JP2016011788A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2016011788A
JP2016011788A JP2014133504A JP2014133504A JP2016011788A JP 2016011788 A JP2016011788 A JP 2016011788A JP 2014133504 A JP2014133504 A JP 2014133504A JP 2014133504 A JP2014133504 A JP 2014133504A JP 2016011788 A JP2016011788 A JP 2016011788A
Authority
JP
Japan
Prior art keywords
heat exchanger
partition plate
coolant
heat transfer
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014133504A
Other languages
Japanese (ja)
Inventor
直行 石田
Naoyuki Ishida
直行 石田
和明 木藤
Kazuaki Kito
和明 木藤
綿引 直久
Naohisa Watabiki
直久 綿引
秀章 細井
Hideaki Hosoi
秀章 細井
藤本 清志
Kiyoshi Fujimoto
清志 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014133504A priority Critical patent/JP2016011788A/en
Publication of JP2016011788A publication Critical patent/JP2016011788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To accelerate heat transfer of a heat exchanger further.SOLUTION: A heat exchanger comprises: a coolant pool holding coolant; a heat exchanger tube that allows a heating fluid to pass through it; and a division plate surrounding the whole heat exchanger tube and guiding gas-liquid two-phase flow produced by heating the coolant with the heat exchanger tube upward. The heat exchange of the heat exchanger can be accelerated further.

Description

本発明は、熱交換器に関する。   The present invention relates to a heat exchanger.

伝熱管の伝熱性能を向上させると、より少ない伝熱面積で熱交換ができ、熱交換器の小型化が可能となる。従って、利便性が高まり、適用範囲が拡大する。さらに物量も減るため、コストが削減できる。このように、伝熱性能を向上させると経済的メリットが大きいため、様々な伝熱促進技術が開発されている。   If the heat transfer performance of the heat transfer tube is improved, heat exchange can be performed with a smaller heat transfer area, and the heat exchanger can be downsized. Therefore, convenience is enhanced and the application range is expanded. Furthermore, since the quantity is reduced, the cost can be reduced. Thus, since improving the heat transfer performance has great economic merit, various heat transfer enhancement technologies have been developed.

例えば、伝熱管で冷却材を沸騰させ熱交換を行う熱交換器の伝熱促進技術として、特開2004−286409号公報には、伝熱管群を水平方向にいくつかのグループに分け、グループ間に間隙を設けることにより、その間隙を沸騰しなかった冷却材が流下し、管群内の液循環が改善され伝熱が促進されるとしている。また、間隙にバッフルを設置することによって、液循環の軸方向のばらつきを低減できるとしている。   For example, as a heat transfer promotion technique for a heat exchanger that performs heat exchange by boiling a coolant in a heat transfer tube, JP 2004-286409 A divides a heat transfer tube group into several groups in the horizontal direction, By providing a gap, the coolant that has not boiled down the gap flows down, improving the liquid circulation in the tube group and promoting heat transfer. Moreover, it is said that the variation in the axial direction of the liquid circulation can be reduced by installing a baffle in the gap.

特開2004−286409号公報JP 2004-286409 A

特許文献1では管群の間に間隙を設けバッフルを設置して伝熱を促進しているが、以下の課題がある。   In Patent Document 1, a gap is provided between tube groups to install a baffle to promote heat transfer, but there are the following problems.

水平に並んだ管群の間にバッフルを設けて、バッフル内側での液循環を促進しているが、管群とバッフル間を流下する冷却液の一部が熱交換器下部に到達する前に管群へ流入する。このため、熱交換器内下部に到達する冷却液量が少なくなり、熱交換器下部において液循環による伝熱促進が低下する。熱交換器内に大きな冷却材の循環流を形成できれば、さらに伝熱を促進し、熱交換器のさらなる小型化やコスト低減が可能となる。   A baffle is provided between horizontally arranged tubes to promote liquid circulation inside the baffle, but before some of the coolant flowing down between the tubes and the baffle reaches the bottom of the heat exchanger. It flows into the tube group. For this reason, the amount of the cooling liquid reaching the lower part in the heat exchanger is reduced, and the heat transfer promotion by liquid circulation is reduced in the lower part of the heat exchanger. If a large coolant circulation flow can be formed in the heat exchanger, heat transfer can be further promoted, and the heat exchanger can be further reduced in size and cost.

