JP2016012967A - Energy saving effect display system - Google Patents

Energy saving effect display system Download PDF

Info

Publication number
JP2016012967A
JP2016012967A JP2014132912A JP2014132912A JP2016012967A JP 2016012967 A JP2016012967 A JP 2016012967A JP 2014132912 A JP2014132912 A JP 2014132912A JP 2014132912 A JP2014132912 A JP 2014132912A JP 2016012967 A JP2016012967 A JP 2016012967A
Authority
JP
Japan
Prior art keywords
power
amount
energy saving
saving effect
distribution board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014132912A
Other languages
Japanese (ja)
Other versions
JP6198683B2 (en
Inventor
乙允 大杉
Takamasa Osugi
乙允 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Housing Corp
Original Assignee
Denso Corp
Toyota Housing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Housing Corp filed Critical Denso Corp
Priority to JP2014132912A priority Critical patent/JP6198683B2/en
Publication of JP2016012967A publication Critical patent/JP2016012967A/en
Application granted granted Critical
Publication of JP6198683B2 publication Critical patent/JP6198683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an energy saving effect display system capable of accurately displaying energy saving effect by a power supply apparatus.SOLUTION: A HEMS 30 multiplies an electric charge unit cost by electric energy that is supplied from system power 12 to a power distribution panel 14 and that is measured by a trunk breaker power sensor 120, to calculate an electricity charge including effect of energy saving by a photovoltaic power generation device 16, a fuel cell 70, a storage battery 60, and a vehicle storage battery 28. The HEMS 30 multiplies the electric charge unit cost by electric energy measured by power sensors 22A, 22B, 22C, 22D, to calculate an electricity charge not including the effect of energy saving by the photovoltaic power generation device 16 etc. The HEMS 30 also displays, in a comparative manner, the electricity charge including the effect of energy saving and the electricity charge not including the effect of energy saving.

Description

本発明は、建物で使用された電力の削減の効果を確認できる省エネ効果表示システムに関する。   The present invention relates to an energy saving effect display system capable of confirming an effect of reducing power used in a building.

住宅等の建物に太陽光発電装置又は燃料電池等の給電機器を導入した結果、商用電力である系統電力の消費電力量が削減されるが、どの程度削減されたのかをユーザに示すことにより、ユーザは省エネルギーの動機付けを維持しやすくなると考えられる。   As a result of introducing a power generation device such as a solar power generation device or a fuel cell in a building such as a house, the power consumption of the grid power that is commercial power is reduced, but by showing the user how much it has been reduced, It is considered that the user can easily maintain the motivation for energy saving.

例えば、特許文献1に記載の先行技術では、住宅に太陽光発電システムを導入した場合の効果を認識しやすい棒グラフで表示し、具体的な効果を一目で示す技術が提案されている。   For example, in the prior art described in Patent Document 1, a technique has been proposed in which the effect when a photovoltaic power generation system is introduced into a house is displayed in a bar graph that is easy to recognize and the specific effect is shown at a glance.

特開2002−152970号公報JP 2002-152970 A

しかしながら、特許文献1に記載の技術は、太陽光発電装置を導入する前の消費電力量と、太陽光発電装置を導入した後の消費電力量とを比較している。そのため、過去の電力消費の実績がない新築の建物では、比較対象である太陽光発電装置を導入する前の消費電力量に対する、太陽光発電装置の導入による省エネルギーの効果を算出することができない、という問題点があった。   However, the technology described in Patent Document 1 compares the power consumption before introducing the solar power generation device with the power consumption after introducing the solar power generation device. Therefore, in a newly built building with no past power consumption record, it is not possible to calculate the energy saving effect of the introduction of the solar power generation device against the amount of power consumed before the introduction of the solar power generation device to be compared. There was a problem.

また、特許文献1に記載の技術は、例えば、太陽光発電装置を導入する前の年間の消費電力量と、太陽光発電装置を導入した後の年間の消費電力量とを比較するが、太陽光発電装置の導入前と導入後とでは時間差が大きく、比較対象として適切とはいえない。時間的な隔たりが大きいと、建物に設置されている電力負荷手段の構成、又は電気料金の単価等が相違している可能性があるので、太陽光発電装置による省エネルギーの効果を的確に算出することが難しいという問題点があった。   Moreover, although the technique of patent document 1 compares the annual power consumption before introduce | transducing a solar power generation device with the annual power consumption after introducing a solar power generation device, for example, There is a large time difference between before and after the introduction of the photovoltaic power generation apparatus, which is not appropriate for comparison. If the time gap is large, the configuration of the power load means installed in the building or the unit price of the electricity charge may be different, so calculate the energy saving effect by the solar power generation device accurately There was a problem that it was difficult.

本発明は、上記事実を考慮して成されたもので、給電機器による省エネルギーの効果を的確に表示できる省エネ効果表示システムを提供することを目的とする。   The present invention has been made in view of the above facts, and an object thereof is to provide an energy saving effect display system capable of accurately displaying the energy saving effect of the power feeding device.

上記課題を解決するための請求項1の発明は、電力を建物内の分電盤に供給する給電機器と、前記分電盤に供給された系統電力の電力量を計測する系統電力計測手段と、前記分電盤から電力負荷手段に供給された電力量を計測する負荷電力計測手段と、前記系統電力計測手段が計測した前記系統電力から前記分電盤に供給された電力量に電気料金の単価を乗算して前記給電機器の省エネルギー効果を含む電気代を算出すると共に、前記負荷電力計測手段が計測した電力量に電力料金の単価を乗算して前記給電機器の省エネルギー効果を含まない電気代を算出する演算手段と、前記演算手段が算出した、省エネルギー効果を含む電気代と省エネルギー効果を含まない電気代とを比較して表示する表示手段と、を備える。   Invention of Claim 1 for solving the said subject is the electric power feeding apparatus which supplies electric power to the distribution board in a building, The system electric power measurement means which measures the electric energy of the system electric power supplied to the said distribution board, , A load power measuring means for measuring the amount of power supplied from the distribution board to the power load means, and an amount of electricity charge from the grid power measured by the grid power measurement means to the amount of power supplied to the distribution board An electricity cost that includes the energy saving effect of the power supply device is calculated by multiplying the unit price, and an electricity cost that does not include the energy saving effect of the power supply device by multiplying the power amount measured by the load power measuring means by the unit price of the power charge. And a display means for comparing and displaying the electricity bill including the energy saving effect and the electricity bill not including the energy saving effect calculated by the computing means.

請求項1に記載の発明によれば、演算手段は、建物内の電力負荷手段が消費した電力量に電力料金の単価を乗算して給電装置の省エネルギーの効果を含まない電気代と、系統電力から分電盤に供給された電力量に電気料金の単価を乗算することにより給電機器の省エネルギーの効果を含む電気代と、を各々算出する。   According to the first aspect of the present invention, the computing means multiplies the amount of power consumed by the power load means in the building by the unit price of the power charge and does not include the energy saving effect of the power feeding device, and the grid power The electricity cost including the energy saving effect of the power supply device is calculated by multiplying the amount of power supplied to the distribution board by the unit price of the electricity bill.

現時点での消費電力量に基づいて、給電装置による省エネルギー効果の有無に係る電気代を各々算出するので、給電装置を未導入の場合の過去の電気代と、給電装置を導入後の電気代とを比較する場合よりも、より実態に即した省エネルギー効果の検討が可能になる。   Based on the current power consumption, the electricity cost related to the presence or absence of the energy saving effect of the power feeding device is calculated, so the past electricity cost when the power feeding device has not been introduced and the electricity cost after the power feeding device is introduced This makes it possible to examine the energy saving effect more realistically than when comparing the two.

