JP2016010805A - Welding method of heat transfer copper fin for metal cask and metal cask with heat transfer copper fin - Google Patents

Welding method of heat transfer copper fin for metal cask and metal cask with heat transfer copper fin Download PDF

Info

Publication number
JP2016010805A
JP2016010805A JP2014133808A JP2014133808A JP2016010805A JP 2016010805 A JP2016010805 A JP 2016010805A JP 2014133808 A JP2014133808 A JP 2014133808A JP 2014133808 A JP2014133808 A JP 2014133808A JP 2016010805 A JP2016010805 A JP 2016010805A
Authority
JP
Japan
Prior art keywords
welding
heat transfer
transfer copper
mig
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014133808A
Other languages
Japanese (ja)
Other versions
JP2016010805A5 (en
JP6278852B2 (en
Inventor
今永 昭慈
Akiyoshi Imanaga
昭慈 今永
健 尾花
Takeshi Obana
健 尾花
湘 多羅沢
Sho Tarasawa
湘 多羅沢
鈴木 国彦
Kunihiko Suzuki
国彦 鈴木
宏夫 小出
Hiroo Koide
宏夫 小出
健 平沼
Takeshi Hiranuma
平沼  健
小林 一樹
Kazuki Kobayashi
一樹 小林
周平 金丸
Shuhei Kanamaru
周平 金丸
佐々木 智章
Tomoaki Sasaki
智章 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Hitachi GE Nuclear Energy Ltd
Original Assignee
Taiyo Nippon Sanso Corp
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp, Hitachi GE Nuclear Energy Ltd filed Critical Taiyo Nippon Sanso Corp
Priority to JP2014133808A priority Critical patent/JP6278852B2/en
Publication of JP2016010805A publication Critical patent/JP2016010805A/en
Publication of JP2016010805A5 publication Critical patent/JP2016010805A5/ja
Application granted granted Critical
Publication of JP6278852B2 publication Critical patent/JP6278852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a welding method of heat transfer copper fin for metal cask excellent in welding property of foreign matter joint between copper and steel.SOLUTION: A welding method of a heat transfer copper fin for a metal cask is characterized in that, when the minimum distance from a molten bottom part of the heat transfer copper fin side to a weld bead surface is set as a throat thickness of a welded part, a wire weld cross-section is determined from a wire feeding speed or the wire feeding speed and a wire diameter, and a prescribed welding speed so that the throat thickness with a predetermined size or greater is formed, a CuSi wire is used for a weld line at every path to be welded from a weld starting position to an ending position of each fillet joint part and weld construction is performed at every one path by a composite welding of preceding TIG and subsequent MIG or MIG welding.

Description

本発明は金属キャスク用伝熱銅フィンの溶接方法及び伝熱銅フィン付き金属キャスクに係り、特に、原子力発電所等から発生する使用済燃料を輸送又は貯蔵若しくは輸送及び貯蔵し、かつ、鋼製の内筒及び外筒に銅製の伝熱フィンが直接溶接するものに好適な金属キャスク用伝熱銅フィンの溶接方法及び伝熱銅フィン付き金属キャスクに関する。   The present invention relates to a method for welding a heat transfer copper fin for a metal cask and a metal cask with a heat transfer copper fin, and in particular, transports or stores or transports and stores spent fuel generated from a nuclear power plant, etc. The present invention relates to a welding method for heat transfer copper fins for metal cask and a metal cask with heat transfer copper fins suitable for welding copper heat transfer fins directly to the inner and outer cylinders.

一般に、原子力発電所の原子炉で一定期間使用された複数の燃料は、原子炉から取り出され、使用済燃料冷却プール等に一時保管される。使用済燃料冷却プールで所定期間冷却された使用済燃料は、再資源として活用するため、金属キャスクと呼ばれる放射性物質収納容器に収納され、再処理施設で再処理されるまで中間貯蔵施設に搬入して保管される。   In general, a plurality of fuels used for a certain period in a nuclear power plant nuclear reactor are taken out of the nuclear reactor and temporarily stored in a spent fuel cooling pool or the like. Spent fuel that has been cooled in the spent fuel cooling pool for a specified period of time is stored in a radioactive material storage container called a metal cask to be used as a resource, and then transported to an intermediate storage facility until it is reprocessed at the reprocessing facility. Stored.

使用済燃料の集合体を運搬・貯蔵する金属キャスクは、使用済燃料を収納する内筒(内筒容器や容器本体或いは胴本体ともいう)、外部からの衝撃を吸収する外筒及び内筒を密閉する複数の蓋等を有している。   A metal cask that transports and stores spent fuel assemblies consists of an inner cylinder (also referred to as an inner cylinder container, a container body, or a trunk body) that stores spent fuel, and an outer cylinder and an inner cylinder that absorb impact from the outside. It has a plurality of lids to be sealed.

使用済燃料は高レベルの放射性物質を含んでいることから崩壊熱を発生しているため、内筒と外筒の間には、使用済燃料集合体から発生する崩壊熱を内筒及び外筒の外側へ逃がすために複数の伝熱フィンを配備しており、これら複数の伝熱フィンは、内筒及び外筒にそれぞれ溶接されている。   Since spent fuel contains a high level of radioactive material, it generates decay heat, so the decay heat generated from the spent fuel assembly is transferred between the inner and outer cylinders between the inner and outer cylinders. A plurality of heat transfer fins are provided in order to escape to the outside, and the plurality of heat transfer fins are welded to the inner cylinder and the outer cylinder, respectively.

通常、内筒及び外筒の材料には、剛性及び遮蔽性等の性能が良い炭素鋼材やステンレス鋼材等が使用され、一方、伝熱フィンの材料には、主に熱伝導の良い銅材が使用されており、また、2種類の金属を予め接合した銅クラッド鋼材等も使用されている。   Usually, carbon steel materials and stainless steel materials with good performance such as rigidity and shielding properties are used as the material of the inner cylinder and the outer cylinder, while copper materials with good heat conduction are mainly used as the material of the heat transfer fins. Moreover, the copper clad steel material etc. which joined two types of metals previously are also used.

上述した金属キャスクの内筒外面及び外筒内面に伝熱フィンを溶接する公知技術が例えば、特許文献1乃至5に開示されている。   For example, Patent Documents 1 to 5 disclose known techniques for welding heat transfer fins to the inner and outer surfaces of the metal cask described above.

特許文献1には金属製容器製造方法について記載され、純銅製のMIGワイヤからMIGアークを発生させる溶接工程と、前記MIGアークを取り囲むように同軸上に配置されたプラズマ電極からプラズマアークを発生させる溶接工程とを並列して行い、前記MIG溶接工程及びプラズマ溶接工程では、銅製の伝熱フィンと水平面のなす角を15〜20度とし、前記伝熱フィンと炭素鋼製の内筒のなす角を75度以上に配置して前記MIGアーク及びプラズマアークを下向きに発生させることが開示されている。   Patent Document 1 describes a method for manufacturing a metal container. A welding process for generating a MIG arc from a pure copper MIG wire, and a plasma arc from a plasma electrode arranged coaxially so as to surround the MIG arc are generated. The welding process is performed in parallel, and in the MIG welding process and the plasma welding process, the angle formed by the copper heat transfer fin and the horizontal plane is 15 to 20 degrees, and the angle formed by the heat transfer fin and the carbon steel inner cylinder. It is disclosed that the MIG arc and the plasma arc are generated in a downward direction by arranging them at 75 degrees or more.

また、特許文献2には溶接方法について記載され、溶接後熱処理を必要とする鋼製の母材と銅製の母材とをMIGトーチ等の溶接手段によって溶接する溶接工程と、前記溶接手段と所定距離離れた後方位置に配置されたアーク溶接トーチや高周波コイル或いはレーザ等の加熱手段によって、前記溶接工程で生じた溶接ビード上を加熱(溶融も含む)して前記鋼製の母材の溶接熱影響部まで熱処理する熱処理工程を備えており、更に、前記溶接工程の前に、前記溶接手段より所定距離先行する前方位置に配置されたTIGトーチやYAGレーザや高周波コイル等の加熱手段によって、前記溶接工程の前に、熱伝導率の高い前記銅製の母材を予熱することが開示されている。   Patent Document 2 describes a welding method. A welding process of welding a steel base material and a copper base material requiring heat treatment after welding by a welding means such as a MIG torch; Heating (including melting) the welding bead generated in the welding process by heating means such as an arc welding torch, a high-frequency coil, or a laser disposed at a rear position away from the welding heat of the steel base material. A heat treatment step of heat-treating to the affected part, and further, before the welding step, by a heating means such as a TIG torch, a YAG laser, a high-frequency coil, etc. arranged at a front position ahead of the welding means by a predetermined distance, It is disclosed that the copper base material having a high thermal conductivity is preheated before the welding process.

また、特許文献3には銅又は銅合金の溶接方法について記載され、非消耗電極と消耗電極を組合せ、先行の非消耗電極と後行の消耗電極に交互に溶接電流を供給し、前記非消耗電極と消耗電極との間隔を融合不良ビードが生じない距離に保ちながら溶接することが開示されている。   Patent Document 3 describes a method for welding copper or copper alloy, which combines a non-consumable electrode and a consumable electrode, and alternately supplies a welding current to a preceding non-consumable electrode and a subsequent consumable electrode, and It is disclosed that welding is performed while keeping the distance between the electrode and the consumable electrode at a distance that does not cause poor fusion beads.

また、特許文献4には放射性物質用金属キャスクについて記載され、胴本体から径方向外方に延びて外筒に伝熱させる伝熱フィンを備え、この伝熱フィンは2種類の金属板を接合したクラッド材から構成され、かつ、該クラッド材の一方の金属は前記胴本体及び外筒を同種の金属材料、他方は熱伝導の良好な良伝熱材料で構成されており、前記胴本体(及び又は外筒)とこれと同種金属のクラッド部位とを直接溶接することが開示されている。   Patent Document 4 describes a metal cask for a radioactive material, and includes a heat transfer fin that extends radially outward from a trunk body and transfers heat to an outer cylinder. The heat transfer fin joins two types of metal plates. And one metal of the clad material is made of the same metal material for the body and outer cylinder, and the other is made of a good heat transfer material with good heat conduction, and the body ( And / or an outer tube) and a clad portion of the same kind of metal are directly welded.

更に、特許文献5には放射性物質収納容器について記載され、銅製の伝熱フィンの両端部に平行部が各々形成されており、この平行部を容器本体外周面及び外筒内周面に沿って配置し、銅合金ワイヤを用いたMIG溶接又はMIGブレイジングによって、前記容器本体外周面及び外筒内周面と前記伝熱フィンの平行先端部とが溶接されていることが開示されている。   Further, Patent Document 5 describes a radioactive substance storage container, in which parallel portions are formed at both ends of the copper heat transfer fins, and the parallel portions are formed along the outer peripheral surface of the container main body and the inner peripheral surface of the outer cylinder. It is disclosed that the outer peripheral surface of the container body and the inner peripheral surface of the outer cylinder and the parallel tips of the heat transfer fins are welded by MIG welding or MIG brazing using a copper alloy wire.

特開2009−178727号公報JP 2009-178727 A 特開2002−361469号公報JP 2002-361469 A 特開昭58−3791号公報JP 58-3791 A 特開2007−205931号公報JP 2007-205931 A 特開2008−082906号公報JP 2008-082906 A

しかしながら、上述した特許文献1では、MIGアーク及びプラズマアークをほぼ同軸上に発生させているため、両アークに作用する電磁力は相殺し合うが、MIGワイヤ(消耗電極)及びプラズマ電極(非消耗電極)の両極性を正極(プラス)、母材側を負極(マイナス)にしていることから、プラズマ電極が消耗されて損傷し易いため、長時間稼働が必要な溶接線の長い長尺部材の溶接には適さないし、溶接途中でプラズマ電極が消耗すると、不安定なアーク挙動に変化して溶接ビード形成に悪影響を及ぼし、溶接不良に至る場合がある。また、純銅は熱伝導率の高い材料であるが、銅材と鋼材との異材溶接は相性が悪く、固溶し難い性質があるため、純銅製のMIGワイヤを用いて銅・鋼継手部を溶接して鋼側の溶込みが深くなると、溶接割れ(凝固割れ)が発生し易くなる。   However, in Patent Document 1 described above, since the MIG arc and the plasma arc are generated almost coaxially, the electromagnetic forces acting on both arcs cancel each other, but the MIG wire (consumable electrode) and the plasma electrode (non-consumable) Since the polarity of the electrode is positive (plus) and the base metal side is negative (minus), the plasma electrode is easily consumed and damaged, so long members with long weld lines that require long-term operation It is not suitable for welding, and if the plasma electrode is consumed during welding, it may change to unstable arc behavior and adversely affect weld bead formation, leading to poor welding. In addition, pure copper is a material with high thermal conductivity. However, because dissimilar welding of copper and steel is not compatible and difficult to dissolve, the copper / steel joint is made of pure copper MIG wire. If the penetration on the steel side becomes deeper after welding, weld cracks (solidification cracks) are likely to occur.

また、特許文献2では、溶接手段の他に、該溶接手段の後方位置及び/又は前方位置にアーク溶接トーチや高周波コイル或いはレーザ等の加熱手段を設ける構成であるため、装置が大型化すると共に、溶接対象物との干渉等によって溶接できない部位が発生してしまう。また、磁気を発生する高周波コイルを設ける場合は、電磁力によって溶接手段のアーク挙動が不安定になり溶接ビード形成に悪影響を及ぼすことがある。一方、レーザを使用する場合には、銅製の母材に対して光の反射率が高いため、銅母材を十分に加熱することができない。   Moreover, in patent document 2, since it is the structure which provides heating means, such as an arc welding torch, a high frequency coil, or a laser, in the back position and / or the front position of this welding means, while an apparatus enlarges, The part which cannot be welded will generate | occur | produce by interference with a welding target object, etc. When a high frequency coil that generates magnetism is provided, the arc behavior of the welding means may become unstable due to electromagnetic force, which may adversely affect weld bead formation. On the other hand, when a laser is used, the copper base material cannot be heated sufficiently because the reflectance of light is high with respect to the copper base material.

また、特許文献3では、アーク同士の干渉を避けるため、非消耗電極(TIG)側の電流と消耗電極(MIG)側の電流とを交互に切り換えて供給するようにしている。このため、TIGアークの発生中はMIGアークが消滅した状態、反対に、MIGアークの発生中はTIGアークが消弧した状態で銅又は銅合金の母材を溶接することになり、加熱及び溶融の相乗効果が抑制され、溶接能率の大幅な向上は困難と考えられる。また、溶接対象物は銅材同士又は銅合金材同士で溶接であり、銅材と鋼材との異材溶接については、対象外で全く適用されておらず、また、記載も示唆もされていない。   In Patent Document 3, in order to avoid interference between arcs, the current on the non-consumable electrode (TIG) side and the current on the consumable electrode (MIG) side are alternately switched and supplied. For this reason, when the TIG arc is generated, the MIG arc is extinguished, and conversely, during the generation of the MIG arc, the TIG arc is extinguished and the copper or copper alloy base material is welded. Therefore, it is considered difficult to significantly improve the welding efficiency. Moreover, a welding target object is welding between copper materials or between copper alloy materials, and about the dissimilar material welding of a copper material and steel materials, it is not applied outside the object, and neither description nor suggestion is made.

また、特許文献4では、銅クラッド鋼材の鋼部と鋼製の胴体又は外筒とを溶接するように構成していることから、鋼材同士のMAG溶接やCO溶接等が施工可能となるが、伝熱フィンに銅クラッド鋼材を使用しているため、製造コストが高く、重量が重くなるという問題がある。また、前記銅クラッド鋼材の銅側の板厚が薄いことから、除熱性能に限界があるため、より高い除熱性能が必要な伝熱フィンには適さない。 In Patent Document 4, since it is configured so as to weld the steel portion and the steel body or barrel of copper clad steel, although MAG welding and CO 2 welding of steel materials to each other becomes possible construction Since the copper clad steel material is used for the heat transfer fin, there is a problem that the manufacturing cost is high and the weight is increased. In addition, since the copper clad steel material has a thin copper side, there is a limit to heat removal performance, so it is not suitable for heat transfer fins that require higher heat removal performance.

更に、特許文献5では、板幅の広い銅板を使用すると共に、銅板幅方向の両端部に平行部を設けるための曲げ成形等の加工が必要な構造であり、製造コストが高くなるという問題がある。また、容器本体外周面及び外筒内周面に前記平行部を密着させて重ね隅肉継手部を形成し、該重ね隅肉継手部をMIG溶接又はMIGブレイジングするようにしているため、大きな溶接入熱量が必要となり、更に、銅側の溶接ビード止端部に発生し易いアンダーカット等の凹みによって、溶接部ののど厚不足や有効断面積不足に至る場合がある。   Furthermore, in patent document 5, while using a copper plate with a wide plate | board width, it is a structure which requires processes, such as bending molding for providing a parallel part in the both ends of a copper plate width direction, and there exists a problem that manufacturing cost becomes high. is there. In addition, the parallel part is brought into close contact with the outer peripheral surface of the container body and the inner peripheral surface of the outer cylinder to form a lap fillet joint, and the lap fillet joint is subjected to MIG welding or MIG brazing. The amount of heat input is required, and further, a dent such as an undercut that is likely to occur at the weld bead toe on the copper side may lead to a lack of throat thickness or an insufficient effective cross-sectional area of the weld.

本発明は上述の点に鑑みなされたもので、その目的とするところは、銅と鋼との異材継手の溶接性に優れた金属キャスク用伝熱銅フィンの溶接方法及びその伝熱銅フィン付き金属キャスクを提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to provide a method for welding a heat transfer copper fin for a metal cask excellent in weldability of a dissimilar joint between copper and steel, and the heat transfer copper fin attached. It is to provide a metal cask.

本発明の金属キャスク用伝熱銅フィンの溶接方法は、上記目的を達成するために、放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置される鋼製の外筒との間の周方向に略等間隔に傾斜配備される銅製の複数の伝熱銅フィンを溶接する際に、鋼製の前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて各々形成された前記内筒側の広角傾斜の各隅肉継手部、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を略等間隔に突合せて各々形成された前記外筒側の広角傾斜の各隅肉継手部、若しくは前記内筒及び前記外筒の両面に各々形成された各隅肉継手部に、先行TIGと後続MIGとの複合溶接又はMIG溶接によって溶接施工する金属キャスク用伝熱銅フィンの溶接方法であって、前記伝熱銅フィン側の溶融底部から溶接ビード表面までの最小距離を溶接部ののど厚とした時に、前記のど厚が所定の大きさ以上に形成されるようにワイヤ送り速度又は該ワイヤ送り速度とワイヤ径及び所定の溶接速度からワイヤ溶着断面積を決定し、かつ、前記各隅肉継手部の溶接開始位置から終了位置まで溶接すべきパス毎の溶接線に対して、CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって1パスずつ溶接施工することを特徴とする。   In order to achieve the above object, a welding method for heat transfer copper fins for a metal cask according to the present invention includes a steel inner cylinder that houses an assembly of spent fuel having a radioactive substance, and a coaxial outer shaft of the inner cylinder. When welding a plurality of copper heat transfer copper fins that are inclined and arranged at substantially equal intervals in the circumferential direction between the steel outer cylinders arranged in a shape, in the longitudinal direction of the outer surface of the inner cylinder made of steel The inner cylinder side wide-angle inclined fillet joints formed by abutting the one end surface portions of the predetermined number of heat transfer copper fins at substantially equal intervals, or the predetermined number of the longitudinal ends of the inner surface of the outer cylinder Each of the other end face portions of the heat transfer copper fins is formed by abutting each other at substantially equal intervals, and each of the fillet joint portions having a wide-angle inclination on the outer tube side, or formed on both surfaces of the inner tube and the outer tube, respectively. Each fillet joint is welded by composite welding of preceding TIG and subsequent MIG or MIG welding. A method for welding a heat transfer copper fin for a metal cask, wherein the minimum distance from the molten bottom on the heat transfer copper fin side to the surface of the weld bead is the throat thickness of the weld, and the throat thickness is equal to or greater than a predetermined size. The wire welding cross-sectional area is determined from the wire feed speed or the wire feed speed and the wire diameter and a predetermined welding speed so as to be formed, and welding should be performed from the welding start position to the end position of each fillet joint. It is characterized in that a CuSi wire is used for the welding line for each pass, and welding is performed one pass at a time by composite welding of the preceding TIG and subsequent MIG or by the MIG welding.

また、本発明の金属キャスク用伝熱銅フィンの溶接方法は、上記目的を達成するために、放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置される鋼製の外筒との間の周方向に略等間隔に傾斜配備される銅製の複数の伝熱銅フィンを溶接する際に、鋼製の前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて各々形成された前記内筒側の広角傾斜の各隅肉継手部、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を略等間隔に突合せて各々形成された前記外筒側の広角傾斜の各隅肉継手部、若しくは前記内筒及び前記外筒の両面に各々形成された各隅肉継手部に、先行TIGと後続MIGとの複合溶接又はMIG溶接によって溶接施工する金属キャスク用伝熱銅フィンの溶接方法であって、前記伝熱銅フィン側の溶融底部から溶接ビード表面までの最小距離を溶接部ののど厚とした時に、前記のど厚が所定の大きさ以上に形成されるようにワイヤ送り速度又は該ワイヤ送り速度とワイヤ径及び所定の溶接速度からワイヤ溶着断面積を決定するワイヤ溶着量決定工程と、前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて広角傾斜の隅肉継手部をN箇所形成した後に、CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって前記内筒側の各隅肉継手部に1パスずつ溶接する前記内筒側の第1の溶接工程と、前記内筒側の溶接終了後又は前記内筒側の溶接終了及びその溶接部の検査終了後に、前記伝熱銅フィンの外周側に前記外筒を配置し、前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を突合せて広角傾斜の隅肉継手部をN箇所形成した後に、前記CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって前記外筒側の前記各隅肉継手部に1パスずつ溶接する外筒側の第2の溶接工程とを備えていることを特徴とする。   Further, in order to achieve the above object, the welding method for heat transfer copper fins for metal cask according to the present invention includes a steel inner cylinder that houses an assembly of spent fuel having a radioactive substance, and an outer side of the inner cylinder. When welding a plurality of copper heat transfer copper fins inclined at substantially equal intervals in the circumferential direction between the steel outer cylinder and the steel outer cylinder, the length of the outer surface of the inner cylinder made of steel is welded A predetermined number of heat transfer copper fins in the direction of the inner cylinder side wide angle inclined fillet joints formed by abutting one end surface part of the heat transfer copper fins at substantially equal intervals, or a predetermined number of longitudinal direction of the inner surface of the outer cylinder Each of the other end face portions of the heat transfer copper fin is abutted at substantially equal intervals, and is formed on each of the outer tube side wide-angle inclined fillet joint portions, or on both surfaces of the inner tube and the outer tube, respectively. Welded to each fillet joint part by composite welding of preceding TIG and subsequent MIG or MIG welding A method for welding heat transfer copper fins for metal casks to be processed, wherein the throat thickness is a predetermined size when the minimum distance from the molten bottom on the heat transfer copper fin side to the weld bead surface is the throat thickness of the weld. A wire welding amount determining step of determining a wire welding cross-sectional area from the wire feeding speed or the wire feeding speed and the wire diameter and a predetermined welding speed so as to be formed more than the predetermined length, and a predetermined number of sheets in the longitudinal direction of the outer surface of the inner cylinder After the end face portions of the heat transfer copper fins are butted at substantially equal intervals to form N fillet joint portions having a wide angle slope, CuSi wire is used to perform composite welding of the preceding TIG and the subsequent MIG or by the MIG welding. A first welding process on the inner cylinder side for welding one pass at a time to each fillet joint on the inner cylinder side, and after the end of welding on the inner cylinder side or the end of welding on the inner cylinder side and inspection of the welded portion After finish, before The outer cylinder is arranged on the outer peripheral side of the heat transfer copper fin, and the other end face portions of the predetermined number of heat transfer copper fins are butted in the longitudinal direction of the inner surface of the outer cylinder to form N wide fillet joint portions After forming, second weld on the outer cylinder side that uses the CuSi wire and welds one pass at a time to each fillet joint on the outer cylinder side by composite welding of the preceding TIG and subsequent MIG or the MIG welding. And a process.