本発明の目的は、熱交換器の伝熱を更に促進することにある。
An object of the present invention is to further promote the heat transfer of the heat exchanger.

本発明は、冷却液を保持する冷却液プールと、加熱流体を通す伝熱管と、前記伝熱管全体を取り囲み、前記伝熱管によって前記冷却液が加熱されて生成した気液二相流を上方に導く仕切り板を有することを特徴とする。
The present invention surrounds a cooling liquid pool for holding a cooling liquid, a heat transfer pipe for passing a heating fluid, and the entire heat transfer pipe, and the gas-liquid two-phase flow generated by heating the cooling liquid by the heat transfer pipe is directed upward. It has a partition plate to guide.

本発明によれば、熱交換器の伝熱を更に促進することが可能である。
According to the present invention, it is possible to further promote the heat transfer of the heat exchanger.

本発明の好適な一実施例である実施例1の熱交換器の断面図である。It is sectional drawing of the heat exchanger of Example 1 which is one suitable Example of this invention. 本発明の好適な一実施例である実施例1の熱交換器の断面図である。It is sectional drawing of the heat exchanger of Example 1 which is one suitable Example of this invention. 本発明の好適な一実施例である実施例1の熱交換器の断面図である。It is sectional drawing of the heat exchanger of Example 1 which is one suitable Example of this invention. 本発明の熱交換器において液位が低下した状態を示した図である。It is the figure which showed the state which the liquid level fell in the heat exchanger of this invention. 本発明の好適な一実施例である実施例2の熱交換器の断面図である。It is sectional drawing of the heat exchanger of Example 2 which is one suitable Example of this invention. 本発明の連通口の逆止弁機構の一例を示した図である。It is the figure which showed an example of the check valve mechanism of the communicating port of this invention. 原子力プラントの系統図である。It is a systematic diagram of a nuclear power plant.

本発明で、伝熱が促進され、伝熱管容積を低減できる熱交換器の実施例を以下に説明する。本発明は、伝熱管全体を取り囲み、伝熱管によって冷却液が加熱されて生成した気液二相流を上方に導く仕切り板を有するため、冷却液プール内に大きな循環流を発生させて伝熱性能を更に促進させることが可能である。   In the present invention, an embodiment of a heat exchanger in which heat transfer is promoted and the heat transfer tube volume can be reduced will be described below. Since the present invention has a partition plate that surrounds the entire heat transfer tube and guides the gas-liquid two-phase flow generated by heating the coolant by the heat transfer tube upward, a large circulation flow is generated in the coolant pool to generate heat transfer. Performance can be further promoted.

本実施例を図1から図3を用いて説明する。   This embodiment will be described with reference to FIGS.

図1〜3は、仕切り板4を設置した熱交換器のそれぞれX−Y断面、Y−Z断面、X−Z断面である。冷却液プール1は、支持部材5によって固定されている。冷却液プール1の冷却液を加熱する加熱流体は、加熱用流体入口配管7からヘッダー6aに流入し、ヘッダー6aから複数ある伝熱管3に配分され、伝熱管3を通して冷却液を加熱する。冷却液に熱を与えて温度の低下した加熱用流体は再びヘッダー6bに集められ、ヘッダー6bから加熱流体出口配管8へ排出される。冷却液プール1内で冷却液が飽和温度以上に加熱された場合は蒸気が発生し、発生した蒸気は蒸気排出管11を通して冷却プール1外に排出される。図1〜3でわかるように、仕切り板4は複数の伝熱管3で構成された管束2を取り囲むように設置されている。ここで、図1に示す管束2は、複数の伝熱管3を台形状に束ねた輪郭を示している。また、管束2の上端は台形部の上端を表す。   1-3 are the XY cross section, YZ cross section, and XZ cross section of the heat exchanger which installed the partition plate 4, respectively. The coolant pool 1 is fixed by a support member 5. The heating fluid that heats the cooling liquid in the cooling liquid pool 1 flows into the header 6 a from the heating fluid inlet pipe 7, is distributed from the header 6 a to the plurality of heat transfer tubes 3, and heats the cooling liquid through the heat transfer tubes 3. The heating fluid whose temperature is lowered by applying heat to the coolant is again collected in the header 6b and discharged from the header 6b to the heating fluid outlet pipe 8. When the coolant is heated above the saturation temperature in the coolant pool 1, steam is generated, and the generated steam is discharged out of the coolant pool 1 through the steam discharge pipe 11. 1-3, the partition plate 4 is installed so that the tube bundle 2 comprised with the some heat exchanger tube 3 may be surrounded. Here, the tube bundle 2 shown in FIG. 1 has shown the outline which bundled the several heat exchanger tube 3 in trapezoid shape. Further, the upper end of the tube bundle 2 represents the upper end of the trapezoidal portion.

