JP2016013800A - Hybrid electric vehicle air conditioning control unit and hybrid electric vehicle air conditioning control method - Google Patents

Hybrid electric vehicle air conditioning control unit and hybrid electric vehicle air conditioning control method Download PDF

Info

Publication number
JP2016013800A
JP2016013800A JP2014137648A JP2014137648A JP2016013800A JP 2016013800 A JP2016013800 A JP 2016013800A JP 2014137648 A JP2014137648 A JP 2014137648A JP 2014137648 A JP2014137648 A JP 2014137648A JP 2016013800 A JP2016013800 A JP 2016013800A
Authority
JP
Japan
Prior art keywords
passenger compartment
internal combustion
combustion engine
heating
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014137648A
Other languages
Japanese (ja)
Other versions
JP6375731B2 (en
Inventor
久保 賢明
Masaaki Kubo
賢明 久保
山室 毅
Takeshi Yamamuro
毅 山室
星二 橋本
Seiji Hashimoto
星二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014137648A priority Critical patent/JP6375731B2/en
Priority to PCT/JP2015/069118 priority patent/WO2016002876A1/en
Publication of JP2016013800A publication Critical patent/JP2016013800A/en
Application granted granted Critical
Publication of JP6375731B2 publication Critical patent/JP6375731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant

Abstract

PROBLEM TO BE SOLVED: To suppress the frequent repetition of starting and stopping an internal combustion engine for heating the cabin of a hybrid electric vehicle.SOLUTION: A hybrid electric vehicle air conditioning control unit intermittently actuates an engine with optimum fuel economy so that a coolant temperature of the engine is kept in a predetermined heating temperature range in response to a heating request. Furthermore, the air conditioning control unit switches over between outdoor air circulation and indoor air circulation so that a humidity of a cabin is kept in a predetermined humidity range. The inside air circulation is kept as long as the humidity of the cabin does not exceed the predetermined humidity range, thereby suppressing a temperature reduction of the cabin and increasing the interval between actuation and stop of the engine. Moreover, it is possible to make effective use of energy by using an output of the internal combustion engine generated by actuating the engine with the optimum fuel economy for charging a power storage device.

Description

この発明は、ハイブリッド車両の車室の温度と湿度の制御に関する。   The present invention relates to control of the temperature and humidity of a passenger compartment of a hybrid vehicle.

走行用動力源として電動モータと内燃機関を備えるハイブリッド車両では、一般に車室の暖房を内燃機関の発熱を利用して行なっている。車室の暖房に必要な発熱量を維持するために、内燃機関を断続的に運転し、内燃機関の冷却水温を一定の温度範囲に維持している。   In a hybrid vehicle including an electric motor and an internal combustion engine as a driving power source, the vehicle compartment is generally heated using the heat generated by the internal combustion engine. In order to maintain the calorific value required for heating the passenger compartment, the internal combustion engine is operated intermittently, and the cooling water temperature of the internal combustion engine is maintained within a certain temperature range.

車室の暖房に関して、特許文献1は暖房要求に対する内燃機関の回転速度を、電動モータと内燃機関の出力割合に応じた異なる上昇率で上昇させることを提案している。特許文献1によれば、内燃機関の出力割合が低い状態で暖房要求が発せられた場合でも、冷却水温を早期に上昇させて暖房要求を満たすことができる。   Regarding heating of the passenger compartment, Patent Document 1 proposes to increase the rotational speed of the internal combustion engine in response to the heating request at different rates of increase according to the output ratios of the electric motor and the internal combustion engine. According to Patent Document 1, even when a heating request is issued in a state where the output ratio of the internal combustion engine is low, the cooling water temperature can be raised early to satisfy the heating request.

特開2012−35689号公報JP 2012-35689 A

内燃機関の発熱を利用して車室を暖房する場合、空調装置は車外の空気を車室に循環させる外気循環モードで車室の暖房を行っている。そのため、外気温が低い冬季は内燃機関の運転停止後、車室の温度も冷却水温も短時間で低下する。こうした状況で冷却水温を所定の湿度領域に維持しようとすると、内燃機関の始動と停止を短い期間で繰り返すことになり、ドライバや同乗者が煩わしく感じることがある。また、走行用動力を電動モータの出力で賄える状態で車室の暖房のために内燃機関を運転する場合、内燃機関の余剰出力はバッテリの蓄電に用いられる。しかしながら、バッテリの蓄電量(SOC)が上限に達した後は、内燃機関の余剰出力は無駄になり、燃費悪化をもたらす要因となる。   When the passenger compartment is heated using heat generated by the internal combustion engine, the air conditioner heats the passenger compartment in an outside air circulation mode in which air outside the vehicle is circulated to the passenger compartment. Therefore, in the winter when the outside air temperature is low, the temperature of the passenger compartment and the temperature of the cooling water decrease in a short time after the operation of the internal combustion engine is stopped. If an attempt is made to maintain the cooling water temperature in a predetermined humidity region in such a situation, the start and stop of the internal combustion engine are repeated in a short period of time, and the driver and passengers may feel troublesome. Further, when the internal combustion engine is operated for heating the passenger compartment in a state where the traveling power can be covered by the output of the electric motor, the surplus output of the internal combustion engine is used for storing the battery. However, after the storage amount (SOC) of the battery reaches the upper limit, the surplus output of the internal combustion engine becomes useless, which causes a deterioration in fuel consumption.

この発明は、以上の問題を解決すべくなされたもので、ハイブリッド車両の車室暖房のための内燃機関の始動と停止の頻繁な繰り返しを抑制するとともにエネルギー効率の高い車室の暖房を実現することを目的とする。   The present invention has been made to solve the above-described problems, and realizes heating of a passenger compartment with high energy efficiency while suppressing frequent repetition of starting and stopping of an internal combustion engine for passenger compartment heating of a hybrid vehicle. For the purpose.

この発明の実施形態による空調制御装置は、内燃機関と、蓄電装置と、前記蓄電装置の電力を用いて動力源として作動する一方、発電機として前記蓄電装置に充電可能な電動モータと、前記内燃機関の冷却水を用いて車室の暖房を行なう空調装置と、を備えるハイブリッド車両に適用される。空調制御装置は車室の暖房要求を検出する検出手段と、暖房要求のもとで前記内燃機関の冷却水温度が所定の暖房温度領域に維持されるよう、前記内燃機関を断続的に運転する内燃機関運転手段と、車室の湿度を推定または検出する湿度取得手段と、車室の湿度が所定の湿度領域に維持されるよう、外気を車室に取り入れる外気循環と、車室内の空気を循環させる内気循環と、を切り換える切り換え手段と、を備えている。   An air conditioning control device according to an embodiment of the present invention includes an internal combustion engine, a power storage device, an electric motor that operates as a power source using the power of the power storage device, and can charge the power storage device as a generator, and the internal combustion engine The present invention is applied to a hybrid vehicle including an air conditioner that heats a passenger compartment using engine coolant. The air-conditioning control device intermittently operates the internal combustion engine so that the cooling water temperature of the internal combustion engine is maintained in a predetermined heating temperature region under the heating request, with detection means for detecting a heating request for the passenger compartment Internal combustion engine operating means, humidity acquisition means for estimating or detecting the humidity of the passenger compartment, outside air circulation for taking outside air into the passenger compartment so that the humidity of the passenger compartment is maintained in a predetermined humidity region, and air in the passenger compartment And switching means for switching between the inside air circulation to be circulated.

