JP2016013217A - Automatic transport vehicle - Google Patents

Automatic transport vehicle Download PDF

Info

Publication number
JP2016013217A
JP2016013217A JP2014135578A JP2014135578A JP2016013217A JP 2016013217 A JP2016013217 A JP 2016013217A JP 2014135578 A JP2014135578 A JP 2014135578A JP 2014135578 A JP2014135578 A JP 2014135578A JP 2016013217 A JP2016013217 A JP 2016013217A
Authority
JP
Japan
Prior art keywords
wheels
vehicle body
vehicle
moving distance
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014135578A
Other languages
Japanese (ja)
Other versions
JP6333644B2 (en
Inventor
中村 元
Hajime Nakamura
中村  元
上野 俊幸
Toshiyuki Ueno
俊幸 上野
森 宣仁
Nobuhito Mori
宣仁 森
敏樹 西山
Toshiki Nishiyama
敏樹 西山
將 三村
Masaru Mimura
將 三村
篤志 松田
Atsushi Matsuda
篤志 松田
幸周 大西
Yukichika Onishi
幸周 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Toyota Industries Corp
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Toyota Industries Corp
Priority to JP2014135578A priority Critical patent/JP6333644B2/en
Publication of JP2016013217A publication Critical patent/JP2016013217A/en
Application granted granted Critical
Publication of JP6333644B2 publication Critical patent/JP6333644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform accurate moving distance measurement regardless of a variation in a driving wheel diameter.SOLUTION: An automatic transport vehicle 10 includes two driving wheels 13 and 14 provided in different positions in a right and left direction of a vehicle body (a frame 11), and the steering is performed by a difference in rotational speeds of the two driving wheels 13 and 14. The automatic transport vehicle 10 includes moving distance measurement wheels 17 and 18 provided separately from the driving wheels 13 and 14, which are provided so that rotational shafts 17a and 18a can move relatively in a pressing direction with respect to a travelling surface in a state of being pressed on a travelling surface side by pressing means irrespective of an attitude variation of the vehicle body, and rotary encoders 24 and 25 for detecting the number of rotations of the moving distance measurement wheels 17 and 18. The automatic transport vehicle 10 includes calculation means (a control device 26) for calculating a moving distance of the vehicle body based on a detection signal of the rotary encoders 24 and 25.

Description

本発明は、自動搬送車に係り、詳しくは、人を乗せて予め設定された経路を自動走行する場合に適した自動搬送車に関する。   The present invention relates to an automatic conveyance vehicle, and more particularly to an automatic conveyance vehicle suitable for a case where a person is carried and automatically travels on a preset route.

従来から、高齢者や身障者等の移動手段として、差動式キャスタを用いて自走可能にした電動車いすが知られている(例えば、特許文献1参照)。電動車いすは、シートのアームレストに設けられた操作レバーを搭乗者が操作することで、差動式キャスタを回転駆動させ、自走するようになっている。差動式キャスタは、鉛直軸を中心に回転可能に支持された操舵軸と、操舵軸の下端に設けられ、水平軸を中心に回転可能に支持された一対の駆動輪と、を備え、各駆動輪に内蔵された電動モータにより、各駆動輪が独立して駆動するようになっている。   2. Description of the Related Art Conventionally, an electric wheelchair that is capable of self-propelling using a differential caster is known as a moving means for elderly people and disabled persons (for example, see Patent Document 1). In the electric wheelchair, the passenger operates the operation lever provided on the armrest of the seat so that the differential caster is rotationally driven to be self-propelled. The differential caster includes a steering shaft supported rotatably about a vertical axis, and a pair of drive wheels provided at the lower end of the steering shaft and supported rotatably about a horizontal axis. Each drive wheel is driven independently by an electric motor built in the drive wheel.

即ち、従来の電動車いすは、搭乗者が操作レバーを操作して、走行方向を変更する構成である。例えば、電動車いすを右旋回させるときは、操作レバーを右に傾倒させる。制御部は、各差動式キャスタのうち、左側にある差動式キャスタの電動モータの回転数が操作レバーの傾斜角度に応じた所定の回転数になるように、かつ右側にある差動式キャスタの電動モータの回転数がゼロ又は左側の差動式キャスタの電動モータより小さい回転数になるように、回転数及び回転比を演算する。そして、その回転速度となるように両電動モータが駆動されて、左右の駆動輪の回転数の差により電動車いすが右側に旋回する。   That is, the conventional electric wheelchair has a configuration in which a passenger changes the traveling direction by operating an operation lever. For example, when the electric wheelchair is turned right, the operation lever is tilted to the right. The control unit is configured so that the rotational speed of the electric motor of the differential caster on the left side of each differential caster becomes a predetermined rotational speed corresponding to the inclination angle of the operation lever, and the differential caster on the right side. The rotation speed and the rotation ratio are calculated so that the rotation speed of the electric motor of the caster is zero or smaller than the rotation speed of the electric motor of the left differential caster. Then, both electric motors are driven so as to achieve the rotational speed, and the electric wheelchair turns to the right due to the difference in the rotational speed between the left and right drive wheels.

特開2012−74139号公報JP 2012-74139 A

従来の電動車いすでは、走行方向を変更する場合、左右の駆動輪の回転数の差により走行方向変更(カーブ走行)動作が行われるが、走行方向の変更指示は搭乗者が操作レバーを操作することにより行われ、搭乗者が走行状態を確認しつつ操作レバーの操作を行う。そのため、操作レバーの操作量と旋回時の旋回半径が異なれば、搭乗者が操作レバーを操作して修正するため大きな支障はないが、修正のための操作が必要となったり蛇行が生じたりする。   In a conventional electric wheelchair, when the traveling direction is changed, a traveling direction change (curve traveling) operation is performed due to the difference in the rotational speeds of the left and right drive wheels, but the rider operates the operation lever to change the traveling direction. The passenger operates the operation lever while confirming the traveling state. Therefore, if the amount of operation of the control lever is different from the turning radius at the time of turning, there is no major problem because the passenger operates and corrects the operating lever. However, an operation for correction is required or meandering occurs. .

