JP2016011849A - Method for screening preventive therapeutic agent for alzheimer's disease - Google Patents

Method for screening preventive therapeutic agent for alzheimer's disease Download PDF

Info

Publication number
JP2016011849A
JP2016011849A JP2014132309A JP2014132309A JP2016011849A JP 2016011849 A JP2016011849 A JP 2016011849A JP 2014132309 A JP2014132309 A JP 2014132309A JP 2014132309 A JP2014132309 A JP 2014132309A JP 2016011849 A JP2016011849 A JP 2016011849A
Authority
JP
Japan
Prior art keywords
app
tmem30a
βctf
alzheimer
disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014132309A
Other languages
Japanese (ja)
Other versions
JP6391318B2 (en
Inventor
展正 高杉
Nobumasa Takasugi
展正 高杉
櫻井 隆
Takashi Sakurai
隆 櫻井
瑠奈 清水
Runa Shimizu
瑠奈 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juntendo University
Original Assignee
Juntendo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juntendo University filed Critical Juntendo University
Priority to JP2014132309A priority Critical patent/JP6391318B2/en
Publication of JP2016011849A publication Critical patent/JP2016011849A/en
Application granted granted Critical
Publication of JP6391318B2 publication Critical patent/JP6391318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a screening method for a new therapeutic agent for Alzheimer's disease to analyze a cause of Alzheimer's disease.SOLUTION: A method for screening preventive therapeutic agent for Alzheimer's disease is provided that measures a drug interaction between Transmembrane protein (TMEM) 30A and βCTF or APP, in the presence of a test substance.

Description

本発明は、アルツハイマー病予防治療薬をスクリーニングする方法に関する。   The present invention relates to a method for screening for a drug for preventing and treating Alzheimer's disease.

アルツハイマー病では、びまん性の脳萎縮、大脳皮質に老人斑(アミロイドβ(Aβ)の沈着像)と、アルツハイマー型神経原線維変化の広範囲出現がみられる。家族性アルツハイマー病は遺伝子変異によりAβ産生制御の異常が生じるが、孤発性アルツハイマー病の発症原因は解明されていない。   In Alzheimer's disease, diffuse brain atrophy, senile plaques (amyloid β (Aβ) deposits) in the cerebral cortex, and widespread appearance of Alzheimer-type neurofibrillary tangles are observed. In familial Alzheimer's disease, abnormalities in the control of Aβ production occur due to genetic mutation, but the cause of the onset of sporadic Alzheimer's disease has not been elucidated.

一方、エンドソームの蓄積、巨大化はダウン症やアルツハイマー病の初期にみられる現象であり、エンドソームの蓄積には、アミロイドβ前駆体蛋白質(APP)及びBACE1((beta-site amyloid precursor protein cleaving enzyme 1)活性が必要であるが、Aβは必要ないと報告されている(非特許文献1)。BACE1産物であり、Aβの前駆体であるAPPのカルボキシ末端断片(βCTF)は、エンドソームの蓄積、巨大化を引き起こすことが報告されている。βCTFのエンドソームにおける蓄積は、エンドソームの肥大化、ライソソームにおける代謝障害につながる、Traffic jam仮説が考えられているが、その分子機構はわかっていなかった。   On the other hand, the accumulation and enlargement of endosomes is a phenomenon observed in the early stages of Down's syndrome and Alzheimer's disease. The accumulation of endosomes includes amyloid β precursor protein (APP) and BACE1 ((beta-site amyloid precursor protein cleaving enzyme 1). It is reported that activity is required but Aβ is not necessary (Non-patent Document 1) A carboxy-terminal fragment (βCTF) of APP, which is a BACE1 product and a precursor of Aβ, accumulates and enlarges endosomes. The traffic jam hypothesis is considered that the accumulation of βCTF in endosomes leads to hypertrophy of endosomes and metabolic disorders in lysosomes, but the molecular mechanism was unknown.

PNAS, Jiang et al., 2010; 107(4):1630-5PNAS, Jiang et al., 2010; 107 (4): 1630-5 Nature,Lauren et al., 2009; 457(7233):1128-32Nature, Lauren et al., 2009; 457 (7233): 1128-32

アルツハイマー病疾患の90%を占める孤発性アルツハイマー病の原因は明確になっておらず、その解明が待たれている。
従って、本発明の課題は、アルツハイマー病の原因解明と新たなアルツハイマー病治療薬のスクリーニング方法を提供することにある。
The cause of sporadic Alzheimer's disease, which accounts for 90% of Alzheimer's disease, has not been clarified and its elucidation is awaited.
Therefore, an object of the present invention is to provide a method for elucidating the cause of Alzheimer's disease and a screening method for a new therapeutic agent for Alzheimer's disease.