図1を用いて仕切り板4を設置する効果について説明する。仕切り板4の下端は、管束2の下端以下であり、仕切り板4の上端は管束2の上端と冷却液プール1の設計液位(通常運転で一定に保つ液位)の間にしている。管束2に加熱流体が流れると、管束2から冷却液に熱が伝わり、管束2からの伝熱量が冷却液の蒸発潜熱を超える場合には、冷却液が沸騰し、仕切り板4の内側で気液二相流状態となる。気相の密度は液相と比較して無視できるほど小さいことと、飽和温度まで液相も仕切り板4の外側の冷却液と比較して密度が小さくなっているため仕切り板4の内側と外側で水頭差が発生する。これにより仕切り板4の内側を冷却液が上昇し、仕切り板4の外側を冷却液が下降する循環流が発生する。ただし、仕切り板4の上端が冷却液プール1の水面を越えると、水面を越えた分の液相の水頭が仕切り板4の内側にかかるため、水頭差が低下する。したがって、水頭差による駆動力は、仕切り板4の上端が冷却液プール1内の液面から下にあるほど大きくなるため、仕切り板4の上端位置は冷却液プール1内の液面以下にするとよい。   The effect of installing the partition plate 4 will be described with reference to FIG. The lower end of the partition plate 4 is below the lower end of the tube bundle 2, and the upper end of the partition plate 4 is between the upper end of the tube bundle 2 and the design liquid level of the coolant pool 1 (the liquid level that is kept constant during normal operation). When the heating fluid flows through the tube bundle 2, heat is transferred from the tube bundle 2 to the cooling liquid, and when the amount of heat transfer from the tube bundle 2 exceeds the latent heat of vaporization of the cooling liquid, the cooling liquid boils, and the gas flows inside the partition plate 4. It becomes a liquid two-phase flow state. The density of the gas phase is negligibly small compared with the liquid phase, and the density of the liquid phase is smaller than that of the cooling liquid outside the partition plate 4 until the saturation temperature. A water head difference occurs. As a result, a circulating flow is generated in which the cooling liquid rises inside the partition plate 4 and the cooling liquid descends outside the partition plate 4. However, when the upper end of the partition plate 4 exceeds the water surface of the coolant pool 1, the water head of the liquid phase that exceeds the water surface is applied to the inside of the partition plate 4, so that the water head difference decreases. Therefore, since the driving force due to the water head difference increases as the upper end of the partition plate 4 is lower than the liquid level in the coolant pool 1, the upper end position of the partition plate 4 is less than or equal to the liquid level in the coolant pool 1. Good.

仕切り板4の内側の飽和温度の冷却液の密度をρ1、仕切り板4の外側の冷却液の密度をρ2、切り板4の内側の管束2の上部の平均ボイド率をα、仕切り板4の下端から管束2の上端までの高さをh、管束2の上端から仕切り板4の上端までの高さをHとすると、発生する水頭差ΔPは(1)式で表せる。一般的に気相の密度は液相の密度と比較して1/1000程度と十分小さいため、(1)式では無視している。gは重力加速度である。
ΔP=Hg(ρ2−(1−α)ρ1) (1)
仕切り板4を設置した場合、(1)式で計算される水頭差を駆動力として図1の矢印で示した循環流10が発生する。この循環流10により管束2の伝熱管周囲の冷却液速度が上昇し、伝熱効率が向上する。
The density of the coolant at the saturation temperature inside the partition plate 4 is ρ 1 , the density of the coolant outside the partition plate 4 is ρ 2 , the average void fraction at the top of the tube bundle 2 inside the cut plate 4 is α, the partition plate When the height from the lower end of 4 to the upper end of the tube bundle 2 is h, and the height from the upper end of the tube bundle 2 to the upper end of the partition plate 4 is H, the generated water head difference ΔP can be expressed by equation (1). In general, the density of the gas phase is sufficiently small, about 1/1000 compared with the density of the liquid phase, so it is ignored in the equation (1). g is a gravitational acceleration.
ΔP = Hg (ρ 2 − (1−α) ρ 1 ) (1)
When the partition plate 4 is installed, the circulating flow 10 indicated by the arrow in FIG. 1 is generated using the hydraulic head difference calculated by the equation (1) as a driving force. The circulating flow 10 increases the coolant speed around the heat transfer tubes of the tube bundle 2 and improves the heat transfer efficiency.