また、本発明の金属キャスク用伝熱銅フィンの溶接方法は、上記目的を達成するために、放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置される鋼製の外筒との間の周方向に略等間隔に傾斜配備される銅製の複数の伝熱銅フィンを溶接する際に、鋼製の前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて各々形成された前記内筒側の広角傾斜の各隅肉継手部、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を略等間隔に突合せて各々形成された前記外筒側の広角傾斜の各隅肉継手部、若しくは前記内筒及び外筒の両面に各々形成された各隅肉継手部に、先行TIGと後続MIGとの複合溶接又はMIG溶接によって溶接施工する金属キャスク用伝熱銅フィンの溶接方法であって、前記伝熱銅フィン側の溶融底部から溶接ビード表面までの最小距離を溶接部ののど厚とした時に、前記のど厚が所定の大きさ以上に形成されるようにワイヤ送り速度又は該ワイヤ送り速度とワイヤ径及び所定の溶接速度からワイヤ溶着断面積を決定するワイヤ溶着量決定工程と、前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて広角傾斜の前記隅肉継手部をN箇所形成した後に、CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって前記内筒側の前記各隅肉継手部に1パスずつ溶接する工程か、又は前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて広角傾斜の前記隅肉継手部をN箇所形成した後に、該N箇所の前記隅肉継手部を予め分割し、その分割した単位の前記隅肉継手部に溶接施工すると共に、その溶接部を検査するように前記隅肉継手部の溶接と検査とを繰り返す工程か、若しくは所定枚数の前記伝熱銅フィンを予め分割し、その分割した単位の前記伝熱銅フィンの片方端面部を前記内筒外面に突き合せて隅肉継手部を形成した後に溶接施工すると共に、その溶接部を検査するように前記隅肉継手部の形成と溶接と検査とを繰り返す工程のいずれかを行う前記内筒側の第1の溶接工程と、前記内筒側の溶接終了後又は前記内筒側の溶接終了及びその溶接部の検査終了後に、前記伝熱銅フィンの外周側に前記外筒を配置し、前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を突合せて広角傾斜の隅肉継手部をN箇所形成した後に、溶接時に前記CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって前記外筒側の前記各隅肉継手部に1パスずつ溶接する工程か、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を突合せて広角傾斜の隅肉継手部をN箇所形成した後に、該N箇所の前記隅肉継手部を予め分割し、その分割した単位の前記隅肉継手部に溶接施工すると共に、その溶接部を検査するように前記隅肉継手部の溶接と検査とを繰り返す工程か、若しくは前記外筒の代わりに、予め複数枚に分割した板状の外筒板を使用し、該板状の外筒板内面の長手方向に該当する前記伝熱銅フィンの他方の端面部を突合せて広角傾斜の隅肉継手部を形成した後に、その隅肉継手部に溶接施工すると共に、その溶接部を検査するように前記隅肉継手部の形成と溶接と検査とを繰り返す工程のいずれかを行う前記外筒側の第2の溶接工程とを備えていることを特徴とする。   Further, in order to achieve the above object, the welding method for heat transfer copper fins for metal cask according to the present invention includes a steel inner cylinder that houses an assembly of spent fuel having a radioactive substance, and an outer side of the inner cylinder. When welding a plurality of copper heat transfer copper fins inclined at substantially equal intervals in the circumferential direction between the steel outer cylinder and the steel outer cylinder, the length of the outer surface of the inner cylinder made of steel is welded A predetermined number of heat transfer copper fins in the direction of the inner cylinder side wide angle inclined fillet joints formed by abutting one end surface part of the heat transfer copper fins at substantially equal intervals, or a predetermined number of longitudinal direction of the inner surface of the outer cylinder Each of the other end face portions of the heat transfer copper fins is formed by abutting each other at substantially equal intervals, respectively, on each outer joint side wide-angle inclined fillet joint portion, or on both surfaces of the inner and outer tubes. Welding work to each fillet joint by composite welding of preceding TIG and subsequent MIG or MIG welding A heat transfer copper fin welding method for a metal cask, wherein the throat thickness is a predetermined size when the minimum distance from the molten bottom on the heat transfer copper fin side to the weld bead surface is the throat thickness of the weld. A wire welding amount determining step for determining a wire welding cross-sectional area from the wire feeding speed or the wire feeding speed and the wire diameter and a predetermined welding speed as formed above, and a predetermined number of the above in the longitudinal direction of the outer surface of the inner cylinder After forming N portions of the wide-angle inclined fillet joints by butting one end face portions of the heat transfer copper fins at substantially equal intervals, CuSi wire is used to perform the composite welding of the preceding TIG and the subsequent MIG or the MIG welding. A step of welding one pass at a time to each fillet joint portion on the inner cylinder side, or a wide angle inclination by abutting a predetermined number of one end surface portions of the heat transfer copper fins at substantially equal intervals in the longitudinal direction of the inner cylinder outer surface of After forming N fillet joints, the N fillet joints are divided in advance, welded to the fillet joints of the divided units, and the welds are inspected. The step of repeating welding and inspection of the fillet joint portion, or dividing a predetermined number of the heat transfer copper fins in advance, and pushing one end surface portion of the heat transfer copper fin of the divided unit against the outer surface of the inner cylinder In addition, after forming the fillet joint part, welding is performed, and the inner cylinder side first is performed which repeats the formation, welding, and inspection of the fillet joint part so as to inspect the weld part. The outer cylinder is disposed on the outer peripheral side of the heat transfer copper fin after the welding process of the inner cylinder side or after the end of welding on the inner cylinder side and the end of the inspection of the welded portion, and the inner surface of the outer cylinder The other end faces of the heat transfer copper fins of a predetermined number in the longitudinal direction After the N-parts of the wide angle slope are formed by butting the parts, the CuSi wire is used at the time of welding, and each fillet on the outer cylinder side is obtained by composite welding of the preceding TIG and the subsequent MIG or the MIG welding. After the step of welding one pass to the joint, or after forming N wide-angle inclined fillet joints by abutting each other end face of the heat transfer copper fin in the longitudinal direction of the inner surface of the outer cylinder The N fillet joints are divided in advance and welded to the fillet joints of the divided units, and the fillet joints are welded and inspected so as to inspect the welds. The process of repeating, or, instead of the outer cylinder, a plate-like outer cylinder plate that has been divided into a plurality of sheets is used, and the other of the heat transfer copper fins corresponding to the longitudinal direction of the inner surface of the plate-like outer cylinder plate A wide-angle inclined fillet joint is formed by abutting the end faces. Then, welding is applied to the fillet joint portion, and the second step on the outer cylinder side that performs any one of the steps of repeating the formation, welding, and inspection of the fillet joint portion so as to inspect the weld portion. And a welding process.

更に、本発明の伝熱銅フィン付き金属キャスクは、上記目的を達成するために、放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置する鋼製の外筒と、前記内筒器と前記外筒との間の周方向に略等間隔に傾斜配備する銅製の複数の伝熱銅フィンとを備え、鋼製の前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて各々形成された前記内筒側の広角傾斜の各隅肉継手部、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を略等間隔に突合せて各々形成された前記外筒側の広角傾斜の各隅肉継手部、若しくは前記内筒及び前記外筒の両面に各々形成された各隅肉継手部に、先行TIGと後続MIGとの複合溶接又はMIG溶接によって1パスずつ溶接施工されて形成される伝熱銅フィン付き金属キャスクであって、CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって1パスずつ溶接施工された前記各隅肉継手部の溶接部に、少なくとも前記のど厚Lが伝熱銅フィンの板厚T1以上に形成され、かつ、鋼製の前記内筒側又は前記外筒側若しくは前記内筒及び前記外筒両側の溶込み深さcが、0.05≦c≦4mmの範囲に形成されていることを特徴とする。   Furthermore, in order to achieve the above object, the metal cask with the heat transfer copper fin according to the present invention has a steel inner cylinder that houses an assembly of spent fuel having a radioactive substance, and a coaxial shape outside the inner cylinder. A steel outer cylinder, and a plurality of copper heat transfer copper fins inclined at substantially equal intervals in the circumferential direction between the inner cylinder and the outer cylinder, the steel inner cylinder Each inner joint side wide-angle inclined fillet joint portion formed by abutting one end face portions of the heat transfer copper fins at a substantially equal interval in the longitudinal direction of the outer surface, or the longitudinal direction of the inner surface of the outer tube Each of the other end face portions of the heat transfer copper fins of a predetermined number of each at a substantially equal interval, and each of the wide-angle inclined fillet joint portions on the outer cylinder side, or both surfaces of the inner cylinder and the outer cylinder The fillet joints formed in each of the above are connected by composite welding of preceding TIG and subsequent MIG or MIG welding. A metal cask with heat transfer copper fins formed by welding one pass at a time, using CuSi wire, each welded one pass at a time by composite welding of the preceding TIG and subsequent MIG or the MIG welding At the welded portion of the fillet joint portion, at least the throat thickness L is formed to be equal to or greater than the plate thickness T1 of the heat transfer copper fin, and the steel inner tube side or the outer tube side or the inner tube and the outer tube The penetration depth c on both sides is formed in the range of 0.05 ≦ c ≦ 4 mm.

本発明によれば、銅と鋼との異材継手の溶接性に優れたものとすることができ、金属キャスク用伝熱銅フィンの溶接方法及び伝熱銅フィン付き金属キャスクには、非常に有効である。   According to the present invention, the weldability of a dissimilar joint of copper and steel can be made excellent, and it is very effective for the welding method of the heat transfer copper fin for metal cask and the metal cask with heat transfer copper fin. It is.

本発明の実施例1に係わる伝熱銅フィン付き金属キャスクの構造を示す斜視図である。It is a perspective view which shows the structure of the metal cask with a heat-transfer copper fin concerning Example 1 of this invention. 図1中のA部を拡大した継手溶接構造を示す部分斜視図である。It is a fragmentary perspective view which shows the joint welding structure which expanded the A section in FIG. 本発明の実施例1に係わる金属キャスク用伝熱銅フィンの溶接方法の手順の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of the procedure of the welding method of the heat transfer copper fin for metal casks concerning Example 1 of this invention. 本発明の実施例1に係わる金属キャスク用伝熱銅フィンの溶接方法の他の手順概要を示すフローチャートである。It is a flowchart which shows the other procedure outline | summary of the welding method of the heat transfer copper fin for metal casks concerning Example 1 of this invention. 本発明の実施例1に係わる伝熱銅フィン付き金属キャスクにおける内筒外面と伝熱銅フィンの端面部との隅肉継手部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the fillet joint part of the inner cylinder outer surface and the end surface part of a heat-transfer copper fin in the metal cask with a heat-transfer copper fin concerning Example 1 of this invention. 図5に示した内筒側の隅肉継手部に溶接した溶接部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the welding part welded to the fillet joint part by the side of the inner cylinder shown in FIG. 本発明の実施例1に係わる伝熱銅フィン付き金属キャスクにおける外筒外面と伝熱銅フィンの他方の端面部との溶接すべき隅肉継手部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the fillet joint part which should be welded with the outer cylinder outer surface and the other end surface part of a heat-transfer copper fin in the metal cask with a heat-transfer copper fin concerning Example 1 of this invention. 図7に示した外筒側の隅肉継手部に溶接した溶接部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the welding part welded to the fillet joint part by the side of the outer cylinder shown in FIG. 本発明の実施例1に係わる金属キャスク用伝熱銅フィンの溶接方法の更に他の手順概要を示すフローチャートである。It is a flowchart which shows the further procedure outline | summary of the welding method of the heat transfer copper fin for metal casks concerning Example 1 of this invention. 本発明の実施例1に係わる伝熱銅フィン付き金属キャスクにおける内筒外面と1枚の伝熱銅フィンの端面部との隅肉継手部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the fillet joint part of the inner cylinder outer surface in the metal cask with a heat-transfer copper fin concerning Example 1 of this invention, and the end surface part of one heat-transfer copper fin. 図10に示した内筒側の隅肉継手部に溶接した溶接部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the welding part welded to the fillet joint part by the side of the inner cylinder shown in FIG. 本発明の実施例1に係わる伝熱銅フィン付き金属キャスクにおける内筒外面と2枚の伝熱銅フィンの端面部との隅肉継手部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the fillet joint part of the inner cylinder outer surface in the metal cask with a heat-transfer copper fin concerning Example 1 of this invention, and the end surface part of two heat-transfer copper fins. 図12に示した内筒側の隅肉継手部に溶接した溶接部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the welding part welded to the fillet joint part by the side of the inner cylinder shown in FIG. 本発明の実施例1に係わる伝熱銅フィン付き金属キャスクにおける板状の外筒板外面と伝熱銅フィンの他方の端面部との隅肉継手部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the fillet joint part of the plate-shaped outer cylinder board outer surface in the metal cask with a heat-transfer copper fin concerning Example 1 of this invention, and the other end surface part of a heat-transfer copper fin. 図14に示した板状の外筒板側の隅肉継手部に溶接した溶接部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the welding part welded to the fillet joint part by the side of the plate-shaped outer cylinder board shown in FIG. 本発明の実施例1に係わる伝熱銅フィン付き金属キャスクにおける板状の外筒板外面と2枚の伝熱銅フィンの他方の端面部との隅肉継手部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the fillet joint part of the plate-shaped outer cylinder board outer surface in the metal cask with a heat transfer copper fin concerning Example 1 of this invention, and the other end surface part of two heat transfer copper fins. is there. 図16に示した板状の外筒板側の隅肉継手部に溶接した溶接部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the welding part welded to the fillet joint part by the side of the plate-shaped outer cylinder board | plate shown in FIG. 本発明の実施例1に係わる一体構造のTIG−MIG溶接トーチの概略構成及びトーチ配置を示し、TIGアークとMIGアークで溶融プールを形成する前の図である。It is a figure before forming a molten pool with a TIG arc and a MIG arc, showing a schematic structure and a torch arrangement of an integral structure TIG-MIG welding torch according to Example 1 of the present invention. 図18の状態からTIGアークとMIGアークで溶融プールを形成した状態を示す図である。It is a figure which shows the state which formed the molten pool by the TIG arc and the MIG arc from the state of FIG. 本発明の実施例2に係わるMIG溶接トーチの概略構成及びトーチ配置を示す斜視図である。It is a perspective view which shows schematic structure and torch arrangement | positioning of the MIG welding torch concerning Example 2 of this invention. 本発明の実施例2に係わるMIT溶接における伝熱銅フィンの端面形状及びトーチ配置を示す図である。It is a figure which shows the end surface shape and torch arrangement | positioning of the heat-transfer copper fin in MIT welding concerning Example 2 of this invention. 本発明の実施例1に係わる先行TIGと後続MIGの複合溶接における伝熱銅フィンの端面形状及びトーチ配置を示す図である。It is a figure which shows the end surface shape and torch arrangement | positioning of a heat-transfer copper fin in the composite welding of the preceding TIG and subsequent MIG concerning Example 1 of this invention. 本発明の実施例3に係わる金属キャスク用伝熱銅フィンの溶接装置であり、長尺アームの先端部にTIG−MIG溶接トーチ及びガイドローラを配備した構成を示す正面図である。It is a welding apparatus of the heat transfer copper fin for metal casks concerning Example 3 of this invention, and is a front view which shows the structure which arrange | positioned the TIG-MIG welding torch and the guide roller at the front-end | tip part of a long arm. 図23に示した構成の左側面図である。It is a left view of the structure shown in FIG. 本発明に係わるワイヤ送り速度とワイヤ溶着断面積及びのど厚の関係を示す特性図である。It is a characteristic view which shows the relationship between the wire feed speed concerning this invention, a wire welding cross-sectional area, and a throat thickness. 本発明に係わる銅板の端面平坦面継手及び端面傾斜面継手のMIG溶接におけるトーチ位置のシフト量と溶接部ののど厚及びビード幅との関係を示す特性図である。It is a characteristic view which shows the relationship between the shift amount of the torch position in MIG welding of the end surface flat surface joint of a copper plate concerning this invention, and an end surface inclined surface joint, and the throat thickness and bead width of a welding part. 本発明に係わるトーチ位置(ワイヤ位置)のシフト量S2(前記第2の距離S2)を変化させた時の端面平坦面継手の溶接ビード外観及び溶接部断面写真を示す図である。It is a figure which shows the weld bead external appearance of the end face flat surface joint, and a weld cross-section photograph when changing the shift amount S2 (the second distance S2) of the torch position (wire position) according to the present invention. 本発明に係わる炭素鋼表面にCuSiワイヤを直接溶接した時の溶込み深さと鋼側の希釈率の関係を示す特性図である。It is a characteristic view which shows the relationship between the penetration depth when the CuSi wire is directly welded to the carbon steel surface according to the present invention and the dilution rate on the steel side. 本発明に係わる隅肉継手部のギャップ及びトーチ位置のシフト量を変化させてTIG−MIG複合溶接試験を行った時の溶接部の品質評価結果及び適正条件領域を示す特性図である。It is a characteristic view which shows the quality evaluation result and appropriate condition area | region of a weld part when changing the gap of the fillet joint part concerning this invention, and the amount of shifts of a torch position, and performing the TIG-MIG composite welding test. 本発明に係わるTIG−MIG複合溶接した溶接部の代表的な溶接断面写真を示す図である。It is a figure which shows the typical welding cross-section photograph of the welded part which carried out TIG-MIG compound welding concerning this invention. 本発明に係わる溶接部のビード垂直高さとのど厚の関係を示す特性図であり、表2に示した試験データの中から該当する各値を抽出してグラフ化したものである。FIG. 4 is a characteristic diagram showing the relationship between the throat thickness and the bead vertical height of the weld according to the present invention, in which each corresponding value is extracted from the test data shown in Table 2 and graphed. 本発明の一実施例において不合格と判定された時の溶接部及びその近傍を肉盛補修する例を示す部分断面図である。It is a fragmentary sectional view which shows the example which builds up the welding part when it determines with disqualification in one Example of this invention, and its vicinity. 本発明に係わるビード垂直高さと溶込み深さの関係を示す特性図である。It is a characteristic view which shows the relationship between the bead vertical height concerning this invention, and the penetration depth. 本発明に係わる溶接部ののど厚と溶込み深さの関係を示す特性図である。It is a characteristic view which shows the relationship between the throat thickness and penetration depth of the weld part concerning this invention. 本発明に係わる溶込み深さと溶接継手の引張荷重の関係を示す特性図である。It is a characteristic view which shows the relationship between the penetration depth concerning this invention, and the tensile load of a welded joint. 本発明の実施例4に係わる溶接すべき隅肉継手部の溶接線位置及びその位置ずれを検出するスリット光切断センサを用いた例を示す斜視図である。It is a perspective view which shows the example using the slit light cutting sensor which detects the weld line position of the fillet joint part which should be welded concerning Example 4 of this invention, and its position shift. 本発明の実施例4に係わる溶接前に行うトーチ位置(ワイヤ位置)の位置合せとセンサ側の原点位置座標の位置合せを示す図である。It is a figure which shows the alignment of the torch position (wire position) performed before welding concerning Example 4 of this invention, and the alignment of the origin position coordinate on the sensor side. 本発明の実施例4に係わる画像モニタの一例を示す図である。It is a figure which shows an example of the image monitor concerning Example 4 of this invention. 本発明の実施例4に係わる溶接すべき隅肉継手部の溶接線位置及びその位置ずれを検出するスリット光切断センサを用いた他の例を示す斜視図である。It is a perspective view which shows the other example using the slit light cutting sensor which detects the weld line position of the fillet joint part which should be welded concerning Example 4 of this invention, and its position shift. 本発明の実施例5に係わる金属キャスク用伝熱銅フィンの溶接装置であり、長尺アームの先端部にTIG−MIG溶接トーチ及びガイドローラを配備した構成を示す正面図である。It is a welding apparatus of the heat transfer copper fin for metal casks concerning Example 5 of this invention, and is a front view which shows the structure which arrange | positioned the TIG-MIG welding torch and the guide roller at the front-end | tip part of a long arm. 本発明に係わる部材表面までの距離及び距離変化を計測する距離センサを示す図である。It is a figure which shows the distance sensor which measures the distance to the member surface concerning this invention, and a distance change. 本発明に係わる長尺アームの先端部にTIG−MIG溶接トーチ及び距離センサを配備した例を示す構成の正面図である。It is a front view of the composition which shows the example which arranged the TIG-MIG welding torch and the distance sensor in the tip part of the long arm concerning the present invention. 本発明に係わる先行TIGと後続MIGとの複合溶接におけるトーチ位置のシフト量とTIG電流・電圧及びMIG電流・電圧の関係を示す特性図である。It is a characteristic view which shows the relationship between the shift amount of the torch position, TIG current / voltage, and MIG current / voltage in the composite welding of the preceding TIG and the succeeding MIG according to the present invention. 本発明の実施例6に係わるスリット光切断センサによる溶接部のビード垂直高さの検出を示す図である。It is a figure which shows the detection of the bead vertical height of the welding part by the slit light cutting sensor concerning Example 6 of this invention. 本発明の実施例6に係わる画像モニタの一例を示し、スリット光切断センサによるアンダーカットの大きさ(深さ)の検出を示す図である。It is an example of the image monitor concerning Example 6 of this invention, and is a figure which shows the detection of the magnitude | size (depth) of an undercut by a slit light cutting sensor. 本発明の実施例7に係わる手動操作の寸法測定器による溶接部のビード垂直高さの検出を示す図である。It is a figure which shows the detection of the bead vertical height of the welding part by the manually operated dimension measuring device concerning Example 7 of this invention.

以下、図示した実施例に基づいて本発明の金属キャスク用伝熱銅フィンの溶接方法及びその溶接装置について説明する。なお、各図において、同一構成部品には同符号を使用する。   Hereinafter, based on the illustrated embodiment, a welding method for a heat transfer copper fin for a metal cask of the present invention and its welding apparatus will be described. In each figure, the same symbols are used for the same components.

図1に、本実施例に係わる伝熱銅フィン付き金属キャスクの構造を、図2に、図1中のA部を拡大した溶接構造をそれぞれ示す。   FIG. 1 shows a structure of a metal cask with a heat transfer copper fin according to the present embodiment, and FIG. 2 shows a welded structure in which a portion A in FIG. 1 is enlarged.

該図において、内筒1は、その内部に放射性物質を有する複数の使用済燃料(図示せず)の集合体等を収納する容器であり、強度の高い炭素鋼等の鋼製の鋼材が用いられている。この内筒1の外側には、内筒1と同種材の鋼製の外筒2が内筒1を取り囲むように同軸状に配置されている(金属キャスク全体の強度及び剛性は、強度の高い鋼製の厚板の内筒1と外筒2及びこれらで形成する容器を密閉する複数の蓋(図示せず)等によって十分に確保されている)。内筒1の外面と外筒2の内面の間には、円周方向に略等間隔に、数十枚(所定枚数をN枚という)の伝熱銅フィン3が傾斜して配備されている。   In the figure, an inner cylinder 1 is a container for storing an assembly of a plurality of spent fuels (not shown) having radioactive materials therein, and made of steel such as carbon steel having high strength. It has been. On the outside of the inner cylinder 1, a steel outer cylinder 2 made of the same material as the inner cylinder 1 is arranged coaxially so as to surround the inner cylinder 1 (the strength and rigidity of the entire metal cask is high in strength). It is sufficiently secured by a plurality of lids (not shown) for sealing the inner cylinder 1 and the outer cylinder 2 of steel thick plates and the container formed by these. Between the outer surface of the inner cylinder 1 and the inner surface of the outer cylinder 2, dozens of heat transfer copper fins 3 (in a predetermined number called N) are inclined and arranged at substantially equal intervals in the circumferential direction. .

これらN枚の伝熱銅フィン3は、熱伝導率の高い純銅等の銅製の銅板材が用いられており、銅製の伝熱銅フィン3を用いることで、使用済燃料集合体から発生する崩壊熱を内筒1及び外筒2の外側へ逃がすための除熱性能を高めることができると共に、軽量化及びコスト低減にも寄与することができる。   These N heat transfer copper fins 3 are made of a copper plate made of copper such as pure copper having a high thermal conductivity. By using the copper heat transfer copper fins 3, collapse occurs from the spent fuel assembly. While the heat removal performance for releasing heat to the outside of the inner cylinder 1 and the outer cylinder 2 can be enhanced, it can also contribute to weight reduction and cost reduction.

図2に示すように、N枚の伝熱銅フィン3の片方の各端面部には、内筒1側の各隅肉継手部5で溶接された内側溶接部(溶接ビード及びその溶接断面部)7が形成されており、また、他方の各端面部には、外筒2側の各隅肉継手部8で溶接された外側溶接部10(溶接ビード及びその溶接断面部)が形成されている。この伝熱銅フィン3の内側溶接部7及び外側溶接部10については、特に強度は要求されないが、収納・保管する物質の性質上、高い信頼性を確保する必要がある。   As shown in FIG. 2, an inner welded portion (weld bead and its weld cross section) welded by each fillet joint portion 5 on the inner cylinder 1 side is provided on each end surface portion of the N heat transfer copper fins 3. ) 7 is formed, and an outer welded portion 10 (weld bead and its weld cross section) welded by each fillet joint portion 8 on the outer tube 2 side is formed on each other end surface portion. Yes. The inner welded portion 7 and the outer welded portion 10 of the heat transfer copper fin 3 are not particularly required in strength, but it is necessary to ensure high reliability due to the nature of the material to be stored and stored.

溶接すべきN枚の伝熱銅フィン3の各隅肉継手部5、8の内筒1と伝熱銅フィン3、外筒2と伝熱銅フィン3とのそれぞれの角度θ1は、内筒1の外面又は外筒2の内面若しくは内筒1及び外筒2の両面に対して、θ1=120度±15度(105≦θ1≦135度)の範囲の広角に傾斜して形成されている。   The angle θ1 between the inner cylinder 1 and the heat transfer copper fin 3 of each fillet joint portion 5 and 8 of the N heat transfer copper fins 3 to be welded, and the outer cylinder 2 and the heat transfer copper fin 3 is determined by the inner cylinder. 1 and the inner surface of the outer tube 2 or both surfaces of the inner tube 1 and the outer tube 2 are inclined at a wide angle in a range of θ1 = 120 degrees ± 15 degrees (105 ≦ θ1 ≦ 135 degrees). .