そこで、本発明者は、エンドソーム−ライソソーム機構を解明すべく、P4−ATPaseファミリータンパク質と複合体をつくり、Lipid Flippaseを形成することが知られているTMEM30A(Transmembrane protein 30A(別名CDC50A))に着目した。TMEM30Aは、凝集Aβと結合し、細胞膜上で凝集Aβの受容体として機能する可能性が示唆されている(非特許文献2)が、Aβ産生機構やアルツハイマー病発症機構に対する影響は不明であった。TMEM30Aは、Aβ前駆体であるAPPと共発現させると小胞の肥大化を誘導し、エンドソーム形態を変化させること、さらには肥大化したエンドソームは各種エンドソームが融合し、ライソソームへの成熟が阻害されていることを見出した。また、TMEM30AはAPPと結合してAPPを蓄積させる作用を有すること、TMEM30AとAPPの結合部位がBACE1活性により産生されるAPPカルボキシル末端ドメインであるβCTF領域にあることも見出した。かかる知見から、TMEM30AとAPP又はβCTFとの結合を阻害する物質を探索すれば、小胞の肥大化を抑制でき新たなアルツハイマー病予防治療薬がスクリーニングできることを見出し、本発明を完成した。   Therefore, the present inventor focused on TMEM30A (Transmembrane protein 30A (also known as CDC50A)), which is known to form a complex with P4-ATPase family protein and to form Lipid Flippase in order to elucidate the endosome-lysosome mechanism. did. It has been suggested that TMEM30A binds to aggregated Aβ and functions as a receptor for aggregated Aβ on the cell membrane (Non-patent Document 2), but the effect on Aβ production mechanism and Alzheimer's disease onset mechanism was unclear. . TMEM30A induces hypertrophy of vesicles when co-expressed with APP, an Aβ precursor, changes endosomal morphology, and the enlarged endosome fuses with various endosomes and inhibits maturation into lysosomes. I found out. It was also found that TMEM30A has an action of binding APP by accumulating APP, and that the binding site of TMEM30A and APP is in the βCTF region, which is an APP carboxyl terminal domain produced by BACE1 activity. From this finding, it was found that searching for a substance that inhibits the binding between TMEM30A and APP or βCTF can suppress the enlargement of vesicles and screen for a new preventive and therapeutic drug for Alzheimer's disease, thereby completing the present invention.

すなわち、本発明は、次の〔1〕〜〔3〕を提供するものである。   That is, the present invention provides the following [1] to [3].

〔1〕被験物質の存在下に、TMEM30AとβCTF又はAPPとの相互作用を測定することを特徴とするアルツハイマー病予防治療薬のスクリーニング方法。
〔2〕TMEM30AとβCTF又はAPPとの相互作用が、TMEM30AとβCTF又はAPPとの結合阻害作用である〔1〕記載のスクリーニング方法。
〔3〕TMEM30AとβCTF又はAPPとの相互作用が、培養細胞又は非ヒト動物においてTMEM30AとβCTF又はAPPを共発現させて小胞体の肥大化又はAPP発現量の変化を検出するものである〔1〕記載のスクリーニング方法。
[1] A screening method for an Alzheimer's disease prophylactic or therapeutic agent, comprising measuring an interaction between TMEM30A and βCTF or APP in the presence of a test substance.
[2] The screening method according to [1], wherein the interaction between TMEM30A and βCTF or APP is a binding inhibitory action between TMEM30A and βCTF or APP.
[3] The interaction between TMEM30A and βCTF or APP allows TMEM30A and βCTF or APP to be coexpressed in cultured cells or non-human animals to detect hypertrophy of the endoplasmic reticulum or changes in APP expression [1] ] The screening method of description.

本発明方法によれば、アルツハイマー病やダウン症の初期に生じるエンドソームの肥大化を抑制するという、新たな作用機序のアルツハイマー病予防治療薬を探索できる。   According to the method of the present invention, it is possible to search for an Alzheimer's disease preventive or therapeutic drug having a new mechanism of action, which suppresses endosomal hypertrophy that occurs in the early stages of Alzheimer's disease or Down's syndrome.