内燃機関運転手段は暖房要求のもとで内燃機関を最適燃費運転するよう構成される一方、空調制御装置は、暖房要求のもとで最適燃費運転中の内燃機関の余剰出力で発電を行なって前記蓄電装置に蓄電する蓄電制御手段をさらに備えている。   The internal combustion engine operating means is configured to operate the internal combustion engine at the optimum fuel efficiency under the heating request, while the air conditioning control device generates power with the surplus output of the internal combustion engine during the optimal fuel efficiency operation under the heating request. The power storage device further includes power storage control means for storing power.

外気循環は内気循環と比べて熱エネルギーをより多く消費する。したがって、暖房要求のもとで内燃機関運転手段が冷却水温を上昇させるべく内燃機関を運転中は、車室の湿度が所定の湿度領域を超えない限り、切り換え手段が内気循環を適用することで車室の温度低下を抑制することができる。その結果、暖房要求による内燃機関の運転間隔が長くなり、ハイブリッド車両の車室暖房のための内燃機関の始動と停止の頻繁な繰り返しが抑制され、暖房に要する熱エネルギーも節約できる。   The outside air circulation consumes more heat energy than the inside air circulation. Therefore, when the internal combustion engine operating means is operating the internal combustion engine to raise the cooling water temperature under the heating request, the switching means applies the internal air circulation unless the humidity of the passenger compartment exceeds a predetermined humidity range. A temperature drop in the passenger compartment can be suppressed. As a result, the operation interval of the internal combustion engine due to the heating request becomes longer, the frequent repetition of starting and stopping of the internal combustion engine for heating the passenger compartment of the hybrid vehicle is suppressed, and the thermal energy required for heating can be saved.

この発明を適用するハイブリッド車両の概略構成図である。1 is a schematic configuration diagram of a hybrid vehicle to which the present invention is applied. この発明の実施形態によるコントローラが実行する暖房制御ルーチンを説明するフローチャートである。It is a flowchart explaining the heating control routine which the controller by embodiment of this invention performs. コントローラが実行する空調制御ルーチンを説明するフローチャートである。It is a flowchart explaining the air-conditioning control routine which a controller performs. 従来の車室暖房制御による冷却水温とSOCの推移を示すタイミングチャートである。It is a timing chart which shows transition of the cooling water temperature by conventional vehicle compartment heating control, and SOC. 空調制御ルーチンと暖房制御ルーチンの実行結果を示すタイミングチャートである。It is a timing chart which shows the execution result of an air-conditioning control routine and a heating control routine. 空調制御ルーチンと暖房制御ルーチンの別の実行結果を示すタイミングチャートである。It is a timing chart which shows another execution result of an air-conditioning control routine and a heating control routine.

図面を参照してこの発明の実施形態による空調制御装置を説明する。   An air conditioning control device according to an embodiment of the present invention will be described with reference to the drawings.

図1を参照すると、空調制御装置を適用するハイブリッド車両1は動力源としてエンジン2と電動モータ3を備える。エンジン2と電動モータ3の回転出力は変速機4を介して駆動輪に伝達される。エンジン2は水冷式の内燃機関で構成される。エンジン2を冷却するためにラジエータ6が設けられる。エンジン2のウォータジャケットとラジエータ6は冷却通路で接続される。冷却水はウォータポンプの運転に応じて冷却通路を介してウォータジャケットとラジエータ6の間を循環し、エンジン2の冷却を行なう。   Referring to FIG. 1, a hybrid vehicle 1 to which an air conditioning control device is applied includes an engine 2 and an electric motor 3 as power sources. The rotational outputs of the engine 2 and the electric motor 3 are transmitted to the drive wheels via the transmission 4. The engine 2 is composed of a water-cooled internal combustion engine. A radiator 6 is provided for cooling the engine 2. The water jacket of the engine 2 and the radiator 6 are connected by a cooling passage. The cooling water circulates between the water jacket and the radiator 6 through the cooling passage according to the operation of the water pump, thereby cooling the engine 2.

ハイブリッド車両1には蓄電装置としてバッテリ10が搭載される。バッテリ10はインバータ5を介して電動モータ3に接続される。インバータ5はバッテリ10の蓄電電力を用いて電動モータ3を回転駆動するとともに、エンジン2または駆動輪からの回転入力に対して電動モータ3を発電機として稼働させることでバッテリ10への充電を行なう。   The hybrid vehicle 1 is equipped with a battery 10 as a power storage device. The battery 10 is connected to the electric motor 3 via the inverter 5. The inverter 5 rotates the electric motor 3 using the stored electric power of the battery 10 and charges the battery 10 by operating the electric motor 3 as a generator with respect to the rotation input from the engine 2 or the drive wheels. .

ハイブリッド車両1の車室7の暖房及び空調のためにハイブリッド車両1にはHVAC装置8が搭載される。HVACは暖房、換気、及び空調 (Heating, Ventilation, and Air Conditioning) の略語である。HVAC装置8にはバッテリ10の蓄電電力で作動する電気的暖房装置としてPTCヒータ9が付設される。PTCヒータ9は温度上昇に伴って抵抗を増大させるPTC素子を用いたヒータである。PTCは正温度係数(Positive Temperature Coefficient)の略語である。   An HVAC device 8 is mounted on the hybrid vehicle 1 for heating and air conditioning of the passenger compartment 7 of the hybrid vehicle 1. HVAC is an abbreviation for Heating, Ventilation, and Air Conditioning. The HVAC device 8 is provided with a PTC heater 9 as an electric heating device that operates with the stored power of the battery 10. The PTC heater 9 is a heater using a PTC element that increases the resistance as the temperature rises. PTC is an abbreviation for Positive Temperature Coefficient.

エンジン2の運転制御、インバータ5を介した電動モータ3の駆動制御、インバータ5を介したバッテリ10の充電制御、HVAC装置8とPTCヒータ9の制御、及び変速機4の変速制御はコントローラ20によって行なわれる。   Operation control of the engine 2, drive control of the electric motor 3 through the inverter 5, charge control of the battery 10 through the inverter 5, control of the HVAC device 8 and the PTC heater 9, and shift control of the transmission 4 are performed by the controller 20. Done.

コントローラ20は中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/O インタフェース)を備えたマイクロコンピュータで構成される。コントローラ20を複数のマイクロコンピュータで構成することも可能である。   The controller 20 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 20 with a plurality of microcomputers.

空調制御装置はコントローラ20が実行するエンジン2の運転制御、インバータ5を介したバッテリ10の充電制御、HVAC装置8とPTCヒータ9の制御の各機能によって構成される。空調制御装置はこれらの制御のために車室温度センサ21,湿度取得手段としての車室湿度センサ22,外気温センサ23、及び冷却水温センサ24を備える。これらのセンサはそれぞれ信号回路でコントローラ20に接続される。   The air conditioning control device is configured by each function of operation control of the engine 2 executed by the controller 20, charging control of the battery 10 via the inverter 5, and control of the HVAC device 8 and the PTC heater 9. The air conditioning control device includes a vehicle compartment temperature sensor 21, a vehicle compartment humidity sensor 22 as humidity acquisition means, an outside air temperature sensor 23, and a cooling water temperature sensor 24 for these controls. Each of these sensors is connected to the controller 20 by a signal circuit.

次に、コントローラ20が実行する車室7の空調及び暖房の制御について説明する。   Next, the control of the air conditioning and heating of the passenger compartment 7 performed by the controller 20 will be described.