また、N枚の伝熱銅フィン3が隣接する各空間4は、樹脂材等のレジン(図示せず)を充填配備する場所である。これらのレジンは、使用済燃料の集合体から法線状に放出される放射線を遮蔽する物質であり、溶接終了後に、N枚の伝熱銅フィン3の傾斜面に沿って、レジンが各空間4の内部にそれぞれ充填されるものである。伝熱銅フィン3を広角に傾斜して配備することで、溶接時の作業性が容易になると共に、伝熱銅フィン3の傾斜面に沿って充填されるレジンの傾斜配備によって、放射線の遮蔽性能を高めることができる。   Each space 4 adjacent to the N heat transfer copper fins 3 is a place where a resin (not shown) such as a resin material is filled and arranged. These resins are substances that shield radiation emitted from the assembly of spent fuel in a normal line, and after welding, the resin is placed in each space along the inclined surface of the N heat transfer copper fins 3. 4 is filled in each. By arranging the heat transfer copper fins 3 to be inclined at a wide angle, workability during welding is facilitated, and radiation is shielded by the inclined arrangement of the resin filled along the inclined surfaces of the heat transfer copper fins 3. Performance can be increased.

本実施例における伝熱銅フィン3の両端面部を、内筒1及び外筒2の両面に溶接する方法について、以下に説明する。   A method for welding both end portions of the heat transfer copper fin 3 in this embodiment to both surfaces of the inner cylinder 1 and the outer cylinder 2 will be described below.

図3は、本実施例に係わる金属キャスク用伝熱銅フィンの溶接手順概要の一実施例を示すフローチャートであり、図4は、他の金属キャスク用伝熱銅フィンの溶接手順概要の一実施例を示すフローチャートである。図3及び図4に示したフローチャートの主な相違点は、内筒1側の第1の溶接工程103及び外筒2側の溶接工程110の施工内容を、内筒1側のN箇所の溶接の繰り返し溶接工程105及び外筒2側のN箇所の溶接の繰り返し溶接工程112と内筒1側の少数単位での溶接及び検査の繰り返し溶接工程106及び外筒2側の少数単位での溶接及び検査の繰り返し溶接工程113に区分けしたことである。   FIG. 3 is a flowchart showing an example of the welding procedure outline of the heat transfer copper fin for metal cask according to the present embodiment, and FIG. 4 shows an example of the outline of the welding procedure of heat transfer copper fin for another metal cask. It is a flowchart which shows an example. The main difference between the flowcharts shown in FIGS. 3 and 4 is that the contents of the first welding process 103 on the inner cylinder 1 side and the welding process 110 on the outer cylinder 2 side are welded at N locations on the inner cylinder 1 side. The repeated welding step 105 and the repeated welding step 112 of welding N places on the outer cylinder 2 side, the welding and inspection repeated welding step 106 on the inner cylinder 1 side and the minor unit on the outer cylinder 2 side, and That is, the inspection is repeatedly divided into welding steps 113.

例えば、図3に示すように、伝熱銅フィン3の溶接手順(その1)99では、溶接前にワイヤ溶着断面積Awを決定するワイヤ溶着断面積決定工程102と、所定枚数(N枚)の伝熱銅フィン3の片方端面部を内筒1側に各々突合せて隅肉継手部5をN箇所形成した後に、そのN箇所の隅肉継手部5−1、5−2・・・5−Nに繰り返し溶接する内筒1側の第1の溶接工程103及びN箇所の溶接の繰り返し溶接工程105と、その後に行う内筒1側の溶接品質の検査工程107の終了後で、N枚の伝熱銅フィン3の他方の端面部を外筒2側に各々突合せて隅肉継手部8をN箇所形成した後に、そのN箇所の隅肉継手部8−1、8−2・・・8−Nに繰り返し溶接する外筒2側の第2の溶接工程110及びN箇所の溶接の繰り返し溶接工程112とを備えている。   For example, as shown in FIG. 3, in the welding procedure (No. 1) 99 of the heat transfer copper fin 3, a wire welding sectional area determining step 102 for determining the wire welding sectional area Aw before welding, and a predetermined number (N). After the end face portions of the heat transfer copper fins 3 are butted to the inner cylinder 1 side to form N fillet joint portions 5, the N fillet joint portions 5-1, 5-2... 5 After completion of the first welding process 103 on the inner cylinder 1 side to be repeatedly welded to -N and the repeated welding process 105 of N-point welding, and the inspection process 107 of the welding quality on the inner cylinder 1 side performed thereafter, N sheets After the other end face portions of the heat transfer copper fins 3 are butted against the outer cylinder 2 side to form N fillet joint portions 8, the N fillet joint portions 8-1, 8-2. A second welding step 110 on the outer cylinder 2 side that is repeatedly welded to 8-N, and a repeated welding step 112 of welding at N locations; It has.

そして、隅肉継手部8をN箇所形成した後に、このN箇所の隅肉継手部8−1、8−2・・・8−Nに1パスずつ繰り返し溶接(連続溶接)することで、隅肉継手部の仮組作業と溶接作業とをそれぞれ効率良く行うことができる。   And after forming N fillet joint parts 8 at the N fillet joint parts 8-1, 8-2... 8 -N, one pass is repeatedly welded (continuous welding). Temporary assembly work and welding work of the meat joint portion can be performed efficiently.

一方、図4に示すように、伝熱銅フィン3の溶接手順(その2)100においては、溶接前にワイヤ溶着断面積Awを決定するワイヤ溶着断面積決定工程102の後に行う内筒1側の第1の溶接工程103では、内筒1側のN箇所の隅肉継手部5−1、5−2・・・5−Nに1パスずつ繰り返し溶接(連続溶接)するN箇所の溶接の繰り返し溶接工程105と、1〜5箇所程度に分割した隅肉継手部に溶接すると共に、その溶接後の溶接部を検査するように、溶接と検査の両作業を繰り返す少数単位での溶接及び検査の繰り返し溶接工程106とに分けている。   On the other hand, as shown in FIG. 4, in the welding procedure (part 2) 100 of the heat transfer copper fin 3, the inner cylinder 1 side to be performed after the wire welding sectional area determining step 102 for determining the wire welding sectional area Aw before welding. In the first welding step 103, N places of welding that are repeatedly welded (continuous welding) one by one to the N fillet joint parts 5-1, 5-2,..., 5-N on the inner cylinder 1 side. Welding and inspection in a small number of units that repeat both welding and inspection so that the welding process 105 and the fillet joint portion divided into about 1 to 5 places are welded and the welded portion after the welding is inspected. And the repeated welding process 106.

例えば、少数単位に分割して溶接及び検査を繰り返す少数単位での溶接及び検査の繰り返し溶接工程106には、所定枚数(N枚)の伝熱銅フィン3を内筒1の外面に取り付て隅肉継手部をN箇所形成した後に、そのN箇所の隅肉継手部5−1、5−2・・・5−Nを予め1〜5箇所程度に分割し、その分割した1〜5箇所の隅肉継手部5−1〜5−5に1パスずつ溶接すると共に、その溶接部を検査するように、隅肉継手部の溶接と検査とを繰り返すようにしている。   For example, a predetermined number (N) of heat transfer copper fins 3 are attached to the outer surface of the inner cylinder 1 in the repeated welding process 106 of welding and inspection in a small number of units that are divided into a small number of units and repeat welding and inspection. After the N fillet joints are formed, the N fillet joints 5-1, 5-2,..., 5-N are divided into about 1 to 5 places in advance, and the divided 1 to 5 places The fillet joint portions 5-1 to 5-5 are welded one pass at a time, and the weld and inspection of the fillet joint portions are repeated so as to inspect the weld portions.

一方、外筒2側の第2の溶接工程110では、内筒1側のN箇所の溶接の繰り返し溶接工程105及び少数単位での溶接及び検査の繰り返し溶接工程106と同様に、外筒2側のN箇所の隅肉継手部8−1、8−2・・・8−Nに1パスずつ繰り返し溶接(連続溶接)するN箇所の溶接の繰り返し溶接工程112と、1〜5箇所程度に分割した隅肉継手部に1パスずつ溶接すると共に、その溶接部を検査するように、溶接と検査の両作業を繰り返す少数単位での溶接及び検査の繰り返し溶接工程113とに分けている。外筒2側でも溶接と検査を繰り返す少数単位での溶接及び検査の繰り返し溶接工程113には、内筒2側の場合と同様であり、外筒2側に形成したN箇所の隅肉継手部8−1、8−2・・・8−Nを予め1〜5箇所程度に分割し、その分割した1〜5箇所の隅肉継手部8−1〜8−5に1パスずつ溶接すると共に、その溶接部を検査するように、隅肉継手部の溶接と検査とを繰り返すようにしている。   On the other hand, in the second welding process 110 on the outer cylinder 2 side, as in the repeated welding process 105 of N weldings on the inner cylinder 1 side and the repeated welding process 106 of welding and inspection in a small number unit, N-section fillet joints 8-1, 8-2,..., 8-N are repeatedly welded (continuous welding) one by one, and the N-part welding repeated welding process 112 is divided into about 1 to 5 places. In addition to welding one pass at a time to the fillet joint portion, the welding portion is divided into a welding process and a repeated welding step 113 of a small number of units that repeat both welding and inspection operations. The repeated welding process 113 of the minority unit that repeats welding and inspection on the outer cylinder 2 side is the same as the case of the inner cylinder 2 side, and N fillet joints formed on the outer cylinder 2 side are the same. 8-1, 8-2 ... 8-N is divided into about 1 to 5 places in advance and welded to the divided 1 to 5 fillet joints 8-1 to 8-5 one by one. The welding and inspection of the fillet joint are repeated so as to inspect the weld.

このように、二通りある作業(連続溶接又は溶接と検査の繰り返し)の何れかを選択することで、溶接優先の作業効率向上又は検査優先の溶接品質向上を図ることができる。   In this way, by selecting one of two types of operations (continuous welding or repetition of welding and inspection), it is possible to improve work efficiency with priority on welding or improvement in welding quality with priority on inspection.

次に、内筒1側の第1の溶接工程103と内筒1側のN箇所の溶接の繰り返し溶接工程105の終了後、又は内筒1側の第1の溶接工程103、内筒1側のN箇所の溶接の繰り返し溶接工程105、外筒2側の第2の溶接工程110、外筒2側のN箇所の溶接の繰り返し溶接工程112の終了後に、溶接品質を検査する内筒1側の検査工程107と外筒2側の検査工程114では、各溶接部の品質を各々検査すると共に、その検査で不合格となった溶接部分及びその近傍部を補修する補修溶接工程109及び116を備えている。   Next, after the end of the first welding process 103 on the inner cylinder 1 side and the repeated welding process 105 of N places on the inner cylinder 1 side, or the first welding process 103 on the inner cylinder 1 side, the inner cylinder 1 side After the completion of the N welding repeated welding process 105, the second welding process 110 on the outer cylinder 2 side, and the N welding repeated welding process 112 on the outer cylinder 2 side, the inner cylinder 1 side for inspecting the welding quality In the inspection step 107 and the inspection step 114 on the outer cylinder 2 side, the quality of each welded portion is inspected, and the repaired welding steps 109 and 116 for repairing the welded portion that has failed the inspection and the vicinity thereof are repaired. I have.

また、溶接と検査との両作業を繰り返し行う場合の内筒1側の検査工程117及び外筒2側の検査工程120では、該当する溶接部に溶接ビードが良好に形成されているか否か、割れやアンダーカット等の欠陥があるか否か、のど厚Lや溶込み深さc等を満足しているか否か等の溶接品質の検査・確認を行う。この溶接品質の検査を行う内筒1側の検査工程117及び外筒2側の検査工程120で不合格となった場合には、不合格の溶接部分及びその近傍部を補修溶接工程119及び122で補修するようにしている。   Further, in the inspection process 117 on the inner cylinder 1 side and the inspection process 120 on the outer cylinder 2 side when both the welding and inspection operations are repeatedly performed, whether or not the weld bead is well formed in the corresponding welded portion, Inspection / confirmation of welding quality, such as whether or not there are defects such as cracks and undercuts, and whether or not the throat thickness L and penetration depth c are satisfied. When the inspection process 117 on the inner cylinder 1 side and the inspection process 120 on the outer cylinder 2 side for inspecting the welding quality fail, repair welding processes 119 and 122 are performed on the rejected welded part and its vicinity. I am trying to repair it.

これらの補修溶接工程109、116、119、122では、例えば、隅肉継手部を本溶接した時の溶接条件よりも溶接電流や入熱量等を減少した溶接条件を使用して、1パス肉盛して補修することで、容易に肉盛補修することができる。   In these repair welding processes 109, 116, 119, 122, for example, one-pass cladding is performed using welding conditions in which the welding current, the amount of heat input, and the like are reduced as compared to the welding conditions when the fillet joint is fully welded. By repairing it, it is possible to easily repair the build-up.

なお、溶接品質を検査する方法については、別の実施例(図31〜35、図44〜46)を用いて詳細に後述する。   In addition, about the method to test | inspect welding quality, it mentions later in detail using another Example (FIGS. 31-35, FIGS. 44-46).

最初に、溶接前に行うワイヤ溶着断面積決定工程102では、所定の隅肉継手部5に形成すべき内側溶接部7ののど厚Lが伝熱銅フィン3の板厚T1以上(L≧T1)になるように、ワイヤ送り速度Wf又は該ワイヤ送り速度Wfとワイヤ径d及び所定の溶接速度Vからワイヤ溶着断面積Awを算出して決定する。   First, in the wire welding cross-sectional area determination step 102 performed before welding, the throat thickness L of the inner welded portion 7 to be formed on the predetermined fillet joint portion 5 is equal to or greater than the plate thickness T1 of the heat transfer copper fin 3 (L ≧ T1). The wire welding cross-sectional area Aw is calculated and determined from the wire feed speed Wf or the wire feed speed Wf, the wire diameter d, and the predetermined welding speed V.

なお、内側溶接部7ののど厚Lとは、図3中及び図4のワイヤ溶着断面積決定工程102中に示すように、伝熱銅フィン3側の溶融底部から溶接ビード表面までの最小距離のことである。また、ワイヤ溶着断面積決定工程102の箇所に図示した隅肉継手部5の内側溶接部7は、内筒1の外面に伝熱銅フィン3の一方の端面部を溶接して形成することを想定して描いているが、外筒2の内面に伝熱銅フィン3の他方の端面部を溶接して他方の外側溶接部10を形成することも想定内であり、図2に示した溶接構造と同様であることから省略している。   Note that the throat thickness L of the inner welded portion 7 is the minimum distance from the molten bottom portion on the heat transfer copper fin 3 side to the weld bead surface, as shown in the wire welding cross-sectional area determining step 102 in FIG. 3 and FIG. 4. That is. Moreover, the inner side welding part 7 of the fillet joint part 5 illustrated in the place of the wire welding sectional area determination step 102 is formed by welding one end face part of the heat transfer copper fin 3 to the outer surface of the inner cylinder 1. Although assumed and drawn, it is also assumed that the other end surface portion of the heat transfer copper fin 3 is welded to the inner surface of the outer cylinder 2 to form the other outer welded portion 10, and the welding shown in FIG. Omitted because it is similar to the structure.

次に、内筒1側の第1の溶接工程103では、図5に示すように、鋼製の内筒1の外面に所定枚数(N枚)の伝熱銅フィン3の片方の各端面部を突き合せて広角形状の各隅肉継手部5−1、5−2・・・5−Nを略等間隔に各々形成する。図5中には、伝熱銅フィン3を2枚のみ図示して他の部分を省略してあるが、溶接すべき所定枚数の伝熱銅フィン3は、内筒1の外面の円周方向に略等間隔に傾斜配備されている。   Next, in the first welding step 103 on the inner cylinder 1 side, as shown in FIG. 5, each end surface portion on one side of a predetermined number (N) of heat transfer copper fins 3 on the outer surface of the steel inner cylinder 1. To form the wide-angle fillet joint portions 5-1, 5-2,..., 5-N at substantially equal intervals. In FIG. 5, only two heat transfer copper fins 3 are shown and the other portions are omitted, but a predetermined number of heat transfer copper fins 3 to be welded are in the circumferential direction of the outer surface of the inner cylinder 1. Inclined deployment at approximately equal intervals.

なお、この内筒1側の第1の溶接工程103では、外筒2は配備せずに、伝熱銅フィン3を内筒1の外面に傾斜配備して広角形状の隅肉継手部5−1、5−2・・・5−Nを形成することで、本溶接前の伝熱銅フィン3の仮組作業や各隅肉継手部5−1、5−2・・・5−Nの溶接作業等を容易に行うことができる。   In the first welding step 103 on the inner cylinder 1 side, the outer cylinder 2 is not deployed, and the heat transfer copper fins 3 are inclinedly disposed on the outer surface of the inner cylinder 1 to form a wide-angle fillet joint 5- By forming 1, 5-2... 5-N, the temporary assembly work of the heat transfer copper fin 3 before the main welding and the fillet joint portions 5-1, 5-2. A welding operation or the like can be easily performed.

また、内筒1側の第1の溶接工程103では、図4及び図5に示すように、所定枚数(N枚)の伝熱銅フィン3を内筒1の外面に取り付て隅肉継手部5をN箇所形成した後に、このN箇所の隅肉継手部5−1、5−2・・・5−Nに1パスずつ繰り返し溶接(連続溶接)する内筒1側のN箇所の溶接の繰り返し溶接工程105と、N箇所の隅肉継手部5−1、5−2・・・5−Nを予め1〜5箇所程度に分割し、その分割した1〜5箇所の隅肉継手部5−1、5−2、5−3、5−4、5−5を溶接して、その溶接部を検査するように、溶接と検査の両作業を繰り返す内筒1側の少数単位での溶接と検査の繰り返し溶接工程106とに分けている。   In the first welding step 103 on the inner cylinder 1 side, as shown in FIGS. 4 and 5, a predetermined number (N) of heat transfer copper fins 3 are attached to the outer surface of the inner cylinder 1 to fillet joints. After forming the portion 5 at N locations, welding at N locations on the inner cylinder 1 side that is repeatedly welded (continuous welding) one pass at a time to the N fillet joint portions 5-1, 5-2. , 5-2, 5-N are divided in advance into about 1 to 5 places, and the divided 1 to 5 fillet joint parts are divided. 5-1, 5-2, 5-3, 5-4, 5-5 are welded and the welded portion is repeatedly inspected. It is divided into a welding process 106 for repeated welding and inspection.

内筒1側のN箇所の溶接の繰り返し溶接工程105では、パス毎に溶接すべきN箇所の隅肉継手部5−1、5−2・・・5−Nの各溶接開始位置から終了位置までの各溶接線(伝熱銅フィン3の下位表面に記した点線6−1、6−2・・・6−N)に対して、シリコン入りのCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、1パスずつ順番に溶接施工する。   In the repeated welding process 105 of N places on the inner cylinder 1 side, the welding start position from each welding start position of the N fillet joint portions 5-1, 5-2,. For each of the welding lines up to (dotted lines 6-1, 6-2... 6-N marked on the lower surface of the heat transfer copper fin 3), CuSi wires containing silicon are used, and the preceding TIG and subsequent MIG Welding is performed one pass at a time by composite welding or MIG welding.

この内筒1側のN箇所の溶接の繰り返し溶接工程105では、例えば、溶接対象の継手(内筒1及び伝熱銅フィン3の両方)側を回転駆動装置等で回転移動させて、溶接すべき隅肉継手部5−1の溶接線6−1を鉛直方向に姿勢変更した後に、溶接線6−1上に一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを下向姿勢で位置決めする。伝熱銅フィン3の両端面部が平坦面形状の場合の溶接線は、端面部から伝熱銅フィン3の表面側にワイヤ位置又はトーチ位置(電極位置含む)を所定距離だけシフトさせた位置であり、そのシフト量S1(第1の距離S1)は、S1=0〜4mmの範囲で設定すると良い。また、下向姿勢の一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを、溶接開始位置から終了位置までの溶接線6−1上に沿って走行させながら1パス溶接して溶接ビード及び溶接断面部7−1を形成すると良い。   In the repeated welding step 105 of welding at the N locations on the inner cylinder 1 side, for example, the joint to be welded (both the inner cylinder 1 and the heat transfer copper fin 3) side is rotated and moved by a rotary drive device or the like. After changing the posture of the weld line 6-1 of the power fillet joint 5-1 in the vertical direction, the TIG-MIG welding torch or the MIG welding torch having an integral structure is positioned on the welding line 6-1 in a downward posture. The weld line in the case where both end portions of the heat transfer copper fin 3 are flat surfaces is a position where the wire position or torch position (including electrode position) is shifted from the end surface portion to the surface side of the heat transfer copper fin 3 by a predetermined distance. The shift amount S1 (first distance S1) is preferably set in the range of S1 = 0 to 4 mm. In addition, the TIG-MIG welding torch or the MIG welding torch having a monolithic structure in the downward posture is welded along the weld line 6-1 from the welding start position to the end position to perform one pass welding, and a weld bead and a weld cross section. The part 7-1 is preferably formed.

このように、ワイヤ位置又はトーチ位置を伝熱銅フィン3側にシフトさせて溶接することで、伝熱銅フィン3の加熱溶融が促進されると共に鋼側の溶込み深さが抑制されるので、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、浅溶込みの溶接ビード及び溶接断面部を得ることができる。   Thus, by shifting the wire position or torch position to the heat transfer copper fin 3 side and welding, the heat melting of the heat transfer copper fin 3 is promoted and the penetration depth on the steel side is suppressed. The throat thickness L having a sufficient size and a heat conduction cross-sectional area effective for heat removal can be reliably ensured, and a shallow penetration weld bead and weld cross section can be obtained.

溶接線6−1の1パス溶接が終了すれば、溶接トーチを回避移動させ、次の溶接線6−2の溶接では、継手側を再び回転移動させて、該当する溶接線6−2を鉛直方向に姿勢変更した後に、回避移動させていた溶接トーチを溶接線6−2上に沿って移動させて下向姿勢で位置決めを行う。溶接トーチを溶接線6−2上に沿って走行させながら1パス溶接すると良い。   When the one-pass welding of the welding line 6-1 is completed, the welding torch is moved around, and in the welding of the next welding line 6-2, the joint side is rotated again, and the corresponding welding line 6-2 is moved vertically. After changing the posture in the direction, the welding torch that has been moved to avoid is moved along the welding line 6-2 to perform positioning in a downward posture. One-pass welding may be performed while the welding torch travels along the welding line 6-2.

このように、該当する隅肉継手部5の溶接線を姿勢変更する動作、溶接線上に溶接トーチを位置決めする動作、その溶接トーチを走行させながら溶接線上に1パス溶接を施工する動作、1パス溶接施工後に溶接トーチを回避させる動作等の一連の繰り返し動作を行うことで、所定枚数(N枚)の隅肉継手部の各溶接線6−1、6−2・・・6−Nに、図6に示すように、それぞれ溶接ビード及び溶接断面部7−1、7−2・・・7−Nを形成することができる。   In this way, the operation of changing the orientation of the weld line of the corresponding fillet joint portion 5, the operation of positioning the welding torch on the weld line, the operation of performing one-pass welding on the weld line while running the welding torch, 1 pass By performing a series of repetitive operations such as an operation for avoiding the welding torch after welding construction, each welding line 6-1, 6-2. As shown in FIG. 6, a weld bead and weld cross sections 7-1, 7-2... 7-N can be formed, respectively.

なお、先行TIGと後続MIGとの複合溶接又はMIG溶接については、別の実施例(図19〜30、図36〜43)を用いて後述する。   Note that the composite welding of the preceding TIG and the succeeding MIG or MIG welding will be described later using another embodiment (FIGS. 19 to 30 and FIGS. 36 to 43).

一方、内筒1側の溶接(1〜5箇所)と、その溶接部の検査を繰り返す内筒1側の少数単位での溶接と検査の繰り返し溶接工程106でも、溶接施工は同様であり、上述したように、下向姿勢の一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを溶接開始位置から終了位置までの溶接線6−1上に沿って走行させながら1パス溶接して、溶接ビード及び溶接断面部7−1を形成すると良い。溶接後には内筒1側の検査工程117で溶接品質の検査を行い、また、この溶接品質の検査で不合格となった場合には、不合格の溶接部分及びその近傍部を補修溶接工程119で補修するようにしている。   On the other hand, the welding operation is the same in the welding process 106 of the welding and inspection in the small number unit on the inner cylinder 1 side that repeats the inspection of the inner cylinder 1 side (1-5 locations) and the inspection of the welded portion. As described above, a single-pass welding is performed while the TIG-MIG welding torch or the MIG welding torch having the downward structure is moved along the welding line 6-1 from the welding start position to the end position. It is preferable to form the weld cross section 7-1. After welding, inspection of the welding quality is performed in the inspection process 117 on the inner cylinder 1 side, and when the inspection of the welding quality is unsuccessful, the repaired welding process 119 repairs the rejected welded part and its vicinity. I am trying to repair it.

CuSiワイヤを用いて先行TIGと後続MIGとの複合溶接又はMIG溶接することで、銅と鋼との異材溶接であっても、銅と鋼及びSiとが固溶可能な状態で適度に混合し合って割れのない良好な溶接ビード及び溶接断面部(溶接部)を形成することができる。熱伝導率が高い純銅製のCuワイヤを使用することも可能であるが、純銅製のCuワイヤの場合には、シリコン入りのCuSiワイヤと比べて、銅と鋼との異材溶接に対して溶接性及び溶接品質が劣ると共に、割れ感受性も高いことから本実施例の溶接方法には採用しなかった。   By using CuSi wire to perform composite welding of preceding TIG and subsequent MIG or MIG welding, copper, steel, and Si can be mixed together in a state where they can be dissolved even in the case of dissimilar material welding of copper and steel. As a result, it is possible to form a good weld bead and weld cross section (welded part) without cracks. Although it is possible to use pure copper Cu wire with high thermal conductivity, in the case of pure copper Cu wire, welding is performed for dissimilar material welding of copper and steel compared to CuSi wire containing silicon. This was not adopted in the welding method of the present example because of poor quality and weld quality and high crack sensitivity.