一方、予め設定された経路を自動走行する自動搬送車では、搭乗者は自動搬送車の走行方向の変更に関与せず、自動搬送車は出発地点から目的地点まで、予め設定された経路に沿って移動するように駆動輪の駆動が制御される。そして、自動搬送車の制御部は、駆動輪の径と回転数とから移動速度や走行距離を演算し、カーブにおいてはカーブの曲率に合わせて左右の駆動輪の回転数の調整を行う。   On the other hand, in an automated guided vehicle that automatically travels along a preset route, the passenger is not involved in changing the traveling direction of the automated guided vehicle, and the automated guided vehicle follows a preset route from the departure point to the destination point. The drive wheels are controlled to move. And the control part of an automatic conveyance vehicle calculates a moving speed and a travel distance from the diameter and rotation speed of a driving wheel, and adjusts the rotation speed of the right and left driving wheels in a curve according to the curvature of the curve.

駆動輪の径が一定であれば問題はないが、駆動輪の構造の違い(中実、中空)や材質による撓み、あるいは摩耗などによる車輪径の変化により、車輪1回転当たりの移動距離が変動して正確な距離計測ができなくなる。その結果、目的地点まで正確に移動することができなくなる。   If the diameter of the drive wheel is constant, there is no problem, but the travel distance per rotation of the wheel fluctuates due to changes in the structure of the drive wheel (solid, hollow), deflection due to material, or changes in wheel diameter due to wear, etc. Thus, accurate distance measurement cannot be performed. As a result, it is impossible to accurately move to the destination point.

本発明は、前記の問題に鑑みてなされたものであって、その目的は、駆動輪径の変動に拘わらず正確な移動距離計測を行うことができる自動搬送車を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an automatic transport vehicle capable of performing accurate movement distance measurement regardless of fluctuations in drive wheel diameter.

上記課題を解決する自動搬送車は、車体の左右方向において異なる位置に設けられた少なくとも2個の駆動輪を有し、両駆動輪の回転速度の差により操舵が行われる自動搬送車である。そして、前記駆動輪と別に設けられ、かつ回転軸が走行面に対する押圧方向に相対移動可能かつ前記車体の姿勢変動に関わりなく走行面側に押圧手段により押圧された状態で設けられた移動距離計測輪と、前記移動距離計測輪の回転数を検出する回転数検出手段と、前記回転数検出手段の検出信号に基づいて車体の移動距離を演算する演算手段とを備える。   An automatic transport vehicle that solves the above problem is an automatic transport vehicle that has at least two drive wheels provided at different positions in the left-right direction of the vehicle body and that is steered by the difference in rotational speed between the two drive wheels. Further, the travel distance measurement is provided separately from the drive wheel, and the rotation shaft is relatively movable in the pressing direction with respect to the traveling surface and is pressed by the pressing means on the traveling surface side regardless of the posture variation of the vehicle body. A wheel, a rotation speed detection means for detecting the rotation speed of the movement distance measurement wheel, and a calculation means for calculating the movement distance of the vehicle body based on a detection signal of the rotation speed detection means.

この構成によれば、車体の移動距離は、駆動輪と別に設けられた移動距離計測輪の径と回転数とにより演算される。移動計測輪は、回転軸が走行面に対する押圧方向に相対移動可能かつ前記車体の姿勢変動に関わりなく走行面側に押圧手段により押圧された状態で設けられているため、車体や搭乗者の重量を担う割合が小さく、押圧力による摩耗が小さい。また、移動計測輪は、常に走行面に接した状態で移動するため、1回転当たりの移動距離が変動しない。したがって、駆動輪径の変動に拘わらず正確な移動距離計測を行うことができる。   According to this configuration, the moving distance of the vehicle body is calculated from the diameter and the rotational speed of the moving distance measuring wheel provided separately from the driving wheel. The movement measuring wheel is provided in a state in which the rotation shaft is relatively movable in the pressing direction with respect to the traveling surface and is pressed by the pressing means on the traveling surface side regardless of the posture variation of the vehicle body. The ratio of bearing is small, and wear due to pressing force is small. Moreover, since the movement measuring wheel always moves in contact with the traveling surface, the moving distance per rotation does not vary. Therefore, accurate travel distance measurement can be performed regardless of fluctuations in the drive wheel diameter.

前記駆動輪は、駆動軸が車体の左右方向に延びる同一直線上に位置する状態で左右対称に2個設けられ、前記移動距離計測輪は、それぞれ前記駆動輪の側方において、前記回転軸が前記駆動軸を含む鉛直面上に存在するように設けられていることが好ましい。この構成によれば、カーブ走行時には、左右いずれの方向に曲がる場合でも、カーブの曲率が同じで、両駆動輪の径が同じであれば、両駆動輪の単位時間当たりの回転数の差は同じになるため、駆動輪の制御が簡単になる。また、駆動輪の摩耗量が異なる場合でも、微調整で済む。   Two drive wheels are provided symmetrically in a state where the drive shaft is located on the same straight line extending in the left-right direction of the vehicle body. It is preferable to be provided on a vertical plane including the drive shaft. According to this configuration, when driving on a curve, the difference in the number of revolutions per unit time of both driving wheels is the same if the curvature of the curve is the same and the diameters of both driving wheels are the same regardless of whether the vehicle bends left or right. Since it becomes the same, control of a driving wheel becomes easy. Even if the amount of wear of the drive wheels is different, fine adjustment is sufficient.

前記移動距離計測輪は前記両駆動輪の外側に設けられていることが好ましい。両移動距離計測輪を両駆動輪の外側に設けた場合の移動距離計測輪間の距離は、両移動距離計測輪を両駆動輪の内側に設けた場合に比べて大きくなる。そのため、同じ曲率のカーブ走行時において両移動距離計測輪の回転数差が大きくなり、制御がし易い。   It is preferable that the moving distance measuring wheel is provided outside the both driving wheels. The distance between the moving distance measuring wheels when the both moving distance measuring wheels are provided outside the both driving wheels is larger than that when the both moving distance measuring wheels are provided inside the both driving wheels. For this reason, the difference in the number of rotations of the both travel distance measuring wheels becomes large during curve traveling with the same curvature, and control is easy.

本発明によれば、駆動輪径の変動に拘わらず正確な移動距離計測を行うことができる。   According to the present invention, accurate travel distance measurement can be performed regardless of fluctuations in the drive wheel diameter.