コントローラ20はハイブリッド車両1が電動モータ3の運転により走行しているEV走行モードにおいて、車室7の暖房要求が発せられた場合に次の制御を行なう。暖房要求は、例えば車室7の温度が設定温度を下回った場合に発せられる。   The controller 20 performs the following control when a heating request for the passenger compartment 7 is issued in the EV traveling mode in which the hybrid vehicle 1 is traveling by the operation of the electric motor 3. The heating request is issued, for example, when the temperature of the passenger compartment 7 falls below a set temperature.

制御は車室7の温度を指定された温度域へ上昇させる暖房制御と、外気を車室7に取り入れる外気循環と車室7内の空気を循環させる内気循環とを切り換える空調制御とからなる。   The control includes heating control for raising the temperature of the passenger compartment 7 to a specified temperature range, and air conditioning control for switching between outside air circulation for taking outside air into the passenger compartment 7 and inside air circulation for circulating the air in the passenger compartment 7.

最初にコントローラ20が実行する制御の基本を説明する。車室7の暖房は基本的にはエンジン2の運転に伴う発熱を利用して行なわれる。具体的にはエンジン2の冷却水を放熱器で放熱させ、放熱により暖められた空気を、送風ファンを用いて車室7に送り込むことで車室7の温度を上昇させる。   First, the basic control executed by the controller 20 will be described. The vehicle compartment 7 is basically heated by using heat generated by the operation of the engine 2. Specifically, the cooling water of the engine 2 is radiated by a radiator, and the temperature of the vehicle compartment 7 is raised by sending air warmed by the heat radiation to the vehicle compartment 7 using a blower fan.

したがって、車室1の暖房要求に対してコントローラ20はエンジン2を最適燃費運転することで冷却水温を所定の領域に上昇させる。この間、コントローラ20はHVAC装置8を介して車室7を内気循環モードに維持する。内気循環モードでは車室7内に外気が導入されないため、車室7内の温度が低下しにくい。したがって、エンジン2の運転による発熱を効率良く車室7の暖房に用いることができる。最適燃費運転によりエンジン2の出力に余剰が生じた場合は、コントローラ20は電動モータ3を発電機として回転駆動することによりインバータ5を介してバッテリ10に充電を行なう。   Therefore, the controller 20 raises the cooling water temperature to a predetermined region by performing the optimum fuel consumption operation of the engine 2 in response to the heating request of the passenger compartment 1. During this time, the controller 20 maintains the passenger compartment 7 in the inside air circulation mode via the HVAC device 8. In the inside air circulation mode, since the outside air is not introduced into the compartment 7, the temperature in the compartment 7 is unlikely to decrease. Therefore, the heat generated by the operation of the engine 2 can be efficiently used for heating the passenger compartment 7. When surplus occurs in the output of the engine 2 due to the optimal fuel efficiency operation, the controller 20 charges the battery 10 via the inverter 5 by rotationally driving the electric motor 3 as a generator.

一方、内気循環モードを継続すると、車室7内のドライバや同乗者が発する水蒸気により車室7内の湿度が上昇する。車室7内の湿度が結露点に達すると、水蒸気が結露して窓ガラスなどに曇りを生じる。コントローラ20は、車室7内の湿度が結露点に達すると、HVAC装置8を内気循環モードから外気循環モードに切り換えることで車室7内の湿度を低下させる。   On the other hand, if the inside air circulation mode is continued, the humidity in the passenger compartment 7 increases due to water vapor generated by the driver or passenger in the passenger compartment 7. When the humidity in the passenger compartment 7 reaches the dew point, the water vapor is dewed and the window glass or the like is clouded. When the humidity in the passenger compartment 7 reaches the dew point, the controller 20 reduces the humidity in the passenger compartment 7 by switching the HVAC device 8 from the inside air circulation mode to the outside air circulation mode.

コントローラ20はこのようにして、エンジン2の冷却水温が所定の温度領域に維持されるようにエンジン2を断続的に運転する一方、車室7内の湿度が所定の湿度領域に維持されるようにHVAC装置8を制御する。車室7内に結露を生じない範囲で内気循環を行なうことで車室7の温度低下を抑え、エンジン2の断続運転の頻繁な繰り返しを抑制する。   In this way, the controller 20 operates the engine 2 intermittently so that the coolant temperature of the engine 2 is maintained in a predetermined temperature range, while the humidity in the passenger compartment 7 is maintained in the predetermined humidity region. The HVAC device 8 is controlled. By performing the inside air circulation within a range in which condensation does not occur in the passenger compartment 7, the temperature drop of the passenger compartment 7 is suppressed, and frequent repetition of intermittent operation of the engine 2 is suppressed.

コントローラ20はさらに、バッテリ10の充電量SOCに余裕がある場合には冷却水温を上昇させるためのエンジン2の運転に先立ってバッテリ10の蓄電電力を用いてPTCヒータ9を稼働させる。これにより、エンジン2の停止期間を長くする。   Further, the controller 20 operates the PTC heater 9 using the stored electric power of the battery 10 prior to the operation of the engine 2 for increasing the cooling water temperature when the charge amount SOC of the battery 10 has a margin. Thereby, the stop period of the engine 2 is lengthened.

以上の制御のために、コントローラ20は図2に示す暖房制御ルーチンと図3に示す空調制御ルーチンを並行して実行する。   For the above control, the controller 20 executes the heating control routine shown in FIG. 2 and the air conditioning control routine shown in FIG. 3 in parallel.

暖房制御ルーチンは車室7の暖房要求をトリガーとして実行される。   The heating control routine is executed using a heating request for the passenger compartment 7 as a trigger.

図2を参照すると、車室7の暖房要求に対して、コントローラ20はステップS1でエンジン2の冷却水温が下限値βより低いかどうかを判定する。ここで、下限値βは車室7の暖房のために必要な冷却水温の温度領域の下限値に相当する。エンジン2の冷却水温は冷却水温センサ24が検出した値である。   Referring to FIG. 2, the controller 20 determines whether or not the cooling water temperature of the engine 2 is lower than the lower limit value β in step S <b> 1 in response to the heating request for the passenger compartment 7. Here, the lower limit value β corresponds to the lower limit value of the temperature range of the cooling water temperature necessary for heating the passenger compartment 7. The coolant temperature of the engine 2 is a value detected by the coolant temperature sensor 24.

冷却水温が下限値β以上の場合には、コントローラ20は冷却水温が下限値βを下回るまで待機する。ステップS1で冷却水温が下限値βを下回ると、コントローラ20はステップS2でエンジン2の最適燃費運転を開始する。具体的には、コントローラ20は、最小の燃料消費のもとで目標冷却水温を実現できるエンジン負荷を、あらかじめROMに格納された最適燃費線マップを参照して算出する。そして、算出したエンジン負荷のもとでエンジン2を運転する。   When the cooling water temperature is equal to or higher than the lower limit value β, the controller 20 stands by until the cooling water temperature falls below the lower limit value β. When the coolant temperature falls below the lower limit value β in step S1, the controller 20 starts the optimum fuel consumption operation of the engine 2 in step S2. Specifically, the controller 20 calculates an engine load capable of realizing the target cooling water temperature with minimum fuel consumption with reference to an optimal fuel consumption line map stored in advance in the ROM. Then, the engine 2 is operated under the calculated engine load.

ステップS3でコントローラ20は冷却水温が上限値αに達したかどうかを判定する。上限値αは車室7の暖房のために必要な冷却水温の温度領域の上限値に相当する。   In step S3, the controller 20 determines whether or not the cooling water temperature has reached the upper limit value α. The upper limit value α corresponds to the upper limit value of the temperature range of the coolant temperature required for heating the passenger compartment 7.