そして、本実施例では、溶接施工された各隅肉継手部5−1、5−2・・・5−Nの溶接ビード及び溶接断面部7−1、7−2・・・7−Nに、少なくとも溶接部ののど厚Lが伝熱銅フィン3の板厚T1以上(L≧T1)に形成され、かつ、内筒1側の溶込み深さcが0.05mm以上6mm以下(0.05≦c≦6mm)に形成されている(この溶込み深さcについては後述する)。   In this embodiment, the weld bead of each fillet joint portion 5-1, 5-2,..., 5-N and the weld cross-section portions 7-1, 7-2,. In addition, at least the throat thickness L of the welded portion is formed to be equal to or greater than the plate thickness T1 of the heat transfer copper fin 3 (L ≧ T1), and the penetration depth c on the inner cylinder 1 side is 0.05 mm to 6 mm (0.0. 05 ≦ c ≦ 6 mm) (the penetration depth c will be described later).

これによって、内筒1側の各伝熱銅フィン3の溶接箇所に、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、かつ、割れ等の欠陥がない品質良好な溶接ビード及び溶接断面部を得ることができる。また、除熱性能の向上及び製造コスト低減にも寄与することができる。更に、溶接部の引張強度についても、100N/mm以上の強度を確実に得ることができる。 As a result, it is possible to reliably secure a throat thickness L having a sufficient size and a heat conduction cross-sectional area effective for heat removal at the welded portion of each heat transfer copper fin 3 on the inner cylinder 1 side, and defects such as cracks. It is possible to obtain a weld bead and a welded cross-section with good quality. Moreover, it can contribute to improvement of heat removal performance and reduction of manufacturing cost. Furthermore, also about the tensile strength of a weld part, the intensity | strength of 100 N / mm < 2 > or more can be obtained reliably.

上述したのど厚Lが伝熱銅フィン3の板厚T1よりも小さ過ぎると、例えば、内筒1側から内側溶接部7を経由して伝熱銅フィン3側に熱を伝導するのに必要な熱伝導断面積が減少するため、除熱性能の向上に支障をきたすことになる。そのため、溶接部ののど厚Lを伝熱銅フィン3の板厚T1以上(L≧T1)に形成している。また、内筒1側の溶込み深さcが深過ぎると、溶接部の断面積に対する鋼の溶融比率(希釈率)が増加するため、溶接部分の熱伝導率が減少すると共に、割れ感受性が高くなり易い。溶込み深さcが浅過ぎると、鋼側との接合不足によって引張強度が低下し易くなる。そのため、内筒1側の溶込み深さcを0.05mm以上6mm以下(0.05≦c≦6mm)に形成している。   If the throat thickness L described above is too smaller than the plate thickness T1 of the heat transfer copper fin 3, for example, it is necessary to conduct heat from the inner cylinder 1 side to the heat transfer copper fin 3 side via the inner welded portion 7. As a result, the heat conduction cross-sectional area is reduced, which hinders improvement of heat removal performance. Therefore, the throat thickness L of the welded portion is formed to be equal to or greater than the plate thickness T1 of the heat transfer copper fin 3 (L ≧ T1). In addition, if the penetration depth c on the inner cylinder 1 side is too deep, the melting ratio (dilution ratio) of the steel with respect to the cross-sectional area of the welded portion increases, so that the thermal conductivity of the welded portion decreases and cracking susceptibility increases. It tends to be expensive. If the penetration depth c is too shallow, the tensile strength tends to decrease due to insufficient bonding with the steel side. Therefore, the penetration depth c on the inner cylinder 1 side is formed to be 0.05 mm or more and 6 mm or less (0.05 ≦ c ≦ 6 mm).

内筒1側の繰り返し溶接が終了した後の内筒1側の検査工程107では、内筒1の各溶接部に溶接ビードが良好に形成されているか否か、割れやアンダーカット等の欠陥があるか否か、のど厚Lや溶込み深さc等を満足しているか否か等の溶接品質の検査・確認を行う。工程108で合格であれば、次工程である外筒2側の第2の溶接工程110に進み、不合格の溶接箇所があれば、補修溶接工程109に進み、補修溶接工程109で不合格の溶接箇所及び近傍を補修溶接するようにしている。なお、内筒1側の検査工程107を省略して、内筒1及び外筒2の両方の溶接施工の終了後に、内筒1側の検査工程107を実施するようにすることもできる。   In the inspection process 107 on the inner cylinder 1 side after the repeated welding on the inner cylinder 1 side is finished, whether or not weld beads are well formed in each welded portion of the inner cylinder 1, and defects such as cracks and undercuts are present. Inspection / confirmation of welding quality, such as whether or not there is a throat thickness L or penetration depth c, is performed. If it is acceptable in step 108, the process proceeds to the second welding process 110 on the outer cylinder 2 side, which is the next process. If there is an unacceptable weld location, the process proceeds to repair welding process 109, and is rejected in repair welding process 109. Repair welding is performed at and near the weld location. In addition, the inspection process 107 on the inner cylinder 1 side may be omitted, and the inspection process 107 on the inner cylinder 1 side may be performed after the welding operation of both the inner cylinder 1 and the outer cylinder 2 is completed.

次に、外筒2側の第2の溶接工程110では、内筒1側の第1の溶接工程103、内筒1側のN箇所の溶接の繰り返し溶接工程105、内筒1側の少数単位での溶接と検査の繰り返し溶接工程106の終了後又は内筒1側の検査工程107及び117の終了後に、図7に示すように、内筒1側に溶接済の伝熱銅フィン3の外周側に一体の円筒状の外筒2を配置して、所定枚数(N)の伝熱銅フィン3の他方の各端面部を突き合せて、広角形状の各隅肉継手部8−1、8−2・・・8−Nを略等間隔に各々形成する。   Next, in the second welding process 110 on the outer cylinder 2 side, the first welding process 103 on the inner cylinder 1 side, the repeated welding process 105 for welding N locations on the inner cylinder 1 side, and the minor unit on the inner cylinder 1 side. 7, after the end of the repeated welding process 106 and the inspection process 107 and 117 on the inner cylinder 1 side, as shown in FIG. 7, the outer periphery of the heat transfer copper fin 3 welded to the inner cylinder 1 side An integral cylindrical outer tube 2 is arranged on the side, and the other end face portions of the predetermined number (N) of heat transfer copper fins 3 are butted to each of the wide-angle fillet joint portions 8-1, 8. -2 ... 8-N are formed at substantially equal intervals.

図7中には、図5と同様に、伝熱銅フィン3を2枚のみ図示して他の部分を省略しているが、溶接すべき所定枚数(N)の伝熱銅フィン3は、内筒1及び外筒2の両面に略等間隔に傾斜配備されており、かつ、内筒1側の溶接ビード及び溶接断面部7−1、7−2・・・7−Nは既に形成済であり、継手側の姿勢を反転して図示している。   In FIG. 7, as in FIG. 5, only two heat transfer copper fins 3 are shown and other portions are omitted, but a predetermined number (N) of heat transfer copper fins 3 to be welded are The inner cylinder 1 and the outer cylinder 2 are inclined at substantially equal intervals, and the weld beads and weld cross sections 7-1, 7-2... 7-N on the inner cylinder 1 side have already been formed. It is shown by reversing the posture on the joint side.

また、外筒2側の第2の溶接工程110では、図3、図4、図7及び図8に示すように、外筒2側に隅肉継手部をN箇所形成した後に、このN箇所の隅肉継手部8−1、8−2・・・8−Nに1パスずつ繰り返し溶接(連続溶接)する外筒2側のN箇所の溶接の繰り返し溶接工程112と、1〜5箇所程度の隅肉継手部8−1、8−2・・・8−Nに1パスずつ溶接すると共に、その溶接後の溶接部を検査するように溶接と検査の両作業を繰り返す外筒2側の少数単位での溶接と検査の繰り返し溶接工程113とに分けている。   Further, in the second welding step 110 on the outer cylinder 2 side, as shown in FIGS. 3, 4, 7 and 8, after N fillet joint portions are formed on the outer cylinder 2 side, Of the fillet joints 8-1, 8-2,..., 8-N repeatedly welded (continuously welded) one pass at a time, N welding on the outer tube 2 side 112, and about 1 to 5 places Of the fillet joints 8-1, 8-2 to 8 -N of the outer cylinder 2 on the outer tube 2 side, which repeats both welding and inspection so as to inspect the welded portion after the welding. It is divided into a welding process 113 in a small number of units and a repeated welding process 113 for inspection.

外筒2側のN箇所の溶接の繰り返し溶接工程112では、内筒1側のN箇所の溶接の繰り返し溶接工程105の場合と同様に、パス毎に溶接すべきN箇所の隅肉継手部8−1、8−2・・・8−Nの各溶接開始位置から終了位置までの各溶接線(伝熱銅フィン3の下位表面に記した点線9−1、9−2・・・9−N)に対して、シリコン入りのCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、1パスずつ順番に溶接施工する。   In the repeated welding step 112 for welding N places on the outer cylinder 2 side, as in the repeated welding process 105 for welding N places on the inner cylinder 1 side, N fillet joints 8 to be welded for each pass are provided. -1,8-2 ... 8-N welding lines from the welding start position to the end position (dotted lines 9-1, 9-2 ... 9- marked on the lower surface of the heat transfer copper fin 3) For N), a CuSi wire containing silicon is used, and welding is sequentially performed one pass at a time by composite welding of the preceding TIG and the subsequent MIG or MIG welding.

内筒1の溶接の場合と同様に、外筒2側の溶接の場合でも、溶接対象の継手(内筒1と外筒2及び伝熱銅フィン3)側を回転駆動装置等で回転移動させて、溶接すべき隅肉継手部8−1の溶接線9−1を鉛直方向に姿勢変更した後に、溶接線9−1上に、一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを下向姿勢で位置決めする。   As in the case of welding of the inner cylinder 1, even in the case of welding on the outer cylinder 2, the joint to be welded (the inner cylinder 1, the outer cylinder 2, and the heat transfer copper fin 3) is rotated and moved by a rotary drive device or the like. Then, after changing the posture of the weld line 9-1 of the fillet joint part 8-1 to be welded in the vertical direction, the TIG-MIG welding torch or the MIG welding torch of the integral structure is directed downward on the welding line 9-1. Position with posture.

上述したように、伝熱銅フィン3の両端面部が平坦面形状の場合の溶接線は、端面部から伝熱銅フィン3の表面側にワイヤ位置又はトーチ位置(電極位置含む)を所定距離だけシフトさせた位置であり、そのシフト量S1は、S1=0〜4mmの範囲で設定すると良い。下向姿勢の一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを、溶接開始位置から終了位置までの前記溶接線9−1上に沿って走行させながら1パス溶接して溶接ビード及び溶接断面部10−1を形成すると良い。   As described above, the welding line in the case where the both end surface portions of the heat transfer copper fin 3 are flat surfaces has a wire position or a torch position (including electrode position) from the end surface portion to the surface side of the heat transfer copper fin 3 by a predetermined distance. The shifted position S1 is preferably set in the range of S1 = 0 to 4 mm. The weld bead and the weld cross section are welded by one pass while the TIG-MIG welding torch or the MIG welding torch having the downward posture is moved along the welding line 9-1 from the welding start position to the end position. 10-1 may be formed.

このように、ワイヤ位置又はトーチ位置を伝熱銅フィン3側にシフトさせて溶接することで、伝熱銅フィン3の加熱溶融が促進されると共に鋼側の溶込み深さが抑制されるので、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、浅溶込みの溶接ビード及び溶接断面部を得ることができる。   Thus, by shifting the wire position or torch position to the heat transfer copper fin 3 side and welding, the heat melting of the heat transfer copper fin 3 is promoted and the penetration depth on the steel side is suppressed. The throat thickness L having a sufficient size and a heat conduction cross-sectional area effective for heat removal can be reliably ensured, and a shallow penetration weld bead and weld cross section can be obtained.

溶接線9−1の1パス溶接が終了すれば、溶接トーチを回避移動させ、次の溶接線9−2の溶接及びそれ以降の溶接線の溶接も同様であり、上述したように、該当する隅肉継手部の溶接線を姿勢変更する動作、溶接線上に溶接トーチを位置決めする動作、溶接トーチを走行させながら溶接線上に1パス溶接を施工する動作、1パス溶接施工後に溶接トーチを回避させる動作等の一連の繰り返し動作を行うことで、所定枚数(N枚)の隅肉継手部の各溶接線9−1、9−2・・・9−Nに、それぞれ溶接ビード及び溶接断面部10−1、10−2・・・10−Nを形成することができる。   When the one-pass welding of the welding line 9-1 is completed, the welding torch is moved around to avoid the welding of the next welding line 9-2 and the welding of the subsequent welding line, as described above. Operation to change the position of the weld line of the fillet joint, operation to position the welding torch on the weld line, operation to perform 1-pass welding on the weld line while running the welding torch, avoid welding torch after 1-pass welding operation By performing a series of repetitive operations such as an operation, a weld bead and a welded cross-sectional portion 10 are respectively connected to the weld lines 9-1, 9-2,... 9-N of a predetermined number (N) of fillet joint portions. -1, 10-2... 10-N can be formed.

一方、外筒2側の溶接(1〜5箇所)と、その溶接部の検査とを繰り返す外筒2側の少数単位での溶接と検査の繰り返し溶接工程113でも、内筒1側の場合と同様であり、上述したように、下向姿勢の一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを、溶接開始位置から終了位置までの溶接線9−1上に沿って走行させながら1パス溶接して溶接ビード及び溶接断面部10−1を形成すると良い。溶接後に外筒2側の溶接品質の検査工程120を行い、また、この外筒2側の溶接品質の検査工程120で不合格となった場合は、不合格の溶接部分及びその近傍部を補修溶接工程122で補修するようにしている。   On the other hand, in the case of the inner cylinder 1 side even in the repeated welding step 113 of welding and inspection on the outer cylinder 2 side which repeats the welding (1 to 5 places) on the outer cylinder 2 side and the inspection of the welded portion, Similarly, as described above, the one-pass welding is performed while the TIG-MIG welding torch or the MIG welding torch having the downward structure is moved along the welding line 9-1 from the welding start position to the end position. Then, it is preferable to form the weld bead and the weld cross section 10-1. The welding quality inspection process 120 on the outer cylinder 2 side is performed after welding, and if the welding quality inspection process 120 on the outer cylinder 2 side fails, the rejected welded part and its vicinity are repaired. Repair is performed in the welding step 122.

また、図4、図7及び図8に示したように、溶接施工された各隅肉継手部8−1、8−2・・・8−Nの溶接ビード及びその溶接断面部10−1、10−2・・・10−Nには、少なくとも溶接部ののど厚Lが伝熱銅フィン3の板厚T1以上(L≧T1)に形成され、かつ、外筒2側の溶込み深さcが0.05mm以上6mm以下(0.05≦c≦6mm)に形成されている。   Moreover, as shown in FIG.4, FIG7 and FIG.8, the weld bead of each fillet joint part 8-1, 8-2, ... 8-N welded, and its weld cross-section part 10-1, 10-2 to 10-N, at least the throat thickness L of the welded portion is formed to be equal to or greater than the plate thickness T1 of the heat transfer copper fin 3 (L ≧ T1), and the penetration depth on the outer cylinder 2 side c is 0.05 mm or more and 6 mm or less (0.05 ≦ c ≦ 6 mm).

これによって、上述した内筒1側の場合と同様に、外筒2側の各伝熱銅フィン3の溶接箇所でも、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、かつ、割れ等の欠陥がない品質良好な溶接ビード及びその溶接断面部を得ることができる。また、除熱性能の向上及び製造コスト低減にも寄与することができる。更に、溶接部の引張強度についても、100N/mm以上の強度を確実に得ることができる。 As a result, as in the case of the inner cylinder 1 side described above, the welded portion of each heat transfer copper fin 3 on the outer cylinder 2 side has a sufficiently large throat thickness L and a heat conduction cross-sectional area effective for heat removal. Can be reliably ensured, and a weld bead having a good quality without defects such as cracks and a weld cross section thereof can be obtained. Moreover, it can contribute to improvement of heat removal performance and reduction of manufacturing cost. Furthermore, also about the tensile strength of a weld part, the intensity | strength of 100 N / mm < 2 > or more can be obtained reliably.

外筒2側の繰り返し溶接が終了した後の外筒2側の検査工程114では、内筒1側の溶接検査と同様に、外筒2側の各溶接部に溶接ビードが良好に形成されているか否か、割れやアンダーカット等の欠陥があるか否か、のど厚Lや溶込み深さc等を満足しているか否か等の溶接品質の検査・確認を行う。合格(工程115)であれば、次工程へ125のステップに進み、不合格の溶接箇所があれば、補修溶接工程116に進み、不合格の溶接箇所及び近傍を補修溶接するようにしている。   In the inspection step 114 on the outer cylinder 2 side after the repeated welding on the outer cylinder 2 side is completed, the weld beads are well formed in the respective welded portions on the outer cylinder 2 side, as in the welding inspection on the inner cylinder 1 side. Whether or not there are defects such as cracks and undercuts, and whether or not the throat thickness L, penetration depth c, etc. are satisfied is checked and confirmed. If it is acceptable (step 115), the process proceeds to step 125 to the next process, and if there is an unsuccessful weld location, the process proceeds to the repair welding step 116 to repair and weld the unsatisfactory weld location.

また、図3〜図8に示したように、本実施例では、伝熱銅フィン3側の溶融底部から溶接ビード表面までの最小距離を溶接部ののど厚Lとした時に、のど厚Lが所定の大きさ以上に形成されるようにワイヤ送り速度Wf又はワイヤ送り速度Wfとワイヤ径d及び所定の溶接速度Vからワイヤ溶着断面積Awを決定し、各隅肉継手部の溶接開始位置から終了位置まで溶接すべきパス毎の溶接線に対して、シリコン入りのCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって1パスずつ溶接施工し、この溶接施工した各隅肉継手部の溶接部には、少なくとものど厚Lが伝熱銅フィン3の板厚T1以上(L≧T1)に形成されており、かつ、鋼製の内筒1側又は外筒2側若しくは内筒1及び外筒2の両側の溶込み深さcが0.05mm以上6mm以下(0.05≦c≦6mm)に形成することもできる。   As shown in FIGS. 3 to 8, in this embodiment, when the minimum distance from the molten bottom portion on the heat transfer copper fin 3 side to the weld bead surface is the throat thickness L of the welded portion, the throat thickness L is The wire welding cross-sectional area Aw is determined from the wire feed speed Wf or the wire feed speed Wf, the wire diameter d, and the predetermined welding speed V so as to be formed to have a predetermined size or more, and from the welding start position of each fillet joint portion. For each weld line to be welded to the end position, a CuSi wire containing silicon is used and welded one pass at a time by composite welding of the preceding TIG and subsequent MIG or MIG welding, and each welded fillet At the welded portion of the joint portion, at least the throat thickness L is formed to be equal to or greater than the plate thickness T1 of the heat transfer copper fin 3 (L ≧ T1), and the steel inner cylinder 1 side, the outer cylinder 2 side, or the inner Penetration depth on both sides of tube 1 and outer tube 2 There can also be formed 0.05mm or more than 6mm (0.05 ≦ c ≦ 6mm).

また、本実施例では、のど厚Lが所定の大きさ以上に形成されるようにワイヤ送り速度Wf又はワイヤ送り速度Wfとワイヤ径d及び所定の溶接速度Vからワイヤ溶着断面積Awを決定し、その後に、内筒1外面の長手方向に所定枚数(N枚)の伝熱銅フィン3の片方端面部を略等間隔に突合せて広角傾斜の隅肉継手部をN箇所形成した後に、溶接時にシリコン入りのCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、内筒1側の各隅肉継手部5−1、5−2・・・5−Nに1パスずつ溶接し、内筒1側の溶接終了後又は内筒1側の溶接終了及びその溶接ビード及び溶接断面部7−1、7−2・・・7−Nの検査終了後に、伝熱銅フィン3の外周側に一体の円筒状の外筒2を配置し、円筒状の外筒2内面の長手方向に所定枚数(N枚)の伝熱銅フィン3の他方の各端面部を突合せて広角傾斜の隅肉継手部をN箇所形成した後に、溶接時にCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、外筒2側の各隅肉継手部8−1、8−2・・・8−Nに1パスずつ溶接し、内筒1側及び外筒2側の溶接では、各隅肉継手部の溶接部には、少なくとものど厚Lを伝熱銅フィン3の板厚T1以上(L≧T1)に形成させ、かつ、鋼製の内筒1側又は外筒2側若しくは内筒1及び外筒2両側の溶込み深さcを0.05mm以上6mm以下(0.05≦c≦6mm)に形成することもできる。   In this embodiment, the wire welding cross-sectional area Aw is determined from the wire feed speed Wf or the wire feed speed Wf, the wire diameter d, and the predetermined welding speed V so that the throat thickness L is formed to a predetermined size or more. Then, after a predetermined number (N) of heat transfer copper fins 3 in the longitudinal direction of the outer surface of the inner cylinder 1 are abutted at substantially equal intervals to form N wide-angle inclined fillet joints, welding is performed. Sometimes using a CuSi wire containing silicon, one pass for each fillet joint 5-1, 5-2... 5-N on the inner cylinder 1 side by composite welding of the preceding TIG and the subsequent MIG or MIG welding After completion of welding on the inner cylinder 1 side or after completion of welding on the inner cylinder 1 side and after inspection of the weld beads and weld cross sections 7-1, 7-2,... 7-N, heat transfer copper fins 3 An integral cylindrical outer cylinder 2 is arranged on the outer peripheral side of the cylindrical outer cylinder 2 and the inner surface of the cylindrical outer cylinder 2 is After a predetermined number (N pieces) of heat transfer copper fins 3 in the hand direction are brought into contact with each other to form N wide-angle inclined fillet joints, CuSi wires are used for welding, and a preceding TIG and a subsequent MIG are used. Are welded to the fillet joints 8-1, 8-2,..., 8-N on the outer cylinder 2 side by one pass, and the inner cylinder 1 side and the outer cylinder 2 side are welded. Then, at the welded portion of each fillet joint portion, at least the throat thickness L is formed to be equal to or greater than the plate thickness T1 of the heat transfer copper fin 3 (L ≧ T1), and the steel inner cylinder 1 side or outer cylinder 2 is formed. The penetration depth c on the side or both sides of the inner cylinder 1 and the outer cylinder 2 can be formed to be 0.05 mm or more and 6 mm or less (0.05 ≦ c ≦ 6 mm).

また、本実施例では、のど厚Lが所定の大きさ以上に形成されるようにワイヤ送り速度Wf又はワイヤ送り速度Wfとワイヤ径d及び所定の溶接速度Vからワイヤ溶着断面積Awを決定し、その後に、内筒1外面の長手方向に所定枚数(N枚)の伝熱銅フィン3の片方端面部を略等間隔に突合せて広角傾斜の隅肉継手部をN箇所形成し、その後に、溶接時にシリコン入りのCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、内筒1側の各隅肉継手部5−1、5−2・・・5−Nに1パスずつ溶接するか、又は内筒1外面の長手方向に所定枚数(N枚)の伝熱銅フィン3の片方端面部を略等間隔に突合せて広角傾斜の隅肉継手部をN箇所形成した後に、N箇所の隅肉継手部を1〜5箇所ずつ単位に予め分割し、その分割した1〜5箇所ずつ単位の隅肉継手部5−1、5−2・・・5−Nに溶接施工すると共に、その溶接部を検査するように、隅肉継手部の溶接と検査とを繰り返し、内筒2側の溶接終了後又は内筒2側の溶接終了及びその溶接部の検査終了後に、伝熱銅フィン3の外周側に一体の円筒状の外筒2を配置し、円筒状の外筒2内面の長手方向に所定枚数(N枚)の伝熱銅フィンの他方の各端面部を突合せて広角傾斜の隅肉継手部をN箇所形成し、その後に、溶接時にCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、外筒2側の各隅肉継手部8−1、8−2・・・8−Nに1パスずつ溶接するか、又は円筒状の外筒2内面の長手方向に所定枚数(N枚)の伝熱銅フィン3の他方の各端面部を突合せて広角傾斜の隅肉継手部をN箇所形成した後に、N箇所の隅肉継手部を1〜5箇所ずつ単位に予め分割し、その分割した1〜5箇所ずつ単位の隅肉継手部8−1、8−2・・・8−Nに溶接施工すると共に、その溶接部を検査するように、隅肉継手部の溶接と検査とを繰り返し、内筒1側及び外筒2側の溶接では、各隅肉継手部の溶接部には、少なくとものど厚Lを伝熱銅フィン3の板厚T1以上(L≧T1)に形成させ、かつ、鋼製の内筒1側又は外筒2側若しくは内筒1及び外筒2の両側の溶込み深さcを0.05mm以上6mm以下(0.05≦c≦6mm)に形成することもできる。   In this embodiment, the wire welding cross-sectional area Aw is determined from the wire feed speed Wf or the wire feed speed Wf, the wire diameter d, and the predetermined welding speed V so that the throat thickness L is formed to a predetermined size or more. Thereafter, N end portions of the heat transfer copper fins 3 of a predetermined number (N) in the longitudinal direction of the outer surface of the inner tube 1 are abutted at substantially equal intervals to form N wide-angle inclined fillet joints, and then In addition, by using a CuSi wire containing silicon at the time of welding, 1 is applied to each fillet joint portion 5-1, 5-2,..., 5-N on the inner cylinder 1 side by composite welding of the preceding TIG and the subsequent MIG or MIG welding. Welded by each pass, or butted one end face of the heat transfer copper fin 3 of a predetermined number (N) in the longitudinal direction of the outer surface of the inner cylinder 1 at substantially equal intervals to form N wide fillet fillet joints. Later, N fillet joints are divided into 1 to 5 units in advance, and Welding and inspection of fillet joints so that the welded parts are inspected at the 1 to 5 divided fillet joints 5-1, 5-2. After the end of welding on the inner cylinder 2 side or the end of welding on the inner cylinder 2 side and the end of inspection of the welded portion, an integral cylindrical outer cylinder 2 is disposed on the outer peripheral side of the heat transfer copper fin 3, The other end face portions of a predetermined number (N) of heat transfer copper fins are abutted in the longitudinal direction of the inner surface of the cylindrical outer tube 2 to form N wide fillet fillet joint portions, and then CuSi is welded. Using a wire and welding one pass to each fillet joint portion 8-1, 8-2... 8 -N on the outer cylinder 2 side by composite welding of the preceding TIG and the subsequent MIG or MIG welding, or A predetermined number (N) of heat transfer copper fins 3 are abutted against each other in the longitudinal direction of the inner surface of the cylindrical outer cylinder 2 so as to be inclined at a wide angle. After N fillet joints are formed, the N fillet joints are divided into 1 to 5 units in advance, and the divided 1 to 5 fillet joints 8-1 and 8- 2... 8 -N welding is performed and the fillet joint is repeatedly welded and inspected so that the welded portion is inspected. The welded portion of the joint is formed with at least a throat thickness L equal to or greater than the plate thickness T1 of the heat transfer copper fin 3 (L ≧ T1), and the steel inner cylinder 1 side, outer cylinder 2 side or inner cylinder 1 Further, the penetration depth c on both sides of the outer cylinder 2 can be formed to be 0.05 mm or more and 6 mm or less (0.05 ≦ c ≦ 6 mm).