TMEM30AとAPPの共発現による小胞の変化を示す。The change of the vesicle by co-expression of TMEM30A and APP is shown. TMEM30AとAPPの共発現による小胞の変化を示す。The change of the vesicle by co-expression of TMEM30A and APP is shown. TMEM30AとAPPの相互作用を示す。The interaction of TMEM30A and APP is shown. TMEM30AとAPPの直接相互作用を示す。The direct interaction of TMEM30A and APP is shown. TMEM30AによるAPP蓄積を示す。APP accumulation by TMEM30A is shown. 肥大化したエンドソームの性質を示す。Shows the nature of enlarged endosomes. Aβ結合化合物のTMEM30AとβCTFの結合に及ぼす作用を示す。The effect | action which acts on the coupling | bonding of TMEM30A and (beta) CTF of an A (beta) binding compound is shown. Aβ結合化合物のTMEM30AとβCTFの結合に及ぼす作用を示す。The effect | action which acts on the coupling | bonding of TMEM30A and (beta) CTF of an A (beta) binding compound is shown.

TMEM30Aは、APPと結合する作用を有し、その結合部位はβCTF中に存在する。一方、TMEM30AとAPPとを細胞中で共発現させると小胞であるエンドソームが肥大化する。このエンドソームの肥大化は、アルツハイマー病の初期に生じることである。従って、被験物質の存在下に、TMEM30AとβCTF又はAPPとの相互作用を測定し、TMEM30AとβCTF又はAPPとの結合を阻害する物質を選択すれば、アルツハイマー病の予防治療薬が探索できる。   TMEM30A has an action of binding to APP, and the binding site is present in βCTF. On the other hand, when TMEM30A and APP are co-expressed in cells, endosomes that are vesicles are enlarged. This enlargement of endosomes occurs early in Alzheimer's disease. Therefore, by measuring the interaction between TMEM30A and βCTF or APP in the presence of the test substance and selecting a substance that inhibits the binding between TMEM30A and βCTF or APP, a prophylactic or therapeutic drug for Alzheimer's disease can be searched.

TMEM30AとβCTF又はAPPとの相互作用の測定は、in vitroでもin vivoでも行うことができる。in vitroの測定方法としては、例えば次の方法が挙げられる。
(1)TMEM30AとβCTF又はAPPとを含む溶液における両者の結合性と、これに被験物質を添加した場合の結合性を対比する。
ここで、TMEM30AとβCTF又はAPPとの結合性は、これらの抗体を用いた免疫沈降、GST融合タンパク質を用いた解析等により検出できる。
The measurement of the interaction between TMEM30A and βCTF or APP can be performed in vitro or in vivo. Examples of in vitro measurement methods include the following methods.
(1) The binding property of a solution containing TMEM30A and βCTF or APP is compared with the binding property when a test substance is added thereto.
Here, the binding property between TMEM30A and βCTF or APP can be detected by immunoprecipitation using these antibodies, analysis using GST fusion protein, or the like.

(2)被験物質の存在下で、TMEM30AとβCTF又はAPPとの共発現細胞を培養し、両者の共発現性を検出する。被験物質を添加していない場合の共発現性と対比する。このとき、TMEM30AとβCTF又はAPPとの共発現性は、これらの抗体を用いた免疫沈降、APPの発現増強の有無等により検出できる。 (2) In the presence of a test substance, co-expressing cells of TMEM30A and βCTF or APP are cultured, and the co-expression of both is detected. Contrast with co-expression when no test substance is added. At this time, co-expression of TMEM30A and βCTF or APP can be detected by immunoprecipitation using these antibodies, presence or absence of enhanced expression of APP, and the like.

(3)被験物質の存在下で、TMEM30AとβCTF又はAPPとの共発現細胞を培養し、培養した細胞の小胞の肥大化を検出する。被験物質を添加していない場合の小胞の肥大化と対比する。 (3) In the presence of a test substance, co-expressing cells of TMEM30A and βCTF or APP are cultured, and the vesicle hypertrophy of the cultured cells is detected. Contrast with enlargement of vesicles when no test substance is added.