ステップS3で冷却水温が上限値αに達していない場合には、コントローラ20はエンジン2の運転を続行しつつ、冷却水温が上限値αに達するまで待機する。ステップS3で冷却水温が上限値αに達すると、コントローラ20はステップS4でエンジン2の運転を停止する。   When the cooling water temperature has not reached the upper limit value α in step S3, the controller 20 waits until the cooling water temperature reaches the upper limit value α while continuing the operation of the engine 2. When the coolant temperature reaches the upper limit value α in step S3, the controller 20 stops the operation of the engine 2 in step S4.

次のステップS5でコントローラ20はステップS1と同様に、冷却水温が下限値βより低いかどうかを判定する。冷却水温が下限値β以上の場合には、コントローラ20はエンジン2の運転を停止したまま冷却水温が下限値βを下回るまで待機する。   In the next step S5, the controller 20 determines whether or not the cooling water temperature is lower than the lower limit value β as in step S1. When the coolant temperature is equal to or higher than the lower limit value β, the controller 20 stands by until the coolant temperature falls below the lower limit value β while the operation of the engine 2 is stopped.

ステップS5において、冷却水温が下限値βを下回ると、コントローラ20はステップS6でバッテリ10の充電量SOCが下限値min以上あるかどうかを判定する。下限値minはハイブリッド車両1の運転中にバッテリ10の充電を行なうかどうかを判定するしきい値に相当する。   In step S5, when the coolant temperature falls below the lower limit value β, the controller 20 determines in step S6 whether or not the charge amount SOC of the battery 10 is greater than or equal to the lower limit value min. The lower limit value min corresponds to a threshold value for determining whether to charge the battery 10 during the operation of the hybrid vehicle 1.

充電量SOCが下限値min以上ある場合には、コントローラ20はステップS7でPTCヒータ9をONにする。これにより、PTCヒータ9の発熱を用いて車室7の暖房が行なわれる。ステップS7の処理の後、コントローラ20はステップS8の処理を行なう。   If the charge amount SOC is equal to or greater than the lower limit value min, the controller 20 turns on the PTC heater 9 in step S7. As a result, the passenger compartment 7 is heated using the heat generated by the PTC heater 9. After the process of step S7, the controller 20 performs the process of step S8.

一方、ステップS6で充電量SOCが下限値minを下回っている場合には、コントローラ20はステップS2以降の処理を繰り返すことでエンジン2を運転し、エンジン2の発熱により車室7の暖房を行なう。   On the other hand, when the charged amount SOC is lower than the lower limit value min in step S6, the controller 20 operates the engine 2 by repeating the processing after step S2, and heats the passenger compartment 7 by the heat generated by the engine 2. .

ステップS8でコントローラ20は、冷却水温が下限値αを下回った後に、車室7の暖房に必要なHVAC装置8の吹き出し口の温度をPTCヒータ9の発熱のみで維持可能な時間を算出する。車室7の暖房に必要な吹き出し口の温度は、HVAC装置8に入力された車室7の暖房の目標温度と、外気温センサ23が検出する外気温とからあらかじめ決定される。また、吹き出し口の温度と外気温との差と、この差を維持するためのPTCヒータ9の発熱量と、バッテリ10の充電量SOCとから吹き出し口温度の維持可能時間が決定される。言い換えれば、充電量SOCの下限値minに対する余剰分相当のエネルギーを、車室7の温度維持のためにPTCヒータ9の発熱に費やす場合に、吹き出し口の温度を維持できる時間である。   In step S <b> 8, after the cooling water temperature falls below the lower limit value α, the controller 20 calculates a time during which the temperature of the outlet of the HVAC device 8 necessary for heating the passenger compartment 7 can be maintained only by the heat generated by the PTC heater 9. The temperature of the outlet required for heating the passenger compartment 7 is determined in advance from the target heating temperature of the passenger compartment 7 input to the HVAC device 8 and the outside air temperature detected by the outside air temperature sensor 23. Further, the time at which the outlet temperature can be maintained is determined from the difference between the temperature of the outlet and the outside air temperature, the amount of heat generated by the PTC heater 9 for maintaining this difference, and the amount of charge SOC of the battery 10. In other words, when the energy corresponding to the surplus with respect to the lower limit value min of the charge amount SOC is spent on the heat generation of the PTC heater 9 for maintaining the temperature of the passenger compartment 7, it is the time during which the temperature of the outlet can be maintained.

ステップS9でコントローラ20は、ステップS7でPTCヒータ9をONにしてからの経過時間をカウントする。ステップS10でコントローラ20は、経過時間がステップS8で計算した維持可能時間に達したかどうかを判定する。   In step S9, the controller 20 counts the elapsed time since the PTC heater 9 was turned on in step S7. In step S10, the controller 20 determines whether or not the elapsed time has reached the sustainable time calculated in step S8.

ステップS10の判定が否定的な場合、すなわちPTCヒータ9をONにしてからの経過時間が吹き出し口の温度を維持可能な時間に満たない場合には、コントローラ20はステップS9とS10の処理を繰り返すことで、PTCヒータ9がONの状態を継続する。   If the determination in step S10 is negative, that is, if the elapsed time since turning on the PTC heater 9 is less than the time during which the temperature of the outlet can be maintained, the controller 20 repeats the processes in steps S9 and S10. As a result, the PTC heater 9 is kept on.

ステップS10の判定が肯定的に転じると、すなわちPTCヒータ9をONにしてからの経過時間が吹き出し口の温度を維持可能な時間に達すると、コントローラ20はステップS11でPTCヒータ9をOFFにする。   If the determination in step S10 turns affirmatively, that is, if the elapsed time since turning on the PTC heater 9 reaches a time during which the temperature of the outlet can be maintained, the controller 20 turns off the PTC heater 9 in step S11. .

次のステップS12でコントローラは暖房要求がOFFになったかどうかを判定する。暖房要求がOFFでない場合、すなわち暖房要求がONのままの場合は、コントローラ20はステップS1以降の処理を繰り返す。暖房要求がOFFの場合にはコントローラ20はルーチンを終了する。   In the next step S12, the controller determines whether the heating request is turned off. When the heating request is not OFF, that is, when the heating request is still ON, the controller 20 repeats the processes after step S1. If the heating request is OFF, the controller 20 ends the routine.

次に、図3を参照して、コントローラ20が実行する空調制御ルーチンを説明する。このルーチンはHVAC装置8が備える送風スイッチがONになると同時に実行が開始される。暖房要求に連動して送風スイッチがONになるようにHVAC装置8を構成しておけば、図2の暖房制御ルーチンの実行時には常にこの空調制御ルーチンが並行して実行されることになる。   Next, an air conditioning control routine executed by the controller 20 will be described with reference to FIG. This routine is started at the same time as the air supply switch of the HVAC device 8 is turned on. If the HVAC device 8 is configured so that the blower switch is turned on in conjunction with the heating request, the air conditioning control routine is always executed in parallel when the heating control routine of FIG. 2 is executed.

ステップS21でコントローラ20は車室湿度センサ22の検出した車室7の湿度を読み込む。   In step S <b> 21, the controller 20 reads the humidity of the passenger compartment 7 detected by the passenger compartment humidity sensor 22.

ステップS22でコントローラは車室7の湿度が制御目標である湿度領域の上限値A未満であるかどうかを判定する。上限値Aは例えば車室7内の水蒸気が結露する結露点に等しく設定される。   In step S22, the controller determines whether or not the humidity in the passenger compartment 7 is less than the upper limit value A of the humidity region that is the control target. The upper limit value A is set equal to, for example, the dew point at which water vapor in the passenger compartment 7 is dewed.