これらによって、上述した内筒1側及び外筒2側の各伝熱銅フィン3の溶接箇所でも、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、かつ、割れ等の欠陥がない品質良好な溶接ビード及びその溶接断面部を得ることができる。また、除熱性能の向上及び製造コスト低減にも寄与することができる。更に、溶接部の引張強度についても、100N/mm以上の強度を確実に得ることができる。 As a result, the throat thickness L having a sufficient size and a heat conduction cross-sectional area effective for heat removal can be reliably secured even at the welded portions of the heat transfer copper fins 3 on the inner cylinder 1 side and the outer cylinder 2 side described above. In addition, it is possible to obtain a weld bead having a good quality free from defects such as cracks and a weld cross section thereof. Moreover, it can contribute to improvement of heat removal performance and reduction of manufacturing cost. Furthermore, also about the tensile strength of a weld part, the intensity | strength of 100 N / mm < 2 > or more can be obtained reliably.

図9は、更に他の金属キャスク用伝熱銅フィンの溶接手順概要の一実施例を示すフローチャートである。   FIG. 9 is a flowchart showing an embodiment of a welding procedure outline of still another metal cask heat transfer copper fin.

図4に示したフローチャートとの主な相違点は、1つ目は内筒1側の第1の溶接工程103を、連続方式のN箇所の溶接の繰り返し溶接工程105と分割方式の少数単位での溶接と検査の溶接工程106に区分けしたこと、2つ目は一体の円筒状の外筒2を使用するか又は板状に分割した複数枚の外筒板を使用するかに区分けしたこと、3つ目は外筒2側の第2の溶接工程110を連続方式のN箇所の溶接の繰り返し溶接工程112と分割方式の少数単位での溶接と検査の溶接工程113とに区分けしたことである。   The main difference from the flowchart shown in FIG. 4 is that the first welding process 103 on the inner cylinder 1 side is divided into a continuous welding process 105 for continuous welding at N locations and a small number unit for the dividing system. The second step is to divide whether to use the integral cylindrical outer cylinder 2 or to use a plurality of outer cylinder plates divided into plates, The third is that the second welding process 110 on the outer cylinder 2 side is divided into a continuous welding process 112 for welding N points in a continuous system and a welding process 113 for welding and inspection with a small number of units in a split system. .

なお、溶接前に行うワイヤ溶着断面積決定工程102と、溶接後に行う内筒1側の検査工程107、117と、外筒2側の検査工程114、120と、不合格の溶接部分及びその近傍部を補修する補修溶接工程109、116とについては、図4に示した内容と略同様である。   In addition, the wire welding cross-sectional area determination process 102 performed before welding, the inspection processes 107 and 117 on the inner cylinder 1 side performed after welding, the inspection processes 114 and 120 on the outer cylinder 2 side, the rejected welded portion and the vicinity thereof The repair welding processes 109 and 116 for repairing the part are substantially the same as the contents shown in FIG.

図9に示すように、伝熱銅フィン3の溶接手順(その3)101では、ワイヤ溶着断面積決定工程102の終了後に実施する内筒1側の第1の溶接工程103は、内筒1外面と伝熱銅フィン3の端面部とを接続する隅肉継手部5の形成及び溶接施工を連続方式で行うか又は分割方式で行うかを選択(工程104)するところであり、連続方式を選択した場合は、連続方式のN箇所の溶接の繰り返し溶接工程105に進み、そうでない場合には、少数単位での溶接と検査の溶接工程106に進むようになっている。   As shown in FIG. 9, in the welding procedure (No. 3) 101 of the heat transfer copper fin 3, the first welding process 103 on the inner cylinder 1 side performed after the end of the wire welding cross-sectional area determination process 102 is the inner cylinder 1. The choice of whether the fillet joint 5 that connects the outer surface and the end face of the heat transfer copper fin 3 is formed and welded in a continuous manner or in a split manner (step 104). In this case, the process proceeds to the welding process 105 for repeated welding of N points in the continuous method, and otherwise, the process proceeds to the welding process 106 for welding and inspection in a small number of units.

内筒1側のN箇所の溶接の繰り返し溶接工程105では、図5及び図6で説明したように、鋼製の内筒1外面に所定枚数(N枚)の伝熱銅フィン3の片方の各端面部を突き合せて広角形状の各隅肉継手部5−1、5−2・・・5−Nを略等間隔に各々形成する。そして、パス毎に溶接すべきN箇所の隅肉継手部5−1、5−2・・・5−Nの各溶接開始位置から終了位置までの各溶接線(伝熱銅フィン3の下位表面に記した点線6−1、6−2・・・6−N)に対して、シリコン入りのCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、1パスずつ順番に溶接施工する。   In the repeated welding step 105 of welding at N locations on the inner cylinder 1 side, as described with reference to FIGS. 5 and 6, one of the heat transfer copper fins 3 of a predetermined number (N) on the outer surface of the steel inner cylinder 1. Each end face part is abutted to form wide-angle fillet joint parts 5-1, 5-2,..., 5-N at substantially equal intervals. And each weld line (each lower surface of the heat transfer copper fin 3) from each welding start position to the end position of N fillet joint parts 5-1, 5-2,..., 5-N to be welded for each pass. The dotted lines 6-1, 6-2,..., 6-N) described in 1) are welded one by one in order by using a CuSi wire containing silicon and performing composite welding of the preceding TIG and subsequent MIG or MIG welding. Install.

このようにして溶接施工された各隅肉継手部の溶接ビード及び溶接断面部7−1、7−2・・・7−Nには、少なくとも溶接部ののど厚Lが伝熱銅フィン3の板厚T1以上(L≧T1)に形成され、かつ、内筒1側の溶込み深さcが0.05mm以上6mm以下(0.05≦c≦6mm)に形成されている。   The weld beads and weld cross sections 7-1, 7-2,... 7-N of each fillet joint thus welded have at least a throat thickness L of the welded portion of the heat transfer copper fins 3. It is formed to have a plate thickness T1 or more (L ≧ T1), and a penetration depth c on the inner cylinder 1 side is formed to 0.05 mm or more and 6 mm or less (0.05 ≦ c ≦ 6 mm).

これによって、上述した内筒1側の各伝熱銅フィンの溶接箇所に、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、かつ、割れ等の欠陥がない品質良好な溶接ビード及び溶接断面部を得ることができる。また、除熱性能の向上及び製造コスト低減にも寄与することができる。更に、溶接部の引張強度についても、100N/mm以上の強度を確実に得ることができる。 As a result, it is possible to reliably secure a throat thickness L having a sufficient size and a heat conduction cross-sectional area effective for heat removal at the welded portion of each heat transfer copper fin on the inner cylinder 1 side described above, and cracks, etc. It is possible to obtain a weld bead and a weld cross section having no defects and good quality. Moreover, it can contribute to improvement of heat removal performance and reduction of manufacturing cost. Furthermore, also about the tensile strength of a weld part, the intensity | strength of 100 N / mm < 2 > or more can be obtained reliably.

一方、少数単位に分割して溶接及び検査を繰り返す溶接工程106では、所定枚数(N枚)の伝熱銅フィン3を予め1〜5枚程度に分割し、その分割した1〜5枚の伝熱銅フィン3の片方端面部を内筒1の外面に突き合せて各隅肉継手部(1〜5箇所)を形成した後に溶接し、その溶接部を検査するように、隅肉継手部の形成と溶接と検査とを繰り返すようにしている。   On the other hand, in the welding step 106 in which welding and inspection are repeated by dividing into a small number of units, a predetermined number (N) of heat transfer copper fins 3 are divided into about 1 to 5 pieces in advance, and the divided 1 to 5 pieces of heat transfer are transferred. One end face portion of the hot copper fin 3 is abutted against the outer surface of the inner cylinder 1 to form each fillet joint portion (1 to 5 places) and then welded. The formation, welding, and inspection are repeated.

例えば、図10及び図11に示すように、内筒1外面に1枚の伝熱銅フィン3の片方端面部を突き合せて所定の隅肉継手部5−1を1箇所形成した後に、シリコン入りのCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、隅肉継手部5−1の溶接開始位置から終了位置まで1パス溶接を行う。この溶接終了後に、溶接部の品質検査を行うようにしている。   For example, as shown in FIGS. 10 and 11, after one end surface portion of one heat transfer copper fin 3 is abutted against the outer surface of the inner cylinder 1 to form one predetermined fillet joint portion 5-1, One-pass welding is performed from the welding start position to the end position of the fillet joint portion 5-1 by composite welding of the preceding TIG and the subsequent MIG or MIG welding using the contained CuSi wire. After the end of welding, quality inspection of the welded portion is performed.

また、図12及び図13に示すように、内筒1外面に2枚の伝熱銅フィン3の片方端面部を突き合せて隅肉継手部5−1、5−2を2箇所形成した後に、シリコン入りのCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、隅肉継手部5−1、5−2の溶接線6−1、6−2に対して、溶接開始位置から終了位置まで1パスずつ順番に溶接を行う。この2箇所の溶接終了後に、各溶接部の品質検査を行うようにしている。   Moreover, as shown in FIG.12 and FIG.13, after forming the fillet joint parts 5-1 and 5-2 in two places by abutting the one end surface part of the heat transfer copper fin 3 on the outer surface of the inner cylinder 1 Using a CuSi wire containing silicon, welding is started on the weld lines 6-1 and 6-2 of the fillet joint portions 5-1 and 5-2 by composite welding of the preceding TIG and the subsequent MIG or MIG welding. Welding is performed one by one from the position to the end position. After the welding at these two places, quality inspection of each welded part is performed.

ここでは、1本目の隅肉継手部5−1の溶接線6−1(伝熱銅フィン3の下位表面に記した点線)上に、一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを位置決め配置して下向姿勢で1パス溶接を施工し、1本目の溶接ビード及び溶接断面部(溶接部)7−1を形成すると良い。また、1本目の溶接が終了すると、2本目の隅肉継手部5−2の溶接線6−2上に、一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを位置決め配置して1パス溶接を施工し、2本目の溶接ビード及び溶接断面部(溶接部)7−2を形成すると良い。   Here, an integral TIG-MIG welding torch or MIG welding torch is positioned on the welding line 6-1 of the first fillet joint 5-1 (dotted line marked on the lower surface of the heat transfer copper fin 3). It is good to arrange | position and construct 1 pass welding in a downward attitude | position, and to form the 1st welding bead and the welding cross-section part (welding part) 7-1. When the first welding is completed, an integral TIG-MIG welding torch or MIG welding torch is positioned on the welding line 6-2 of the second fillet joint portion 5-2 to perform one-pass welding. It is good to construct and form the 2nd weld bead and weld cross-section part (weld part) 7-2.

上述したように、伝熱銅フィン2の両端面部が平坦面形状の場合の溶接線は、端面部から伝熱銅フィン3の表面側にワイヤ位置又はトーチ位置を所定距離だけシフトさせた位置であり、そのシフト量S1は、S1=0〜4mmの範囲で溶接時に設定すると良い。   As described above, the weld line in the case where both end portions of the heat transfer copper fin 2 are flat surfaces is a position where the wire position or torch position is shifted from the end surface portion to the surface side of the heat transfer copper fin 3 by a predetermined distance. Yes, the shift amount S1 may be set during welding in the range of S1 = 0 to 4 mm.

このように、ワイヤ位置又はトーチ位置を伝熱銅フィン側にシフトさせて溶接することで、伝熱銅フィン3の加熱溶融が促進されると共に鋼側の溶込み深さが抑制されるので、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、浅溶込みの溶接ビード及び溶接断面部を得ることができる。   Thus, by shifting the wire position or torch position to the heat transfer copper fin side and welding, the heat melting of the heat transfer copper fin 3 is promoted and the penetration depth on the steel side is suppressed, A throat thickness L having a sufficient size and a heat conduction cross-sectional area effective for heat removal can be surely ensured, and a shallow penetration weld bead and weld cross section can be obtained.

この溶接が終了すると、該当する溶接ビード及び溶接断面部(溶接部)7−1、7−2の品質検査を内筒1側の検査工程117で行う。この内筒1側の検査工程117では、上述したように、内筒1側の各溶接部に溶接ビードが良好に形成されているか否か、割れやアンダーカット等の欠陥があるか否か、のど厚Lや溶込み深さc等を満足しているか否か等の溶接品質の検査・確認を行う。合格(工程118)であれば、次の隅肉継手部の形成と少数単位での溶接と検査との繰り返し溶接工程106に戻り、不合格の溶接箇所があれば、補修溶接工程119に進み、不合格の溶接箇所及び近傍を補修溶接するようにしている。   When this welding is completed, the quality inspection of the corresponding weld bead and the weld cross sections (welded portions) 7-1 and 7-2 is performed in the inspection step 117 on the inner cylinder 1 side. In the inspection process 117 on the inner cylinder 1 side, as described above, whether or not the weld bead is well formed in each welded part on the inner cylinder 1 side, whether there is a defect such as a crack or an undercut, Inspection / confirmation of welding quality, such as whether or not the throat thickness L and the penetration depth c are satisfied. If it is acceptable (step 118), the process returns to the repeated welding step 106 of the next fillet joint formation and welding and inspection in a small number of units, and if there is an unacceptable welded portion, it proceeds to the repair welding step 119, Repair welding is performed at and near the rejected welds.

このようにして、所定枚数(N枚)の伝熱銅フィン3を予め1〜5枚程度に分割して、隅肉継手部の形成と溶接と検査とを繰り返することで、例えば、2機の金属キャスクを略同時に製造する場合に、内筒1側に伝熱銅フィン3を取付けて所定の隅肉継手部5−1、5−2を形成する作業と、形成後の隅肉継手部5−1、5−2に溶接する作業と、その溶接部の品質を検査する作業とを略同時進行で行うことができ、無駄な遊び時間短縮、作業効率向上等を図ることが可能になる。   In this way, by dividing the predetermined number (N) of heat transfer copper fins 3 into about 1 to 5 in advance and repeating the formation of the fillet joint, welding and inspection, for example, two machines When the metal cask is manufactured substantially simultaneously, the work of attaching the heat transfer copper fins 3 to the inner cylinder 1 side to form the predetermined fillet joint portions 5-1, 5-2, and the fillet joint portion after the formation The work of welding to 5-1 and 5-2 and the work of inspecting the quality of the welded portion can be performed substantially simultaneously, and it becomes possible to shorten useless play time and improve work efficiency. .

なお、ここでは、伝熱銅フィン3の分割枚数を1〜5程度に限定して説明したが、1〜10枚程度に増加して、隅肉継手部の形成と溶接と検査とを繰り返するようにすることも容易であり、同様な効果を得ることができる。   In addition, although the number of divisions of the heat transfer copper fins 3 is limited to about 1 to 5 here, the number of the heat transfer copper fins 3 is increased to about 1 to 10 to repeat the formation of the fillet joint, welding, and inspection. It is easy to do so, and the same effect can be obtained.

また、内筒1側の検査工程107及び117の終了後に実施する外筒2側の第2の溶接工程110は、所定枚数(N枚)の伝熱銅フィン3の各端面部と外筒2内面とを接続する各隅肉継手部8−1、8−2・・・8−Nの形成及び溶接施工を連続方式で行うか又は分割方式で行うかを選択(工程111)するところであり、連続方式を選択した場合は、N箇所の溶接の繰り返し溶接工程112に進み、そうでない場合には、少数単位での溶接と検査の繰り返し溶接工程113に進むようにしている。   The second welding step 110 on the outer tube 2 side, which is performed after the inspection steps 107 and 117 on the inner tube 1 side, is performed on each end surface portion of the heat transfer copper fins 3 of the predetermined number (N) and the outer tube 2. It is where it is selected (step 111) whether the fillet joints 8-1, 8-2,..., 8-N connected to the inner surface are formed and welded in a continuous manner or in a divided manner. When the continuous method is selected, the process proceeds to a repeated welding process 112 for welding at N locations. Otherwise, the process proceeds to a repeated welding process 113 for welding and inspection with a small number of units.

N箇所の溶接の繰り返し溶接工程112では、図7及び図8で説明したように、鋼製の内筒1側に溶接済の伝熱銅フィン3の外周側に一体の円筒状の外筒2を配置して、所定枚数(N枚)の伝熱銅フィン3の他方の各端面部を突き合せて広角形状の各隅肉継手部8−1、8−2・・・8−Nを略等間隔に各々形成する。そして、パス毎に溶接すべきN箇所の隅肉継手部の各溶接開始位置から終了位置までの各溶接線(伝熱銅フィン3の下位表面に記した点線9−1、9−2・・・9−N)に対して、シリコン入りのCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、1パスずつ順番に溶接施工する。   In the repeated welding step 112 of welding at N locations, as described with reference to FIGS. 7 and 8, the cylindrical outer cylinder 2 integral with the outer peripheral side of the heat transfer copper fin 3 welded to the steel inner cylinder 1 side. And the other end face portions of the predetermined number (N) of heat transfer copper fins 3 are abutted to each other so that the wide-angle fillet joint portions 8-1, 8-2,. Each is formed at equal intervals. And each welding line from each welding start position to the end position of N fillet joints to be welded for each pass (dotted lines 9-1, 9-2,... Marked on the lower surface of the heat transfer copper fin 3) For 9-N), CuSi wire containing silicon is used, and welding is performed one by one in order by composite welding of preceding TIG and subsequent MIG or MIG welding.

上述したように、該当する隅肉継手部の溶接線を姿勢変更する動作、溶接線上に溶接トーチを位置決めする動作、溶接トーチを走行させながら溶接線上に1パス溶接を施工する動作、1パス溶接施工後に溶接トーチを回避させる動作等の一連の繰り返し動作を行うことで、所定枚数(N枚)の隅肉継手部の各溶接線9−1、9−2・・・9−Nに、それぞれ所定の溶接ビード及び溶接断面部10−1、10−2・・・10−Nを形成することができる。   As described above, the operation of changing the posture of the weld line of the corresponding fillet joint, the operation of positioning the welding torch on the welding line, the operation of performing one-pass welding on the welding line while running the welding torch, and one-pass welding By performing a series of repetitive operations such as an operation for avoiding the welding torch after the construction, each of the weld lines 9-1, 9-2,. A predetermined weld bead and weld cross sections 10-1, 10-2,..., 10-N can be formed.

こうして溶接施工された各隅肉継手部の溶接ビード及び溶接断面部10−1、10−2・・・10−Nには、少なくとも溶接部ののど厚Lが伝熱銅フィン3の板厚T1以上(L≧T1)に形成され、かつ、内筒1側の溶込み深さcが0.05mm以上6mm以下(0.05≦c≦6mm)に形成されている。   The weld bead and the weld cross sections 10-1, 10-2,... 10-N of the fillet joints thus welded have at least a throat thickness L of the welded portion of the heat transfer copper fin 3 thickness T1. It is formed as described above (L ≧ T1), and the penetration depth c on the inner cylinder 1 side is formed from 0.05 mm to 6 mm (0.05 ≦ c ≦ 6 mm).

これによって、上述した外筒2側の各伝熱銅フィン3の溶接箇所に、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、かつ、割れ等の欠陥がない品質良好な溶接ビード及び溶接断面部を得ることができる。また、除熱性能の向上及び製造コスト低減にも寄与することができる。更に、溶接部の引張強度についても、100N/mm以上の強度を確実に得ることができる。 As a result, the throat thickness L having a sufficient size and a heat conduction cross-sectional area effective for heat removal can be reliably secured at the welded portion of each heat transfer copper fin 3 on the outer cylinder 2 side, and cracks, etc. It is possible to obtain a weld bead and a weld cross section having good quality without any defects. Moreover, it can contribute to improvement of heat removal performance and reduction of manufacturing cost. Furthermore, also about the tensile strength of a weld part, the intensity | strength of 100 N / mm < 2 > or more can be obtained reliably.

一方、少数単位で溶接と検査の繰り返し溶接工程113では、図14、図15及び図16、図17に示すように、一体の円筒状の外筒2の代わりに、予め複数枚に分割した板状の外筒板2−2を使用し、この板状の外筒板2−2内面の長手方向に、該当する伝熱銅フィン3の他方の端面部を突合せて広角傾斜の隅肉継手部8−1、8−2を形成する。そして、溶接時にCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって形成箇所の隅肉継手部8−1、8−2に溶接施工し、その溶接後の溶接部を検査するように、隅肉継手部の形成と溶接及び検査を交互に繰り返し行うようにしている。   On the other hand, in the repeated welding step 113 of welding and inspection in a small number of units, as shown in FIGS. A wide-angle inclined fillet joint by using the outer cylindrical plate 2-2 and the other end surface of the corresponding heat transfer copper fin 3 in the longitudinal direction of the inner surface of the outer cylindrical plate 2-2. 8-1 and 8-2 are formed. Then, CuSi wire is used at the time of welding, welding is performed on the fillet joint portions 8-1 and 8-2 at the formation locations by composite welding of the preceding TIG and the subsequent MIG or MIG welding, and the welded portion after the welding is inspected. Thus, the fillet joint portion is formed, welded, and inspected alternately and repeatedly.

なお、図14、図15及び図16、図17中には、1箇所又は2箇所形成した隅肉継手部8−1、8−2の溶接線9−1、9−2に溶接施工して溶接ビード及び溶接断面部10−1、10−2を形成するように図示しているが、幅広の外筒板2−2を用いて、外筒板2−2の内面側に溶接すべき隅肉継手部を数箇所(例えば、1〜5の箇所隅肉継手部8−1〜8−5)に形成した後に、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、隅肉継手部8−1〜8−5に溶接施工するようにしても良い。   14, 15, 16, and 17, welding is performed on the welding lines 9-1 and 9-2 of the fillet joint portions 8-1 and 8-2 formed at one or two places. Although illustrated so as to form a weld bead and weld cross sections 10-1 and 10-2, a corner to be welded to the inner surface side of the outer cylindrical plate 2-2 using a wide outer cylindrical plate 2-2. After forming the meat joint portions at several places (for example, 1 to 5 fillet joint portions 8-1 to 8-5), the fillet joint portion 8 is obtained by composite welding of the preceding TIG and the subsequent MIG or MIG welding. -1 to 8-5 may be welded.

また、予め複数枚(所定枚数)に分割した板状の外筒板2-2の1枚に、伝熱銅フィン3の他方の端面部を突合せて広角傾斜の隅肉継手部を1〜5箇所に形成した後に、その1〜5箇所の隅肉継手部8−1、8−2、8−3、8−4、8−5に溶接施工すると共に、その溶接部を検査するように、外筒板1枚単位に分割した隅肉継手部の形成と溶接と検査とを繰り返すようにすることもできる。また、板状の外筒板2−2を使用すると共に、隅肉継手部の形成と該隅肉継手部の溶接施工と品質検査とを交互に繰り返し行うことで、無駄な遊び時間短縮、作業効率向上等を図ることが可能になる。なお、所定枚数の外筒板2−2側の溶接施工及び溶接部の品質検査が完了するまで繰り返すと良い。   In addition, the other end face of the heat transfer copper fin 3 is abutted against one of the plate-like outer tube plates 2-2 that has been divided into a plurality of pieces (predetermined number) in advance, so that a wide-angle inclined fillet joint portion is 1-5. After forming in the place, while welding to the fillet joint parts 8-1, 8-2, 8-3, 8-4, 8-5 of the 1 to 5 places, and so as to inspect the welded part, It is also possible to repeat the formation, welding, and inspection of the fillet joint divided into one outer cylinder plate. In addition, while using the plate-shaped outer cylinder plate 2-2, by alternately repeating the formation of the fillet joint portion and the welding construction and quality inspection of the fillet joint portion, the useless play time can be shortened, It becomes possible to improve efficiency. In addition, it is good to repeat until the welding construction of the predetermined number of outer tube plates 2-2 and the quality inspection of the welded portion are completed.