(a)は自動搬送車の概略側面図、(b)は移動距離計測輪の支持構成を示す側面図。(A) is a schematic side view of an automatic conveyance vehicle, (b) is a side view which shows the support structure of a movement distance measurement wheel. 自動搬送車の底面図。The bottom view of an automatic conveyance vehicle. 制御部の構成を示すブロック図。The block diagram which shows the structure of a control part. (a)は別の実施形態の移動距離計測輪の支持状態を示す概略側面図、(b)はその平面図。(A) is a schematic side view which shows the support state of the movement distance measurement wheel of another embodiment, (b) is the top view.

以下、本発明を病院内で患者等の搭乗者を搬送する自動搬送車に具体化した一実施形態を図1〜図3にしたがって説明する。
図1(a)に示すように、自動搬送車10は、車体としてのフレーム11と、フレーム11上に設けられたシート12を備えている。図2に示すように、フレーム11は、自動搬送車10の左右方向に延びる梁部材11a及び前後方向に延びる梁部材11bと、梁部材11bの上に設けられたプレート11cとを備えている。
Hereinafter, an embodiment in which the present invention is embodied in an automated guided vehicle for transporting a passenger such as a patient in a hospital will be described with reference to FIGS.
As shown in FIG. 1A, the automatic guided vehicle 10 includes a frame 11 as a vehicle body and a seat 12 provided on the frame 11. As shown in FIG. 2, the frame 11 includes a beam member 11a extending in the left-right direction of the automatic guided vehicle 10, a beam member 11b extending in the front-rear direction, and a plate 11c provided on the beam member 11b.

図2に示すように、自動搬送車10は、後寄りに2個の駆動輪13,14を有し、前寄りに2個の従動輪15,16を有する。両駆動輪13,14は、それぞれ電動モータM1,M2により独立に駆動可能に構成されている。両駆動輪13,14は駆動軸13a,14aがフレーム11の左右方向に延びる同一直線上に位置する状態で左右対称に設けられている。両駆動輪13,14には、搭乗者Pの乗り心地を良くするため、中空タイヤが使用されている。   As shown in FIG. 2, the automated guided vehicle 10 has two drive wheels 13 and 14 on the rear side and two driven wheels 15 and 16 on the front side. Both drive wheels 13 and 14 are configured to be independently driven by electric motors M1 and M2, respectively. Both drive wheels 13 and 14 are provided symmetrically with the drive shafts 13a and 14a positioned on the same straight line extending in the left-right direction of the frame 11. Hollow tires are used for the drive wheels 13 and 14 in order to improve the ride comfort of the passenger P.

フレーム11には、駆動輪13,14と別に、移動距離計測輪17,18が左右対称に設けられている。移動距離計測輪17は駆動輪13より外側の位置に設けられ、移動距離計測輪18は駆動輪14より外側の位置に設けられている。移動距離計測輪17,18は、搭乗者Pの乗り心地に無関係なため、変形や摩耗し難い材質、例えば、ウレタン樹脂で形成されている。   In addition to the drive wheels 13 and 14, movement distance measurement wheels 17 and 18 are provided on the frame 11 symmetrically. The moving distance measuring wheel 17 is provided at a position outside the driving wheel 13, and the moving distance measuring wheel 18 is provided at a position outside the driving wheel 14. Since the travel distance measuring wheels 17 and 18 are irrelevant to the ride comfort of the passenger P, they are made of a material that is difficult to be deformed or worn, for example, urethane resin.

移動距離計測輪17,18は、回転軸17a,18aが走行面Sに対する押圧方向に相対移動可能かつフレーム11の姿勢変動に関わりなく走行面S側に押圧手段19により押圧された状態で設けられている。詳述すると、図1(b)及び図2に示すように、フレーム11は、左右方向(図1(b)における紙面と垂直方向)に延びるとともに、駆動輪13,14の外径より大きな間隔で設けられた2本の梁部材11aを有する。両梁部材11aの端部に、支持ブラケット20がボルト21により固定され、支持ブラケット20に対して支持部材22がその下方において上下方向に移動可能に支承されている。   The travel distance measuring wheels 17 and 18 are provided in a state in which the rotation shafts 17a and 18a are relatively movable in the pressing direction with respect to the traveling surface S and are pressed by the pressing means 19 on the traveling surface S side regardless of the posture variation of the frame 11. ing. More specifically, as shown in FIGS. 1B and 2, the frame 11 extends in the left-right direction (perpendicular to the paper surface in FIG. 1B), and is larger than the outer diameter of the drive wheels 13 and 14. Are provided with two beam members 11a. A support bracket 20 is fixed to the end portions of both beam members 11a by bolts 21, and a support member 22 is supported on the support bracket 20 so as to be movable in the vertical direction below the support bracket 20.

図2に示すように、支持部材22は、移動距離計測輪17,18の厚さより大きな間隔で設けられて回転軸17a,18aを回動可能に支持する支持プレート22aと、支持プレート22aの両端部に固定され、かつ支持ブラケット20を上下方向に貫通して摺動可能に設けられた一対の摺動シャフト22bを備えている。各摺動シャフト22bには、支持ブラケット20と支持プレート22aとの間に押圧手段19としてのばねが設けられている。各摺動シャフト22bの上端、即ち支持ブラケット20からの突出端には、摺動シャフト22bが支持ブラケット20から離脱するのを防止する抜け止め部材23が固定されている。   As shown in FIG. 2, the support member 22 is provided at a larger interval than the thickness of the movement distance measuring wheels 17, 18 and supports the rotary shafts 17 a, 18 a to be rotatable, and both ends of the support plate 22 a. And a pair of sliding shafts 22b provided so as to be slidable through the support bracket 20 in the vertical direction. Each sliding shaft 22b is provided with a spring as the pressing means 19 between the support bracket 20 and the support plate 22a. A retaining member 23 for preventing the sliding shaft 22b from being detached from the support bracket 20 is fixed to the upper end of each sliding shaft 22b, that is, the projecting end from the support bracket 20.

回転軸17a,18aには移動距離計測輪17,18の回転数を検出する回転数検出手段としてのロータリエンコーダ24、25がそれぞれ接続されている。ロータリエンコーダ24,25は、図示しないブラケットを介して支持プレート22aに固定されている。   Rotary encoders 24 and 25 as rotation speed detecting means for detecting the rotation speed of the moving distance measuring wheels 17 and 18 are connected to the rotation shafts 17a and 18a, respectively. The rotary encoders 24 and 25 are fixed to the support plate 22a via a bracket (not shown).