請求項2の発明は、請求項1に記載の発明において、前記給電機器から前記分電盤に供給された電力量を計測する給電機器電力計測手段をさらに備え、前記系統電力計測手段は、前記分電盤から前記系統電力に売電した電力量をさらに計測し、前記演算手段は、売電時に、前記系統電力計測手段が計測した電力量、及び前記負荷電力計測手段が計測した電力量に各々電気料金の単価を乗算して、売電金額及び自家消費した給電機器の電力の金額をさらに算出し、前記表示手段は、売電金額及び自家消費した給電機器の電力の金額をさらに表示する。   The invention of claim 2 is the invention of claim 1, further comprising power supply device power measurement means for measuring the amount of power supplied from the power supply device to the distribution board, wherein the system power measurement means Further measuring the amount of power sold from the distribution board to the grid power, the calculation means at the time of selling power to the amount of power measured by the grid power measurement means, and the amount of power measured by the load power measurement means The unit price of each electricity charge is multiplied to further calculate the amount of power sold and the amount of power of the power supply equipment consumed by the house, and the display means further displays the amount of power sold and the amount of power of the power supply equipment consumed by the house. .

請求項2に記載の発明によれば、売電した金額及び自家消費した給電機器の電力の金額を算出して表示することができる。   According to the second aspect of the present invention, it is possible to calculate and display the amount of power sold and the amount of power consumed by the power supply device.

以上説明したように、請求項1に記載の発明は、現時点での消費電力量に基づいて、給電装置による省エネルギー効果の有無に係る電気代を各々算出することにより、給電機器による省エネルギーの効果を的確に表示できるという効果を有する。   As described above, according to the first aspect of the present invention, the energy saving effect by the power feeding device is calculated by calculating the electricity cost related to the presence or absence of the energy saving effect by the power feeding device based on the current power consumption. It has the effect of being able to display accurately.

請求項2に記載の発明によれば、売電した金額及び自家消費した給電機器の電力の金額を算出して表示することにより、給電機器による省エネルギーの効果をより的確に表示できるという効果を有する。   According to the second aspect of the present invention, by calculating and displaying the amount of power sold and the amount of power of the power supply equipment consumed in-house, it is possible to more accurately display the energy saving effect of the power supply equipment. .

本発明の実施の形態に係る省エネ効果表示システムの一例を示す概略図である。It is the schematic which shows an example of the energy-saving effect display system which concerns on embodiment of this invention. 本発明の実施の形態に係る省エネ効果表示システムに係るHEMSの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of HEMS which concerns on the energy-saving effect display system which concerns on embodiment of this invention. 本発明の実施の形態に係る省エネ効果表示システムの日次での処理の一例を示したフローチャートである。It is the flowchart which showed an example of the daily process of the energy-saving effect display system which concerns on embodiment of this invention. 本発明の実施の形態に係る省エネ効果表示システムの月次又は年次での処理の一例を示したフローチャートである。It is the flowchart which showed an example of the process in the month or year of the energy-saving effect display system which concerns on embodiment of this invention. 本発明の実施の形態における算出値の棒グラフ表示の一例を示す概略図である。It is the schematic which shows an example of the bar graph display of the calculated value in embodiment of this invention. 本発明の実施の形態における減価償却までの時間表示の一例を示す概略図である。It is the schematic which shows an example of the time display to depreciation in embodiment of this invention.

以下、図面を参照して本発明の実施の形態の一例を詳細に説明する。図1は、本発明の実施の形態に係る省エネ効果表示システム10の一例を示す概略図である。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing an example of an energy saving effect display system 10 according to an embodiment of the present invention.

本実施の形態では、系統電力12からの電力が、主幹ブレーカー110を介して建物100の分電盤14に供給されている。   In the present embodiment, power from the grid power 12 is supplied to the distribution board 14 of the building 100 via the main breaker 110.

主幹ブレーカー110の分電盤側には、系統電力12から供給される電力を検知する主幹ブレーカー電力センサ120が設けられている。また、主幹ブレーカー電力センサ120は、いわゆる逆潮流によって、建物100から系統電力12に売電する場合の電力も検知する。   On the distribution board side of the main breaker 110, a main breaker power sensor 120 that detects electric power supplied from the system power 12 is provided. In addition, the main breaker power sensor 120 also detects power when selling power from the building 100 to the grid power 12 by so-called reverse power flow.

主幹ブレーカー電力センサ120は、導体を電流が流れた際に生じた磁界を導体の絶縁被覆越しに検知するセンサであって、検知した磁界に基づいて、導体を流れる電流の電力を検知可能なセンサである。また、主幹ブレーカー電力センサ120は、電流の向き(+、−)と電流の大きさを測定できる。後述するHEMS(Home Energy Management System)30は、主幹ブレーカー電力センサ120が測定した電流の向きから、売電と買電を判別する。例えば、電流の向きが+であれば売電、−であれば買電と、各々判別することができる。以下、本実施の形態での電力センサは、いずれも、導体に生じた磁界を当該導体の絶縁被覆越しに検知するものである。また、各電力センサが検知した電力の値は、検知した年月日時に対応付けられてHEMS30のHDD(Hard Disk Drive)に記憶される。HEMS30は、HDDに記憶された1日分、1カ月分又は1年分の電力の値を積算することにより1日、1カ月又は1年の電力量を算出できる。本実施の形態では、電力センサとHEMS30とが協働して電力量を測定する手段として機能している。   The main breaker power sensor 120 is a sensor that detects a magnetic field generated when a current flows through a conductor through the insulating coating of the conductor, and can detect the power of the current flowing through the conductor based on the detected magnetic field. It is. In addition, the main breaker power sensor 120 can measure the current direction (+, −) and the magnitude of the current. A HEMS (Home Energy Management System) 30, which will be described later, discriminates between power sale and power purchase from the direction of current measured by the main breaker power sensor 120. For example, if the current direction is +, it can be determined that the power is sold, and if it is-, the power is purchased. Hereinafter, each of the power sensors in this embodiment detects a magnetic field generated in a conductor through the insulation coating of the conductor. In addition, the value of power detected by each power sensor is stored in a HDD (Hard Disk Drive) of the HEMS 30 in association with the detected date. The HEMS 30 can calculate the amount of power for one day, one month, or one year by accumulating the power values for one day, one month, or one year stored in the HDD. In the present embodiment, the power sensor and the HEMS 30 function as means for measuring the amount of power in cooperation.

分電盤14には、系統電力12とは別に、給電機器である太陽光発電装置16からの電力が太陽光発電用ブレーカー102を介して供給されている。太陽光発電装置16には、建物100内のエネルギーの管理や制御を行うHEMS30によって制御される太陽光発電制御装置18が設けられている。   In addition to the grid power 12, the distribution board 14 is supplied with power from a photovoltaic power generation device 16, which is a power feeding device, via a photovoltaic power generation breaker 102. The solar power generation device 16 is provided with a solar power generation control device 18 that is controlled by the HEMS 30 that manages and controls energy in the building 100.

太陽光発電制御装置18には、太陽電池パネルが発電した直流を分電盤14から家電機器34に供給される交流(例えば、100V、50Hz)に変換可能なインバータ等の変換手段(図示せず)が設けられている。また、太陽光発電用ブレーカー102の分電盤側には、太陽光発電装置16から供給される電力を検知する太陽光発電用ブレーカー電力センサ122が設けられている。   The solar power generation control device 18 includes conversion means (not shown) such as an inverter that can convert the direct current generated by the solar panel into alternating current (for example, 100 V, 50 Hz) supplied from the distribution board 14 to the home appliance 34. ) Is provided. In addition, a photovoltaic power generation breaker power sensor 122 that detects power supplied from the photovoltaic power generation device 16 is provided on the distribution board side of the photovoltaic power generation breaker 102.