このようにして溶接施工された各隅肉継手部の溶接ビード及び溶接断面部10−1、10−2・・・10−Nには、少なくとも溶接部ののど厚Lが伝熱銅フィン3の板厚T1以上(L≧T1)に形成され、かつ、外筒2側の溶込み深さcが0.05mm以上6mm以下(0.05≦c≦6mm)に形成されている。   The weld bead and weld cross-section 10-1, 10-2... 10-N of each fillet joint thus welded have at least a throat thickness L of the welded portion of the heat transfer copper fin 3. It is formed to have a plate thickness T1 or more (L ≧ T1), and a penetration depth c on the outer cylinder 2 side is formed to be 0.05 mm or more and 6 mm or less (0.05 ≦ c ≦ 6 mm).

これによって、内筒1側の場合と同様に、外筒2側の各伝熱銅フィン3の溶接箇所に、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、かつ、割れ等の欠陥がない品質良好な溶接ビード及び溶接断面部を得ることができる。また、除熱性能の向上及び製造コスト低減にも寄与することができる。更に、溶接部の引張強度についても、100N/mm以上の強度を確実に得ることができる。 As a result, as in the case of the inner cylinder 1 side, the throat thickness L having a sufficient size and a heat conduction cross-sectional area effective for heat removal are ensured at the welded portions of the heat transfer copper fins 3 on the outer cylinder 2 side. In addition, it is possible to obtain a weld bead and a weld cross-section with good quality that can be ensured with no defects such as cracks. Moreover, it can contribute to improvement of heat removal performance and reduction of manufacturing cost. Furthermore, also about the tensile strength of a weld part, the intensity | strength of 100 N / mm < 2 > or more can be obtained reliably.

次に、外筒2の溶接仕上げ工程123では、板状の各外筒板2−2を一体の外筒2の構造にする必要があるため、予め分割した所定枚数の外筒板2−2の幅方向両面部の各接続部分を各々溶接(例えば、MAG溶接やTIG溶接等)して、円筒状又は多角筒状の一体の外筒2の構造に仕上げる。一体の外筒2の構造に仕上げることで、本来の外筒2としての機能を持たせることができる。   Next, in the welding finishing process 123 of the outer cylinder 2, since it is necessary to make each plate-shaped outer cylinder board 2-2 into the structure of the integral outer cylinder 2, a predetermined number of outer cylinder plates 2-2 divided in advance are used. Each of the connection portions of the both sides in the width direction is welded (for example, MAG welding, TIG welding, etc.) to finish the structure of a cylindrical or polygonal cylindrical integral outer cylinder 2. The function as the original outer cylinder 2 can be provided by finishing the structure of the integral outer cylinder 2.

一方、一体構造の外筒2側の隅肉継手部8−1、8−2・・・8−Nを溶接した後に行う各溶接部の外筒2側の検査工程114では、内筒1側の品質検査の検査工程の場合と同様に、外筒2側の各溶接部に溶接ビードが良好に形成されているか否か、割れやアンダーカット等の欠陥があるか否か、のど厚Lや溶込み深さc等を満足しているか否か等の溶接品質の検査・確認を行う。合格(工程115)であれば、終了124に至り、別の次工程へ125に進むことになる。工程115で不合格の溶接箇所があれば、補修溶接工程116に進み、不合格の溶接箇所及び近傍を補修溶接するようにしている。   On the other hand, in the inspection step 114 on the outer tube 2 side of each welded portion after welding the fillet joint portions 8-1, 8-2,. As in the case of the quality inspection inspection process, whether the weld bead is well formed in each welded portion on the outer cylinder 2 side, whether there is a defect such as a crack or undercut, the throat thickness L or the like Inspection and confirmation of welding quality, such as whether or not the penetration depth c is satisfied. If the result is acceptable (step 115), the process reaches the end 124 and proceeds to another next step 125. If there is an unacceptable weld location in step 115, the process proceeds to the repair welding step 116, and repair welding is performed for the reject weld location and the vicinity.

また、図4〜図17に示すように、本実施例では、予め内筒1外面の長手方向に所定枚数(N枚)の伝熱銅フィン3の片方端面部を略等間隔に突合せて広角傾斜の隅肉継手部をN箇所形成した後に、溶接時にシリコン入りのCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって内筒1側の各隅肉継手部5−1、5−2・・・5−Nに1パスずつ溶接するか、又は内筒1外面の長手方向に所定枚数(N枚)の伝熱銅フィン3の片方端面部を略等間隔に突合せて広角傾斜の隅肉継手部をN箇所形成した後に、N箇所の隅肉継手部5−1、5−2・・・5−Nを1〜5箇所ずつ単位に予め分割し、その分割した1〜5箇所ずつ単位の隅肉継手部5−1、5−2、5−3、5−4、5−5に溶接施工すると共に、その溶接部を検査するように、少数単位に分割した隅肉継手部の溶接と検査とを繰り返し、若しくは所定枚数(N枚)の伝熱銅フィンを1〜5枚ずつ単位に予め分割し、その分割した1〜5枚ずつ単位の伝熱銅フィン3の片方端面部を内筒外面に突き合せて1〜5箇所の隅肉継手部5−1、5−2、5−3、5−4、5−5を形成した後に溶接施工すると共に、その溶接部を検査するように、少数単位に分割した隅肉継手部の形成と溶接と検査とを繰り返し、内筒1側の溶接終了後又は内筒1側の溶接終了及びその溶接部の検査終了後に、伝熱銅フィン3の外周側に一体の円筒状の外筒2を配置し、円筒状の外筒2内面の長手方向に所定枚数(N枚)の伝熱銅フィン3の他方の各端面部を突合せて広角傾斜の隅肉継手部をN箇所形成し、その後に、溶接時にCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって外筒2側の各隅肉継手部8−1、8−2・・・8−Nに1パスずつ溶接し、又は円筒状の外筒2内面の長手方向に所定枚数(N枚)の伝熱銅フィン3の他方の各端面部を突合せて広角傾斜の隅肉継手部をN箇所形成し、その後に、N箇所の隅肉継手部8−1、8−2・・・8−Nを1〜5箇所ずつ単位に予め分割し、その分割した1〜5箇所ずつ単位の隅肉継手部に溶接施工すると共に、その溶接部を検査するように、少数単位に分割した隅肉継手部8−1、8−2、8−3、8−4、8−5の溶接と検査とを繰り返し、若しくは一体の円筒状の外筒2の代わりに、予め複数枚(所定枚数)に分割した板状の外筒板2−2を使用し、この板状の外筒板2−2内面の長手方向に、該当する伝熱銅フィン3の他方の端面部を突合せて広角傾斜の隅肉継手部を1〜5箇所に形成した後に、その1〜5箇所の隅肉継手部8−1、8−2、8−3、8−4、8−5に溶接施工すると共に、その溶接部を検査するように、隅肉継手部の形成と溶接と検査とを繰り返し、予め複数枚に分割した板状の外筒板2−2を使用する場合には、隅肉継手部の形成と溶接と検査とを繰り返す工程の終了後に、複数数の外筒板の幅方向両面部の各接続部分を各々溶接して、円筒状又は多角筒状の一体の外筒構造に仕上げ、内筒1側及び外筒2側の溶接では、各隅肉継手部の溶接部に、少なくとものど厚Lが伝熱銅フィンの板厚T1以上(L≧T1)に形成され、かつ、鋼製の内筒1側又は外筒2側若しくは内筒1及び外筒2の両側の溶込み深さcを0.05mm以上6mm以下(0.05≦c≦6mm)に形成することもできる。   Further, as shown in FIGS. 4 to 17, in this embodiment, a wide angle is obtained by abutting one end face portion of a predetermined number (N) of heat transfer copper fins 3 at substantially equal intervals in the longitudinal direction of the outer surface of the inner cylinder 1 in advance. After forming the inclined fillet joints at N locations, a CuSi wire containing silicon is used during welding, and each fillet joint 5-1 on the inner cylinder 1 side by composite welding of the preceding TIG and the subsequent MIG or MIG welding, 5-2... 5-N are welded one pass at a time, or one end face portion of a predetermined number (N pieces) of heat transfer copper fins 3 is abutted at substantially equal intervals in the longitudinal direction of the outer surface of the inner cylinder 1 to wide angle. After forming the N-filled fillet joints at N locations, the N fillet-joint portions 5-1, 5-2,... Welding work to fillet joints 5-1, 5-2, 5-3, 5-4, 5-5 in units of 5 locations, and the welds The welding and inspection of the fillet joint divided into a small number of units is repeated, or a predetermined number (N pieces) of heat transfer copper fins are divided into units of 1 to 5 pieces in advance and divided. 1 to 5 fillet joint portions 5-1, 5-2, 5-3, 5-4, 5 by matching one end surface portion of the heat transfer copper fin 3 in units of 1 to 5 with the outer surface of the inner cylinder After forming the -5, welding is performed, and the formation of the fillet joint divided into a small number of units, welding, and inspection are repeated so that the welded portion is inspected. After completion of welding on one side and inspection of the welded portion, an integral cylindrical outer tube 2 is disposed on the outer peripheral side of the heat transfer copper fin 3 and a predetermined number (N) of the inner surface of the cylindrical outer tube 2 is arranged in the longitudinal direction. The other end face portions of the heat transfer copper fins 3 of the sheet) are butted together to form N fillet joint portions having a wide angle slope, Using a uSi wire, one pass is welded to each fillet joint portion 8-1, 8-2... 8 -N on the outer tube 2 side by composite welding of the leading TIG and the trailing MIG or MIG welding, or a cylinder The other end face portions of the predetermined number (N) of heat transfer copper fins 3 are abutted in the longitudinal direction of the inner surface of the outer shell 2 to form N wide fillet fillet joints. The fillet joint portions 8-1, 8-2,..., 8-N are preliminarily divided into units of 1 to 5 locations, and the divided 1 to 5 locations are welded to the unit fillet joint portions, and Repeated welding and inspection of fillet joint portions 8-1, 8-2, 8-3, 8-4, 8-5 divided into a small number of units so as to inspect the welded portion, or an integral cylindrical shape Instead of the outer cylinder 2, a plate-like outer cylinder plate 2-2 that is divided into a plurality of sheets (predetermined number) in advance is used, and the inner surface of the plate-like outer cylinder plate 2-2 is used. In the longitudinal direction, the other end face portion of the corresponding heat transfer copper fin 3 is abutted to form wide-angle inclined fillet joint portions at 1 to 5 positions, and then the 1 to 5 fillet joint portions 8-1. 8-2, 8-3, 8-4, and 8-5 were welded, and the fillet joint was formed, welded, and inspected so as to inspect the welded portion, and divided into a plurality of pieces in advance. When using the plate-shaped outer cylinder plate 2-2, after the process of repeating the formation of the fillet joint portion, welding, and inspection, the connection portions of the plurality of outer cylinder plates in the width direction on both sides are connected. Each is welded to finish a cylindrical or polygonal cylindrical integral outer cylinder structure. In welding on the inner cylinder 1 side and outer cylinder 2 side, at least a throat thickness L is transferred to the welded portion of each fillet joint. It is formed to have a copper fin plate thickness T1 or more (L ≧ T1), and the inner tube 1 side made of steel or the outer tube 2 side or both sides of the inner tube 1 and the outer tube 2 are melted. Only depth c may be formed to 0.05mm or more than 6mm (0.05 ≦ c ≦ 6mm).

これによって、上述したように、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、かつ、割れ等の欠陥がない品質良好な溶接ビード及び溶接断面部を得ることができる。また、除熱性能の向上及び製造コスト低減にも寄与することができる。更に、溶接部の引張強度も100N/mm以上を確実に得ることができる。 Thus, as described above, the throat thickness L having a sufficient size and the heat conduction cross-sectional area effective for heat removal can be reliably ensured, and the weld bead and the weld cross-section with good quality free from defects such as cracks. Can be obtained. Moreover, it can contribute to improvement of heat removal performance and reduction of manufacturing cost. Furthermore, the tensile strength of the welded portion can be reliably obtained at 100 N / mm 2 or more.

図18及び図19に、本実施例に係わる一体構造のTIG−MIG溶接トーチの概略構成及びトーチ配置の一例を示す。   FIG. 18 and FIG. 19 show an example of a schematic configuration and a torch arrangement of an integrally structured TIG-MIG welding torch according to the present embodiment.

図18に示すように、一体構造のTIG−MIG溶接トーチ11の内部には、タングステン等の非消耗電極13、その非消耗電極13の先端部及び溶接部分に向けて第1のシールドガス14を流出させる第1のガス通路(図示せず)等を備えたTIGユニット12と、CuSiワイヤ等の消耗ワイヤ18、その消耗ワイヤ18が挿通するワイヤ通路(図示せず)、消耗ワイヤ18の先端部及び溶接部分に向けて第2のシールドガス19を流出させる第2のガス通路等を備えたMIGユニット17とが配備されている。   As shown in FIG. 18, in the TIG-MIG welding torch 11 having an integral structure, a non-consumable electrode 13 such as tungsten, a first shield gas 14 is directed toward the tip of the non-consumable electrode 13 and the welded portion. A TIG unit 12 having a first gas passage (not shown) that flows out, a consumable wire 18 such as a CuSi wire, a wire passage (not shown) through which the consumable wire 18 is inserted, and a tip portion of the consumable wire 18 And the MIG unit 17 provided with the 2nd gas channel etc. which flow out the 2nd shield gas 19 toward a welding part is arranged.

第1及び第2のシールドガス14及び19は、ガスの種類や成分を変更可能であるが、ここではArガスとHeガスとの混合ガスをシールドガスに使用している。銅と鋼との溶接にArガスとHeガスとの混合ガスを使用することで、純Arガスの場合と比べて、電位傾度が高く、溶接性や濡れ性等が優れており、品質良好な溶接部を得ることが容易となる。図示していないが、この他にも、TIG−MIG溶接トーチ11を循環水で冷却する水路が設けられている。   The first and second shield gases 14 and 19 can change the type and composition of the gas, but here, a mixed gas of Ar gas and He gas is used as the shield gas. By using a mixed gas of Ar gas and He gas for welding copper and steel, compared to pure Ar gas, the potential gradient is high, weldability and wettability are excellent, and the quality is good. It becomes easy to obtain a weld. Although not shown, a water channel for cooling the TIG-MIG welding torch 11 with circulating water is also provided.

TIG−MIG溶接トーチ11は、鋼製の内筒1と銅製の伝熱銅フィン3との隅肉継手部5−1の溶接線6−1に対して、走行移動可能な長尺アーム31の先端部に取付冶具(図示せず)を介して略下向姿勢に取付け、又は長尺アーム31の先端部に取付冶具及び左右・上下移動可能な2軸駆動テーブル(図示せず)を介して取付け、かつ、溶接線6−1方向に配置されている。   The TIG-MIG welding torch 11 has a long arm 31 that can travel and move with respect to the weld line 6-1 of the fillet joint portion 5-1 between the steel inner cylinder 1 and the copper heat transfer copper fin 3. Attached to the distal end in a substantially downward position via a mounting jig (not shown), or attached to the distal end of the long arm 31 via a mounting jig and a biaxial drive table (not shown) that can move left and right and up and down. It is attached and arranged in the direction of the weld line 6-1.

また、走行移動可能な長尺アーム31の代わりに、多関節可動式の溶接ロボットを用い、この溶接ロボットの手首部にTIG−MIG溶接トーチ11を配置(取付)して、TIG−MIG溶接トーチ11を走行移動させながら、先行TIGと後続MIGとの複合溶接を隅肉継手部の溶接線の開始位置から終了位置まで溶接施工するようにしても良い。   Further, an articulated movable welding robot is used instead of the long arm 31 that can be moved and moved, and the TIG-MIG welding torch 11 is arranged (attached) to the wrist of the welding robot, and the TIG-MIG welding torch is arranged. While moving 11, the composite welding of the preceding TIG and the subsequent MIG may be performed from the start position to the end position of the weld line of the fillet joint portion.

更に、先行TIGの非消耗電極13側のTIGユニット12は、溶接進行方向と逆方向側に後退角−α1で傾斜配置され、また、後続MIGの消耗ワイヤ18側のMIGユニット17は、溶接進行方向に前進角+α2で傾斜配置されている。先行TIG側の後退角−α1は、0〜45度の範囲にすると良い。好ましくは15〜30度の範囲に配置するとさらに良い。他方の後続MIG側の前進角+α2は、15〜45度の範囲にすると良い。好ましくは15〜30度の範囲に配置するとさらに良い。   Furthermore, the TIG unit 12 on the non-consumable electrode 13 side of the preceding TIG is inclined at a receding angle −α1 in the direction opposite to the welding progress direction, and the MIG unit 17 on the consumable wire 18 side of the subsequent MIG is welded. It is inclined and arranged with a forward angle + α2 in the direction. The receding angle -α1 on the preceding TIG side is preferably in the range of 0 to 45 degrees. It is more preferable to arrange it in the range of 15 to 30 degrees. The forward angle + α2 on the other subsequent MIG side is preferably in the range of 15 to 45 degrees. It is more preferable to arrange it in the range of 15 to 30 degrees.

また、非消耗電極13の先端部の延長線が継手母材の溶接線6−1と交差する位置から消耗ワイヤ18の先端部までの両電極間の距離間隔f1は、3〜9mmの範囲にすると良い。好ましくは4〜7mmの範囲に配置するとさらに良い。また、継手母材の溶接線6−1から非消耗電極13の先端部までの電極高さf2は、3〜9mmの範囲にすると良い。好ましくは4〜7mmの範囲に配置するとさらに良い。   Further, the distance interval f1 between the electrodes from the position where the extension line of the tip of the non-consumable electrode 13 intersects the weld line 6-1 of the joint base material to the tip of the consumable wire 18 is in the range of 3 to 9 mm. Good. It is even better if it is preferably placed in the range of 4-7 mm. The electrode height f2 from the weld line 6-1 of the joint base material to the tip of the non-consumable electrode 13 is preferably in the range of 3 to 9 mm. It is even better if it is preferably placed in the range of 4-7 mm.

このように、TIG−MIG溶接トーチ11を配置して溶接線上を走行移動及び溶接動作させることで、先行TIGと後続MIGとの複合溶接を安定に施工することが可能となる。   In this way, by arranging the TIG-MIG welding torch 11 and running and welding on the welding line, it becomes possible to stably perform composite welding of the preceding TIG and the subsequent MIG.

なお、TIGユニット12の後退角−α1及びMIGユニット17の前進角+α2が15度よりも小さ過ぎると、例えば、非消耗電極13と消耗ワイヤ18との距離間隔f1を所定範囲に接近させることができなくなり、また、TIGアーク22とMIGアーク23で形成する1つの溶融プール24の形状が細長く不安定になり易い。一方、後退角−α1及び前進角+α2が上述した角度範囲よりも大き過ぎると、MIGアーク23によって溶融される消耗ワイヤ18の溶滴が、スパッタとなって先行TIG側方向に飛び散り易く、そのスパッタの一部が先行TIG側の非消耗電極13に付着して非消耗電極13を損傷させることがあり、また、ガスシールド性が低下し易いので好ましくない。従って、先行TIG側の後退角−α1は、0〜45度の範囲にすると良いし、後続MIG側の前進角+α2は、15〜45度の範囲にすると良い。   If the receding angle −α1 of the TIG unit 12 and the advancing angle + α2 of the MIG unit 17 are too smaller than 15 degrees, for example, the distance interval f1 between the non-consumable electrode 13 and the consumable wire 18 can be brought close to a predetermined range. In addition, the shape of one molten pool 24 formed by the TIG arc 22 and the MIG arc 23 tends to be elongated and unstable. On the other hand, if the receding angle −α1 and the advancing angle + α2 are too larger than the above-described angle range, the droplets of the consumable wire 18 melted by the MIG arc 23 are likely to be spattered and scattered in the direction of the preceding TIG. May adhere to the non-consumable electrode 13 on the preceding TIG side and damage the non-consumable electrode 13, and the gas shielding property is likely to deteriorate, which is not preferable. Therefore, the receding angle −α1 on the preceding TIG side is preferably in the range of 0 to 45 degrees, and the advancing angle + α2 on the subsequent MIG side is preferably in the range of 15 to 45 degrees.

また、非消耗電極13と消耗ワイヤ18との距離間隔f1の値が3mmよりも小さ過ぎると、例えば、TIGアーク22とMIGアーク23が接近し過ぎ、後続MIG側の消耗ワイヤ18から発生したスパッタの一部が先行TIG側の非消耗電極13に付着して非消耗電極13を損傷させることがあり、しかも、TIGアーク22とMIGアーク23の挙動も不安定になり易い。一方、非消耗電極13と消耗ワイヤ18との距離間隔f1が9mmよりも大き過ぎると、TIGアーク22とMIGアーク23で形成する1つの溶融プール24の形状が細長く不安定になり易く、所望の溶接ビード及び溶接断面部が得られない場合がある。従って、非消耗電極13の先端部の延長線が継手母材の溶接線6−1と交差する位置から消耗ワイヤ18の先端部までの両電極間の距離間隔f1は、3〜9mmの範囲にすると良い。   On the other hand, if the value of the distance interval f1 between the non-consumable electrode 13 and the consumable wire 18 is too smaller than 3 mm, for example, the TIG arc 22 and the MIG arc 23 are too close and spatter generated from the consumable wire 18 on the subsequent MIG side. May adhere to the non-consumable electrode 13 on the preceding TIG side and damage the non-consumable electrode 13, and the behavior of the TIG arc 22 and the MIG arc 23 is likely to be unstable. On the other hand, if the distance interval f1 between the non-consumable electrode 13 and the consumable wire 18 is too larger than 9 mm, the shape of one molten pool 24 formed by the TIG arc 22 and the MIG arc 23 tends to be elongated and unstable, and the desired distance A weld bead and a weld cross section may not be obtained. Accordingly, the distance interval f1 between the electrodes from the position where the extension line of the tip of the non-consumable electrode 13 intersects the weld line 6-1 of the joint base material to the tip of the consumable wire 18 is in the range of 3 to 9 mm. Good.

更に、継手母材の溶接線6−1から非消耗電極13の先端部までの電極高さf2が3mmよりも小さ過ぎると、例えば、TIGアーク22の短縮に伴うアーク電圧低下及び入熱減少等によって溶融不足が発生することがあり、また、非消耗電極13の先端部が溶融プール24の表面上に接近しているので、溶融プール24の挙動変化や飛散したスパッタの影響を受け易くなる。一方、継手母材の溶接線6−1から非消耗電極13の先端部までの電極高さf2が9mmよりも大き過ぎると、TIGアーク22の延長に伴うアーク不安定化及び入熱増加等によって、伝熱銅フィン3が過剰に溶融されてアンダーカットの発生要因になることがあり、また、ガスシールド性も低下し易いので好ましくない。従って、継手母材の溶接線6−1から非消耗電極13の先端部までの電極高さf2は、3〜9mmの範囲にすると良い。   Furthermore, if the electrode height f2 from the weld line 6-1 of the joint base material to the tip of the non-consumable electrode 13 is too smaller than 3 mm, for example, a decrease in arc voltage and a decrease in heat input associated with the shortening of the TIG arc 22 Insufficient melting may occur, and the tip of the non-consumable electrode 13 is close to the surface of the molten pool 24, so that it is easily affected by changes in behavior of the molten pool 24 and scattered spatter. On the other hand, if the electrode height f2 from the weld line 6-1 of the joint base material to the tip of the non-consumable electrode 13 is too larger than 9 mm, arc destabilization and increased heat input accompanying the extension of the TIG arc 22 The heat transfer copper fins 3 may be melted excessively, which may cause undercutting, and the gas shield property is likely to deteriorate, which is not preferable. Therefore, the electrode height f2 from the weld line 6-1 of the joint base material to the tip of the non-consumable electrode 13 is preferably in the range of 3 to 9 mm.

図19に示すように、TIG溶接電源15は、給電ケーブル16−1、16−2を経由してTIGユニット12内の非消耗電極13と継手母材の内筒1との間に接続され、かつ、非消耗電極13側の極性を負極(マイナス)とし、内筒1側の極性を正極(プラス)として、TIGアーク22を溶接箇所に発生させる。他方のMIG溶接電源20(ワイヤ送給装置も含む)は、給電ケーブル21−1、21−2を経由してMIGユニット17内の消耗ワイヤ18と継手母材の内筒1との間に接続され、かつ、消耗ワイヤ18側の極性を正極(プラス)とし、内筒1側の極性を負極(マイナス)として、MIGアーク23をTIGアーク22の後方近傍に発生させる。   As shown in FIG. 19, the TIG welding power source 15 is connected between the non-consumable electrode 13 in the TIG unit 12 and the inner cylinder 1 of the joint base material via the power supply cables 16-1 and 16-2. In addition, the TIG arc 22 is generated at the welding location with the polarity on the non-consumable electrode 13 side being the negative electrode (minus) and the polarity on the inner cylinder 1 side being the positive electrode (plus). The other MIG welding power source 20 (including the wire feeding device) is connected between the consumable wire 18 in the MIG unit 17 and the inner cylinder 1 of the joint base material via power supply cables 21-1 and 21-2. In addition, the MIG arc 23 is generated in the vicinity of the rear of the TIG arc 22 with the polarity on the consumable wire 18 side being positive (plus) and the polarity on the inner cylinder 1 side being negative (minus).