図2に示すように、フレーム11上には駆動輪13,14を駆動する電動モータM1,M2及び電動モータM1,M2を制御する制御装置26が設けられている。制御装置26は、図示しないCPUやメモリを備えている。   As shown in FIG. 2, electric motors M <b> 1 and M <b> 2 that drive the drive wheels 13 and 14 and a control device 26 that controls the electric motors M <b> 1 and M <b> 2 are provided on the frame 11. The control device 26 includes a CPU and a memory (not shown).

図3に示すように、制御装置26は、ロータリエンコーダ24,25の検出信号を入力し、その検出信号に基づいて電動モータM1,M2を制御する。制御装置26は、車体(フレーム11)の移動距離を演算する演算手段としても機能する。制御装置26は、ロータリエンコーダ24,25の回転数と、移動距離計測輪17,18の径とに基づいて、移動距離計測輪17,18の移動距離を演算する。そして、直線走行の際及び曲線走行(カーブ走行)の際とも、移動距離計測輪17,18の移動距離の平均値を車体の移動距離、即ち自動搬送車10の移動距離とする。また、自動搬送車10の移動距離の情報と駆動輪13,14の回転数情報から最新の駆動輪径を算出する。制御装置26のメモリには移動距離計測輪17,18の単位時間当たりの移動量の差と、車体の回転半径との関係が記憶されており、制御装置26はカーブ走行の際には、移動距離計測輪17,18の単位時間当たりの移動量の差が目的とするカーブ走行時に対応した移動量の差となるように最新の駆動輪径に基づき電動モータM1,M2を制御する。   As shown in FIG. 3, the control device 26 receives detection signals from the rotary encoders 24 and 25, and controls the electric motors M1 and M2 based on the detection signals. The control device 26 also functions as calculation means for calculating the movement distance of the vehicle body (frame 11). The control device 26 calculates the moving distance of the moving distance measuring wheels 17 and 18 based on the rotation speed of the rotary encoders 24 and 25 and the diameter of the moving distance measuring wheels 17 and 18. The average value of the movement distances of the movement distance measuring wheels 17 and 18 is set as the movement distance of the vehicle body, that is, the movement distance of the automatic transport vehicle 10 in both the straight traveling and the curved traveling (curve traveling). Further, the latest driving wheel diameter is calculated from the information on the moving distance of the automatic conveyance vehicle 10 and the rotational speed information of the driving wheels 13 and 14. The memory of the control device 26 stores the relationship between the difference in the amount of movement of the travel distance measuring wheels 17 and 18 per unit time and the rotation radius of the vehicle body. The electric motors M1 and M2 are controlled based on the latest driving wheel diameter so that the difference in the movement amount per unit time of the distance measuring wheels 17 and 18 becomes the difference in the movement amount corresponding to the target curve traveling.

次に前記のように構成された自動搬送車10の作用を説明する。
自動搬送車10は、病院内の予め決められた経路を移動する。制御装置26のメモリには、経路の始端から終端までの移動経路の状態、即ち複数の直線移動部の直線移動距離と、直線移動部に挟まれた各曲線移動部(カーブ走行部)の移動距離と曲率半径とが経路データとして記憶されている。
Next, the operation of the automatic guided vehicle 10 configured as described above will be described.
The automated guided vehicle 10 moves along a predetermined route in the hospital. In the memory of the control device 26, the state of the moving path from the beginning to the end of the path, that is, the linear moving distance of the plurality of linear moving units, and the movement of each curved moving unit (curved traveling unit) sandwiched between the linear moving units. The distance and the radius of curvature are stored as route data.

制御装置26は、自動搬送車10に搭乗者Pが乗って目的地を指示すると、搭乗者Pが乗った位置を出発地とし、指示された目的地までの移動経路について、メモリに記憶された経路データから出発地から目的地までの移動経路を決定する。そして、移動経路の状態に合わせて左右の駆動輪13,14の回転速度を調整するように両電動モータM1,M2を制御する。   When the passenger P gets on the automated guided vehicle 10 and instructs the destination, the control device 26 stores the position of the passenger P on the departure point as the departure point and the movement route to the instructed destination in the memory. The travel route from the departure point to the destination is determined from the route data. Then, both electric motors M1, M2 are controlled so as to adjust the rotational speeds of the left and right drive wheels 13, 14 in accordance with the state of the movement path.

駆動輪13,14には中空タイヤが使用されているため、搭乗者Pの体重差や姿勢により駆動輪13,14の撓み量が異なる。また、駆動輪13,14は摩耗し易いため、使用により車輪径が変化する。その結果、駆動輪13,14の回転数を検出して、予め設定しておいた径に基づいて自動搬送車10の移動距離を計測すると、駆動輪13,14の1回転当たりの移動距離が変化して、正確な移動距離が計測できない。   Since hollow tires are used for the drive wheels 13 and 14, the amount of deflection of the drive wheels 13 and 14 varies depending on the weight difference and posture of the passenger P. Further, since the driving wheels 13 and 14 are easily worn, the wheel diameter changes depending on use. As a result, when the number of rotations of the drive wheels 13 and 14 is detected and the movement distance of the automatic transport vehicle 10 is measured based on a preset diameter, the movement distance per rotation of the drive wheels 13 and 14 is determined. It changes and the exact distance traveled cannot be measured.