ステップS22の判定が肯定的な場合、すなわち車室7の湿度が上限値A未満の場合には、コントローラ20はステップS23でHVAC装置8に内気循環を指令する。これにより、HVAC装置8は車室7内の空気を循環させる内気循環モードで車室7の空調を行なう。   If the determination in step S22 is affirmative, that is, if the humidity in the passenger compartment 7 is less than the upper limit A, the controller 20 instructs the HVAC device 8 to circulate the inside air in step S23. As a result, the HVAC device 8 performs air conditioning of the passenger compartment 7 in the inside air circulation mode in which the air in the passenger compartment 7 is circulated.

次のステップS26でコントローラ20は送風スイッチがOFFになったかどうかを判定する。送風スイッチがOFFの場合にはルーチンを終了する。一方、送風スイッチがONのままであれば、コントローラ20はステップS21以降の処理を繰り返す。   In the next step S26, the controller 20 determines whether or not the blower switch is turned off. If the blower switch is OFF, the routine ends. On the other hand, if the blower switch remains ON, the controller 20 repeats the processes after step S21.

さて、ステップS22の判定が否定的な場合、すなわち、車室7の湿度が上限値Aに達している場合には、コントローラ20はステップS23でHVAC装置8に外気循環を指令する。これにより、HVAC装置8は外気を車室7に取り入れる外気循環モードで車室7の空調を行なう。   If the determination in step S22 is negative, that is, if the humidity of the passenger compartment 7 has reached the upper limit value A, the controller 20 instructs the HVAC device 8 to circulate outside air in step S23. As a result, the HVAC device 8 air-conditions the passenger compartment 7 in the outdoor air circulation mode for taking outside air into the passenger compartment 7.

次のステップS24でコントローラ20は車室7の湿度を再び検出し、ステップS25で車室7の湿度が下限値B以上かどうかを判定する。   In the next step S24, the controller 20 detects the humidity of the passenger compartment 7 again. In step S25, the controller 20 determines whether the humidity of the passenger compartment 7 is equal to or higher than the lower limit value B.

ステップS25の判定な場合、すなわち車室7の湿度が下限値B以上の場合には、コントローラ20はステップS23以降の処理を繰り返す。   If the determination is step S25, that is, if the humidity of the passenger compartment 7 is equal to or higher than the lower limit B, the controller 20 repeats the processing from step S23.

一方、ステップS25で車室7の湿度が下限値B未満になった場合には、コントローラ20はステップS26で送風スイッチがOFFになったかどうかを判定する。送風スイッチがOFFの場合にはルーチンを終了する。一方、送風スイッチがONのままであれば、コントローラ20はステップS21以降の処理を繰り返す。   On the other hand, when the humidity of the passenger compartment 7 becomes less than the lower limit value B in step S25, the controller 20 determines whether or not the blower switch is turned off in step S26. If the blower switch is OFF, the routine ends. On the other hand, if the blower switch remains ON, the controller 20 repeats the processes after step S21.

以上のように、この実施形態による空調制御装置において、コントローラ20は暖房制御ルーチンと空調制御ルーチンとを並行して実行する。言い換えれば、車室7の暖房制御を空調制御と組み合せて実行する。   As described above, in the air conditioning control device according to this embodiment, the controller 20 executes the heating control routine and the air conditioning control routine in parallel. In other words, the heating control of the passenger compartment 7 is executed in combination with the air conditioning control.

次に図4-6を参照して、以上の暖房制御を空調制御がもたらす作用を説明する。   Next, with reference to FIGS. 4-6, the effect | action which air conditioning control brings about the above heating control is demonstrated.

従来は暖房制御を外気循環モードでエンジン2の放熱に依存して行っていた。こうした従来の暖房制御の例を以下にまず説明する。   Conventionally, the heating control is performed depending on the heat radiation of the engine 2 in the outside air circulation mode. An example of such conventional heating control will be first described below.

図4を参照すると、従来の暖房制御はエンジン2の冷却水温が上限値αに達するとエンジン2の運転を停止し、エンジン2の冷却水温が下限値βを下回るとエンジン2の運転を行なうというエンジン2の断続運転を外気循環モードのもとで行っていた。外気循環モードでエンジン2の運転を停止すると、車室7内の温度も冷却水温度も短時間で低下し、結果としてエンジン2の運転と停止とを短いインターバルで繰り返し行なわざるを得ない。   Referring to FIG. 4, in the conventional heating control, the operation of the engine 2 is stopped when the coolant temperature of the engine 2 reaches the upper limit value α, and the engine 2 is operated when the coolant temperature of the engine 2 falls below the lower limit value β. The engine 2 was intermittently operated under the outside air circulation mode. When the operation of the engine 2 is stopped in the outside air circulation mode, the temperature in the passenger compartment 7 and the cooling water temperature are reduced in a short time, and as a result, the operation and stop of the engine 2 must be repeatedly performed at short intervals.

図5を参照すると、この実施形態による空調制御装置は、暖房制御ルーチンと空調制御ルーチンとを並行して実行することにより、車室7の湿度が上限値Aに達するまでは内気循環により空調を行なう。内気循環のもとでは車室7に冷涼な外気が導入されないため、エンジン2の運転による冷却水温の上昇が促進され、かつエンジン2の停止後の冷却水温の低下が抑制される。したがって、冷却水温は比較的長時間に渡って車室7の暖房に必要な水温領域、すなわち図の上限値αと下限値βの間の温度領域、を維持することができる。つまり、EVモード走行中に車室7の暖房のためにエンジン2の始動と停止が頻繁に繰り返されるのを抑制することができる。   Referring to FIG. 5, the air conditioning control device according to this embodiment executes the heating control routine and the air conditioning control routine in parallel, thereby performing the air conditioning by the internal air circulation until the humidity of the passenger compartment 7 reaches the upper limit value A. Do. Under the inside air circulation, cool outside air is not introduced into the passenger compartment 7, so an increase in the coolant temperature due to the operation of the engine 2 is promoted, and a decrease in the coolant temperature after the engine 2 is stopped is suppressed. Therefore, the cooling water temperature can maintain a water temperature region necessary for heating the passenger compartment 7 for a relatively long time, that is, a temperature region between the upper limit value α and the lower limit value β in the figure. That is, it is possible to suppress frequent start and stop of the engine 2 for heating the passenger compartment 7 during EV mode traveling.

なお、エンジン2の運転は目標冷却水温を上限値αに設定した最適燃費運転で行われる。その際の、エンジン2の余剰出力は電動モータ3を発電機として駆動するために用いられ、電動モータ3の発電電力を用いてバッテリ10への充電が行なわれる。したがって、暖房のために運転されるエンジン2の出力を有効に利用することができる。   The operation of the engine 2 is performed by an optimal fuel consumption operation in which the target cooling water temperature is set to the upper limit value α. At this time, the surplus output of the engine 2 is used to drive the electric motor 3 as a generator, and the battery 10 is charged using the power generated by the electric motor 3. Therefore, the output of the engine 2 operated for heating can be used effectively.

図5は暖房制御ルーチンのステップS6においてバッテリ10の充電量SOCが下限値minに達しており、PTCヒータ9を使用せずにエンジン2の運転時の発熱のみで車室7の暖房を行なう場合に相当する。   FIG. 5 shows a case where the charge amount SOC of the battery 10 has reached the lower limit min in step S6 of the heating control routine, and the passenger compartment 7 is heated only by heat generated during operation of the engine 2 without using the PTC heater 9. It corresponds to.