先行TIG側の非消耗電極13を流れる第1の溶接電流Iaと、後続MIG側の消耗ワイヤ18(CuSiワイヤ)を流れる第2の溶接電流Ibとで生じる反発作用の磁力によって、相互に反発し合う2つのTIGアーク22とMIGアーク23で1つの溶融プール24を形成し、溶接進行方向25に移動させながら溶接するようにしている。第1の溶接電流Iaと第2の溶接電流Ibとの比(Ia/Ib)は、約0.8〜1.2の範囲に設定して出力させると良い。また、第1及び第2の溶接電流Ia及びIbは、両方共に直流電流を給電して、直流同士の2つのアークを形成すると良い。   The first welding current Ia flowing through the non-consumable electrode 13 on the preceding TIG side and the second welding current Ib flowing through the consumable wire 18 (CuSi wire) on the subsequent MIG side repel each other. Two matching TIG arcs 22 and MIG arcs 23 form one molten pool 24 and are welded while moving in the welding progress direction 25. The ratio (Ia / Ib) between the first welding current Ia and the second welding current Ib is preferably set in the range of about 0.8 to 1.2. Further, both the first and second welding currents Ia and Ib are preferably fed with direct current to form two arcs of direct current.

非消耗電極13を流れる第1の溶接電流Iaと、消耗ワイヤ18を流れる第2の溶接電流Ibとの比(Ia/Ib=0.8〜1.2)の範囲で直流同士の溶接電流Ia、Ibを出力させることで、相互に反発し合うTIGアーク22とMIGアーク23が略下向き方向に偏向した状態で持続されると共に、1つの溶融プール24を安定に形成することができる。また、消耗ワイヤ18の先端部からの溶滴が飛散することなく、溶融プール24内へ容易に溶滴移行し易くなり、良好な溶接ビード及び溶接断面部を有する溶接ビード及び溶接断面部7−1を得ることができる。   Welding current Ia between direct currents in the range of the ratio of the first welding current Ia flowing through the non-consumable electrode 13 and the second welding current Ib flowing through the consumable wire 18 (Ia / Ib = 0.8 to 1.2). By outputting Ib, the TIG arc 22 and the MIG arc 23 that repel each other are maintained in a state of being substantially deflected downward, and one molten pool 24 can be stably formed. Further, the droplets from the tip of the consumable wire 18 do not scatter and easily transfer into the molten pool 24, and the weld bead and weld cross section 7- having a good weld bead and weld cross section can be obtained. 1 can be obtained.

非消耗電極13を流れる第1の溶接電流Iaと、消耗ワイヤ18を流れる第2の溶接電流Ibとの比(Ia/Ib)が小さ過ぎる場合又は大き過ぎる場合には、相互に反発し合うTIGアーク22とMIGアーク23に大きな偏差が生じるため、電流が大きい側のアーク力の影響により電流の小さい側のアーク挙動が不安定となって溶接不良になり易い。   When the ratio (Ia / Ib) between the first welding current Ia flowing through the non-consumable electrode 13 and the second welding current Ib flowing through the consumable wire 18 is too small or too large, the TIGs repel each other. Since a large deviation occurs between the arc 22 and the MIG arc 23, the arc behavior on the side with a smaller current becomes unstable due to the influence of the arc force on the side with a larger current, which tends to cause poor welding.

一方、例えば、TIG側の極性を負極(マイナス)から正極(プラス)に反転させた場合は、溶接中にタングステン等の非消耗電極13が高温過熱によって激しく消耗するため、アーク挙動が不安定となって溶接不良になり易く、時間の長い溶接が困難となる。また、TIGアーク22とMIGアーク23が相互に引き合う方向に偏向するため、MIG側の消耗ワイヤ18の溶滴が、TIG側の非消耗電極13に溶着して短時間で電極消耗が発生することもある。他方のMIG側の極性を正極(プラス)から負極(マイナス)に反転させた場合には、不安定なアーク挙動及びスパッタの発生を伴うため溶接不良になり易く、時間の長い溶接が困難となる。   On the other hand, for example, when the polarity on the TIG side is reversed from the negative electrode (minus) to the positive electrode (plus), the non-consumable electrode 13 such as tungsten is consumed violently due to high temperature overheating during welding, so that the arc behavior is unstable. This tends to cause poor welding and makes it difficult to weld for a long time. In addition, since the TIG arc 22 and the MIG arc 23 are deflected in a mutually attracting direction, droplets of the MIG side consumable wire 18 are welded to the non-consumable electrode 13 on the TIG side, and electrode consumption occurs in a short time. There is also. If the polarity of the other MIG side is reversed from the positive electrode (plus) to the negative electrode (minus), unstable arc behavior and spatter are likely to cause poor welding, making it difficult to weld for a long time. .

図19中には、説明し易くするために中央付近の溶接線6−1上にTIGアーク22とMIGアーク23及び1つの溶融プール24を図示しているが、実際にTIGアーク22とMIGアーク23を発生させる箇所は、溶接すべき隅肉継手部5−1の溶接線6−1上の溶接開始位置である。   In FIG. 19, for ease of explanation, the TIG arc 22 and the MIG arc 23 and one molten pool 24 are shown on the weld line 6-1 near the center, but the TIG arc 22 and the MIG arc are actually shown. 23 is a welding start position on the weld line 6-1 of the fillet joint portion 5-1 to be welded.

例えば、溶接対象の継手(内筒1及び伝熱銅フィン3)側を回転駆動装置等で回転移動させて、溶接すべき隅肉継手部5−1の溶接線6−1を鉛直方向に姿勢変更した後に、溶接線6−1上に一体構造のTIG−MIG溶接トーチ11を下向姿勢で位置決めする。その後、TIG−MIG溶接トーチ11を溶接線6−1上の溶接開始位置に停止させる。TIG−MIG溶接トーチ11内のTIGユニット12の開口部と、MIGユニット17の開口部との両方からArガスとHeガスとの混合ガスを溶接開始位置及びその近傍で流出させながら、先行TIGの非消耗電極13の先端部から電極負極(マイナス)のTIGアーク22を発生させ、その第1の溶接電流を定常値Iaまで到着させた直後又は所定時間経過後に、後続MIGの消耗ワイヤ18として送給するCuSiワイヤからワイヤ正極(プラス)のMIGアーク23を、TIGアーク22の後方近傍に発生させると共に、その第2の溶接電流Ibを定常値まで到達させ、相互に反発し合うTIGアーク22とMIGアーク23で1つの溶融プール24を、溶接開始位置に発生させた直後又は所定時間経過後に、TIG−MIG溶接トーチ11を走行させて、1つの溶融プール24を溶接線方向に移動させながら隅肉継手部5−1の溶接終了位置まで溶接するようにしている。   For example, the joint (inner cylinder 1 and heat transfer copper fin 3) side to be welded is rotated by a rotary drive device or the like, and the welding line 6-1 of the fillet joint portion 5-1 to be welded is oriented in the vertical direction. After the change, the monolithic TIG-MIG welding torch 11 is positioned on the welding line 6-1 in a downward posture. Thereafter, the TIG-MIG welding torch 11 is stopped at the welding start position on the welding line 6-1. While flowing a mixed gas of Ar gas and He gas from both the opening of the TIG unit 12 in the TIG-MIG welding torch 11 and the opening of the MIG unit 17 at and near the welding start position, A negative electrode (minus) TIG arc 22 is generated from the tip of the non-consumable electrode 13 and the first welding current arrives at the steady value Ia or is sent as a consumable wire 18 of the subsequent MIG immediately after a predetermined time. A positive electrode (plus) MIG arc 23 is generated in the vicinity of the rear of the TIG arc 22 from the CuSi wire to be fed, and the second welding current Ib is reached to a steady value to repel each other. The TIG-MIG welding torch immediately after the MIG arc 23 generates one molten pool 24 at the welding start position or after a predetermined time has elapsed. 11 is made to travel to the welding end position of the fillet joint 5-1 while moving one molten pool 24 in the weld line direction.

このように溶接施工することで、上述したように、隅肉継手部5−1の溶接開始位置から終了位置までの溶接線6−1上に良好な溶接ビード及び溶接断面部7−1を有する溶接部を得ることができる。   By carrying out welding in this way, as described above, the welding joint 5-1 has a good weld bead and a weld cross-section 7-1 on the weld line 6-1 from the welding start position to the end position. A weld can be obtained.

図20は、本発明の実施例2としてのMIG溶接トーチの概略構成及びトーチ配置の一例を示すものである。該図に示す例は、上述したTIG−MIG溶接トーチ11の代わりに、MIG溶接トーチ26を使用する場合の例である。   FIG. 20 shows an example of a schematic configuration and a torch arrangement of a MIG welding torch as Embodiment 2 of the present invention. The example shown in this figure is an example in the case of using the MIG welding torch 26 instead of the TIG-MIG welding torch 11 described above.

該図に示す如く、MIG溶接トーチ26を使用する場合には、消耗ワイヤ18のCuSiワイヤと継手母材の内筒1との間に、給電ケーブル29−1、29−2を経由してMIG溶接電源28が接続されている。また、MIG溶接トーチ26は、上述のTIG−MIG溶接トーチ11の場合と同様に、溶接すべき溶接線6−1に対して、走行移動可能な長尺アーム(図示せず)の先端部又は多関節可動式の溶接ロボット(図示せず)の手首部に取付冶具(図示せず)を介して略下向姿勢に取付けられ、かつ、溶接線6−1の方向に配置されている。また、本実施例でのMIG溶接トーチ26は、溶接進行方向に対して、略垂直又は前進角+α3で傾斜配置している。この前進角+α3は、0〜30度の範囲にすると良い。好ましくは0〜15度の範囲に配置するとさらに良い。   As shown in the figure, when the MIG welding torch 26 is used, the MIG is connected between the CuSi wire of the consumable wire 18 and the inner cylinder 1 of the joint base material via the feeding cables 29-1 and 29-2. A welding power source 28 is connected. In addition, the MIG welding torch 26 is similar to the above-described TIG-MIG welding torch 11 in that the distal end portion of a long arm (not shown) that can travel and move with respect to the welding line 6-1 to be welded. It is attached to the wrist of an articulated movable welding robot (not shown) in a substantially downward position via an attachment jig (not shown), and is arranged in the direction of the welding line 6-1. Further, the MIG welding torch 26 in the present embodiment is disposed so as to be substantially perpendicular to the welding progress direction or at an advance angle + α3. The advance angle + α3 is preferably in the range of 0 to 30 degrees. It is more preferable to arrange it in the range of 0 to 15 degrees.

なお、前進角+α3は、記載を省略しているが、図18及び図19に示したTIG−MIG溶接トーチ11内のMIGユニット17の傾斜角+α2に該当するトーチ傾斜角度であり、図20に示すMIG溶接トーチ26を使用する場合には、前進角+α3を0〜30度の範囲にすると良い。好ましくは0〜15度の範囲に配置するとさらに良い。この前進角+α3を30度よりも大きくして溶接すると、MIGアーク23が前方に傾斜し過ぎることから、MIGアーク23によって溶融さる消耗ワイヤ18の溶滴が前方方向へ飛び散り(スパッタ多発)し易く、また、ガスシールド性も低下し易いので好ましくない。   Although the advance angle + α3 is omitted, it is a torch inclination angle corresponding to the inclination angle + α2 of the MIG unit 17 in the TIG-MIG welding torch 11 shown in FIG. 18 and FIG. When the MIG welding torch 26 shown is used, the advance angle + α3 is preferably in the range of 0 to 30 degrees. It is more preferable to arrange it in the range of 0 to 15 degrees. If welding is performed with the advancing angle + α3 larger than 30 degrees, the MIG arc 23 is inclined too far forward, so that the droplet of the consumable wire 18 melted by the MIG arc 23 is likely to scatter forward (occurrence of spatter frequently). In addition, the gas shield property is liable to be lowered, which is not preferable.

MIG溶接を行う場合は、MIG溶接トーチ26の先端部の開口部からArガスとHeガスとの混合ガスからなるMIG用シールドガス27を流出させながら、ワイヤ正極(プラス)のMIGアーク(図示せず)を隅肉継手部5の溶接線6−1上の溶接開始位置より発生させ、1つのアークで1つの溶融プール24を形成させてから、MIG溶接トーチ26を溶接進行方向に移動させながら下向姿勢で溶接するようにしている。   When performing MIG welding, the MIG arc (not shown) of the wire positive electrode (plus) is made while the MIG shield gas 27 made of a mixed gas of Ar gas and He gas is allowed to flow out from the opening at the tip of the MIG welding torch 26. 1) is generated from the welding start position on the weld line 6-1 of the fillet joint portion 5, one melt pool 24 is formed by one arc, and the MIG welding torch 26 is moved in the welding progress direction. We are trying to weld in a downward posture.

直流電流を給電するワイヤ正極(プラス)の直流MIGアークによる溶接も可能であるが、高いピーク電流と低い電流とを交互に繰り返すパルスMIGアークを使用すると、直流MIGアークの場合よりもスパッタの発生が少ない溶接を行うことができる。   Welding of the wire positive electrode (plus) that supplies DC current with DC MIG arc is also possible, but if pulse MIG arc that repeats high peak current and low current alternately is used, spatter is generated more than DC MIG arc. There is little welding.

溶接すべき内筒1側の伝熱銅フィン3の片方端面部と隅肉継手部5又は外筒2側の伝熱銅フィン3の他方端面部と隅肉継手部8の角度θ1は、θ1=120度±15度(105≦θ1≦135度)の範囲の広角傾斜に配置(構成)されており、また、内筒1及び外筒2の両面に形成された伝熱銅フィン3の両方端面部との隅肉継手部5の角度θ1も上記値と同じ範囲内に配置すると良い。また、他方の内筒1側又は外筒2側の傾斜角度θ2は、水平線に対して、θ2=30度±15度(15≦θ2≦45度)の範囲となるように配置されている。   The angle θ1 between one end surface portion of the heat transfer copper fin 3 on the inner tube 1 side to be welded and the fillet joint portion 5 or the other end surface portion of the heat transfer copper fin 3 on the outer tube 2 side and the fillet joint portion 8 is θ1. = 120 ° ± 15 ° (105 ≦ θ1 ≦ 135 °) wide angle inclination (configuration), and both of the heat transfer copper fins 3 formed on both surfaces of the inner cylinder 1 and the outer cylinder 2 The angle θ1 of the fillet joint portion 5 with the end face portion is also preferably arranged within the same range as the above value. Further, the inclination angle θ2 on the other inner cylinder 1 side or outer cylinder 2 side is arranged to be in a range of θ2 = 30 degrees ± 15 degrees (15 ≦ θ2 ≦ 45 degrees) with respect to the horizontal line.

このような角度範囲で継手部材(伝熱銅フィン3と内筒1又は伝熱フィン3と外筒2)を傾斜配置することで、MIG溶接トーチ26(TIG−MIG溶接トーチ11の場合も同様)を略垂直の下向姿勢に配置可能となり、溶接トーチ等の操作性が良くなると共に、溶接前の準備作業及び溶接作業等を向上することができる。   The joint member (the heat transfer copper fin 3 and the inner cylinder 1 or the heat transfer fin 3 and the outer cylinder 2) is inclined in such an angle range, so that the same applies to the MIG welding torch 26 (TIG-MIG welding torch 11). ) Can be arranged in a substantially vertical downward position, the operability of the welding torch and the like is improved, and preparatory work and welding work before welding can be improved.

なお、図1及び図2で説明したように、内筒1及び外筒2と複数枚(N枚)の伝熱銅フィン3との間に区分けされた各空間部4は、使用済燃料の集合体から法線状に放出される放射線を遮蔽する物質(レジン)が別途実施するレジン充填工程で充填される。このため、図4〜7及び図9に示したように、隅肉継手部5の角度θ1を135度よりも大きくすると、上述したレジンの充填によって放射線を効果的に遮蔽することができるが、溶接施工時に内筒1の外面及び外筒2の内面の間に溶接すべき各伝熱銅フィン3の板幅を事前に大きく製作する必要があるため、伝熱銅フィン3の製作コスト増加になると共に、隣接し合う各伝熱銅フィン3の溶接時に、溶接トーチの一部が隣の伝熱銅フィン3に接触して溶接施工が実施できなく可能性が高い。   As described with reference to FIGS. 1 and 2, each space portion 4 divided between the inner cylinder 1 and the outer cylinder 2 and a plurality of (N) heat transfer copper fins 3 includes the spent fuel. A substance (resin) that shields radiation emitted from the aggregate in a normal line is filled in a resin filling step that is performed separately. For this reason, as shown in FIGS. 4 to 7 and FIG. 9, when the angle θ1 of the fillet joint portion 5 is larger than 135 degrees, radiation can be effectively shielded by the resin filling described above. Since the plate width of each heat transfer copper fin 3 to be welded between the outer surface of the inner cylinder 1 and the inner surface of the outer cylinder 2 needs to be made large in advance at the time of welding construction, the production cost of the heat transfer copper fin 3 is increased. At the same time, at the time of welding the heat transfer copper fins 3 adjacent to each other, a part of the welding torch comes into contact with the adjacent heat transfer copper fins 3 and it is highly possible that the welding work cannot be performed.

一方、隅肉継手部5の角度θ1を105度よりも小さくすると、伝熱銅フィン3の板幅は縮小でき、また、溶接施工もし易くなるが、使用済燃料の集合体から放出される放射線量の一部が各レジンの間(伝熱銅フィン3及び隙間)から透過することが予想され、この放射線量の透過漏れ等によって、放射線遮蔽能力が低下する可能性が高まるので好ましくない。   On the other hand, if the angle θ1 of the fillet joint portion 5 is smaller than 105 degrees, the plate width of the heat transfer copper fins 3 can be reduced and welding can be easily performed, but the radiation emitted from the assembly of spent fuel. A part of the amount is expected to be transmitted between the resins (the heat transfer copper fins 3 and the gaps), and it is not preferable because the radiation shielding ability may be reduced due to the leakage of the radiation amount.

従って、隅肉継手部5の角度θ1を105≦θ1≦135度の範囲の広角傾斜に配置することで、溶接施工の実施や放射線遮蔽の能力確保を可能にすることができる。   Therefore, by arranging the angle θ1 of the fillet joint portion 5 at a wide-angle inclination in the range of 105 ≦ θ1 ≦ 135 degrees, it is possible to perform welding work and secure the radiation shielding ability.

また、内筒1側又は外筒2側の傾斜角度θ2は、MIG溶接トーチ26(TIG−MIG溶接トーチ11の場合も同様)を略垂直の下向姿勢に配置するための角度であることから、隅肉継手部5の角度θ1の大きさに対応して変化させれば良く、例えば、隅肉継手部5の角度θ1を小さくする場合は、他方の内筒1側又は外筒2側の傾斜角度θ2を大きくする方向に変化させ、反対に、隅肉継手部5の角度θ1を大きくする場合には、傾斜角度θ2を小さくする方向に変化させると良い。   Further, the inclination angle θ2 on the inner cylinder 1 side or the outer cylinder 2 side is an angle for disposing the MIG welding torch 26 (the same applies to the TIG-MIG welding torch 11) in a substantially vertical downward posture. For example, when the angle θ1 of the fillet joint 5 is to be reduced, the other inner cylinder 1 side or the outer cylinder 2 side may be changed. When the inclination angle θ2 is changed in the increasing direction, and the angle θ1 of the fillet joint portion 5 is increased, it is preferable to change the inclination angle θ2 in the decreasing direction.

図18、図19及び図20に示した一体構造のTIG−MIG溶接トーチ11及びMIG溶接専用のMIG溶接トーチ26は、図18に一例として示すように、駆動装置311によって走行移動可能な長尺アーム31の先端部(又は多関節可動式の溶接ロボットの手首部)に取付冶具を介して略下向姿勢に取付け、又は長尺アーム31の先端部に取付冶具及び左右・上下移動可能な2軸駆動テーブルを介して略下向姿勢に取付けると共に、溶接線方向に配置されている。   The integrated TIG-MIG welding torch 11 and the MIG welding torch 26 dedicated to MIG welding shown in FIGS. 18, 19 and 20 are long and movable by a drive device 311 as shown in FIG. Attached to the tip of the arm 31 (or the wrist of a multi-joint movable welding robot) in a substantially downward position via a fixture, or attached to the tip of the long arm 31 and 2 It is mounted in a substantially downward posture via an axis drive table and is disposed in the weld line direction.

また、伝熱銅フィン3の銅板と内筒1又は外筒2の鋼材と隅肉継手部に対して、パス毎に溶接すべき隅肉継手部の溶接線の溶接開始位置から終了位置まで、溶接制御機器201による長尺アーム31の走行指令、TIG溶接電源15及びMIG溶接電源20への出力指令によって、一体構造のTIG−MIG溶接トーチ11又はMIG溶接トーチ26の走行動作及び溶接動作を実行させながら、先行TIGと後続MIGとの複合溶接又はMIG溶接を隅肉継手部の溶接線の開始位置から終了位置まで溶接が施工されている。   Moreover, from the welding start position of the weld line of the fillet joint part to be welded for each pass to the copper plate of the heat transfer copper fin 3 and the steel material of the inner cylinder 1 or the outer cylinder 2 and the fillet joint part, to the end position, The traveling operation and welding operation of the integrally structured TIG-MIG welding torch 11 or MIG welding torch 26 are executed in accordance with the traveling command of the long arm 31 by the welding control device 201 and the output commands to the TIG welding power source 15 and the MIG welding power source 20. While performing the composite welding of the preceding TIG and the subsequent MIG or MIG welding, welding is performed from the start position to the end position of the weld line of the fillet joint.

このようにして、継手傾斜の隅肉継手部の溶接線6−1上に、MIG溶接トーチ26又はTIG−MIG溶接トーチ11を下向配置して溶接施工することで、溶接線の開始位置から終了位置まで安定に溶接することができると共に、良好な溶接ビード及び溶接断面部を得ることが可能となる。   In this manner, by placing the MIG welding torch 26 or the TIG-MIG welding torch 11 downward on the weld line 6-1 of the fillet joint portion of the joint slope, welding is performed, thereby starting from the start position of the weld line. While being able to weld stably to an end position, it becomes possible to obtain a favorable weld bead and a weld cross section.

図21及び図22は、本実施例に係わるMIT溶接又は先行TIGと後続MIGの複合溶接における伝熱銅フィン3の両端面形状と継手配置及びトーチ配置の一例を示すものである。   21 and 22 show an example of the shape of both end surfaces of the heat transfer copper fin 3 and the joint arrangement and torch arrangement in the MIT welding or the combined welding of the preceding TIG and the subsequent MIG according to the present embodiment.

図21に示す伝熱銅フィン3(長さ方向短縮)の両端面部の形状は、伝熱銅フィン3の表面に対して、30度±15度の範囲で傾斜(端面傾斜角:15≦β1≦45度)している傾斜面形状38であり、内筒1の表面(又は外筒2の表面)と略平行な傾斜面に予め加工してある。この傾斜面形状38を有する伝熱銅フィン3を備えた隅肉継手部の溶接線上に、MIG溶接トーチ26を配置した事例である。   The shape of both end surfaces of the heat transfer copper fin 3 (length direction shortening) shown in FIG. 21 is inclined within a range of 30 ° ± 15 ° with respect to the surface of the heat transfer copper fin 3 (end surface inclination angle: 15 ≦ β1). It is an inclined surface shape 38 that is ≦ 45 degrees, and is processed in advance into an inclined surface substantially parallel to the surface of the inner cylinder 1 (or the surface of the outer cylinder 2). This is an example in which the MIG welding torch 26 is arranged on the weld line of the fillet joint portion including the heat transfer copper fin 3 having the inclined surface shape 38.

一方、図22に示す伝熱銅フィン3の両端面部の形状は、傾斜面がない端面(β1=0に相当)の平坦面形状39である。この平坦面形状39を有する伝熱銅フィン3を備えた他の隅肉継手部の溶接線上に、TIG−MIG溶接トーチ11を配置した事例である。この事例では、先行TIG側の非消耗電極13を主に図示して、後続MIG側の消耗ワイヤ18の方は省略している。伝熱銅フィン3の両端面部が平坦面形状39の場合は、傾斜面形状38の場合と比べて加工コストを低減することができる。   On the other hand, the shape of both end surface portions of the heat transfer copper fin 3 shown in FIG. 22 is a flat surface shape 39 of an end surface (corresponding to β1 = 0) having no inclined surface. This is an example in which the TIG-MIG welding torch 11 is disposed on the weld line of another fillet joint portion provided with the heat transfer copper fin 3 having the flat surface shape 39. In this example, the non-consumable electrode 13 on the preceding TIG side is mainly illustrated, and the consumable wire 18 on the subsequent MIG side is omitted. When both end surface portions of the heat transfer copper fin 3 have the flat surface shape 39, the processing cost can be reduced as compared with the case of the inclined surface shape 38.