しかし、この実施形態では、移動距離計測輪17,18の回転数をロータリエンコーダ24,25で検出し、その回転数と、予め設定しておいた移動距離計測輪17,18の径とに基づいて自動搬送車10の移動距離を計測する。移動距離計測輪17,18は、駆動輪13,14や従動輪15,16と異なり、自動搬送車10や搭乗者Pの重量を支える機能はなく、自動搬送車10や搭乗者Pの重量により撓み量が変化することはない。また、移動距離計測輪17,18は、搭乗者Pの乗り心地に無関係なため、変形や摩耗し難い材質で形成されているため、径が変化し難く、移動距離計測輪17,18の回転数と径に基づいて計測された移動距離計測輪17,18の1回転当たりの移動距離は正確になる。   However, in this embodiment, the rotational speeds of the travel distance measuring wheels 17 and 18 are detected by the rotary encoders 24 and 25, and based on the rotational speed and the diameters of the travel distance measuring wheels 17 and 18 set in advance. Then, the moving distance of the automated guided vehicle 10 is measured. Unlike the driving wheels 13 and 14 and the driven wheels 15 and 16, the travel distance measuring wheels 17 and 18 do not have a function of supporting the weight of the automatic transport vehicle 10 or the passenger P, and depend on the weight of the automatic transport vehicle 10 or the passenger P. The amount of deflection does not change. In addition, since the travel distance measuring wheels 17 and 18 are irrelevant to the ride comfort of the passenger P and are formed of a material that is not easily deformed or worn, the diameter hardly changes, and the travel distance measuring wheels 17 and 18 rotate. The movement distance per rotation of the movement distance measurement wheels 17 and 18 measured based on the number and the diameter becomes accurate.

そのため、直線移動の際は、両移動距離計測輪17,18の回転数が同じになるように両電動モータM1,M2を駆動制御し、カーブを移動する際は、両移動距離計測輪17,18の回転数の差がその曲率半径に対応した回転数の差となるように両電動モータM1,M2を駆動制御すればよい。   For this reason, during linear movement, both electric motors M1, M2 are driven and controlled so that the rotational speeds of both movement distance measuring wheels 17, 18 are the same, and when moving a curve, both movement distance measuring wheels 17, The electric motors M1 and M2 may be driven and controlled so that the difference in the rotational speed of 18 corresponds to the rotational speed difference corresponding to the radius of curvature.

この実施形態によれば、以下に示す効果を得ることができる。
(1)自動搬送車10は、車体(フレーム11)の左右方向において異なる位置に設けられた2個の駆動輪13,14を有し、両駆動輪13,14の回転速度の差により操舵が行われる自動搬送車である。そして、駆動輪13,14と別に設けられ、かつ回転軸17a,18aが走行面Sに対する押圧方向に相対移動可能かつ車体の姿勢変動に関わりなく走行面S側に押圧手段19により押圧された状態で設けられた移動距離計測輪17,18と、移動距離計測輪17,18の回転数を検出する回転数検出手段(ロータリエンコーダ24,25)とを備える。また、自動搬送車10は、回転数検出手段の検出信号に基づいて車体の移動距離を演算する演算手段(制御装置26)を備える。移動距離計測輪17,18は、車体や搭乗者Pの重量を担う割合が小さいく、押圧力による摩耗が小さく、常に走行面Sに接した状態で移動するため、1回転当たりの移動距離が変動しない。したがって、駆動輪径の変動に拘わらず正確な移動距離計測を行うことができる。
According to this embodiment, the following effects can be obtained.
(1) The automatic transport vehicle 10 has two drive wheels 13 and 14 provided at different positions in the left and right direction of the vehicle body (frame 11), and steering is performed by a difference in rotational speed between the drive wheels 13 and 14. It is an automated guided vehicle. And it is provided separately from the drive wheels 13 and 14, and the rotary shafts 17a and 18a are relatively movable in the pressing direction with respect to the traveling surface S and are pressed by the pressing means 19 on the traveling surface S side regardless of the posture variation of the vehicle body. And the rotational speed detection means (rotary encoders 24 and 25) for detecting the rotational speed of the travel distance measuring wheels 17 and 18. Moreover, the automatic conveyance vehicle 10 is provided with the calculating means (control apparatus 26) which calculates the moving distance of a vehicle body based on the detection signal of a rotation speed detection means. The travel distance measuring wheels 17 and 18 have a small proportion of the weight of the vehicle body and the passenger P, are less worn by the pressing force, and always move in contact with the traveling surface S. Therefore, the travel distance per rotation is small. Does not fluctuate. Therefore, accurate travel distance measurement can be performed regardless of fluctuations in the drive wheel diameter.

(2)駆動輪13,14は、駆動軸13a,14aが車体(フレーム11)の左右方向に延びる同一直線上に位置する状態で左右対称に設けられている。この構成によれば、カーブ走行時には、左右いずれの方向に曲がる場合でも、カーブの曲率が同じで、両駆動輪13,14の径が同じであれば、両駆動輪13,14の単位時間当たりの回転数の差は同じになるため、駆動輪13,14の制御が簡単になる。また、駆動輪13,14の摩耗量が異なる場合でも、微調整で済む。また、身体的条件の異なる不特定多数の搭乗者が乗った場合でも偏荷重等による蛇行走行を抑制し、安定した乗り心地を実現することができる。   (2) The drive wheels 13 and 14 are provided symmetrically with the drive shafts 13a and 14a positioned on the same straight line extending in the left-right direction of the vehicle body (frame 11). According to this configuration, when the vehicle travels on a curve, if the curve curvature is the same and the diameters of both drive wheels 13 and 14 are the same regardless of whether the vehicle bends in the left or right direction, both drive wheels 13 and 14 per unit time. Since the difference in the number of rotations is the same, the control of the drive wheels 13 and 14 is simplified. Even if the wear amounts of the drive wheels 13 and 14 are different, fine adjustment is sufficient. Further, even when an unspecified number of occupants with different physical conditions get on, meandering traveling due to an unbalanced load or the like can be suppressed, and a stable riding comfort can be realized.

(3)移動距離計測輪17,18は両駆動輪13,14の外側に左右対称に設けられている。両移動距離計測輪17,18を両駆動輪13,14の外側に設けた場合の両移動距離計測輪17,18間の距離は、両移動距離計測輪17,18を両駆動輪13,14の内側に設けた場合に比べて大きくなる。そのため、同じ曲率のカーブ走行時において両移動距離計測輪17,18の回転数差が大きくなり、制御がし易い。また、自動搬送車10がカーブの連続するような経路を走行する場合でも、正確なカーブ軌跡を描きながら走行できるため、乗り心地が向上する。   (3) The movement distance measuring wheels 17 and 18 are provided symmetrically on the outer sides of the drive wheels 13 and 14. The distance between the travel distance measurement wheels 17 and 18 when the travel distance measurement wheels 17 and 18 are provided outside the drive wheels 13 and 14 is the same as the travel distance measurement wheels 17 and 18. It becomes larger than the case where it is provided inside. For this reason, the difference in the rotational speeds of the both travel distance measuring wheels 17 and 18 becomes large during curve traveling with the same curvature, and control is easy. Further, even when the automated guided vehicle 10 travels along a route in which the curve continues, it can travel while drawing an accurate curve locus, so that the ride comfort is improved.