管束2を上昇した液相は密度が小さいため、冷却液プール1の上層部に停留しやすい。冷却液プール1内に大きな循環流10を発生させるには、冷却液プール1の上層部に停留した密度の小さい冷却液を、密度の高い仕切り板4の外側の冷却液内を浮力に打ち勝って底部まで運ぶことのできる循環力を発生させればよい。したがって、大きな循環流を発生させる条件は(2)式となる。   Since the liquid phase rising up the tube bundle 2 has a low density, it tends to stay in the upper layer of the coolant pool 1. In order to generate a large circulating flow 10 in the cooling liquid pool 1, the low density cooling liquid retained in the upper layer of the cooling liquid pool 1 is overcome by the buoyancy in the cooling liquid outside the high density partition plate 4. It is only necessary to generate a circulating force that can be carried to the bottom. Therefore, the condition for generating a large circulating flow is expressed by equation (2).

Hg(ρ2−(1−α)ρ1)>(H+h)g(ρ2−ρ1) (2)
整理すると
H>h(ρ2−ρ1)/αρ1 (3)
となり、(3)式を満たすように仕切り板4の高さを決めると、冷却液プール1内に大きな循環流10が発生し、管束2の伝熱性能が向上する。冷却材として水を使用した場合の例を挙げる。20℃の水が管束2で100℃に沸騰する場合を考える。20℃の水の密度は約998kg/m3、100℃の水の密度は約959 kg/m3であるので、(3)式から
H>0.0407h/α
となる。例えば、h=1mに対し、ボイド率が4%であればH>1.02m、ボイド率が10%であればH>0.41mとすれば、冷却プール1内に大きな循環流10を発生させることができる。
(1)式から、同じボイド率に対して仕切り板4の高さHが大きいほど循環流10の駆動力が大きくなる。
Hg (ρ 2 − (1−α) ρ 1 )> (H + h) g (ρ 2 −ρ 1 ) (2)
To summarize H> h (ρ 2 -ρ 1 ) / αρ 1 (3)
Thus, when the height of the partition plate 4 is determined so as to satisfy the expression (3), a large circulating flow 10 is generated in the coolant pool 1 and the heat transfer performance of the tube bundle 2 is improved. The example at the time of using water as a coolant is given. Consider the case where 20 ° C water boils to 100 ° C in tube bundle 2. Since the density of water at 20 ° C is about 998 kg / m 3 and the density of water at 100 ° C is about 959 kg / m 3 , H> 0.0407h / α
It becomes. For example, for h = 1 m, if the void ratio is 4%, H> 1.02 m, and if the void ratio is 10%, if H> 0.41 m, a large circulating flow 10 is generated in the cooling pool 1. Can do.
From the equation (1), the driving force of the circulating flow 10 increases as the height H of the partition plate 4 increases with respect to the same void ratio.

冷却液プール1内の液面を一定に維持するためには、蒸発した分の冷却液を冷却プールに補給する必要がある。一般的に補給液は飽和温度以下であり、気相と接触すると気相を凝縮させる。補給液の給水口9を仕切り板4の内側に設置すると、気相の一部が消滅しボイド率が低下するため、(1)式で評価される水頭差が小さくなる。したがって、給水口9は仕切り板4の外側に設置するのがよい。   In order to keep the liquid level in the cooling liquid pool 1 constant, it is necessary to replenish the cooling pool with the evaporated liquid. In general, the replenisher is below the saturation temperature and condenses the gas phase when in contact with the gas phase. If the water supply port 9 for the replenishing liquid is installed inside the partition plate 4, a part of the gas phase disappears and the void ratio decreases, so the water head difference evaluated by the equation (1) becomes small. Therefore, the water supply port 9 is preferably installed outside the partition plate 4.