in vivoの測定は、被験物質を投与したアルツハイマー病モデルマウスを用いて、小胞の肥大化又はAPPの発現変化を検出すればよい。被験物質を投与しないモデルマウスの小胞又はAPPと対比すればよい。ここでアルツハイマー病モデルマウスとしては、J20(家族性変異APP(スウェーデン型およびロンドン型の二重変異)を過剰発現するマウス)、TG2576(家族性変異APP(スウェーデン型変異)を過剰発現するマウス)等が挙げられる。   In vivo measurement may be performed by detecting vesicle hypertrophy or APP expression change using an Alzheimer's disease model mouse administered with a test substance. What is necessary is just to contrast with the vesicle or APP of the model mouse which does not administer a test substance. Here, as an Alzheimer's disease model mouse, J20 (a mouse overexpressing familial mutation APP (Swedish and London double mutation)), TG2576 (a mouse overexpressing familial mutation APP (Swedish mutation)) Etc.

次に実施例を挙げて、本発明を更に詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.

試験例1
培養細胞にAPPとTMEM30Aを共発現させた。すなわち、アフリカミドリザル由来COS−7細胞に蛍光タンパク質Venusをカルボキシ末端に融合させたAPP−Venus、及びアミノ末端に蛍光たんぱく質mCherryを融合させたTMEM30Aを、Fugene HD(プロメガ)を用いて遺伝子導入を行った。遺伝子導入24時間後の細胞を4%パラホルムアルデヒドを含むリン酸緩衝液で固定し、水溶性封入剤により観察用サンプルを作成した。APPとTMEM30Aの共発現は、蛍光顕微鏡により確認した(図1、A)。培養細胞中の小胞の大きさと、APPとTMEM30Aの共発現を測定した(図1、B)。その結果、APPとTMEM30Aの共発現により、小胞が肥大化することが判明した(図1、B)。
Test example 1
APP and TMEM30A were co-expressed in cultured cells. Specifically, APP-Venus in which the fluorescent protein Venus was fused to the carboxy terminus of COS-7 cells derived from African green monkeys, and TMEM30A in which the fluorescent protein mCherry was fused to the amino terminus were transferred using Fugene HD (Promega). It was. Cells 24 hours after gene introduction were fixed with a phosphate buffer containing 4% paraformaldehyde, and a sample for observation was prepared using a water-soluble mounting medium. The co-expression of APP and TMEM30A was confirmed by a fluorescence microscope (FIG. 1, A). The size of vesicles in cultured cells and the co-expression of APP and TMEM30A were measured (FIG. 1, B). As a result, it was found that vesicles were enlarged by co-expression of APP and TMEM30A (FIG. 1, B).

COS−7細胞にAPPと蛍光たんぱく質CFPをアミノ末端に融合させたTMEM30AをFugene HDを用いて遺伝子導入した。遺伝子導入24時間後の細胞をAPP抗体 (APP(C):IBL社)、初期エンドソームマーカーであるRab−5抗体(D−11:サンタクルズ社)を用いて免疫染色を行った。
その結果、(図2)TMEM30AとAPPの共発現により、小胞の肥大化が確認されるとともに、Rab−5が肥大化した小胞に集積する事が判明した、すなわちTMEM30AとAPPの共発現により肥大化した小胞はエンドソームとしての性質を持つ事がわかった。
TMEM30A in which APP and the fluorescent protein CFP were fused to the amino terminus was introduced into COS-7 cells using Fugene HD. Cells 24 hours after gene transfer were immunostained using APP antibody (APP (C): IBL) and Rab-5 antibody (D-11: Santa Cruz), which is an early endosome marker.
As a result, (FIG. 2) it was found that the co-expression of TMEM30A and APP confirmed the enlargement of vesicles and that Rab-5 accumulated in the enlarged vesicles, that is, co-expression of TMEM30A and APP. It was found that the vesicles enlarged by the above have properties as endosomes.