次に、図6を参照してバッテリ10の充電量SOCが下限値minを上回っている場合の制御を説明する。   Next, the control when the charge amount SOC of the battery 10 exceeds the lower limit value min will be described with reference to FIG.

図5においては、エンジン2が運転を停止した後、冷却水温が下限値βを下回るとエンジン2の運転が行なわれていた。これに対して図6の例は、ステップS6でバッテリ10の充電量SOCが下限値minを上回っている場合に、ステップS7−S11の処理が行なわれ、PTCヒータ9がONになるケースに相当する。PTCヒータ9がONになった後は、バッテリ10の充電量SOCの下限値minに対する余剰分相当のエネルギーがPTCヒータ9によって費やされるまで、PTCヒータ9による暖房を継続する。その結果、PCTヒータ9のON状態の継続時間がステップS8で算出した維持可能時間に達すると、ステップS11でPTCヒータ9がOFFになり、ステップS2でエンジン2の運転が再開される。   In FIG. 5, after the engine 2 stops operating, the engine 2 is operated when the coolant temperature falls below the lower limit value β. On the other hand, the example of FIG. 6 corresponds to the case where the process of steps S7 to S11 is performed and the PTC heater 9 is turned on when the charge amount SOC of the battery 10 exceeds the lower limit value min in step S6. To do. After the PTC heater 9 is turned on, heating by the PTC heater 9 is continued until the energy equivalent to the surplus with respect to the lower limit value min of the charge amount SOC of the battery 10 is consumed by the PTC heater 9. As a result, when the duration of the ON state of the PCT heater 9 reaches the sustainable time calculated in step S8, the PTC heater 9 is turned off in step S11, and the operation of the engine 2 is resumed in step S2.

このように、バッテリ10の充電量SOCに余裕が有る場合には、余剰分相当の電気エネルギーを用いて車室7の暖房を行なうことで、エンジン2の運転再開を遅らせることができる。つまり、車室7の温度の低下を遅らせて、エンジン2の停止期間を長くすることができる。その結果、エンジン2の始動と停止の頻繁な繰り返しがより一層抑制される。   As described above, when the charge amount SOC of the battery 10 has a margin, the operation restart of the engine 2 can be delayed by heating the passenger compartment 7 using electric energy corresponding to the surplus. That is, the stop period of the engine 2 can be lengthened by delaying the temperature drop of the passenger compartment 7. As a result, frequent repetition of starting and stopping of the engine 2 is further suppressed.

また、維持可能時間を適用することで、バッテリ10の充電量SOCが下限値minへと低下すると、PTCヒータ9がOFFになる。そのため、車室7の暖房のために、バッテリ10の充電量SOCを過度に消費することがなく、バッテリ10の充電電力を有効に利用できる。   Further, by applying the sustainable time, when the charge amount SOC of the battery 10 decreases to the lower limit value min, the PTC heater 9 is turned off. Therefore, the charging power of the battery 10 can be used effectively without excessively consuming the charge amount SOC of the battery 10 for heating the passenger compartment 7.

また、この空調制御装置は、暖房要求から空調装置の車室への吹き出し口の必要温度を算出し、吹き出し口の必要温度と、バッテリ10の充電量SOCとから吹き出し口の必要温度の維持可能時間を算出している。そして、維持可能時間が経過すると、充電量SOCが下限値minに達したと判定する。そのため、充電量SOCの下限値minへの到達を、充電量SOCを逐次モニターすることなく容易に判定することができる。   Further, the air conditioning control device calculates the required temperature of the air outlet to the passenger compartment of the air conditioner from the heating request, and can maintain the required temperature of the air outlet from the required temperature of the air outlet and the charge amount SOC of the battery 10. Time is calculated. And when sustainable time passes, it determines with charge amount SOC having reached the lower limit min. Therefore, it is possible to easily determine that the charge amount SOC has reached the lower limit value min without sequentially monitoring the charge amount SOC.

図6においても、エンジン2を最適燃費運転して冷却水温を上昇させる過程で、エンジン2の出力に余剰が生じた場合には、図の「上乗せ発電」と記載された区間において、エンジン2の余剰出力で電動モータ3を発電機として駆動し、バッテリ10に充電を行なう。これにより、エンジン2の余剰出力を有効利用することができる。   Also in FIG. 6, when surplus is generated in the output of the engine 2 in the process of increasing the cooling water temperature by operating the engine 2 at the optimum fuel consumption, the engine 2 in the section indicated as “additional power generation” in the figure. The electric motor 3 is driven as a generator with surplus output, and the battery 10 is charged. Thereby, the surplus output of the engine 2 can be used effectively.

以上のとおり、この発明の実施形態によるハイブリッド車両1の空調制御装置によれば、エンジン2の運転の断続による暖房制御と並行して、車室7内の湿度が所定の目標湿度領域に維持されるように空調の内気循環と外気循環とを切り換えている。内気循環のもとでは車室7の暖房効率が高く、またエンジン2を停止しても車室7の温度が低下しにくいため、外気循環のもとで暖房制御を行なう場合と比べてエンジン2の運転間隔を拡げることができる。その結果、車室7の暖房のためのエンジン2の始動と停止の頻繁な繰り返しが抑制される。   As described above, according to the air conditioning control device for the hybrid vehicle 1 according to the embodiment of the present invention, the humidity in the passenger compartment 7 is maintained in the predetermined target humidity region in parallel with the heating control by intermittent operation of the engine 2. In this way, the inside air circulation and the outside air circulation of the air conditioning are switched. Since the heating efficiency of the passenger compartment 7 is high under the inside air circulation and the temperature of the passenger compartment 7 is not easily lowered even when the engine 2 is stopped, the engine 2 is compared with the case where the heating control is performed under the outside air circulation. The driving interval can be expanded. As a result, frequent repetition of starting and stopping of the engine 2 for heating the passenger compartment 7 is suppressed.

さらに、この空調制御装置は、冷却水温の低下によりエンジン2の運転が必要になった場合でも、まずバッテリ10の充電量SOCの余剰蓄電量を用いてPTCヒータ9により車室7の暖房を行ない、その後にエンジン2の運転を再開する。そのため、エンジン2の停止時間をより長くすることが可能となり、車室7の暖房のためのエンジン2の始動と停止の頻繁な繰り返しをより一層抑制することができる。   Further, even when the operation of the engine 2 becomes necessary due to a decrease in the cooling water temperature, the air conditioning control device first heats the vehicle compartment 7 by the PTC heater 9 using the surplus amount of charge of the charge amount SOC of the battery 10. Thereafter, the operation of the engine 2 is resumed. Therefore, it becomes possible to make the stop time of the engine 2 longer, and the frequent repetition of starting and stopping of the engine 2 for heating the passenger compartment 7 can be further suppressed.

また、この空調制御装置は、空調制御ルーチンの実行により、車室7の湿度が目標湿度領域に維持されるように内気循環と外気循環とを切り換えている。さらに、目標湿度領域の上限値Aを結露点に等しく設定している。したがって、車室7の湿度が過度に上昇することはなく、車室7の窓ガラスの曇りを防止するうえで好ましい効果が得られる。   Further, the air conditioning control device switches between the inside air circulation and the outside air circulation so that the humidity of the passenger compartment 7 is maintained in the target humidity region by executing the air conditioning control routine. Furthermore, the upper limit A of the target humidity region is set equal to the dew point. Therefore, the humidity of the passenger compartment 7 does not increase excessively, and a favorable effect is obtained in preventing fogging of the window glass of the passenger compartment 7.