また、分電盤14には、「エネファーム(登録商標)」等の燃料電池70による給電機器が発電した電力が燃料電池用ブレーカー104を介して供給されている。燃料電池70から分電盤14に供給される電力は燃料電池電力センサ124によって検知可能である。燃料電池70には、燃料電池70が発電した直流を分電盤14から家電機器34に供給される交流(例えば、100V、50Hz)に変換可能なインバータ等の変換手段(図示せず)が設けられている。   In addition, the distribution board 14 is supplied with electric power generated by a power supply device such as “ENE-FARM (registered trademark)” by the fuel cell 70 via the fuel cell breaker 104. The electric power supplied from the fuel cell 70 to the distribution board 14 can be detected by the fuel cell power sensor 124. The fuel cell 70 is provided with conversion means (not shown) such as an inverter that can convert the direct current generated by the fuel cell 70 into alternating current (for example, 100 V, 50 Hz) supplied from the distribution board 14 to the home appliance 34. It has been.

燃料電池70には、燃料であるガスが供給されている。また、燃料電池70が発電の廃熱で水道水を加熱する「エネファーム(登録商標)」の場合には、水道水も供給される。燃料電池70によって加熱された水道水は、貯湯タンク72に蓄えられ、建物100への給湯に用いられる。   The fuel cell 70 is supplied with gas as fuel. Further, when the fuel cell 70 is “ENEFARM (registered trademark)” that heats tap water with the waste heat of power generation, tap water is also supplied. The tap water heated by the fuel cell 70 is stored in the hot water storage tank 72 and used for hot water supply to the building 100.

なお、本実施の形態では、給電機器は太陽光発電装置16又は燃料電池70に限定されず、内燃機関による発電装置等であってもよい。   In the present embodiment, the power feeding device is not limited to the solar power generation device 16 or the fuel cell 70, and may be a power generation device using an internal combustion engine.

系統電力12、太陽光発電装置16及び燃料電池70から分電盤14に供給された電力は、電力負荷手段である家電機器34に分岐回路20Bを介して供給される。また、分電盤14から供給される電力で充電される蓄電池60が分岐回路20Cを介して分電盤14に接続されている。   The power supplied to the distribution board 14 from the system power 12, the solar power generation device 16, and the fuel cell 70 is supplied to the home appliance 34, which is a power load means, via the branch circuit 20B. Moreover, the storage battery 60 charged with the electric power supplied from the distribution board 14 is connected to the distribution board 14 via the branch circuit 20C.

分岐回路20Dには、車両連結部26を介してEV(Electric Vehicle)、HV(Hybrid Vehicle)又はPHV(Plug-in Hybrid Vehicle)等である車両32が接続されている。分電盤14から供給される電力により、車両32の車両用蓄電池28を充電することが可能であり、その逆に、車両用蓄電池28から分電盤14に電力を供給することも可能である。   A vehicle 32 such as an EV (Electric Vehicle), an HV (Hybrid Vehicle), or a PHV (Plug-in Hybrid Vehicle) is connected to the branch circuit 20 </ b> D via a vehicle connecting portion 26. The vehicle storage battery 28 of the vehicle 32 can be charged by the power supplied from the distribution board 14, and conversely, the power can be supplied from the vehicle storage battery 28 to the distribution board 14. .

車両用蓄電池28から取り出される電力は直流であるが、各車両が備えるインバータ(図示せず)によって、単相2線式100Vで50Hz又は60Hzの交流に変換して、後述する車両連結部26を介して、分電盤14へ供給する。   Although the electric power taken out from the vehicle storage battery 28 is a direct current, it is converted into an alternating current of 50 Hz or 60 Hz by a single-phase two-wire system 100V by an inverter (not shown) provided in each vehicle, and a vehicle connecting portion 26 described later is provided. To the distribution board 14.

車両連結部26は、ケーブルによって車両と接続されることにより、分電盤14と車両とを電気的に接続するコネクタである。当該コネクタは、分電盤14からの電力を車両32に供給する又は車両の電力を分電盤14に供給するための電力線の端子と、HEMS30と車両32との通信に係る情報線の端子を有してもよい。   The vehicle connecting portion 26 is a connector that electrically connects the distribution board 14 and the vehicle by being connected to the vehicle by a cable. The connector includes a power line terminal for supplying power from the distribution board 14 to the vehicle 32 or supplying vehicle power to the distribution board 14, and an information line terminal for communication between the HEMS 30 and the vehicle 32. You may have.

本実施の形態では、HEMS30は、車両連結部26を介して、車両用蓄電池28の電圧値を取得可能で、当該電圧値に基づいて、車両用蓄電池28の蓄電量を算出できる。また、車両連結部26は、電力センサ(図示せず)を含み、当該電力センサは車両用蓄電池28が放電した電力を検知する。   In the present embodiment, the HEMS 30 can acquire the voltage value of the vehicle storage battery 28 via the vehicle connection unit 26 and can calculate the amount of power stored in the vehicle storage battery 28 based on the voltage value. Moreover, the vehicle connection part 26 contains an electric power sensor (not shown), and the electric power sensor detects electric power discharged from the vehicle storage battery 28.

また、分岐回路20Dに設けられた電力センサ22Dにより、HEMS30は、分電盤14と車両32との間の電力を測定可能であるとする。なお、分岐回路20Aは、燃料電池70を起動させる電力を供給するためのものである。   Further, it is assumed that the HEMS 30 can measure the power between the distribution board 14 and the vehicle 32 by the power sensor 22D provided in the branch circuit 20D. The branch circuit 20A is for supplying power for starting the fuel cell 70.

分岐回路20A,20B,20C,20Dには分岐回路20A〜20Dの電力を計測する電力センサ22A〜22Dが各々設けられている。電力センサ22A〜22Dからの情報線は、主幹ブレーカー電力センサ120、太陽光発電用ブレーカー電力センサ122及び燃料電池電力センサ124からの情報線とHEMS30が分電盤14を制御するための情報線と共にHEMS30に接続されている。なお、図1において破線は計測データ又は制御情報が流れる情報線であるとする。   The branch circuits 20A, 20B, 20C, and 20D are provided with power sensors 22A to 22D that measure the power of the branch circuits 20A to 20D, respectively. The information lines from the power sensors 22 </ b> A to 22 </ b> D together with the information lines from the main breaker power sensor 120, the photovoltaic power generation breaker power sensor 122, and the fuel cell power sensor 124 and the information lines for the HEMS 30 to control the distribution board 14. It is connected to HEMS30. In FIG. 1, the broken line is an information line through which measurement data or control information flows.

分電盤14の分岐回路20A〜20Dには、分岐回路20A〜20CDをオン状態又はオフ状態に切り替えるための分岐ブレーカー24A,24B,24C,24Dが各々設けられ、分岐ブレーカー24A〜24Dは、HEMS30によって制御される。   The branch circuits 20A to 20D of the distribution board 14 are provided with branch breakers 24A, 24B, 24C, and 24D for switching the branch circuits 20A to 20CD to an on state or an off state, respectively. The branch breakers 24A to 24D are connected to the HEMS 30. Controlled by.

なお、図1では、記載の簡略化のために分岐回路は4系統のみ記載しているが、本実施の形態では4系統以上でも4系統以下でもよく、分岐回路の本数に特段の限定はない。   In FIG. 1, only four systems of branch circuits are shown for simplification of description, but in this embodiment, the number of branch circuits may be four or more and four or less, and the number of branch circuits is not particularly limited. .