(4)移動距離計測輪17,18は、フレーム11に固定された支持ブラケット20に対して、上下方向に移動可能に支承された支持部材22に支持されている。支持部材22は、回転軸17a,18aを回動可能に支持する支持プレート22aと、支持プレート22aの両端部に固定され、かつ支持ブラケット20を上下方向に貫通して摺動可能に設けられた一対の摺動シャフト22bを備えている。各摺動シャフト22bには、支持ブラケット20と支持プレート22aとの間に押圧手段19としてのばねが設けられている。この構成によれば、移動距離計測輪17,18の回転軸17a,18aを走行面Sに対して垂直方向から押圧することができる。   (4) The movement distance measuring wheels 17 and 18 are supported by a support member 22 supported so as to be movable in the vertical direction with respect to the support bracket 20 fixed to the frame 11. The support member 22 is fixed to both ends of the support plate 22a that rotatably supports the rotary shafts 17a and 18a, and is slidable through the support bracket 20 in the vertical direction. A pair of sliding shafts 22b is provided. Each sliding shaft 22b is provided with a spring as the pressing means 19 between the support bracket 20 and the support plate 22a. According to this configuration, the rotation shafts 17 a and 18 a of the movement distance measuring wheels 17 and 18 can be pressed from the direction perpendicular to the traveling surface S.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 回転軸17a,18aが、移動距離計測輪17,18を走行面Sに対する押圧方向に相対移動可能かつ車体の姿勢変動に関わりなく走行面S側に押圧手段19により押圧される構成として、図4(a),(b)に示す構成としてもよい。この構成では、側面略L字状のブラケット30が、一端側において軸受け31及び支持軸32を介してフレーム11に回動可能に支持され、他端側に移動距離計測輪17が回転可能に支持されている。ブラケット30は、一端側とフレーム11との間に設けられた押圧手段としての引っ張りばね33により移動距離計測輪17を走行面Sに押圧する方向に付勢されている。移動距離計測輪17の回転軸17aにロータリエンコーダ24が接続されている。図示しないが、移動距離計測輪18も同様に設けられている。
The embodiment is not limited to the above, and may be embodied as follows, for example.
As a configuration in which the rotating shafts 17a and 18a can move the distance measuring wheels 17 and 18 in the pressing direction with respect to the traveling surface S and are pressed by the pressing means 19 toward the traveling surface S regardless of the posture variation of the vehicle body. It is good also as a structure shown to 4 (a) and (b). In this configuration, a substantially L-shaped bracket 30 on one side is rotatably supported on the frame 11 via a bearing 31 and a support shaft 32 on one end side, and the movement distance measuring wheel 17 is rotatably supported on the other end side. Has been. The bracket 30 is urged in a direction in which the travel distance measuring wheel 17 is pressed against the traveling surface S by a tension spring 33 as a pressing means provided between one end side and the frame 11. A rotary encoder 24 is connected to the rotating shaft 17 a of the moving distance measuring wheel 17. Although not shown, the movement distance measuring wheel 18 is also provided in the same manner.

○ 駆動輪13,14の許容径を、パンクや過荷重あるいは偏荷重による撓みを考慮して予め設定し、許容径をメモリに記憶させておく。許容径は、実験等により求める。そして、走行中、制御装置26は、移動距離計測輪17,18の径とロータリエンコーダ24,25の検出信号から演算した自動搬送車10の移動距離と、駆動輪13,14の回転数とから駆動輪径を算出し、駆動輪径が許容径を超えている場合、警報を発するようにしてもよい。駆動輪径は、駆動輪径=移動距離/(π・回転数)で計算する。回転数は、制御装置26が指令した電動モータM1,M2の回転数が使用される。   ○ Allowable diameters of the drive wheels 13 and 14 are set in advance in consideration of puncture, overload, or deflection due to uneven load, and the allowable diameters are stored in the memory. The allowable diameter is obtained through experiments. During traveling, the control device 26 determines from the moving distance of the automatic transport vehicle 10 calculated from the diameters of the moving distance measuring wheels 17 and 18 and the detection signals of the rotary encoders 24 and 25 and the rotational speeds of the driving wheels 13 and 14. The driving wheel diameter may be calculated, and an alarm may be issued when the driving wheel diameter exceeds the allowable diameter. The driving wheel diameter is calculated by the following formula: driving wheel diameter = movement distance / (π · rotational speed). As the number of revolutions, the number of revolutions of the electric motors M1, M2 commanded by the control device 26 is used.

○ 走行中に算出した駆動輪径が許容径を超えた場合、異常の種類も推測できる警報を発するようにしてもよい。例えば、パンク、過荷重あるいは偏荷重に対応する駆動輪径をメモリに記憶させておき、駆動輪径が許容径を超えた場合、どの異常に相当する可能性が高いかを報知するようにしてもよい。この場合、警報がパンクに対応するものであれば駆動輪13,14がパンクしているか否かを確認し、パンクしていればタイヤ交換を行う。警報が過荷重や偏荷重に対応するものであれば、過荷重を解消したり、偏荷重を解消、即ち正しい位置に着座したりする。   ○ When the driving wheel diameter calculated during traveling exceeds the allowable diameter, an alarm that can also guess the type of abnormality may be issued. For example, the drive wheel diameter corresponding to puncture, overload or unbalanced load is stored in the memory, and when the drive wheel diameter exceeds the allowable diameter, it is notified which abnormality is likely to correspond. Also good. In this case, if the alarm corresponds to puncture, it is confirmed whether or not the drive wheels 13 and 14 are punctured, and if punctured, the tire is replaced. If the alarm corresponds to an overload or an unbalanced load, the overload is eliminated or the unbalanced load is eliminated, that is, the user is seated at the correct position.