試験例2
野生型マウスの脳と、培養細胞(APPとTMEM30Aの共発現細胞)における、TMEM30AとAPPの相互作用を検討した。すなわち、8週齢の野生型マウス脳海馬、またはCOS−7にAPPとCFP融合TMEM30AをLipofectamine2000(Life Technologies社)で遺伝子導入し、48時間後の細胞を、1%CHAPSを含む溶解緩衝液(50mM HEPES,pH7.4,150mM NaCl,1mM EDTAにプロテアーゼ阻害剤カクテルを加えたもの)で溶解し、マウス海馬はTMEM30Aの抗体、培養細胞はGFP抗体(3E6 Life Technologies社)を用いて免疫沈降実験を行った。
その結果、マウスでも共発現細胞でも、TMEM30AはAPPと結合し、その結合はβCTF特異的であることがわかった(図3)。
Test example 2
The interaction between TMEM30A and APP in the brain of wild-type mice and cultured cells (cells that co-expressed APP and TMEM30A) was examined. Specifically, APP and CFP-fused TMEM30A were transfected into Lipofectamine 2000 (Life Technologies) into 8-week-old wild-type mouse brain hippocampus or COS-7, and 48 hours later, the cells were lysed with a lysis buffer containing 1% CHAPS ( 50 mM HEPES, pH 7.4, 150 mM NaCl, 1 mM EDTA plus protease inhibitor cocktail), mouse hippocampus is TMEM30A antibody, cultured cells are GFP antibody (3E6 Life Technologies) immunoprecipitation experiment Went.
As a result, it was found that TMEM30A bound to APP in both mouse and co-expressing cells, and the binding was βCTF specific (FIG. 3).

試験例3
TMEM30Aの細胞外ドメインをGSTタンパク質と融合したタンパク質を大腸菌内で発現させ、大腸菌を1%TritonX 100を含むリン酸緩衝液において溶解させた後、グルタチオンセファロースビーズを添加し、GST融合タンパク質をビーズに吸着させ、ビーズを3回洗浄したのち使用した。COS−7細胞にAPPのスウエーデン型変異、または人工的なβCTFであるSC100を遺伝子導入し、1%CHAPSを含む溶解緩衝液に溶解したのち、溶解緩衝液で平衡化した融合タンパク質の吸着したビーズを添加した。コントロールとしてGSTを吸着したビーズを使用した。4℃下で1時間穏やかに攪拌を行った後、1%CHAPS を含む溶解緩衝液でビーズを3回洗浄し、非結合タンパク質を除去した。ビーズに吸着したタンパク質をレムリサンプル緩衝液により溶出した。各サンプルはイムノブロット法により解析した。
その結果、βCTFはTMEM30Aの細胞外ドメインに直接結合することが判明した(図4)。
Test example 3
A protein in which the extracellular domain of TMEM30A is fused with the GST protein is expressed in E. coli, and the E. coli is dissolved in a phosphate buffer containing 1% Triton X 100. Then, glutathione sepharose beads are added, and the GST fusion protein is added to the beads. It was used after adsorbing and washing the beads three times. Beads adsorbed with fusion protein equilibrated with a lysis buffer after introducing SC100, which is a Swedish mutation of APP, or artificial βCTF into COS-7 cells, and lysing it in a lysis buffer containing 1% CHAPS Was added. As a control, beads adsorbed with GST were used. After gently stirring at 4 ° C. for 1 hour, the beads were washed 3 times with a lysis buffer containing 1% CHAPS to remove unbound protein. The protein adsorbed on the beads was eluted with the Remli sample buffer. Each sample was analyzed by immunoblotting.
As a result, it was found that βCTF directly binds to the extracellular domain of TMEM30A (FIG. 4).

試験例4
COS−7細胞にAPP単独、またはAPPとCFP融合TMEM30AをLipofectamine2000により遺伝子導入し、遺伝子導入48時間後のAPPの代謝をイムノブロット法により解析した。APPの代謝解析はAPPのカルボキシ末端抗体(C12C15)もしくはβCTF特異的抗体(82E1:IBL社)により行った。
その結果、TMEM30AとβCTFとの共発現は、APP及びβCTFを有意に蓄積することが判明した(図5)。
Test example 4
APP alone or APP-CFP fusion TMEM30A was introduced into COS-7 cells by Lipofectamine 2000, and APP metabolism 48 hours after gene introduction was analyzed by immunoblotting. The metabolic analysis of APP was performed using an APP carboxy terminal antibody (C12C15) or a βCTF specific antibody (82E1: IBL).
As a result, it was found that co-expression of TMEM30A and βCTF significantly accumulated APP and βCTF (FIG. 5).