蓄電池60には、鉛蓄電池、ニッケル水素電池又はリチウムイオン電池等の、充放電が可能な二次電池が使用される。これらの二次電池の1セルは、起電力が略1〜2Vなので、本実施の形態では、複数のセルを直列にして所望の電圧が得られるようにしている。さらに所望の電圧を得られるように直列に接続された複数のセルからなる集合体を複数並列に束ねパッケージ化することで、所望の電流が得られるようにしている。   The storage battery 60 is a secondary battery that can be charged and discharged, such as a lead storage battery, a nickel metal hydride battery, or a lithium ion battery. Since one cell of these secondary batteries has an electromotive force of approximately 1 to 2 V, in this embodiment, a plurality of cells are connected in series so that a desired voltage can be obtained. Further, a desired current can be obtained by bundling a plurality of aggregates composed of a plurality of cells connected in series so as to obtain a desired voltage.

また、パッケージ化された蓄電池60には、分電盤14を介して供給される交流(例えば、100V、50Hz)を、蓄電池の充電に適した電圧の直流に変換すると共に、蓄電池60が放電した直流を分電盤14から家電機器34に供給される交流に変換可能な双方向インバータ等の変換手段(図示せず)が設けられている。   In addition, the packaged storage battery 60 converts alternating current (for example, 100 V, 50 Hz) supplied through the distribution board 14 into direct current having a voltage suitable for charging the storage battery, and the storage battery 60 is discharged. Conversion means (not shown) such as a bidirectional inverter capable of converting direct current into alternating current supplied from the distribution board 14 to the home appliance 34 is provided.

さらに、蓄電池60は、蓄電池60の充放電を制御すると共に、蓄電池60の電圧値を計測する蓄電池制御装置62を備え、前述のインバータと共にHEMS30によって制御される。蓄電池制御装置62は、電力センサ(図示せず)を含み、当該電力センサは蓄電池60が放電した電力を検知する。なお、本実施の形態では、蓄電池60及び車両32の車両用蓄電池28は、建物100での消費電力量が少なくなると共に、時間帯別電灯において電気料金の単価が安くなる夜間の時間帯において、系統電力12で充電される。夜間の系統電力12で充電された蓄電池60及び車両用蓄電池28は、電力が必要とされる昼間に、蓄えた電力を放電する給電機器として機能するようにHEMS30によって制御される。   Furthermore, the storage battery 60 includes a storage battery control device 62 that controls charging / discharging of the storage battery 60 and measures the voltage value of the storage battery 60, and is controlled by the HEMS 30 together with the above-described inverter. The storage battery control device 62 includes a power sensor (not shown), and the power sensor detects the power discharged from the storage battery 60. In the present embodiment, the storage battery 60 and the vehicle storage battery 28 of the vehicle 32 have a reduced power consumption in the building 100 and a nighttime time period when the unit price of the electric charge is reduced with the hourly lamp. It is charged with system power 12. The storage battery 60 and the vehicle storage battery 28 charged with the system power 12 at night are controlled by the HEMS 30 so as to function as a power supply device that discharges the stored power during the daytime when power is required.

また、HEMS30には、燃料電池70等に供給されるガスの流量を計測するガスメーター132及び水道の流量を計測する水道メーター130が接続されており、ガスの流量及び水道の流量の情報を取得可能である。   The HEMS 30 is connected to a gas meter 132 that measures the flow rate of gas supplied to the fuel cell 70 and the like, and a water meter 130 that measures the flow rate of water. It is.

さらにHEMS30は、ネットワーク80を介して情報サーバ90と通信可能である。また、ネットワーク80を介して情報センターの情報サーバ90を介して、系統電力12の単価等の情報を取得可能である。   Further, the HEMS 30 can communicate with the information server 90 via the network 80. In addition, information such as the unit price of the grid power 12 can be acquired via the network 80 and the information server 90 of the information center.

図2は、本実施の形態に係る省エネ効果表示システム10に係るHEMS30の概略構成を示すブロック図である。HEMS30は、CPU(Central Processing Unit)42と、HDD44と、RAM(Random Access Memory)46と、ネットワークI/F部48と、ROM(Read Only Memory)50とを含む。また、HEMS30は表示部52と、操作入力部54と、バス56とを含んでおり、情報を入力する端末と情報を表示する端末との機能を有している。   FIG. 2 is a block diagram showing a schematic configuration of the HEMS 30 according to the energy saving effect display system 10 according to the present embodiment. The HEMS 30 includes a CPU (Central Processing Unit) 42, an HDD 44, a RAM (Random Access Memory) 46, a network I / F unit 48, and a ROM (Read Only Memory) 50. The HEMS 30 includes a display unit 52, an operation input unit 54, and a bus 56, and has functions of a terminal for inputting information and a terminal for displaying information.

CPU42は、HEMSの全体の動作を司るものであり、HDD44は給電機器の各々及び蓄電池60等を制御するプログラム、OS(Operating System)並びに給電機器の各々及び蓄電池60等の制御に供するデータ等が記録される不揮発性の記憶装置である。RAM46は、OS、プログラム又はデータが展開される揮発性の記憶装置である。ネットワークI/F部48は、ネットワークに接続するためのものであり、NIC(Network Interface Card)やそのドライバで構成される。ROM50は、HEMS30の起動時に動作するブートプログラムなどが記憶されている不揮発性の記憶装置である。表示部52は、省エネ効果表示システム10に関する情報をユーザに表示するものである。操作入力部54は、ユーザが省エネ効果表示システム10の操作や情報を入力する際に用いられるものであり、一例としてタッチパネル、キーボード等の入力装置及びトラックボール、ペンタブレット若しくはマウス等のポインティングデバイスが含まれる。バス56は、情報のやりとりが行われる際に使用される。   The CPU 42 controls the entire operation of the HEMS, and the HDD 44 stores a program for controlling each of the power supply devices and the storage battery 60, an OS (Operating System), data for use in controlling each of the power supply devices, the storage battery 60, and the like. It is a non-volatile storage device to be recorded. The RAM 46 is a volatile storage device in which an OS, a program, or data is expanded. The network I / F unit 48 is for connecting to a network, and includes a NIC (Network Interface Card) and its driver. The ROM 50 is a non-volatile storage device that stores a boot program that operates when the HEMS 30 is started up. The display unit 52 displays information related to the energy saving effect display system 10 to the user. The operation input unit 54 is used when a user inputs an operation and information of the energy saving effect display system 10. As an example, an input device such as a touch panel and a keyboard and a pointing device such as a trackball, a pen tablet, or a mouse are used. included. The bus 56 is used when information is exchanged.

表示部52には、太陽光発電装置16の発電量、家電機器34等の電力負荷手段の消費電力量、車両32への電力の供給量、車両32の車両用蓄電池28が放電した電力量、燃料電池70等の給電機器による発電量等が表示可能である。   The display unit 52 includes the amount of power generated by the solar power generation device 16, the amount of power consumed by power load means such as the home appliance 34, the amount of power supplied to the vehicle 32, the amount of power discharged by the vehicle storage battery 28 of the vehicle 32, The amount of power generated by a power supply device such as the fuel cell 70 can be displayed.

太陽光発電装置16の発電量は、太陽光発電用ブレーカー電力センサ122が検知した電力から算出可能である。また、家電機器34の消費電力量は電力センサ22Bが検知した電力から、蓄電池60の充電に費やした電力量は電力センサ22Cが検知した電力から、車両32への電力の供給量は電力センサ22Dが検知した電力から算出可能である。   The power generation amount of the solar power generation device 16 can be calculated from the power detected by the solar power generation breaker power sensor 122. The power consumption of the home appliance 34 is from the power detected by the power sensor 22B, the power consumed by the storage battery 60 is charged from the power detected by the power sensor 22C, and the power supply to the vehicle 32 is the power sensor 22D. Can be calculated from the detected power.