○ 両移動距離計測輪17,18は、両駆動輪13,14の外側に設けられている構成に限らず、両駆動輪13,14の内側に設けられていてもよい。
○ 両移動距離計測輪17,18は、フレーム11の中心に対して左右対称な位置に限らず、両移動距離計測輪17,18のいずれか一方が駆動輪13,14の外側に設けられ、他方が内側に設けられた構成であってもよい。
The both travel distance measurement wheels 17 and 18 are not limited to the configuration provided outside the both drive wheels 13 and 14 but may be provided inside the both drive wheels 13 and 14.
○ Both movement distance measurement wheels 17 and 18 are not limited to positions symmetrical with respect to the center of the frame 11, and either one of both movement distance measurement wheels 17 and 18 is provided outside the drive wheels 13 and 14. The other may be provided inside.

○ 自動搬送車10は、車体(フレーム11)の左右方向において異なる位置に設けられた少なくとも2個の駆動輪13,14を有し、両駆動輪13,14の回転速度の差により操舵が行われる自動搬送車であればよい。例えば、両駆動輪13,14は、フレーム11の左右方向に延びる一直線上に位置せず、前後方向にずれた状態で設けられてもよい。   The automatic transport vehicle 10 has at least two drive wheels 13 and 14 provided at different positions in the left and right direction of the vehicle body (frame 11), and steering is performed by the difference in rotational speed between the drive wheels 13 and 14. What is necessary is just an automatic conveyance vehicle. For example, the drive wheels 13 and 14 may not be positioned on a straight line extending in the left-right direction of the frame 11 but may be provided in a state shifted in the front-rear direction.

○ 移動距離計測輪17,18の回転数を検出する回転数検出手段は、ロータリエンコーダ24,25に限らない。例えば、回転軸17a,18aに複数の永久磁石を取り付け、永久磁石を検出するホール素子等の磁気センサを永久磁石の移動経路に対向して設けてもよい。この場合、磁気センサから永久磁石の検出信号出力される単位時間当たりのパルス信号のパルス数から移動距離計測輪17,18の回転数を検出する。   The rotational speed detection means for detecting the rotational speed of the travel distance measuring wheels 17 and 18 is not limited to the rotary encoders 24 and 25. For example, a plurality of permanent magnets may be attached to the rotating shafts 17a and 18a, and a magnetic sensor such as a Hall element that detects the permanent magnets may be provided to face the moving path of the permanent magnets. In this case, the number of rotations of the travel distance measuring wheels 17 and 18 is detected from the number of pulses of a pulse signal per unit time output from the magnetic sensor as a permanent magnet detection signal.

○ 自動搬送車10の移動方法は、制御装置26が、出発位置から目的位置までの移動経路をメモリに記憶された経路データに基づいて決定し、その移動経路の状態、即ち移動経路が直線か曲線かを判断して電動モータM1,M2を制御する方法に限らない。例えば、自動搬送車10の移動経路の直線部と曲線部との境界近くに移動経路の状態を示す表示部あるいは指示部を設け、表示部の表示内容あるいは指示部の指示内容から制御装置26が直線走行かカーブ走行かを判断して、電動モータM1,M2を制御するようにしてもよい。表示部は、その先が直線部か曲線部かを示す表示と、曲線部の場合は曲率を合わせて表示する。指示部としては例えばICタグが使用され、ICタグには、その先が直線部か曲線部かを示すデータと、曲線部の場合は曲率が記憶されている。   ○ As for the movement method of the automatic guided vehicle 10, the control device 26 determines the movement route from the starting position to the target position based on the route data stored in the memory, and the state of the movement route, that is, whether the movement route is a straight line. It is not limited to the method of controlling the electric motors M1 and M2 by determining whether the curve is a curve. For example, a display unit or an instruction unit that indicates the state of the movement route is provided near the boundary between the straight line portion and the curved portion of the movement route of the automatic guided vehicle 10, and the control device 26 determines whether the display unit displays or indicates the instruction unit. The electric motors M1 and M2 may be controlled by determining whether the vehicle travels in a straight line or a curve. The display unit displays a display indicating whether the tip is a straight line part or a curved part and a curvature part in the case of a curved part. For example, an IC tag is used as the instruction unit, and the IC tag stores data indicating whether the tip portion is a straight line portion or a curved portion, and in the case of a curved portion, a curvature is stored.

○ 自動搬送車10は2個の移動距離計測輪17,18を備えることが必須ではなく、移動距離計測輪が1個であっても、駆動輪径の変動に拘わらず正確な移動距離計測を行うことができる。例えば、駆動輪13,14が車体(フレーム11)の左右方向に延びる同一直線上に位置する状態で左右対称に2個設けられ、移動距離計測輪は、回転軸が駆動軸13a,14aを含む鉛直面上に存在する状態で、両駆動輪13,14から等距離の位置に1個設けられた構成でもよい。この場合、回転数検出手段により検出された回転数と移動距離計測輪の径とから自動搬送車10の正確な移動距離計測を行うことができる。   ○ It is not essential for the automated guided vehicle 10 to have two travel distance measuring wheels 17 and 18, and even if there is only one travel distance measuring wheel, accurate travel distance measurement is possible regardless of fluctuations in the diameter of the drive wheel. It can be carried out. For example, two drive wheels 13 and 14 are provided symmetrically in a state in which the drive wheels 13 and 14 are positioned on the same straight line extending in the left and right direction of the vehicle body (frame 11), and the travel distance measurement wheel includes the drive shafts 13a and 14a. A configuration in which one piece is provided at a position equidistant from both drive wheels 13 and 14 in a state of being present on the vertical plane may be employed. In this case, it is possible to accurately measure the movement distance of the automatic transport vehicle 10 from the rotation speed detected by the rotation speed detection means and the diameter of the movement distance measurement wheel.

○ 押圧手段19はばねに限らず、例えば、ゴムであってもよい。
○ 自動搬送車10の走行経路は屋内に限らず、屋外であってもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
(Circle) the press means 19 is not restricted to a spring, For example, rubber | gum may be sufficient.
O The traveling route of the automatic guided vehicle 10 is not limited to indoors but may be outdoor.
The following technical idea (invention) can be understood from the embodiment.