試験例5
COS−7細胞にAPPとCFP融合TMEM30AをFugene HDにより遺伝子導入を行い、遺伝子導入24時間後の細胞を免疫染色により観察した。APPカルボキシ末端抗体(mc99(80−90);ミリポア社)、後期エンドソームマーカーであるRab−7(D95F2;Cell signaling社)、リサイクリングエンドソームマーカーであるRab−11(D4F5;Cell signaling社)を用いた。
その結果を図6に示す。
肥大化したエンドソームは各種エンドソームマーカーが集積(通常では局在は異なる)していた(図6A、B)。またLysosomeマーカー(Lysotracker:Lifetechnologies社)と一致しなかったため(図6C)、Lysosomeへの移行が阻害されている可能性を考えた。LysosomeでAPPを分解するβカテプシンの阻害剤の効果を検証した結果、APP単独発現では阻害剤処理によりAPP−CTFが蓄積するが、TMEM30Aとの共発現でもともと蓄積したAPP−CTFは阻害剤処理により変化しない、この結果はTMEM30Aとの共発現でLysosome分解低下が起こっていた事を示しており、APPのLysosome分解が低下するとするTraffic jam仮説と矛盾しない。
Test Example 5
APP and CFP fusion TMEM30A were transfected into COS-7 cells by Fugene HD, and cells 24 hours after gene introduction were observed by immunostaining. APP carboxy terminal antibody (mc99 (80-90); Millipore), late endosome marker Rab-7 (D95F2; Cell signaling), recycling endosome marker Rab-11 (D4F5; Cell signaling) It was.
The result is shown in FIG.
In the enlarged endosome, various endosomal markers were accumulated (normally different in localization) (FIGS. 6A and 6B). Moreover, since it did not correspond with a Lysosome marker (Lysotracker: Lifetechnologies) (FIG. 6C), possibility that the transfer to Lysosome was inhibited was considered. As a result of verifying the effect of an inhibitor of β-cathepsin that degrades APP with Lysosome, APP-CTF is accumulated by treatment with an inhibitor in the expression of APP alone, but APP-CTF that has been originally accumulated by co-expression with TMEM30A is treated with an inhibitor. This result shows that Lysosome degradation was reduced by co-expression with TMEM30A, which is consistent with the Traffic jam hypothesis that Lysosome degradation of APP is reduced.

試験例6
Aβ結合化合物であるクルクミンとタキシフォリンを用いて、TMEM30AとβCTFの結合阻害、βCTFの蓄積性を検討した。まず毒性評価のため、COS−7細胞にクルクミン(50、100μM)、タキシフォリン(100、200μM)を加え8時間後、アラマーブルー反応液を含む培地で1時間培養し、培地に放出される蛍光物質の量をコントロール細胞(溶媒のみ加えた細胞)の値により規格化して検討した。次にCOS−7細胞にAPPとCFP融合TMEM30AをLipofectamine2000を用いて共発現させ、24時間後にクルクミン(50μM)タキシフォリン(100μM)を添加し、8時間培養した。サンプルはレムリサンプル緩衝液で溶解し、イムノブロット法により解析した。COS−7細胞に遺伝子導入したβCTF(SC100)を1%CHAPSを含む細胞溶解緩衝液により溶解し、溶解液をクルクミン(50μM)、タキシフォリン(100μM)で前処理を行い、30分後にGST融合TMEM30A細胞外ドメインを吸着させたグルタチオンセファロースビーズを添加し、1時間4℃で穏やかに攪拌した。ビーズに吸着したタンパク質をレムリサンプル緩衝液により溶解してイムノブロット法により解析した
その結果、Aβ結合化合物(図7、A)は、TMEM30AとβCTFの相互作用を阻害し(図7、F)、細胞毒性が軽微な(10%未満)濃度で(図7、B)APP−βCTFの蓄積を減少させた(図7C〜E)。
Test Example 6
The inhibition of binding between TMEM30A and βCTF and the accumulation of βCTF were examined using curcumin and taxifolin, which are Aβ binding compounds. First, for toxicity evaluation, curcumin (50, 100 μM) and taxifolin (100, 200 μM) were added to COS-7 cells, and after 8 hours, the cells were cultured for 1 hour in a medium containing an alamar blue reaction solution. The amount of the substance was standardized by the value of control cells (cells added with solvent only) and examined. Next, APP and CFP-fused TMEM30A were co-expressed in COS-7 cells using Lipofectamine 2000, and curcumin (50 μM) taxifolin (100 μM) was added 24 hours later and cultured for 8 hours. Samples were lysed with Laemmli sample buffer and analyzed by immunoblotting. ΒCTF (SC100) gene-introduced into COS-7 cells was lysed with a cell lysis buffer containing 1% CHAPS, and the lysate was pretreated with curcumin (50 μM) and taxifolin (100 μM), and after 30 minutes, GST-fused TMEM30A Glutathione sepharose beads adsorbed with extracellular domain were added and gently stirred at 4 ° C. for 1 hour. The protein adsorbed on the beads was dissolved in the Remli sample buffer and analyzed by immunoblotting. As a result, the Aβ binding compound (FIG. 7, A) inhibited the interaction between TMEM30A and βCTF (FIG. 7, F). Concentration of APP-βCTF was reduced (FIGS. 7C-E) at concentrations with minimal cytotoxicity (less than 10%) (FIG. 7, B).