また、蓄電池60が放電した電力量は、電力センサ22Cが検知した電力から、車両用蓄電池28が放電した電力量は、電力センサ22Dが検知した電力から、燃料電池70の発電量は、燃料電池電力センサ124が検知した電力から算出可能である。   The amount of power discharged from the storage battery 60 is from the power detected by the power sensor 22C. The amount of power discharged from the vehicle storage battery 28 is from the power detected by the power sensor 22D. It can be calculated from the power detected by the power sensor 124.

表示部52は、建物100内の余剰電力を系統電力12に還元するいわゆる売電の電力量等が表示可能である。また、本実施の形態に係る省エネ効果表示システム10を未導入の場合の消費電力量を算出し、省エネ効果表示システム10を導入した場合の消費電力量と対比させて表示部52に表示できる。   The display unit 52 can display the amount of electric power for so-called power sale for reducing surplus power in the building 100 to the grid power 12. Further, the power consumption amount when the energy saving effect display system 10 according to the present embodiment is not introduced can be calculated and displayed on the display unit 52 in comparison with the power consumption amount when the energy saving effect display system 10 is introduced.

図3は、本実施の形態に係る省エネ効果表示システム10の日次での処理の一例を示したフローチャートである。ステップ300では、省エネ効果表示システム10(以下、「本システム」と称する)を未導入の場合の1日の電気代(A)を算出する。具体的には、電力センサ22A〜22Dが各々検知した電力の合計を積算して、建物100の1日の消費電力量(kWh/日)を算出する。さらに、建物100の1日の消費電力量に系統電力12の単価である従量電灯料金(円/kWh)を乗算して本システムを未導入の場合の1日の電気代(A)を算出する。   FIG. 3 is a flowchart showing an example of daily processing of the energy saving effect display system 10 according to the present embodiment. In step 300, an electricity bill (A) for one day when the energy saving effect display system 10 (hereinafter referred to as “the present system”) has not been introduced is calculated. Specifically, the total power detected by the power sensors 22 </ b> A to 22 </ b> D is integrated to calculate the daily power consumption (kWh / day) of the building 100. Furthermore, the daily electricity consumption (A) when the system is not installed is calculated by multiplying the daily power consumption of the building 100 by the metered electricity charge (yen / kWh) which is the unit price of the system power 12. .

ステップ302では、本システムの蓄電池等使用による1日の電気料金の削減効果(B)を算出する。具体的には、蓄電池60及び車両32が1日に放電した電力量(kWh/日)に、深夜に電気料金が割安になる時間帯別電灯の深夜料金と昼間料金との差額(円/kWh)を下記の式(1)を用いて乗算することによって得る。
〔蓄電池等使用による1日の電気料金の削減効果(B)〕
=〔蓄電池等の放電電力量〕×{〔昼間料金〕−〔深夜料金〕} ・・・(1)
In step 302, the reduction effect (B) of the daily electricity bill due to the use of the storage battery or the like of this system is calculated. Specifically, the amount of power (kWh / day) discharged by the storage battery 60 and the vehicle 32 in one day is the difference between the midnight charge and the daytime charge (hour / night charge). ) Is multiplied by the following equation (1).
[Effects of reduction in daily electricity bills by using storage batteries, etc. (B)]
= [Discharged electric energy of storage battery] x {[Daytime charge]-[Late charge]} (1)

ステップ304では、本システムの燃料電池70の使用による1日の電気料金削減効果(C)を算出する。具体的には、燃料電池電力センサ124が検知した電力を積算して燃料電池70の1日の発電量(kWh/日)を算出する。さらに時間帯別電灯において、1日のうち、深夜料金が適用される時間と昼間料金が適用される時間との比に応じて、燃料電池70の1日の発電量を案分し、案分した発電量の各々に深夜料金又は昼間料金を乗算して各々得られた値を合計して、燃料電池70の1日の発電量に基づく電気料金を算出する。   In step 304, the daily electricity bill reduction effect (C) by using the fuel cell 70 of the present system is calculated. Specifically, the electric power detected by the fuel cell power sensor 124 is integrated to calculate the daily power generation amount (kWh / day) of the fuel cell 70. Furthermore, in the electric light according to time zone, the daily power generation amount of the fuel cell 70 is apportioned according to the ratio of the time at which the late-night fee is applied to the time at which the daytime fee is applied in the day. Electricity charges based on the daily power generation amount of the fuel cell 70 are calculated by summing the values obtained by multiplying each of the generated power generations by the late night charge or the daytime charge.

一例として、深夜料金が適用される時間が23時から翌朝7時までの8時間、昼間料金が適用される時間が7時から23までの16時間の場合、燃料電池70の1日の発電量に基づく電気料金は下記の式(2)によって算出される。
〔燃料電池の1日の発電量に基づく電気料金〕
=〔燃料電池の1日の発電量〕×8/24×〔深夜料金〕
+〔燃料電池の1日の発電量〕×16/24×〔昼間料金〕・・・(2)
または、深夜料金が適用される時間帯で燃料電池電力センサ124が検知した電力を積算して得た電力量に深夜料金を乗算、及び昼間料金が適用される時間帯で燃料電池電力センサ124が検知した電力を積算して得た電力量に昼間料金を乗算する。そして、各々乗算して得られた金額を合計することで、燃料電池70の1日の発電量に基づく電気料金を算出してもよい。
As an example, when the midnight rate is applied for 8 hours from 23:00 to 7:00 the next morning and the daytime rate is applied for 16 hours from 7:00 to 23, the amount of power generation per day of the fuel cell 70 The electricity bill based on is calculated by the following equation (2).
[Electricity charges based on daily power generation of fuel cells]
= [Electricity generated by fuel cell per day] x 8/24 x [midnight charge]
+ [Amount of power generated by the fuel cell per day] x 16/24 x [Daytime charge] (2)
Alternatively, the fuel cell power sensor 124 multiplies the amount of power obtained by integrating the power detected by the fuel cell power sensor 124 in the time zone in which the midnight fee is applied, and the fuel cell power sensor 124 in the time zone in which the daytime fee is applied. Multiply the detected power by the daytime charge. Then, the electricity rate based on the daily power generation amount of the fuel cell 70 may be calculated by summing the amounts obtained by multiplication.

さらに、燃料電池70が発電のために消費したガスの量(m)にガス料金の単価(円/m)を乗算して得た燃料電池70の発電コストを、前述の燃料電池70の1日の発電量に基づく電気料金から減算することにより、燃料電池70の使用による1日の電気料金削減効果(C)を算出する。 Furthermore, the power generation cost of the fuel cell 70 obtained by multiplying the amount (m 3 ) of the gas consumed by the fuel cell 70 for power generation by the unit price of the gas charge (yen / m 3 ) By subtracting from the electricity charge based on the amount of power generated per day, the effect of reducing the electricity charge per day (C) due to the use of the fuel cell 70 is calculated.