(1)請求項1〜請求項3のいずれか一項に記載の自動搬送車は、前記駆動輪の許容径を記憶したメモリを備え、前記演算手段により演算された車体の移動距離と、駆動輪の回転数とから走行中の駆動輪径を算出し、算出された駆動輪径が前記許容径を超えている場合、警報を発する。   (1) The automated guided vehicle according to any one of claims 1 to 3 includes a memory that stores an allowable diameter of the drive wheel, and includes a moving distance of the vehicle body calculated by the calculation means, and a drive. A driving wheel diameter during traveling is calculated from the number of rotations of the wheel, and an alarm is issued when the calculated driving wheel diameter exceeds the allowable diameter.

(2)前記技術的思想(1)に記載の発明において、前記許容径を超えた前記駆動輪径の値に基づき、前記駆動輪の異常の種別を判断し、前記異常の種別に対応して異なる警報を発する。   (2) In the invention described in the technical idea (1), based on the value of the driving wheel diameter exceeding the allowable diameter, the type of abnormality of the driving wheel is determined, and the type of abnormality is dealt with. Raise different alarms.

S…走行面、10…自動搬送車、11…車体としてのフレーム、13,14…駆動輪、13a,14a…駆動軸、17,18…移動距離計測輪、17a,18a…回転軸、19…押圧手段、26…演算手段としても機能する制御装置、33…押圧手段としての引っ張りばね。   DESCRIPTION OF SYMBOLS S ... Running surface, 10 ... Automatic conveyance vehicle, 11 ... Frame as vehicle body, 13, 14 ... Drive wheel, 13a, 14a ... Drive shaft, 17, 18 ... Moving distance measuring wheel, 17a, 18a ... Rotating shaft, 19 ... Press means, 26... Control device that also functions as calculation means, 33... Tension spring as press means.

Claims (3)

車体の左右方向において異なる位置に設けられた少なくとも2個の駆動輪を有し、両駆動輪の回転速度の差により操舵が行われる自動搬送車であって、
前記駆動輪と別に設けられ、かつ回転軸が走行面に対する押圧方向に相対移動可能かつ前記車体の姿勢変動に関わりなく走行面側に押圧手段により押圧された状態で設けられた移動距離計測輪と、
前記移動距離計測輪の回転数を検出する回転数検出手段と、
前記回転数検出手段の検出信号に基づいて車体の移動距離を演算する演算手段と
を備えることを特徴とする自動搬送車。
An automatic transport vehicle having at least two drive wheels provided at different positions in the left-right direction of the vehicle body, and being steered by a difference in rotational speed between both drive wheels
A travel distance measuring wheel provided separately from the drive wheel and provided so that the rotation shaft is relatively movable in the pressing direction with respect to the traveling surface and is pressed against the traveling surface by the pressing means regardless of the posture variation of the vehicle body; ,
Rotational speed detection means for detecting the rotational speed of the moving distance measuring wheel;
An automatic conveyance vehicle comprising: a calculation means for calculating a moving distance of the vehicle body based on a detection signal of the rotation speed detection means.
前記駆動輪は、駆動軸が車体の左右方向に延びる同一直線上に位置する状態で左右対称に2個設けられ、前記移動距離計測輪は、それぞれ前記駆動輪の側方において、前記回転軸が前記駆動軸を含む鉛直面上に存在するように設けられている請求項1に記載の自動搬送車。   Two drive wheels are provided symmetrically in a state where the drive shaft is located on the same straight line extending in the left-right direction of the vehicle body. The automated guided vehicle according to claim 1, wherein the automatic transport vehicle is provided so as to exist on a vertical plane including the drive shaft. 前記移動距離計測輪は前記両駆動輪の外側に設けられている請求項2に記載の自動搬送車。   The automatic guided vehicle according to claim 2, wherein the moving distance measuring wheel is provided outside the driving wheels.
JP2014135578A 2014-07-01 2014-07-01 Automated guided vehicle Active JP6333644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014135578A JP6333644B2 (en) 2014-07-01 2014-07-01 Automated guided vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014135578A JP6333644B2 (en) 2014-07-01 2014-07-01 Automated guided vehicle

Publications (2)

Publication Number Publication Date
JP2016013217A true JP2016013217A (en) 2016-01-28
JP6333644B2 JP6333644B2 (en) 2018-05-30

Family

ID=55229963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135578A Active JP6333644B2 (en) 2014-07-01 2014-07-01 Automated guided vehicle

Country Status (1)

Country Link
JP (1) JP6333644B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174809U (en) * 1984-04-27 1985-11-19 トヨタ自動車株式会社 Contact rotary encoder
JP2005112100A (en) * 2003-10-07 2005-04-28 Tcm Corp Drive difference direction change type industrial vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174809U (en) * 1984-04-27 1985-11-19 トヨタ自動車株式会社 Contact rotary encoder
JP2005112100A (en) * 2003-10-07 2005-04-28 Tcm Corp Drive difference direction change type industrial vehicle

Also Published As

Publication number Publication date
JP6333644B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
US10144478B2 (en) Pressure control steering
CN103906654B (en) Seat unit
CN105416287B (en) Vehicle prevents run-off-road control device
EP3342691B1 (en) Electric balancing swing car
JP6020328B2 (en) MOBILE BODY CONTROL DEVICE, MOBILE BODY CONTROL METHOD, AND CONTROL PROGRAM
EP3536295A1 (en) Moving device
JP2013049356A (en) Seat apparatus
JP2010193939A (en) Personal vehicle control device
JP6214496B2 (en) Control device for autonomous vehicle
JP4982655B2 (en) Inverted pendulum type moving body and educational materials
JP5840900B2 (en) Sheet device
US8949010B2 (en) Inverted pendulum type vehicle
JP5338968B2 (en) Steering control device
JP6333644B2 (en) Automated guided vehicle
JP2011183864A (en) Moving body
JP6990079B2 (en) Steering system
KR101500699B1 (en) electrical scooter having rear wheel steering unit
TW577836B (en) Control system and method for electromotive vehicle
JP7423542B2 (en) Handle angle control device
KR100792918B1 (en) Method for calculating stability-ratio of cross-wind and method for controlling steering angle of vehicle
JP2013112254A (en) Rack axial force estimation method and electric power steering device
JP6115775B2 (en) Personal vehicle
JP6265143B2 (en) Balance training system
JP2016068696A (en) Turning speed control device of travel device
JP2004272558A (en) Automatic guidance device for autonomous traveling vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180425

R150 Certificate of patent or registration of utility model

Ref document number: 6333644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250