以上のように、この発明を特定の実施形態を通じて説明して来たが、この発明は上記の実施形態に限定されるものではない。当業者にとっては、特許請求の範囲内でこれらの実施形態にさまざまな修正あるいは変更を加えることが可能である。   As described above, the present invention has been described through specific embodiments. However, the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims.

例えば、以上説明した実施形態では、車室の暖房にエンジン2の発熱とPTCヒータ9の発熱を利用している。しかしながら、この発明はエンジン2の発熱のみで車室の暖房を行なうハイブリッド車両にも適用可能である。その場合には、図2のステップS6−S11を省略した暖房制御ルーチンと、図3の空調制御ルーチンとを並行して実施すれば良い。その場合でも、図5に示すように従来と比べて車室7の暖房のためのエンジン2の始動と停止の頻繁な繰り返しを抑制する一定の効果を得ることができる。   For example, in the embodiment described above, the heat generated by the engine 2 and the heat generated by the PTC heater 9 are used for heating the passenger compartment. However, the present invention can also be applied to a hybrid vehicle that heats the passenger compartment only by the heat generated by the engine 2. In that case, what is necessary is just to implement in parallel the heating control routine which omitted step S6-S11 of FIG. 2, and the air-conditioning control routine of FIG. Even in such a case, as shown in FIG. 5, it is possible to obtain a certain effect of suppressing frequent repetition of starting and stopping of the engine 2 for heating the passenger compartment 7 as compared with the conventional case.

また、図2の暖房制御ルーチンにおいては、維持可能時間に基づきPTCヒータ9をOFFにしているが、バッテリ10の充電量SOCを逐次モニターし、充電量SOCが下限値minに低下した時点でPTCヒータ9をOFFにすることも可能である。   In the heating control routine of FIG. 2, the PTC heater 9 is turned off based on the sustainable time. However, the charge amount SOC of the battery 10 is sequentially monitored, and when the charge amount SOC decreases to the lower limit value min, the PTC It is also possible to turn off the heater 9.

以上説明した実施形態において、HVAC装置8が車室の暖房要求を検出する検出手段を構成する。コントローラ20が、内燃機関運転手段と、切り換え手段と、蓄電制御手段と、電気的暖房装置制御手段と、を構成する。   In the embodiment described above, the HVAC device 8 constitutes detection means for detecting a heating request for the passenger compartment. The controller 20 constitutes an internal combustion engine operating means, a switching means, a power storage control means, and an electric heating device control means.

1 ハイブリッド車両
2 エンジン
3 電動モータ
4 変速機
5 インバータ
6 ラジエータ
7 車室
8 HVAC装置
9 PTCヒータ
10 バッテリ
20 コントローラ
21 車室温度センサ
22 車室湿度センサ
23 外気温センサ
24 冷却水温センサ
DESCRIPTION OF SYMBOLS 1 Hybrid vehicle 2 Engine 3 Electric motor 4 Transmission 5 Inverter 6 Radiator 7 Car compartment 8 HVAC device 9 PTC heater 10 Battery 20 Controller 21 Car compartment temperature sensor 22 Car compartment humidity sensor 23 Outside air temperature sensor 24 Cooling water temperature sensor

Claims (7)

内燃機関と、蓄電装置と、前記蓄電装置の電力を用いて動力源として作動する一方、発電機として前記蓄電装置に充電可能な電動モータと、前記内燃機関の冷却水を用いて車室の暖房を行なう空調装置と、を備えるハイブリッド車両の空調制御装置において、
車室の暖房要求を検出する検出手段と、
前記暖房要求のもとで前記内燃機関の冷却水温度が所定の暖房温度領域に維持されるよう、前記内燃機関を断続的に運転する内燃機関運転手段と、
車室の湿度を推定または検出する湿度取得手段と、
車室の湿度が所定の湿度領域に維持されるよう、外気を車室に取り入れる外気循環と、車室内の空気を循環させる内気循環と、を切り換える切り換え手段と、を備え、
前記内燃機関運転手段は前記暖房要求のもとで前記内燃機関を最適燃費運転するよう構成され、
前記暖房要求のもとで最適燃費運転中の前記内燃機関の余剰出力で発電を行なって前記蓄電装置に蓄電する蓄電制御手段をさらに備える、ことを特徴とするハイブリッド車両の空調制御装置。
An internal combustion engine, a power storage device, and an electric motor that operates as a power source using the power of the power storage device, while charging the power storage device as a generator, and heating of a passenger compartment using cooling water of the internal combustion engine An air conditioning control device for a hybrid vehicle comprising:
Detecting means for detecting a heating request of the passenger compartment;
An internal combustion engine operating means for intermittently operating the internal combustion engine so that a cooling water temperature of the internal combustion engine is maintained in a predetermined heating temperature region under the heating request;
A humidity acquisition means for estimating or detecting the humidity of the passenger compartment;
Switching means for switching between outside air circulation for taking outside air into the cabin and inside air circulation for circulating the air inside the cabin so that the humidity of the cabin is maintained in a predetermined humidity region;
The internal combustion engine operating means is configured to perform an optimal fuel efficiency operation of the internal combustion engine under the heating request,
An air conditioning control device for a hybrid vehicle, further comprising power storage control means for generating power with a surplus output of the internal combustion engine during optimal fuel consumption operation under the heating request and storing the power in the power storage device.
前記蓄電装置の充電電力を用いて車室の暖房を行なう電気的暖房装置と、前記蓄電装置の充電量が所定値を上回っているかどうかを判定する充電量判定手段と、前記充電量が前記所定値を上回っている状態で前記冷却水温度が所定の暖房温度領域を下回った場合に、前記内燃機関の運転に先立って前記電気暖房装置を起動して車室の暖房を行なう電気的暖房装置制御手段と、をさらに備える、ことを特徴とする請求項1に記載のハイブリッド車両の空調制御装置。   An electric heating device that heats the passenger compartment using the charging power of the power storage device, a charge amount determination means that determines whether or not a charge amount of the power storage device exceeds a predetermined value, and the charge amount is the predetermined amount When the cooling water temperature falls below a predetermined heating temperature range in a state where the value is higher than the value, the electric heating device control is performed to start the electric heating device and heat the passenger compartment prior to the operation of the internal combustion engine. The air conditioning control device for a hybrid vehicle according to claim 1, further comprising: means. 前記電気的暖房装置制御手段は、前記電気暖房装置による車室の暖房の結果、前記充電量が所定の下限値に達すると、前記電気暖房装置の運転を停止するよう構成される、ことを特徴とする請求項2に記載のハイブリッド車両の空調制御装置。   The electric heating device control means is configured to stop the operation of the electric heating device when the amount of charge reaches a predetermined lower limit as a result of heating the passenger compartment by the electric heating device. The air conditioning control device for a hybrid vehicle according to claim 2. 前記電気的暖房装置制御手段は、前記暖房要求から前記空調装置の車室への吹き出し口の必要温度を算出し、前記充電装置の充電量を検出し、前記吹き出し口の必要温度と前記充電量から前記吹き出し口の必要温度を維持可能な維持可能時間を算出し、前記維持可能時間が経過した時点で前記充電量が所定の下限値に達したと判定する、ことを特徴とする、請求項3に記載のハイブリッド車両の空調制御装置。   The electric heating device control means calculates the required temperature of the outlet to the passenger compartment of the air conditioner from the heating request, detects the amount of charge of the charging device, the required temperature of the outlet and the amount of charge A sustainable time during which the required temperature of the air outlet can be maintained is calculated from, and it is determined that the amount of charge has reached a predetermined lower limit when the maintainable time has elapsed. The air conditioning control device for a hybrid vehicle according to 3. 前記所定の湿度域の上限値は結露点に相当する湿度である、ことを特徴とする請求項1から4のいずれかに記載のハイブリッド車両の空調制御装置。   The air conditioning control device for a hybrid vehicle according to any one of claims 1 to 4, wherein the upper limit value of the predetermined humidity range is a humidity corresponding to a dew point. 前記切り換え手段は、前記暖房要求のもとで前記内燃機関運転手段が前記内燃機関を運転中は、車室の湿度が前記所定の湿度領域を超えない限り、前記内気循環を適用するように構成される、ことを特徴とする請求項1から5のいずれかに記載のハイブリッド車両の空調制御装置。   The switching means is configured to apply the inside air circulation while the internal combustion engine operating means is operating the internal combustion engine under the heating request, as long as the humidity of the passenger compartment does not exceed the predetermined humidity region. 6. The air conditioning control device for a hybrid vehicle according to claim 1, wherein the air conditioning control device is a hybrid vehicle. 内燃機関と、蓄電装置と、前記蓄電装置の電力を用いて動力源として作動する一方、発電機として前記蓄電装置に充電可能な電動モータと、前記内燃機関の冷却水を用いて車室の暖房を行なう空調装置と、を備えるハイブリッド車両の空調制御方法において、
車室の暖房要求を検出し、
前記暖房要求のもとで前記内燃機関の冷却水温度が所定の暖房温度領域に維持されるよう、前記内燃機関を断続的に運転し、
車室の湿度を推定または検出し、
車室の湿度が所定の湿度領域に維持されるよう、外気を車室に取り入れる外気循環と、車室内の空気を循環させる内気循環と、を切り換え、
前記内燃機関を前記暖房要求のもとで運転する際は前記内燃機関を最適燃費運転するとともに、
前記暖房要求のもとで最適燃費運転中の前記内燃機関の余剰出力で発電を行なって前記蓄電装置に蓄電する、ことを特徴とするハイブリッド車両の空調制御方法。
An internal combustion engine, a power storage device, and an electric motor that operates as a power source using the power of the power storage device, while charging the power storage device as a generator, and heating of a passenger compartment using cooling water of the internal combustion engine And an air conditioning control method for a hybrid vehicle comprising:
Detects heating requests in the passenger compartment
The internal combustion engine is intermittently operated so that the cooling water temperature of the internal combustion engine is maintained in a predetermined heating temperature region under the heating request,
Estimate or detect the humidity in the passenger compartment,
In order to maintain the humidity of the passenger compartment in a predetermined humidity range, switching between the outside air circulation for taking outside air into the passenger compartment and the inside air circulation for circulating the air inside the passenger compartment,
When the internal combustion engine is operated under the heating request, the internal combustion engine is operated at an optimum fuel efficiency,
An air conditioning control method for a hybrid vehicle, wherein power generation is performed with a surplus output of the internal combustion engine that is operating under optimal fuel efficiency under the heating request and is stored in the power storage device.
JP2014137648A 2014-07-03 2014-07-03 Air conditioning control device and air conditioning control method for hybrid vehicle Active JP6375731B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014137648A JP6375731B2 (en) 2014-07-03 2014-07-03 Air conditioning control device and air conditioning control method for hybrid vehicle
PCT/JP2015/069118 WO2016002876A1 (en) 2014-07-03 2015-07-02 Air-conditioning control device and air-conditioning control method for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137648A JP6375731B2 (en) 2014-07-03 2014-07-03 Air conditioning control device and air conditioning control method for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2016013800A true JP2016013800A (en) 2016-01-28
JP6375731B2 JP6375731B2 (en) 2018-08-22