試験例7
クルクミンとタキシフォリンが、TMEM30AとAPP共発現系に及ぼす作用について検討した。COS−7細胞にVenus融合APP、及びmcherry融合TMEM30AをFugene HDにより遺伝子導入した。遺伝子導入24時間後、クルクミン(50μM)、タキシフォリン(100μM)を含む培地で8時間培養した。
その結果、TMEM30AとAPPの共発現によりAPP発現蛍光強度が強くなるが、クルクミンとタキシフォリンは、いずれも、その蛍光強度を低下させた(図8)。
Test Example 7
The effects of curcumin and taxifolin on TMEM30A and APP co-expression system were examined. Venus-fused APP and mcherry-fused TMEM30A were introduced into COS-7 cells by Fugene HD. 24 hours after gene introduction, the cells were cultured for 8 hours in a medium containing curcumin (50 μM) and taxifolin (100 μM).
As a result, the APP-expressed fluorescence intensity increased due to co-expression of TMEM30A and APP, but both curcumin and taxifolin decreased the fluorescence intensity (FIG. 8).

Claims (3)

被験物質の存在下に、TMEM30AとβCTF又はAPPとの相互作用を測定することを特徴とするアルツハイマー病予防治療薬のスクリーニング方法。   A method for screening an Alzheimer's disease preventive or therapeutic drug, comprising measuring an interaction between TMEM30A and βCTF or APP in the presence of a test substance. TMEM30AとβCTF又はAPPとの相互作用が、TMEM30AとβCTF又はAPPとの結合阻害作用である請求項1記載のスクリーニング方法。   The screening method according to claim 1, wherein the interaction between TMEM30A and βCTF or APP is a binding inhibitory action between TMEM30A and βCTF or APP. TMEM30AとβCTF又はAPPとの相互作用が、培養細胞又は非ヒト動物においてTMEM30AとβCTF又はAPPを共発現させて小胞体の肥大化又はAPPの発現量の変化を検出するものである請求項1記載のスクリーニング方法。   2. The interaction between TMEM30A and βCTF or APP is to detect hypertrophy of the endoplasmic reticulum or change in the expression level of APP by co-expressing TMEM30A and βCTF or APP in cultured cells or non-human animals. Screening method.
JP2014132309A 2014-06-27 2014-06-27 Screening method for Alzheimer's disease prevention and treatment Active JP6391318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014132309A JP6391318B2 (en) 2014-06-27 2014-06-27 Screening method for Alzheimer's disease prevention and treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014132309A JP6391318B2 (en) 2014-06-27 2014-06-27 Screening method for Alzheimer's disease prevention and treatment

Publications (2)

Publication Number Publication Date
JP2016011849A true JP2016011849A (en) 2016-01-21
JP6391318B2 JP6391318B2 (en) 2018-09-19

Family

ID=55228666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014132309A Active JP6391318B2 (en) 2014-06-27 2014-06-27 Screening method for Alzheimer's disease prevention and treatment

Country Status (1)