ステップ306では、本システムの太陽光発電装置16の使用による1日の売電効果(D)を算出する。具体的には、逆潮流時に主幹ブレーカー電力センサ120が検知した電力を積算して1日の売電実績(kWh/日)を算出する。そして、式(3)に示したように、算出した売電実績に売電単価(円/kWh)を乗算して本システムの太陽光発電装置16の使用による1日の電気料金削減効果(D)を算出する。
〔太陽光発電装置の使用による1日の売電効果(D)〕
=〔1日の売電実績〕×〔売電単価〕 ・・・(3)
In step 306, the daily power sale effect (D) due to the use of the solar power generation device 16 of the present system is calculated. Specifically, the power detected by the main breaker power sensor 120 during reverse power flow is integrated to calculate the actual power sales performance (kWh / day) for one day. Then, as shown in Expression (3), the calculated electricity sales result is multiplied by the electricity sales unit price (yen / kWh), and the effect of reducing the daily electricity bill by using the solar power generation device 16 of this system (D ) Is calculated.
[Effective power sales per day (D) using solar power generators]
= [Daily Power Sales Results] x [Power Sales Unit Price] (3)

ステップ308では、本システムの太陽光発電の自家消費による1日の電気料金削減効果(E)を算出する。売電時は、家電機器34等の電力負荷手段へは全て太陽光発電装置16から電力が供給されているので、下記の式(4)のように、電力センサ22A〜22Dが各々検知した電力量の和に時間帯別電灯の昼間料金を乗算して算出する。太陽光発電が可能なのは、日射がある昼間のみなので、時間帯別電灯であっても、太陽光発電の自家消費分の電気代は昼間料金のみを考慮すればよい。
〔太陽光発電の自家消費による1日の電気料金削減効果(E)〕
=〔各電力センサの測定値の和〕×〔昼間料金〕 ・・・(4)
In step 308, the daily electricity charge reduction effect (E) by the self-consumption of the solar power generation of this system is calculated. At the time of power sale, since power is supplied from the solar power generation device 16 to the power load means such as the home appliance 34, the power detected by the power sensors 22A to 22D as shown in the following formula (4). Calculated by multiplying the sum of the amount by the daytime charge of electric lights by time of day. Since solar power generation is possible only in the daytime when there is solar radiation, even if it is a light by time zone, the electricity bill for the self-consumption of solar power generation only needs to consider the daytime charge.
[Electricity cost reduction effect per day by private consumption of solar power generation (E)]
= [Sum of measured values of each power sensor] x [daytime charge] (4)

ステップ310では、本システム導入後の1日の電気代(F)を算出する。具体的には、系統電力12から建物100に電力が供給されている場合である潮流時に主幹ブレーカー電力センサ120が検知した電力を積算して1日の買電実績(kWh/日)を算出する。さらに時間帯別電灯において、1日のうち、深夜料金が適用される時間と昼間料金が適用される時間との比に応じて、1日の買電実績量を案分し、案分した買電実績の各々に深夜料金又は昼間料金を乗算して各々得られた値を合計して、本システム導入後の1日の電気代(F)を算出する。   In step 310, the daily electricity bill (F) after the introduction of the system is calculated. Specifically, the power purchased by the main breaker power sensor 120 during the tidal current when power is supplied from the grid power 12 to the building 100 is integrated to calculate the power purchase performance (kWh / day) for one day. . Furthermore, in the electric light by time of day, according to the ratio of the time when the midnight charge is applied and the time when the daytime charge is applied during the day, the daily power purchase amount is prorated and the prorated purchase is made. Multiply each of the electricity performances by the late-night charge or daytime charge, and add up the values obtained to calculate the daily electricity bill (F) after the introduction of this system.

一例として、深夜料金が適用される時間が23時から翌朝7時までの8時間、昼間料金が適用される時間が7時から23までの16時間の場合、本システム導入後の1日の電気代(F)は下記の式(5)によって算出される。
〔本システム導入後の1日の電気代(F)〕
=〔1日の買電実績〕×8/24×〔深夜料金〕
+〔1日の買電実績〕×16/24×〔昼間料金〕 ・・・(5)
または、深夜料金が適用される時間帯で潮流時に主幹ブレーカー電力センサ120が検知した電力を積算して得た電力量に深夜料金を乗算、及び昼間料金が適用される時間帯で潮流時に主幹ブレーカー電力センサ120が検知した電力を積算して得た電力量に昼間料金を乗算する。そして、各々乗算して得られた金額を合計することで、本システム導入後の1日の電気代(F)を算出してもよい。
As an example, if the midnight charge is applied for 8 hours from 23:00 to 7:00 the next morning and the daytime charge is applied for 16 hours from 7:00 to 23, the electricity for the day after the introduction of this system The allowance (F) is calculated by the following equation (5).
[One-day electricity bill (F) after introduction of this system]
= [Electricity purchase per day] x 8/24 x [midnight charge]
+ [Daily power purchases] x 16/24 x [daytime charges] (5)
Alternatively, the amount of power obtained by integrating the power detected by the main breaker power sensor 120 at the time of the tide in the time zone where the midnight fee is applied is multiplied by the midnight fee, and the main breaker at the time of the tide in the time zone where the daytime fee is applied The amount of power obtained by integrating the power detected by the power sensor 120 is multiplied by the daytime charge. And you may calculate the electricity bill (F) of 1 day after this system introduction by totaling the moneys obtained by each multiplication.

ステップ312では、上述の(A)〜(F)の算出値を棒グラフ表示すると共に、各算出値をHDD44に記憶する。図5は、年度別ではあるが、本実施の形態における算出値の棒グラフ表示の一例を示す概略図である。図5では、本システムを未導入の場合の電気代と、本システム導入後の電気代(最終電気代)が対比されて表示され、その他、売電効果、燃料電池の効果、蓄電池等の効果、自家消費削減効果等が表示されている。本システム導入後の棒グラフは、表示領域をタッチする等によって選択すると、その領域の項目名と金額が吹き出し状に表示される。   In step 312, the calculated values (A) to (F) described above are displayed in a bar graph and each calculated value is stored in the HDD 44. FIG. 5 is a schematic diagram showing an example of a bar graph display of calculated values in the present embodiment, although it is by year. In FIG. 5, the electricity bill when the system is not introduced and the electricity bill after the introduction of the system (final electricity bill) are displayed in comparison, and other effects such as power sale effect, fuel cell effect, storage battery, etc. The self-consumption reduction effect is displayed. When the bar graph after the introduction of this system is selected by touching the display area, the item name and amount of the area are displayed in a balloon shape.

ステップ314では、本システムの減価償却までの時間を算出する。本実施の形態では、本システムの設置に要したコストを、本システム未導入の場合の電気代(A)と本システム導入後の電気代(最終電気代)(F)との差額で除算することにより算出する。   In step 314, the time until depreciation of the system is calculated. In the present embodiment, the cost required for the installation of the system is divided by the difference between the electricity bill (A) when the system is not installed and the electricity bill (final electricity bill) (F) after the introduction of the system. To calculate.

ステップ316では、本システムの減価償却までの時間を表示部52に表示して処理を終了する。図6は、年度別ではあるが、本実施の形態における減価償却までの時間表示の一例を示す概略図である。図6では、上から2行目に月次ベース、同3行目に年次ベースでの本システム未導入の場合の電気代と本システム導入後の1日の電気代との差額が表示され、同4行目に、減価償却されるまでの時間が表示されている。   In step 316, the time until depreciation of the system is displayed on the display unit 52, and the process is terminated. FIG. 6 is a schematic diagram showing an example of time display until depreciation in the present embodiment, although it is by year. In FIG. 6, the difference between the electricity cost when the system is not installed on the monthly basis and the annual basis is shown on the second line from the top and the one-day electricity cost after the system is installed on the third line. In the same line, the time until depreciation is displayed.

図4は、本実施の形態に係る省エネ効果表示システム10の月次又は年次での処理の一例を示したフローチャートである。ステップ400では、図3のステップ300で算出してHDD44に記憶した本システムを未導入の場合の1日の電気代(A)を1カ月分又は1年分集計することにより、1カ月又は1年の本システムを未導入の場合の電気代(A)を算出する。   FIG. 4 is a flowchart showing an example of monthly or yearly processing of the energy saving effect display system 10 according to the present embodiment. In step 400, one month or one year is calculated by totaling one month's or one year's electricity bill (A) when the system calculated in step 300 of FIG. 3 and stored in the HDD 44 is not installed. Calculate the electricity bill (A) when the year system is not installed.

