック焼結体。   The ceramic sintered body according to claim 1, wherein the dielectric portion covers the low resistance portion. 請求項1または2に記載のセラミック焼結体と、前記誘電体部上であって、前記低抵抗体部と対向する位置に設けられた外部電極と、を備えることを特徴とする電子部品。   3. An electronic component comprising: the ceramic sintered body according to claim 1; and an external electrode provided on the dielectric portion and at a position facing the low resistance portion. 請求項1または2に記載のセラミック焼結体を複数積層してなる積層体と、該積層体の表面に設けられた外部電極と、を備え、
前記積層体が、前記誘電体部からなる複数の誘電体層と、積層方向において前記誘電体層間に位置する複数の内部電極層と、を有し、
該内部電極層が、前記積層体の積層方向に位置する一対の主面に隣接する側面において前記外部電極と電気的に接続されていることを特徴とする電子部品。
A laminate formed by laminating a plurality of ceramic sintered bodies according to claim 1 or 2, and an external electrode provided on a surface of the laminate,
The multilayer body includes a plurality of dielectric layers composed of the dielectric portions, and a plurality of internal electrode layers located between the dielectric layers in the stacking direction,
The electronic component is characterized in that the internal electrode layer is electrically connected to the external electrode on a side surface adjacent to a pair of main surfaces positioned in the stacking direction of the stacked body.
前記内部電極層の少なくとも一部が、前記低抵抗体部からなることを特徴とする請求項4に記載の電子部品。   The electronic component according to claim 4, wherein at least a part of the internal electrode layer is formed of the low resistance portion. 前記複数のセラミック焼結体が、導電性材料を介して積層され、
前記内部電極層の少なくとも一部が、前記導電性材料からなることを特徴とする請求項4または5に記載の電子部品。
The plurality of ceramic sintered bodies are laminated via a conductive material,
The electronic component according to claim 4, wherein at least a part of the internal electrode layer is made of the conductive material.
前記積層体の積層方向において、前記外部電極と電気的に接続された複数の前記内部電極層の間に、前記低抵抗体部からなり、前記外部電極と電気的に接続されない前記内部電極層を有することを特徴とする請求項4乃至6のいずれかに記載の電子部品。
In the stacking direction of the stacked body, the internal electrode layer that is composed of the low-resistance body portion and is not electrically connected to the external electrode between the plurality of internal electrode layers that are electrically connected to the external electrode. The electronic component according to claim 4, wherein the electronic component is provided.
JP2014137798A 2014-07-03 2014-07-03 Ceramic sintered body and electronic parts Active JP6430732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137798A JP6430732B2 (en) 2014-07-03 2014-07-03 Ceramic sintered body and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137798A JP6430732B2 (en) 2014-07-03 2014-07-03 Ceramic sintered body and electronic parts

Publications (2)

Publication Number Publication Date
JP2016013955A true JP2016013955A (en) 2016-01-28
JP6430732B2 JP6430732B2 (en) 2018-11-28

Family

ID=55230481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137798A Active JP6430732B2 (en) 2014-07-03 2014-07-03 Ceramic sintered body and electronic parts

Country Status (1)

Country Link
JP (1) JP6430732B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212399A (en) * 2016-05-27 2017-11-30 京セラ株式会社 Ceramic sintered plate and electronic component
JP2018070403A (en) * 2016-10-27 2018-05-10 京セラ株式会社 Sintered ceramic body and electronic component

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292204B2 (en) 2019-08-06 2022-04-05 The Boeing Company Induction welding using a heat sink and/or cooling
US11230066B2 (en) 2019-08-06 2022-01-25 The Boeing Company Induction welding using a heat sink and/or cooling
US11524467B2 (en) 2019-08-06 2022-12-13 The Boeing Company Induction welding using a heat sink and/or cooling
US11358344B2 (en) 2019-08-06 2022-06-14 The Boeiog Company Induction welding using a heat sink and/or cooling
US11364688B2 (en) 2019-08-06 2022-06-21 The Boeing Company Induction welding using a heat sink and/or cooling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023334A1 (en) * 2010-08-18 2012-02-23 太陽誘電株式会社 Laminated ceramic electronic component

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023334A1 (en) * 2010-08-18 2012-02-23 太陽誘電株式会社 Laminated ceramic electronic component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高橋順一他: "TiO2の焼結と電気伝導度に及ぼす各種添加材の効果", 窯業協会誌, vol. 83巻, JPN6018012431, 1987, JP, pages 589 - 594, ISSN: 0003777756 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212399A (en) * 2016-05-27 2017-11-30 京セラ株式会社 Ceramic sintered plate and electronic component
JP2018070403A (en) * 2016-10-27 2018-05-10 京セラ株式会社 Sintered ceramic body and electronic component

Also Published As

Publication number Publication date
JP6430732B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP6430732B2 (en) Ceramic sintered body and electronic parts
KR101197921B1 (en) Multi-layered ceramic electronic component
KR101907425B1 (en) Multilayer ceramic capacitor and manufacturing method therefor
CN107527736B (en) Multilayer ceramic capacitor
JP5646989B2 (en) Piezoelectric / electrostrictive element and manufacturing method thereof
US20150170843A1 (en) Multilayer ceramic condenser and method of manufacturing the same
JP6900157B2 (en) Multilayer ceramic capacitors
WO2014148133A1 (en) Multilayer ceramic capacitor
JP6287882B2 (en) Multilayer ceramic capacitor
JP2018022750A (en) Multilayer ceramic capacitor
JP6376992B2 (en) Multilayer ceramic capacitor
JPWO2012128175A1 (en) Multilayer ceramic capacitor, dielectric ceramic, multilayer ceramic electronic component, and method of manufacturing multilayer ceramic capacitor
JP5975170B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
US10014114B2 (en) Mounting substrate
JP2017050346A (en) Multilayer ceramic capacitor and method for manufacturing the same
KR101973414B1 (en) Dielectric composition for low temperature sintering, multilayer ceramic electronic device including the same and method for fabricating the multilayer ceramic electronic device
JP7484046B2 (en) Ceramic electronic components and their manufacturing method
WO2011114808A1 (en) Laminated ceramic electronic component
JP2018022833A (en) Electronic component
KR20170046341A (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
JP6457628B2 (en) Electronic components
JP2006041393A (en) Multilayer ceramic capacitor
JP2006351639A (en) Stacked electronic component and stacked ceramic capacitor
JP2017119609A (en) Dielectric ceramic composition and laminated ceramic capacitor containing the same
JP2018070403A (en) Sintered ceramic body and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181101

R150 Certificate of patent or registration of utility model

Ref document number: 6430732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150