このように、伝熱管全体を取り囲み、伝熱管によって冷却液が加熱されて生成した気液二相流を上方に導く仕切り板を有するため、冷却液プール1内に大きな循環流10を発生させて伝熱性能が向上する。従って、伝熱性能の向上により、管束2を構成する伝熱管3のトータルの伝熱面積を低減することができる。これにより、伝熱管3の本数を減らす、または伝熱管3の長さを短縮する等ができるため、管束2の容積を小さくできる。そして、冷却液プール1を含めた熱交換器自体を小型化できコスト低減が可能になる。
In this way, since the partition plate surrounds the entire heat transfer tube and guides the gas-liquid two-phase flow generated by heating the coolant by the heat transfer tube upward, a large circulating flow 10 is generated in the coolant pool 1. Heat transfer performance is improved. Therefore, the total heat transfer area of the heat transfer tubes 3 constituting the tube bundle 2 can be reduced by improving the heat transfer performance. Thereby, since the number of the heat exchanger tubes 3 can be reduced, or the length of the heat exchanger tubes 3 can be shortened, the volume of the tube bundle 2 can be reduced. And the heat exchanger itself including the coolant pool 1 can be reduced in size, and the cost can be reduced.

本実施例を図4〜7を用いて説明する。   This embodiment will be described with reference to FIGS.

図7に、原子力発電所での緊急時の崩壊熱除去システムに適用した一例を示す。原子炉スクラム後に炉心の崩壊熱で発生する蒸気を原子炉31から伝熱管3に導き、凝縮させてサプレッションプール33に戻す構成としている。冷却液プール1内では冷却水が沸騰し、蒸気が蒸気排出管11を通して大気に放出されることにより、崩壊熱が冷却プール水の蒸発潜熱として大気中に放出される。原子力発電所で用いられる実施例1のような崩壊熱除去システムの熱交換器は、トラブル等で冷却液プール1内に給水できなくても、想定した期間、原子炉の冷却が継続できるように、冷却液プール1内に十分な水を蓄えている。なお、本実施例では、原子炉31から蒸気を導き、凝縮水をサプレッションプール33に戻す構成のシステムに適用した例で示すが、冷却液プール1を原子炉31よりも高い位置に配置し、凝縮水を重力で原子炉に戻す原子炉隔離時冷却システムや、格納容器に放出された蒸気を凝縮させて過圧を防止する格納容器冷却系の熱交換器に適用してもよい。   FIG. 7 shows an example applied to a decay heat removal system in an emergency at a nuclear power plant. Steam generated by the decay heat of the core after the reactor scram is led from the reactor 31 to the heat transfer tube 3, condensed, and returned to the suppression pool 33. In the cooling liquid pool 1, the cooling water boils, and the steam is released to the atmosphere through the steam discharge pipe 11, whereby decay heat is released into the atmosphere as latent heat of evaporation of the cooling pool water. The heat exchanger of the decay heat removal system as in the first embodiment used in the nuclear power plant can continue to cool the reactor for an assumed period even if water cannot be supplied into the coolant pool 1 due to trouble or the like. Sufficient water is stored in the coolant pool 1. In the present embodiment, an example is shown in which the steam is guided from the reactor 31 and applied to a system configured to return the condensed water to the suppression pool 33. However, the coolant pool 1 is disposed at a higher position than the reactor 31, The present invention may be applied to a reactor isolation cooling system that returns condensed water to the reactor by gravity, or a containment vessel cooling system heat exchanger that condenses steam released to the containment vessel to prevent overpressure.