ステップ402では、図3のステップ302で算出してHDD44に記憶した本システムの蓄電池等使用による1日の電気料金の削減効果(B)を1カ月分又は1年分集計することにより、1カ月又は1年の本システムの蓄電池等使用による電気料金の削減効果(B)を算出する。   In step 402, the reduction effect (B) of the daily electricity charge due to the use of the storage battery etc. of this system calculated in step 302 of FIG. 3 and stored in the HDD 44 is summed for one month or one year, thereby totaling one month. Or the reduction effect (B) of the electricity bill by using the storage battery etc. of this system for one year is calculated.

ステップ404では、図3のステップ304で算出してHDD44に記憶した本システムの燃料電池70の使用による1日の電気料金削減効果(C)を1カ月分又は1年分集計することにより、1カ月又は1年の本システムの燃料電池70の使用による電気料金削減効果(C)を算出する。   In step 404, the daily electricity charge reduction effect (C) by the use of the fuel cell 70 of the present system calculated in step 304 of FIG. 3 and stored in the HDD 44 is totaled for one month or one year. The electricity charge reduction effect (C) by using the fuel cell 70 of this system for one month or one year is calculated.

ステップ406では、図3のステップ306で算出してHDD44に記憶した本システムの太陽光発電装置16の使用による1日の売電効果(D)を1カ月分又は1年分集計することにより、1カ月又は1年の本システムの太陽光発電装置16の使用による売電効果(D)を算出する。   In step 406, the daily power sales effect (D) by using the solar power generation device 16 of the present system calculated in step 306 of FIG. 3 and stored in the HDD 44 is totaled for one month or one year. The power sale effect (D) by using the solar power generation device 16 of the present system for one month or one year is calculated.

ステップ408では、図3のステップ310で算出してHDD44に記憶した本システム導入後の1日の電気代(F)を1カ月分又は1年分集計することにより、1カ月又は1年の本システム導入後の電気代(E)を算出する。又は、情報サーバ90から本システム導入後の建物100の電気代の記録をダウンロードしてもよい。   In step 408, one-month or one-year books are calculated by summing up one-day or one-year electricity costs (F) calculated after step 310 in FIG. Calculate the electricity bill (E) after system introduction. Or you may download the record of the electricity bill of the building 100 after this system introduction from the information server 90. FIG.

ステップ410では、下記の式(6)のように、ステップ400で算出した(A)からステップ402〜408で各々算出した、(B)、(C)、(D)及び(E)を減算して1カ月又は1年の本システムの太陽光発電の自家消費による電気料金削減効果(F)を算出する。
〔太陽光発電の自家消費による電気料金削減効果(F)〕
=(A)−{(B)+(C)+(D)+(E)} ・・・(6)
In step 410, (B), (C), (D), and (E) calculated in steps 402 to 408 are subtracted from (A) calculated in step 400 as shown in the following equation (6). The electricity rate reduction effect (F) due to self-consumption of solar power generation of this system for one month or one year is calculated.
[Electricity cost reduction effect by self-consumption of solar power generation (F)]
= (A)-{(B) + (C) + (D) + (E)} (6)

1カ月又は1年の本システムの太陽光発電の自家消費による電気料金削減効果(F)は、図3のステップ308で算出してHDD44に記憶した本システムの太陽光発電の自家消費による1日の電気料金削減効果(E)を1カ月分又は1年分集計して算出してもよい。   The electricity charge reduction effect (F) due to self-consumption of solar power generation of this system for one month or one year is calculated based on the self-consumption of solar power generation of this system calculated in step 308 of FIG. The electricity cost reduction effect (E) may be calculated by totaling for one month or one year.

ステップ412では、前述の図5のように、算出値の各々を棒グラフ表示する。図5の自家消費削減効果は、図4のステップ410で算出した1年の本システムの太陽光発電の自家消費による電気料金削減効果(F)である。   In step 412, each calculated value is displayed as a bar graph as shown in FIG. The self-consumption reduction effect of FIG. 5 is the electricity rate reduction effect (F) due to the self-consumption of solar power generation of this system for one year calculated in step 410 of FIG.

ステップ414では、本システムの減価償却までの時間を算出する。本実施の形態では、本システムの設置に要したコストを、本システム未導入の場合の電気代(A)と本システム導入後の電気代(最終電気代)(E)との差額で除算することにより算出する。   In step 414, the time until depreciation of the system is calculated. In the present embodiment, the cost required for the installation of the system is divided by the difference between the electricity cost (A) when the system is not installed and the electricity cost (final electricity cost) (E) after the system is installed. To calculate.

ステップ416では、図6に示したように、本システムの減価償却までの時間を表示部52に表示して処理を終了する。   In step 416, as shown in FIG. 6, the time until depreciation of the present system is displayed on the display unit 52, and the process ends.

以上説明したように、本実施の形態によれば、本システムを未導入の場合の電気代を算出すると共に、本システムの給電機器の発電による効果及び本システムを導入した場合の電気代を算出し、各々の算出値を対比可能に表示している。その結果、給電機器による省エネルギーの効果を的確に表示できる省エネ効果表示システムを提供することができる。   As described above, according to the present embodiment, the electricity cost when the system is not installed is calculated, and the effect of power generation of the power feeding device of the system and the electricity cost when the system is installed are calculated. Each calculated value is displayed in a comparable manner. As a result, it is possible to provide an energy saving effect display system that can accurately display the energy saving effect of the power feeding device.

10 省エネ効果表示システム
12 系統電力
14 分電盤
16 太陽光発電装置
18 太陽光発電制御装置
22A,22B,22C,22D 電力センサ
26 車両連結部
28 車両用蓄電池
30 HEMS
32 車両
34 家電機器
42 CPU
44 HDD
46 RAM
48 ネットワークI/F部
50 ROM
52 表示部
54 操作入力部
56 バス
60 蓄電池
62 蓄電池制御装置
70 燃料電池
100 建物
120 主幹ブレーカー電力センサ
122 太陽光発電用ブレーカー電力センサ
124 燃料電池電力センサ
DESCRIPTION OF SYMBOLS 10 Energy saving effect display system 12 System electric power 14 Distribution board 16 Solar power generation device 18 Photovoltaic power generation control device 22A, 22B, 22C, 22D Power sensor 26 Vehicle connection part 28 Vehicle storage battery 30 HEMS
32 Vehicle 34 Home Appliance 42 CPU
44 HDD
46 RAM
48 Network I / F 50 ROM
52 Display Unit 54 Operation Input Unit 56 Bus 60 Storage Battery 62 Storage Battery Control Device 70 Fuel Cell 100 Building 120 Main Breaker Power Sensor 122 Photovoltaic Breaker Power Sensor 124 Fuel Cell Power Sensor

Claims (2)