Country Link
JP (1) JP6391318B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543425A (en) * 1999-04-30 2002-12-17 ザ ナタン エス. クライン インスティテュート フォー サイキアトリック リサーチ Methods for identifying compounds for the treatment of Alzheimer's disease
WO2006004194A1 (en) * 2004-07-02 2006-01-12 Nishimoto, Tomo METHOD OF SCREENING REMEDY FOR ALZHEIMER’S DISEASE TARGETING TGF β2
US20090068678A1 (en) * 2005-05-03 2009-03-12 Majercak John M Method for identifying modulators of NOAH10 useful for treating Alzheimer's disease
JP2009509503A (en) * 2005-09-27 2009-03-12 ナショナル リサーチ カウンシル オブ カナダ Blood-brain septum epitope and its use
JP2011517282A (en) * 2008-02-29 2011-06-02 バクスター・インターナショナル・インコーポレイテッド In vitro anti-amyloid β activity of intravenous immunoglobulin (IVIG)
WO2013066764A2 (en) * 2011-10-31 2013-05-10 Merck Sharp & Dohme Corp. Alzheimer's disease signature markers and methods of use
WO2013106577A2 (en) * 2012-01-10 2013-07-18 Biogen Idec Ma Inc. Enhancement of transport of therapeutic molecules across the blood brain barrier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543425A (en) * 1999-04-30 2002-12-17 ザ ナタン エス. クライン インスティテュート フォー サイキアトリック リサーチ Methods for identifying compounds for the treatment of Alzheimer's disease
WO2006004194A1 (en) * 2004-07-02 2006-01-12 Nishimoto, Tomo METHOD OF SCREENING REMEDY FOR ALZHEIMER’S DISEASE TARGETING TGF β2
US20090068678A1 (en) * 2005-05-03 2009-03-12 Majercak John M Method for identifying modulators of NOAH10 useful for treating Alzheimer's disease
JP2009509503A (en) * 2005-09-27 2009-03-12 ナショナル リサーチ カウンシル オブ カナダ Blood-brain septum epitope and its use
JP2011517282A (en) * 2008-02-29 2011-06-02 バクスター・インターナショナル・インコーポレイテッド In vitro anti-amyloid β activity of intravenous immunoglobulin (IVIG)
WO2013066764A2 (en) * 2011-10-31 2013-05-10 Merck Sharp & Dohme Corp. Alzheimer's disease signature markers and methods of use
WO2013106577A2 (en) * 2012-01-10 2013-07-18 Biogen Idec Ma Inc. Enhancement of transport of therapeutic molecules across the blood brain barrier

Also Published As

Publication number Publication date
JP6391318B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
Guo et al. Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice
Abisambra et al. Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation
Waxman et al. A novel, high‐efficiency cellular model of fibrillar α‐synuclein inclusions and the examination of mutations that inhibit amyloid formation
Cha et al. Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer's disease
Herrera et al. Visualization of cell-to-cell transmission of mutant huntingtin oligomers
Lee et al. Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein
Rodríguez-Martín et al. Tau phosphorylation affects its axonal transport and degradation
Fritschi et al. Highly potent soluble amyloid-β seeds in human Alzheimer brain but not cerebrospinal fluid
Cho et al. Leucine‐rich repeat kinase 2 regulates Sec16A at ER exit sites to allow ER–Golgi export
Gouras et al. Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease
Kaya et al. Spatial lipidomics reveals region and long chain base specific accumulations of monosialogangliosides in amyloid plaques in familial Alzheimer’s disease mice (5xFAD) brain
Zhu et al. ER-associated degradation regulates Alzheimer’s amyloid pathology and memory function by modulating γ-secretase activity
Hark et al. Pulse-chase proteomics of the App knockin mouse models of Alzheimer’s disease reveals that synaptic dysfunction originates in presynaptic terminals
Lefort et al. Cross-linking of cell surface amyloid precursor protein leads to increased β-amyloid peptide production in hippocampal neurons: implications for Alzheimer's disease
Heaven et al. Composition of Rosenthal fibers, the protein aggregate hallmark of Alexander disease
Bruinsma et al. Small heat shock proteins induce a cerebral inflammatory reaction
Giustiniani et al. The FK506‐binding protein FKBP52 in vitro induces aggregation of truncated Tau forms with prion‐like behavior
Brewer et al. Age-related intraneuronal aggregation of amyloid-β in endosomes, mitochondria, autophagosomes, and lysosomes
Malnar et al. Cholesterol-depletion corrects APP and BACE1 misstrafficking in NPC1-deficient cells
Juenemann et al. Detection of ubiquitinated huntingtin species in intracellular aggregates
Choi et al. The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Aβ amyloidosis
Michno et al. Following spatial Aβ aggregation dynamics in evolving Alzheimer’s disease pathology by imaging stable isotope labeling kinetics
Cui et al. Targeting the γ-/β-secretase interaction reduces β-amyloid generation and ameliorates Alzheimer’s disease-related pathogenesis
Colton et al. mNos2 deletion and human NOS2 replacement in Alzheimer disease models
Lyubartseva et al. A potential role for zinc alterations in the pathogenesis of Alzheimer's disease

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180821

R150 Certificate of patent or registration of utility model

Ref document number: 6391318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250