給水が停止すると、管束2で沸騰して生成された蒸気が大気中に放出されるため、冷却液プール1内の液位が徐々に低下する。液位が低下して、仕切り板4の上端が水面から露出すると、実施例1で述べたように、駆動力が低下する。さらに液位が低下して、図4のように仕切り板4の内部の液相が仕切り板4の外部へ溢れ出ないようになると、仕切り板4の内側ではボイド率に応じた二相液位が形成され、仕切り板4の外側の液位よりも高い位置となる。この状態で仕切り板4の内側と外側の水頭が釣り合うようになり、管束2へ供給される冷却液量は沸騰で排出された蒸気量だけとなり冷却液プール1内の大きな循環流がなくなるため、循環流10による伝熱促進効果がなくなる。   When the water supply is stopped, the steam generated by boiling in the tube bundle 2 is released into the atmosphere, so that the liquid level in the coolant pool 1 gradually decreases. When the liquid level is lowered and the upper end of the partition plate 4 is exposed from the water surface, the driving force is reduced as described in the first embodiment. When the liquid level further decreases and the liquid phase inside the partition plate 4 does not overflow to the outside of the partition plate 4 as shown in FIG. 4, the two-phase liquid level corresponding to the void ratio is formed inside the partition plate 4. Is formed, and the position is higher than the liquid level outside the partition plate 4. In this state, the inside and outside heads of the partition plate 4 are balanced, and the amount of the coolant supplied to the tube bundle 2 is only the amount of steam discharged by boiling, and there is no large circulation flow in the coolant pool 1, The heat transfer promotion effect by the circulating flow 10 is lost.

本実施例では、図5のように仕切り板4の鉛直方向の複数ヵ所に仕切り板4の内側から外側の方向にのみ流体が流れる逆止弁機構を有した連通部材20を設けている。逆止弁機構の具体例を図6に示す。連通部材20の外側に流路上側を支点23として稼動する開閉蓋21を設置する。流路下側には突起状のストッパー22を設置する。なお、この逆止弁機構は、開閉蓋に限らず、例えばバネ等を使用した逆止弁機能を持つものであればよい。   In this embodiment, as shown in FIG. 5, communication members 20 having check valve mechanisms in which fluid flows only from the inside to the outside of the partition plate 4 are provided at a plurality of locations in the vertical direction of the partition plate 4. A specific example of the check valve mechanism is shown in FIG. An open / close lid 21 that operates with the upper side of the flow path as a fulcrum 23 is installed outside the communication member 20. A protruding stopper 22 is installed below the flow path. The check valve mechanism is not limited to the opening / closing lid, and may be any check valve function using a spring or the like, for example.

仕切り板4の外側の液位が、連通部材20よりも十分に上にある場合には、連通部材20の位置を基準とした仕切り板4の外側の水頭が大きく、仕切り板4の外側から内側に向かって連通部材20を流体が流れようとする。流体は連通部材20の開閉蓋21を仕切り板4の内側に向かって押すが、ストッパー22により開閉蓋21が連通部材20を塞ぐように固定され、仕切り板4の外側の冷却液が仕切り板4の内側に連通部材20を通して流れ込むことはない。開閉蓋21やストッパー22が無い場合は、仕切り板4の外側の冷却液が仕切り板4の内側に連通部材20を通して流れ込んでしまい、循環流10によって管束2に流れ込む冷却液の流量が減少し、伝熱促進効果が低減する。   When the liquid level on the outside of the partition plate 4 is sufficiently above the communication member 20, the water head on the outside of the partition plate 4 with respect to the position of the communication member 20 is large, and from the outside of the partition plate 4 to the inside The fluid tends to flow through the communication member 20 toward the front. The fluid pushes the opening / closing lid 21 of the communication member 20 toward the inside of the partition plate 4, but the opening / closing lid 21 is fixed by the stopper 22 so as to block the communication member 20, and the cooling liquid outside the partition plate 4 is allowed to flow. The fluid does not flow through the communication member 20 inside. Without the opening / closing lid 21 and the stopper 22, the coolant outside the partition plate 4 flows into the partition plate 4 through the communication member 20, and the flow rate of coolant flowing into the tube bundle 2 by the circulating flow 10 decreases. Heat transfer promotion effect is reduced.

冷却液プール1の液位が低下していくと、連通部材20の位置を基準とした仕切り板4の外側の水頭が仕切り板4の内側の水頭よりも小さくなる。このため、仕切り板4の内側から外側に向かって連通部材20を流体が流れようとする。この流れの向きに対してはストッパー22が働かないため、開閉蓋21が開放し、仕切り板4の内側の流体が仕切り板4の外側へ流出し、給水が停止して冷却液プール1内の液位が低下しても冷却液プール1内の循環流10が維持される。   As the liquid level in the cooling liquid pool 1 decreases, the water head outside the partition plate 4 with respect to the position of the communication member 20 becomes smaller than the water head inside the partition plate 4. For this reason, the fluid tends to flow through the communication member 20 from the inside to the outside of the partition plate 4. Since the stopper 22 does not work for this flow direction, the opening / closing lid 21 is opened, the fluid inside the partition plate 4 flows out to the outside of the partition plate 4, the water supply is stopped, and the inside of the coolant pool 1 is stopped. Even if the liquid level falls, the circulating flow 10 in the cooling liquid pool 1 is maintained.