Family

ID=55019403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137648A Active JP6375731B2 (en) 2014-07-03 2014-07-03 Air conditioning control device and air conditioning control method for hybrid vehicle

Country Status (2)

Country Link
JP (1) JP6375731B2 (en)
WO (1) WO2016002876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190079138A (en) * 2017-12-27 2019-07-05 현대자동차주식회사 Engine control method for heating of hybrid electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147050A (en) * 2003-11-18 2005-06-09 Toyota Motor Corp Automobile
JP2010255504A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Control device for hybrid vehicle
JP2012035689A (en) * 2010-08-05 2012-02-23 Nissan Motor Co Ltd Air conditioner for vehicle
WO2012176284A1 (en) * 2011-06-21 2012-12-27 トヨタ自動車 株式会社 Vehicle control apparatus
JP2013151176A (en) * 2012-01-24 2013-08-08 Toyota Motor Corp Control device of hybrid vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11245657A (en) * 1998-03-06 1999-09-14 Mitsubishi Motors Corp Engine control device for hybrid electric automobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147050A (en) * 2003-11-18 2005-06-09 Toyota Motor Corp Automobile
JP2010255504A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Control device for hybrid vehicle
JP2012035689A (en) * 2010-08-05 2012-02-23 Nissan Motor Co Ltd Air conditioner for vehicle
WO2012176284A1 (en) * 2011-06-21 2012-12-27 トヨタ自動車 株式会社 Vehicle control apparatus
JP2013151176A (en) * 2012-01-24 2013-08-08 Toyota Motor Corp Control device of hybrid vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190079138A (en) * 2017-12-27 2019-07-05 현대자동차주식회사 Engine control method for heating of hybrid electric vehicle
KR102042322B1 (en) 2017-12-27 2019-11-07 현대자동차주식회사 Engine control method for heating of hybrid electric vehicle
US10850592B2 (en) 2017-12-27 2020-12-01 Hyundai Motor Company Engine control method for heating of hybrid electric vehicle

Also Published As

Publication number Publication date
WO2016002876A1 (en) 2016-01-07
JP6375731B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6184481B2 (en) System and method for controlling idle stop and heater of vehicle
US20110246007A1 (en) Apparatus for controlling electric water pump of hybrid vehicle and method thereof
US8069827B2 (en) Vehicle cooling controller and cooling control method
JP4678139B2 (en) Automotive heating control system
JP2012044813A (en) Vehicle power supply
JP5545284B2 (en) Air conditioning control device for vehicles
RU2015109497A (en) METHOD (OPTIONS) AND CONDENSATE PREVENTION SYSTEM ON VEHICLE GLASSES
JP2015166204A (en) vehicle control device
JP2009180103A (en) Coolant circulation device
JP2019193319A (en) Vehicular power supply device
JP2008049877A (en) Battery control device
US9718453B2 (en) Hybrid vehicle
JP2009078807A (en) Battery control device and charge/discharge control method for battery
JP2008126970A (en) Vehicle heater
JP2010101250A (en) Engine automatic start/stop control device and control method of the same
KR101534739B1 (en) Apparatus and method of heating system of hybrid electric vehicle
JP6528534B2 (en) Air conditioning controller for vehicle
JP6375731B2 (en) Air conditioning control device and air conditioning control method for hybrid vehicle
US10850592B2 (en) Engine control method for heating of hybrid electric vehicle
JPH10203145A (en) Heating control device for hybrid vehicle
JP2005163545A (en) Engine control device for hybrid electric automobile
KR101666557B1 (en) Air conditioning system for electric vehicle
KR20070059407A (en) The air conditioning system for hybrid engine vehicle and the heating control method by it
JP6348293B2 (en) Air conditioner for vehicles
JP2010084630A (en) Engine automatic start/stop control device and engine control method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R151 Written notification of patent or utility model registration

Ref document number: 6375731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151