電力を建物内の分電盤に供給する給電機器と、
前記分電盤に供給された系統電力の電力量を計測する系統電力計測手段と、
前記分電盤から電力負荷手段に供給された電力量を計測する負荷電力計測手段と、
前記系統電力計測手段が計測した前記系統電力から前記分電盤に供給された電力量に電気料金の単価を乗算して前記給電機器の省エネルギー効果を含む電気代を算出すると共に、前記負荷電力計測手段が計測した電力量に電力料金の単価を乗算して前記給電機器の省エネルギー効果を含まない電気代を算出する演算手段と、
前記演算手段が算出した、省エネルギー効果を含む電気代と省エネルギー効果を含まない電気代とを比較して表示する表示手段と、
を備えた省エネ効果表示システム。
A power supply device that supplies power to a distribution board in the building;
Grid power measuring means for measuring the amount of grid power supplied to the distribution board;
Load power measuring means for measuring the amount of power supplied from the distribution board to the power load means;
The amount of power supplied from the grid power measured by the grid power measuring means to the distribution board is multiplied by the unit price of an electricity bill to calculate an electricity bill including an energy saving effect of the power feeding device, and the load power measurement An arithmetic means for calculating an electricity bill not including the energy saving effect of the power supply device by multiplying the electric energy measured by the means by the unit price of the power charge;
Display means for comparing and displaying the electricity bill including the energy saving effect and the electricity bill not including the energy saving effect calculated by the computing means;
Energy saving effect display system with
前記給電機器から前記分電盤に供給された電力量を計測する給電機器電力計測手段をさらに備え、
前記系統電力計測手段は、前記分電盤から前記系統電力に売電した電力量をさらに計測し、
前記演算手段は、売電時に、前記系統電力計測手段が計測した電力量、及び前記負荷電力計測手段が計測した電力量に各々電気料金の単価を乗算して、売電金額及び自家消費した給電機器の電力の金額をさらに算出し、
前記表示手段は、売電金額及び自家消費した給電機器の電力の金額をさらに表示する請求項1に記載の省エネ効果表示システム。
A power supply device power measuring means for measuring the amount of power supplied from the power supply device to the distribution board;
The grid power measuring means further measures the amount of power sold to the grid power from the distribution board,
The calculating means multiplying the power amount measured by the grid power measuring means and the power amount measured by the load power measuring means, respectively, at the time of power sale, by the unit price of the electricity bill, and the power sale amount and the power consumption consumed privately Further calculate the amount of power for the device,
The energy saving effect display system according to claim 1, wherein the display unit further displays the amount of power sold and the amount of power of power supply equipment consumed by the house.
JP2014132912A 2014-06-27 2014-06-27 Energy saving effect display system Active JP6198683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014132912A JP6198683B2 (en) 2014-06-27 2014-06-27 Energy saving effect display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014132912A JP6198683B2 (en) 2014-06-27 2014-06-27 Energy saving effect display system

Publications (2)

Publication Number Publication Date
JP2016012967A true JP2016012967A (en) 2016-01-21
JP6198683B2 JP6198683B2 (en) 2017-09-20

Family

ID=55229362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014132912A Active JP6198683B2 (en) 2014-06-27 2014-06-27 Energy saving effect display system

Country Status (1)

Country Link
JP (1) JP6198683B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121385A (en) * 2017-01-23 2018-08-02 ダイキン工業株式会社 Hydraulic power generating system
KR20180096357A (en) * 2017-02-21 2018-08-29 주식회사 티팩토리 IoT-based Smart Distribution Panelboard Control Apparatus for Mobile Communication
JP2021105793A (en) * 2019-12-26 2021-07-26 株式会社日立製作所 Distributed power source management device and distributed power source management method
JP7511361B2 (en) 2019-03-27 2024-07-05 大阪瓦斯株式会社 Distributed power generation system capable of displaying energy charges and method for displaying energy charges

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152970A (en) * 2000-11-14 2002-05-24 Sekisui House Ltd Display for showing effects of introducing photovoltaic power generating system into housing
JP2008141843A (en) * 2006-11-30 2008-06-19 Matsushita Electric Works Ltd Energy apparatus operating status display monitor
US20120215371A1 (en) * 2009-10-26 2012-08-23 Daegeun Seo Method of controlling network system
JP2012191825A (en) * 2011-03-14 2012-10-04 Toyota Motor Corp Energy management system
JP2013164839A (en) * 2009-12-25 2013-08-22 Japan Techno Co.Ltd Energy saving action sheet
JP2013255394A (en) * 2012-06-08 2013-12-19 Toyota Home Kk Energy management control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002152970A (en) * 2000-11-14 2002-05-24 Sekisui House Ltd Display for showing effects of introducing photovoltaic power generating system into housing
JP2008141843A (en) * 2006-11-30 2008-06-19 Matsushita Electric Works Ltd Energy apparatus operating status display monitor
US20120215371A1 (en) * 2009-10-26 2012-08-23 Daegeun Seo Method of controlling network system
JP2013164839A (en) * 2009-12-25 2013-08-22 Japan Techno Co.Ltd Energy saving action sheet
JP2012191825A (en) * 2011-03-14 2012-10-04 Toyota Motor Corp Energy management system
JP2013255394A (en) * 2012-06-08 2013-12-19 Toyota Home Kk Energy management control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121385A (en) * 2017-01-23 2018-08-02 ダイキン工業株式会社 Hydraulic power generating system
KR20180096357A (en) * 2017-02-21 2018-08-29 주식회사 티팩토리 IoT-based Smart Distribution Panelboard Control Apparatus for Mobile Communication
KR102043441B1 (en) * 2017-02-21 2019-11-12 주식회사 티팩토리 IoT-based Smart Distribution Panelboard Control Apparatus for Mobile Communication
JP7511361B2 (en) 2019-03-27 2024-07-05 大阪瓦斯株式会社 Distributed power generation system capable of displaying energy charges and method for displaying energy charges
JP7511360B2 (en) 2019-03-27 2024-07-05 大阪瓦斯株式会社 Distributed power generation system capable of displaying repair costs and repair cost display method
JP2021105793A (en) * 2019-12-26 2021-07-26 株式会社日立製作所 Distributed power source management device and distributed power source management method
JP7333265B2 (en) 2019-12-26 2023-08-24 株式会社日立製作所 Distributed power supply management device and distributed power supply management method

Also Published As

Publication number Publication date
JP6198683B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
Bhatti et al. Optimized sizing of photovoltaic grid‐connected electric vehicle charging system using particle swarm optimization
e Silva et al. Photovoltaic self-sufficiency of Belgian households using lithium-ion batteries, and its impact on the grid
Nagarajan et al. Design and strategy for the deployment of energy storage systems in a distribution feeder with penetration of renewable resources
JP5353957B2 (en) Power supply system
Darcovich et al. Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems
do Nascimento et al. Evaluating distributed photovoltaic (PV) generation to foster the adoption of energy storage systems (ESS) in time-of-use frameworks
JP2014150641A (en) Energy management system, energy management method, program, and server device
JP5380413B2 (en) Electric energy calculation device, electric energy calculation server, electric energy calculation system, and electric energy calculation method
WO2014136362A1 (en) Energy management system, energy management method, and program
Rautiainen Aspects of electric vehicles and demand response in electricity grids
Calearo et al. Comparison of smart charging and battery energy storage system for a pv prosumer with an ev
JP6045945B2 (en) Energy management system, energy management method, program, and server device
Koko Optimal battery sizing for a grid-tied solar photovoltaic system supplying a residential load: A case study under South African solar irradiance
Singh et al. Benefit maximization and optimal scheduling of renewable energy sources integrated system considering the impact of energy storage device and Plug-in Electric vehicle load demand
O'Connell et al. Electric vehicle (EV) charging management with dynamic distribution system tariff
JP6198683B2 (en) Energy saving effect display system
Bedi et al. A technical review on solar-net metering
Purvins et al. Electric vehicle charging system model for accurate electricity system planning
Bakht et al. Techno-economic modelling of hybrid energy system to overcome the load shedding problem: A case study of Pakistan
Faisal et al. Development of smart energy meter for energy cost analysis of conventional grid and solar energy
Lima et al. Stochastic approach for economic viability of photovoltaic systems with battery storage for big electricity consumers in the regulated marketin Brazil
Cerna A hybrid PV scheme as support to relieve congestion in the domestic supply network
JP6698371B2 (en) Electric charge management device, electric charge management method and program
JP6037678B2 (en) Storage battery charge / discharge control device and storage battery charge / discharge control system
JP2013077078A (en) Power information management device and power information management program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170822

R150 Certificate of patent or registration of utility model

Ref document number: 6198683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250