仕切り板4の内側の二相液位が連通部材20の高さを下回ると、当然ながら、連通部材10を通した流体の移動がなくなるため、冷却液プール1の大きな循環流が消失する。このため、なるべく低い液位まで冷却プール1内の大きな循環流10を維持するためには、連通部材20を低い位置に設置する方が望ましい。ただし、連通部材20の開閉蓋21は、仕切り板4の外側の水位がある程度低下しないと開かない。このため、冷却液プール1の液位の低下に対し、連続的に仕切り板4の内側から仕切り板4の外側への液相の流れを維持するためには、鉛直方向に複数の連通部材20を設置すればよい。   When the two-phase liquid level inside the partition plate 4 falls below the height of the communication member 20, the fluid does not move through the communication member 10, so that a large circulating flow in the coolant pool 1 disappears. For this reason, in order to maintain the large circulating flow 10 in the cooling pool 1 to the lowest possible liquid level, it is desirable to install the communication member 20 at a low position. However, the open / close lid 21 of the communication member 20 is not opened unless the water level outside the partition plate 4 is lowered to some extent. For this reason, in order to continuously maintain the flow of the liquid phase from the inside of the partition plate 4 to the outside of the partition plate 4 with respect to the decrease in the liquid level of the coolant pool 1, a plurality of communication members 20 in the vertical direction are used. Should be installed.

本実施例では、連通部材20を仕切り板4の内側から外側に向かう方向に下向きの勾配をつけている。連通部材20を通して気相が仕切り板4の外側に流出すると、仕切り板4の外側の水頭が低下するとともに、仕切り板4の内側のボイド率が低下し、(1)式で計算される駆動力が低下する。本実施例のように、連通部材20に仕切り板4の外側の方向に下向きの勾配をつけると、気相には浮力が働いて斜め下方向に流れにくいため、気相の仕切り板4の外側への流出を大幅に低減することができ、循環流10を発生させる駆動力の低下を抑制することができる。
In the present embodiment, the communication member 20 is inclined downward in the direction from the inner side to the outer side of the partition plate 4. When the gas phase flows out to the outside of the partition plate 4 through the communication member 20, the water head outside the partition plate 4 is lowered and the void ratio inside the partition plate 4 is lowered, and the driving force calculated by the equation (1) Decreases. If the communication member 20 is provided with a downward gradient in the direction of the outside of the partition plate 4 as in this embodiment, buoyancy is exerted on the gas phase and it is difficult for it to flow obliquely downward. Outflow to the water can be significantly reduced, and a reduction in driving force that generates the circulating flow 10 can be suppressed.

1…冷却液プール、2…管束、3…伝熱管、4…仕切り板、5…支持部材、6…ヘッダー、7…加熱用流体入口配管、8…加熱用流体出口配管、9…給水口、10…循環流、20…連通部材、21…開閉蓋、22…ストッパー、23…回転機構 DESCRIPTION OF SYMBOLS 1 ... Coolant pool, 2 ... Tube bundle, 3 ... Heat transfer pipe, 4 ... Partition plate, 5 ... Support member, 6 ... Header, 7 ... Heating fluid inlet piping, 8 ... Heating fluid outlet piping, 9 ... Water supply port, DESCRIPTION OF SYMBOLS 10 ... Circulation flow, 20 ... Communication member, 21 ... Open / close lid, 22 ... Stopper, 23 ... Rotation mechanism

Claims (5)

冷却液を保持する冷却液プールと、
加熱流体を通す伝熱管と、複数の前記伝熱管を束ねた管束と、
前記伝熱管全体を取り囲み、前記伝熱管によって前記冷却液が加熱されて生成した気液二相流を上方に導く仕切り板を有することを特徴とする熱交換器。
A coolant pool that holds the coolant;
A heat transfer tube through which a heating fluid passes, a tube bundle in which a plurality of the heat transfer tubes are bundled,
A heat exchanger comprising a partition plate surrounding the entire heat transfer tube and guiding a gas-liquid two-phase flow generated by heating the cooling liquid by the heat transfer tube upward.
請求項1に記載の熱交換器において、
前記管束の上端から前記仕切り板の上端までの距離Hが、前記仕切り板の内側のボイド率αおよび冷却液密度ρ1、外側の冷却液密度ρ2に対し、H>(ρ2−ρ1)h/(ρ1α)であることを特徴とする熱交換器。
The heat exchanger according to claim 1,
The distance H from the upper end of the tube bundle to the upper end of the partition plate, the inside of the void fraction α and coolant density [rho 1 of the partition plate, to the outside of the cooling liquid density ρ 2, H> (ρ 2 -ρ 1 ) H / (ρ 1 α).
請求項1に記載の熱交換器において、
前記仕切り板に逆止弁機構を有した連通部材を有していることを特徴とする熱交換器。
The heat exchanger according to claim 1,
A heat exchanger having a communication member having a check valve mechanism on the partition plate.
請求項3に記載の熱交換器において、
前記連通部材が前記仕切り板の内側から外側に向かう方向に下向きの勾配を有することを特徴とする熱交換器。
The heat exchanger according to claim 3,
The heat exchanger according to claim 1, wherein the communication member has a downward gradient in a direction from the inner side to the outer side of the partition plate.
請求項1〜3に記載の熱交換器において、
前記冷却液プールへの補給液の給水口を前記仕切り板の外側に設置したことを特徴とする熱交換器。
In the heat exchanger of Claims 1-3,
A heat exchanger, wherein a water supply port for replenishing liquid to the cooling liquid pool is installed outside the partition plate.
JP2014133504A 2014-06-30 2014-06-30 Heat exchanger Pending JP2016011788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014133504A JP2016011788A (en) 2014-06-30 2014-06-30 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133504A JP2016011788A (en) 2014-06-30 2014-06-30 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2016011788A true JP2016011788A (en) 2016-01-21

Family

ID=55228626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133504A Pending JP2016011788A (en) 2014-06-30 2014-06-30 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2016011788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982462A (en) * 2020-08-06 2020-11-24 中国石油大学(北京) Plate-shell type heat exchanger experimental device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982462A (en) * 2020-08-06 2020-11-24 中国石油大学(北京) Plate-shell type heat exchanger experimental device

Similar Documents

Publication Publication Date Title
JP5759899B2 (en) Power generation module assembly, reactor module, and reactor cooling method
JP6692827B2 (en) Passive heat removal system built into the containment
JP2015508486A (en) Emergency reactor core cooling system (ECCS) using closed heat transfer path
EP2518731A2 (en) Nuclear power plant, fuel pool water cooling facility and method thereof
JP2013057652A (en) Driven type cooling system for spent fuel pool
JP2014526053A (en) Pressurized water reactor with small passive safety system
KR101297101B1 (en) Device for residual heat removal of integrated reactor and its method
JP2016523355A5 (en)
JP2002156485A (en) Reactor
JP6022286B2 (en) Condensing chamber cooling system
JP7289032B2 (en) Reactor with rising heat exchanger
JP2011232179A (en) Nuclear plant with reactor container cooling facility
JP5690202B2 (en) Nuclear decay heat removal equipment
KR102015500B1 (en) Passive natural circulation cooling system and method
KR101789135B1 (en) Safety injection system and nuclear power plant having the same
KR101374751B1 (en) Passive decay heat removal system using organoic fluid, method of driving heat removal system
JP2016520204A5 (en)
JP2016011788A (en) Heat exchanger
JP6771402B2 (en) Nuclear plant
JP6359318B2 (en) Static reactor containment cooling system and nuclear power plant
JP2001228280A (en) Reactor
JP2017072379A (en) Nuclear Reactor and Nuclear Power Plant
KR102067396B1 (en) Small modular reactor system equipped with naturally circulating second cooling complex
JP2016003961A (en) Nuclear power plant cooling system and nuclear power plant cooling method
JP6998887B2 (en) Reactor with control rods and stop rods outside the core and its support structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112