なお、図21中に記したMIG溶接トーチ26と、図22中に記したTIG−MIG溶接トーチ11とを入れ替えて、溶接すべき隅肉継手部の溶接線上に配置することもできる。   Note that the MIG welding torch 26 shown in FIG. 21 and the TIG-MIG welding torch 11 shown in FIG. 22 can be interchanged and arranged on the weld line of the fillet joint portion to be welded.

一方、内筒1側(又は外筒2側)と伝熱銅フィン3の片方端面部との隅肉継手部5の継手角度θ1については、伝熱銅フィン3の両端面部が傾斜面形状38の場合でも平坦面形状39の場合でも同様である。   On the other hand, with respect to the joint angle θ1 of the fillet joint 5 between the inner cylinder 1 side (or outer cylinder 2 side) and one end face of the heat transfer copper fin 3, both end faces of the heat transfer copper fin 3 are inclined surface shape 38. The same applies to the case of the flat surface shape 39.

上述したように、内筒1側(又は外筒2側)と伝熱銅フィン3の片方端面部との隅肉継手部5の継手角度θ1は、θ1=120度±15度(105≦θ1≦135度)の範囲の広角傾斜に形成されている。他方の内筒1側(外筒2の場合も同様)の傾斜角度θ2は、水平線に対して、θ2=30度±15度(15≦θ2≦45度)の範囲に配置されている。また、隅肉継手部5の底面には、ギャップGがあったりなかったりすることから、また、MIG溶接トーチ26(又はTIG−MIG溶接トーチ11)の位置を伝熱銅フィン3側にシフトさせる第1の距離S1(又は第2の距離S2)が変化することがあることから、ギャップGと第1の距離S1及び第2の距離S2を同図中に記載している。   As described above, the joint angle θ1 of the fillet joint 5 between the inner cylinder 1 side (or the outer cylinder 2 side) and the one end surface portion of the heat transfer copper fin 3 is θ1 = 120 degrees ± 15 degrees (105 ≦ θ1 ≦ 135 degrees) is formed at a wide angle inclination. The inclination angle θ2 on the other inner cylinder 1 side (the same applies to the outer cylinder 2) is arranged in a range of θ2 = 30 degrees ± 15 degrees (15 ≦ θ2 ≦ 45 degrees) with respect to the horizontal line. In addition, since there is no gap G on the bottom surface of the fillet joint portion 5, the position of the MIG welding torch 26 (or TIG-MIG welding torch 11) is shifted to the heat transfer copper fin 3 side. Since the first distance S1 (or the second distance S2) may change, the gap G, the first distance S1, and the second distance S2 are shown in FIG.

なお、第1の距離S1は、伝熱銅フィン3の端面角部b点から溶接線6に該当する位置まで、消耗ワイヤ18の先端部(又は非消耗電極13の延長線と伝熱銅フィン3表面との交差した交点位置)をシフトさせた長さ(距離)のことである。他方の第2の距離S2は、伝熱銅フィン3表面の延長線が内筒1の表面(又は外筒2の表面)と交差する位置のa点からb点を通過した上部にある溶接線の位置まで、消耗ワイヤ18(又は非消耗電極13)をシフトさせた長さ(距離)のことである。   The first distance S1 is the tip of the consumable wire 18 (or the extension line of the non-consumable electrode 13 and the heat transfer copper fin) from the end surface corner b point of the heat transfer copper fin 3 to the position corresponding to the weld line 6. It is the length (distance) obtained by shifting the position of the intersecting point with the three surfaces. The other second distance S2 is the weld line at the upper part where the extension line of the surface of the heat transfer copper fin 3 crosses the surface of the inner cylinder 1 (or the surface of the outer cylinder 2) from the point a to the point b. This is the length (distance) obtained by shifting the consumable wire 18 (or the non-consumable electrode 13) to the position.

また、第1の距離S1と第2の距離S2との間には相関関係があり、S2=S1+T1/tan(180−θ1)−T1×tanβ1+G/sin(180−θ1)の式で示される。β1の値が上述した30度±15度の場合は、傾斜面形状38の伝熱銅フィン3であり、かつ、β1=θ1−90度の時のS2は、S2=S1+G/sin(180−θ1)の式に簡略することができる。また、β1の値が0度の場合には、平坦面形状39の伝熱銅フィン3であり、その時のS2は、S2=S1+T1/tan(180−θ1)+G/sin(180−θ1)の式に簡略することができる。   Further, there is a correlation between the first distance S1 and the second distance S2, which is expressed by an equation of S2 = S1 + T1 / tan (180−θ1) −T1 × tanβ1 + G / sin (180−θ1). When the value of β1 is 30 ° ± 15 ° as described above, the heat transfer copper fin 3 has the inclined surface shape 38, and S2 when β1 = θ1−90 ° is S2 = S1 + G / sin (180− It can be simplified to the equation of θ1). When the value of β1 is 0 degree, the heat transfer copper fin 3 has a flat surface shape 39, and S2 at that time is S2 = S1 + T1 / tan (180−θ1) + G / sin (180−θ1). The formula can be simplified.

第1の距離S1の範囲位置又は第2の距離S2の範囲位置の溶接線上に、TIG−MIG溶接トーチ11又はMIG溶接トーチ26を略下向姿勢に設定して、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、隅肉継手部の溶接線の開始位置から終了位置まで溶接施工することで、溶接線の開始位置から終了位置まで安定に溶接することができると共に、良好な溶接ビード及び溶接断面部を得ることが可能となる。   The TIG-MIG welding torch 11 or the MIG welding torch 26 is set to a substantially downward posture on the weld line at the first distance S1 range position or the second distance S2 range position, and the preceding TIG and the subsequent MIG By welding from the start position to the end position of the fillet joint portion by composite welding or MIG welding, stable welding can be performed from the start position to the end position of the weld line, and a good weld bead and A weld cross section can be obtained.

図23及び図24は、本発明の実施例3としての実施例1に採用される溶接装置であり、長尺アームの先端部にTIG−MIG溶接トーチ及びガイドローラを配備した例を示すものである。   23 and 24 show a welding apparatus employed in the first embodiment as the third embodiment of the present invention, and shows an example in which a TIG-MIG welding torch and a guide roller are arranged at the distal end portion of the long arm. is there.

該図に示す如く、先行TIGと後続MIGとの複合溶接を行う一体構造のTIG−MIG溶接トーチ11は、取付冶具34、35及び左右・上下移動可能な2軸駆動テーブル36を介して長尺アーム31の先端部に配置(取付)されている。2軸駆動テーブル36は、溶接線方向に対する左右方向及び上下方向の駆動が可能なものであり、この2軸駆動テーブル36によって、TIG−MIG溶接トーチ11の左右・上下方向の位置を自動で動かすことができる。   As shown in the figure, the TIG-MIG welding torch 11 having an integral structure for performing composite welding of the preceding TIG and the succeeding MIG has a long length via mounting jigs 34 and 35 and a biaxial drive table 36 that can move left and right and up and down. It is disposed (attached) at the tip of the arm 31. The biaxial drive table 36 can be driven in the horizontal direction and the vertical direction with respect to the welding line direction, and the biaxial drive table 36 automatically moves the horizontal and vertical positions of the TIG-MIG welding torch 11. be able to.

また、回転移動可能なガイドローラ32は、TIG−MIG溶接トーチ11よりも先行する右位置にあって、長尺アーム31の下側に配備され、かつ、溶接線から近距離だけ離れた伝熱銅フィン3の表面部と内筒1側の表面部(又は外筒2側の表面部)との両面に接触回転動するように配備されている。このガイドローラ32の接触回転動によって、TIG−MIG溶接トーチ11を隅肉継手部の溶接線方向へ容易に走行案内することができる。   Further, the rotationally movable guide roller 32 is located at the right position ahead of the TIG-MIG welding torch 11, is disposed below the long arm 31, and is a heat transfer away from the welding line by a short distance. It is arranged so as to rotate in contact with both surfaces of the surface portion of the copper fin 3 and the surface portion on the inner tube 1 side (or the surface portion on the outer tube 2 side). By the contact rotational movement of the guide roller 32, the TIG-MIG welding torch 11 can be easily traveled and guided in the weld line direction of the fillet joint portion.

また、隅肉継手部の溶接線の曲がりや溶接による変形等が小さく、事前の位置決めも正確な継手の溶接であれば、スリット光切断センサ等の計測機器を使用することなく、ガイドローラ32の接触回転動によって、TIG−MIG溶接トーチ11を隅肉継手部の溶接線方向に走行案内しながら、先行TIGと後続MIGとの複合溶接を隅肉継手部の溶接線の開始位置から終了位置までの溶接施工を行うことができると共に、良好な溶接ビード及び溶接断面部を得ることが可能である。   Further, if the welding of the fillet joint portion is small, such as bending of the weld line and deformation due to welding, and accurate positioning in advance, the guide roller 32 can be used without using a measuring device such as a slit light cutting sensor. While the TIG-MIG welding torch 11 travels and guides in the direction of the weld line of the fillet joint by contact rotation, composite welding of the preceding TIG and the subsequent MIG is performed from the start position to the end position of the fillet joint. It is possible to obtain a good weld bead and weld cross section.

なお、図23及び図24に示した実施例では、一体構造のTIG−MIG溶接トーチ11の配置例を記載しているが、MIG溶接トーチ26に交換してMIG溶接を行うようにすることもできる。また、TIG−MIG溶接トーチ11は、取付冶具34、35及び2軸駆動テーブル36を介して長尺アーム31の先端部に配置しているが、2軸駆動テーブル36を搭載せずに、TIG−MIG溶接トーチ11を長尺アーム31の先端部に配置することもできる。更に、長尺アーム31を右側方向に走行移動させて、TIG−MIG溶接トーチ11を右側方向に移動させながら溶接動作を行うように記載しているが、長尺アーム31を右側方向と反対側左側方向に走行移動させる場合には、ガイドローラ32を先頭位置、TIG−MIG溶接トーチ11を後続位置に配置代えすると共に、先行TIG−後続MIGになるように180度回転することで、左側方向に移動させながら正常に溶接動作を行うことができる。   In addition, in the Example shown in FIG.23 and FIG.24, although the example of arrangement | positioning of the TIG-MIG welding torch 11 of integral structure is described, it is also possible to replace with the MIG welding torch 26 and perform MIG welding. it can. Further, the TIG-MIG welding torch 11 is arranged at the tip of the long arm 31 via the mounting jigs 34 and 35 and the biaxial drive table 36, but without the biaxial drive table 36 being mounted, -The MIG welding torch 11 can also be arranged at the tip of the long arm 31. Further, it is described that the long arm 31 is moved in the right direction and the welding operation is performed while the TIG-MIG welding torch 11 is moved in the right direction, but the long arm 31 is opposite to the right direction. When moving in the left direction, the guide roller 32 is replaced at the leading position, the TIG-MIG welding torch 11 is replaced at the subsequent position, and rotated 180 degrees so as to become the preceding TIG-following MIG, thereby moving the left direction The welding operation can be normally performed while moving to.

また、図23及び図24に示した実施例では、TIG−MIG溶接トーチ11を長尺アーム31に配置しているが、長尺アーム31の代わりに、多関節可動式の溶接ロボットを用い、TIG−MIG溶接トーチ11(又はMIG溶接トーチ26)を溶接ロボットの手首部に配置(取付)して、トーチ走行移動させながら、先行TIGと後続MIGとの複合溶接(又はMIG溶接)を隅肉継手部の溶接線の開始位置から終了位置まで溶接施工するようにしても良い。   Moreover, in the Example shown in FIG.23 and FIG.24, although the TIG-MIG welding torch 11 is arrange | positioned at the elongate arm 31, the articulated movable welding robot is used instead of the elongate arm 31, The TIG-MIG welding torch 11 (or MIG welding torch 26) is placed (attached) on the wrist of the welding robot, and the combined welding (or MIG welding) of the preceding TIG and the succeeding MIG is performed while moving the torch. Welding may be performed from the start position to the end position of the weld line of the joint portion.

次に、本発明者等が実際に行った溶接試験の方法及び結果について説明する。   Next, the welding test method and results actually conducted by the present inventors will be described.

先ず、銅と鋼との異材隅肉継手部5のギャップGやトーチ位置又はワイヤ位置をシフトさせる第1及び第2の距離S1及びS2が変化する可能性が高いことから、溶接品質に及ぼす影響や溶接条件裕度を確認するため、ギャップG及び第1の距離S2を変化させる溶接試験を行い、溶接品質等を評価した。また、ワイヤ送り速度Wfとワイヤ溶着断面積Aw及びのど厚Lの関係についても調査した。更に、鋼側の溶込み深さcと希釈率(溶融比率)及び割れの関係等を調査するため、鋼板表面にCuSiワイヤを直接溶接する試験も行った。   First, there is a high possibility that the first and second distances S1 and S2 for shifting the gap G, the torch position, or the wire position of the dissimilar fillet joint portion 5 of copper and steel will change, and therefore the influence on the welding quality. In order to confirm the welding condition tolerance, a welding test for changing the gap G and the first distance S2 was performed, and the welding quality and the like were evaluated. Further, the relationship between the wire feed speed Wf, the wire weld cross-sectional area Aw, and the throat thickness L was also investigated. Furthermore, in order to investigate the relationship between the penetration depth c on the steel side, the dilution rate (melting ratio), cracks, etc., a test was also conducted in which a CuSi wire was directly welded to the steel plate surface.

MIG溶接試験では、板厚5mmの銅板(C1020P)と板厚16mmの炭素鋼板(SM400A)との隅肉継手を用い、また、TIG−MIG複合溶接試験では、板厚5mmの銅板(C1020P)と板厚50mmの炭素鋼板(SM400A)との隅肉継手を用いた。溶接ワイヤは1.2mm径のCuSiワイヤ(MG960)、また、シールドガスはArガスとHeガス(50〜70%)との混合ガスを用いた。   In the MIG welding test, a fillet joint of a copper plate (C1020P) having a thickness of 5 mm and a carbon steel plate (SM400A) having a thickness of 16 mm is used. In the TIG-MIG combined welding test, a copper plate (C1020P) having a thickness of 5 mm is used. A fillet joint with a carbon steel plate (SM400A) having a thickness of 50 mm was used. The welding wire used was a 1.2 mm diameter CuSi wire (MG960), and the shielding gas used was a mixed gas of Ar gas and He gas (50 to 70%).

図25は、本発明に係わるワイヤ送り速度Wfとワイヤ溶着断面積Aw及びのど厚Lの関係を示すものであり、ワイヤ溶着部の断面積を二等辺三角形と仮定した時の論理のど厚L0(溶込みなしの計算値)、実際に溶接試験したMIG溶接部及びTIG−MIG複合溶接部ののど厚L(溶込みありの実測値)、その溶接断面写真の一例をそれぞれ併記している。   FIG. 25 shows the relationship between the wire feed speed Wf, the wire weld cross-sectional area Aw, and the throat thickness L according to the present invention, and the logical throat thickness L0 when the cross-sectional area of the wire weld portion is assumed to be an isosceles triangle. (Calculated value without penetration), throat thickness L (measured value with penetration) of the MIG welded part and TIG-MIG composite welded part actually welded, and an example of a photograph of the weld cross section are also shown.

MIG溶接試験では、パルス電流波形を使用すると共に、溶接速度を抑制(204mm/分)し、ワイヤ送り速度Wfを6〜9m/分(溶接電流165〜260A)を変化させて溶接した。また、TIG−MIG複合溶接試験では、溶接速度を350mm/分に増加すると共に、ワイヤ送り速度Wfを10〜12m/分(MIG電流300〜360A、TIG電流300〜360A)を増加し変化させて溶接した。図25は、ぞの時の結果を示すものである。   In the MIG welding test, a pulse current waveform was used, the welding speed was suppressed (204 mm / min), and the wire feed speed Wf was changed from 6 to 9 m / min (welding current 165 to 260 A) for welding. In the TIG-MIG combined welding test, the welding speed is increased to 350 mm / min, and the wire feed speed Wf is increased and increased by 10 to 12 m / min (MIG current 300 to 360 A, TIG current 300 to 360 A). Welded. FIG. 25 shows the result of the worst case.

該図から分かるように、銅板と鋼板との溶接断面部は、図中の溶接断面写真のように、ビード表面が凸形状(曲線形状)で、かつ、銅板側にも溶込みを有するため、図中□及び■で示す溶接断面部ののど厚Lは、図中▲で示す論理のど厚L0よりも大きく、また、伝熱銅フィンに該当する銅板の板厚(T1=5mm)よりも大きく形成されている。更に、TIG−MIG複合溶接の場合には、TIGアークとMIGアークで加熱溶融するため、MIG溶接の場合と比べて、入熱量Qが大きく、銅側の溶融が深くなるため、ワイヤ溶着断面積Aw(図中○で示す)が少なくても、のど厚Lは銅板の板厚(T1=5mm)よりも大きく形成することができる。   As can be seen from the figure, the weld cross-section of the copper plate and the steel plate is a convex shape (curved shape) on the bead surface, as shown in the weld cross-section photograph in the figure, and also has a penetration on the copper plate side, The throat thickness L of the weld cross section indicated by □ and ■ in the figure is larger than the logical throat thickness L0 indicated by ▲ in the figure, and is larger than the thickness (T1 = 5 mm) of the copper plate corresponding to the heat transfer copper fin. Is formed. Furthermore, in the case of TIG-MIG composite welding, since it is heated and melted by TIG arc and MIG arc, compared with the case of MIG welding, the amount of heat input Q is larger and the melting on the copper side becomes deeper. Even if Aw (indicated by ◯ in the figure) is small, the throat thickness L can be formed larger than the thickness of the copper plate (T1 = 5 mm).

このような試験結果から、ワイヤ溶着断面積Awを約30〜55mmの範囲(30≦Aw≦55mm)に設定して溶接すれば、のど厚Lは板厚T1と同等の5mm以上(L≧T1=5mm)に形成することができると判断した。また、溶接電流と電圧及び溶接速度から入熱量Q(kJ/cm)を概算した結果、約Q=12〜35kJ/cmの範囲(12≦Q≦35kJ/cm)で良いことが分った。即ち、ワイヤ溶着断面積Awが少な過ぎると(30mm以下)、入熱不足及び溶融不足による不良、のど厚L不足になり易い。また、ワイヤ溶着断面積Awが多過ぎると(55mm以上)、溶融金属の垂れ下がりやアンダーカット等が発生し易い。 From such test results, if the welding is set to a range of wire welding sectional area Aw of about 30~55mm 2 (30 ≦ Aw ≦ 55mm 2), throat thickness L is equal to 5mm or more and the plate thickness T1 (L ≧ T1 = 5 mm) was determined. Moreover, as a result of estimating the heat input Q (kJ / cm) from the welding current, voltage and welding speed, it was found that the range of about Q = 12 to 35 kJ / cm (12 ≦ Q ≦ 35 kJ / cm) is sufficient. That is, if the wire welding cross-sectional area Aw is too small (30 mm 2 or less), it is liable to be insufficient due to insufficient heat input and insufficient melting, or insufficient throat thickness L. Moreover, when there are too many wire welding cross-sectional areas Aw (55 mm < 2 > or more), dripping of a molten metal, an undercut, etc. will occur easily.

図26は、銅板の端面平坦面継手及び端面傾斜面継手のMIG溶接におけるトーチ位置のシフト量S2と溶接部ののど厚L及びビード幅Wとの関係を示すものである。なお、図中の×印は、鋼側との接合不足及び強度不足のため、溶接断面部の切断中に溶金底部(溶接金属底面部)と鋼母材表面部との境界から破断した溶接データである。   FIG. 26 shows the relationship between the shift amount S2 of the torch position and the throat thickness L and bead width W of the welded portion in MIG welding of the end face flat joint and end face inclined joint of the copper plate. In addition, the x mark in the figure indicates welding that is broken from the boundary between the bottom of the molten metal (bottom of the weld metal) and the surface of the steel base material during the cutting of the weld cross section due to insufficient joining and insufficient strength with the steel side. It is data.

また、図27は、トーチ位置(ワイヤ位置)のシフト量S2(第2の距離S2)を変化させてMIG溶接した時の端面平坦面継手と端面傾斜面継手の代表的な溶接ビード外観及び溶接部断面写真を示す一実施例である。   FIG. 27 shows typical weld bead appearances and welds of end face flat face joints and end face inclined face joints when MIG welding is performed by changing the shift amount S2 (second distance S2) of the torch position (wire position). It is one Example which shows a partial cross section photograph.

図26に示すように、MIG溶接部のビード幅Wは、シフト量S2の増加に伴って減少する傾向にあるが、のど厚Lの方は、同程度又は若干増加しており、何れも銅板の板厚(T1=5mm)よりも大きく形成されている。また、端面平坦面継手の場合には、継手底部に開口部(ギャップに相当する大きさ:2.9mm)があるため、溶接中に溶融金属の一部が開口部内に流入することから、端面傾斜面継手の場合と比べると、のど厚Lが約0.5〜1mm程小さくなり、他方のビード幅Wは約1〜1.4mm程大きくなっている。また、端面傾斜面継手にギャップ(G=0〜2mm)がある場合でも、のど厚Lは何れも銅板の板厚(T1=5mm)よりも大きく形成されている。   As shown in FIG. 26, the bead width W of the MIG welded portion tends to decrease as the shift amount S2 increases, but the throat thickness L increases to the same extent or slightly, both of which are copper plates. It is formed to be larger than the plate thickness (T1 = 5 mm). In the case of a flat end face joint, since there is an opening at the bottom of the joint (size corresponding to the gap: 2.9 mm), a part of the molten metal flows into the opening during welding. Compared to the case of the inclined surface joint, the throat thickness L is about 0.5 to 1 mm smaller, and the other bead width W is about 1 to 1.4 mm larger. Further, even when the end face inclined surface joint has a gap (G = 0 to 2 mm), the throat thickness L is formed larger than the thickness of the copper plate (T1 = 5 mm).

鋼側の最大溶込み深さcについては、図26中に記載していないが、図27の溶接部断面写真に示すように、MIG溶接では溶込み深さcが浅い形状の溶接断面部が得られる。例えば、端面平坦面継手の場合には、トーチ位置のシフト量S2(第2の距離S2)が0.9mmの時(図27の(2))で約0.37mm、4.9mmの時(図27の(2))で約0.12mmであった。シフト量S2が大きい6.9mmの時には切断中に破断してしまい、計測することができなかったが、溶込み深さcはほぼ0mmであると判断している。   The maximum penetration depth c on the steel side is not described in FIG. 26, but as shown in the weld cross-section photograph in FIG. 27, a weld cross-section having a shallow penetration depth c is not obtained in MIG welding. can get. For example, in the case of a flat end face joint, when the shift amount S2 (second distance S2) of the torch position is 0.9 mm ((2) in FIG. 27), it is about 0.37 mm and 4.9 mm ( In FIG. 27 (2)), it was about 0.12 mm. When the shift amount S2 was large 6.9 mm, it broke during cutting and could not be measured, but it was determined that the penetration depth c was almost 0 mm.

一方、端面傾斜面継手の場合の最大溶込み深さcは、シフト量S2が0mmの時(図27の(3))で約0.15mm、3mmの時(図27の(4))で約0.10mmであり、また、S2が大きい5mmの時には切断中に破断したことから、端面平坦面継手の場合と同様に、溶込み深さcはほぼ0mmであると判断している。   On the other hand, the maximum penetration depth c in the case of the end face inclined surface joint is approximately 0.15 mm and 3 mm when the shift amount S2 is 0 mm ((3) in FIG. 27) ((4) in FIG. 27). Since it was about 0.10 mm and fractured during cutting when S2 was 5 mm, the penetration depth c was determined to be almost 0 mm, as in the case of the end face flat surface joint.

上記結果より、溶接部ののど厚Lが銅板の板厚T1以上(L≧T1=5mm)の形成可能なシフト量S2(第2の距離S2)の適正範囲は、端面平坦面継手の場合で約S2=0.9〜6mmの範囲であり、銅端面角部からの距離S1(第1の距離)に換算すると、S1≒−1.9〜3.1mmの範囲となる。端面傾斜面継手の場合は約S2=0〜4mmの範囲であり、銅端面角部からの距離S1(第1の距離)に換算すると、ギャップGが0〜2mmの時でも、S1≒0〜4mmの範囲となる。これらの溶接部の溶込み深さcは約0.05〜0.37mmであり、接合可能な溶込み深さcの下限値は0.05mm以上とした。なお、切断中に破断(×印)した試験データは強度不足のために除外した。   From the above results, the appropriate range of shift amount S2 (second distance S2) that can be formed when the throat thickness L of the weld is equal to or greater than the thickness T1 of the copper plate (L ≧ T1 = 5 mm) is the case of the end face flat joint. The range is about S2 = 0.9 to 6 mm, and when converted to the distance S1 (first distance) from the corner portion of the copper end face, the range is S1≈−1.9 to 3.1 mm. In the case of the end face inclined face joint, the range is about S2 = 0 to 4 mm. When converted to the distance S1 (first distance) from the corner of the copper end face, even when the gap G is 0 to 2 mm, S1≈0 to 0. The range is 4 mm. The penetration depth c of these welds is about 0.05 to 0.37 mm, and the lower limit value of the penetration depth c that can be joined is 0.05 mm or more. Note that the test data that was broken (×) during cutting was excluded because of insufficient strength.

図28は、炭素鋼表面にCuSiワイヤを直接溶接した時の溶込み深さと鋼側の希釈率の関係を示すものであり、MIG単独溶接結果及びTIG−MIG複合溶接結果の両方を併記している。   FIG. 28 shows the relationship between the penetration depth when the CuSi wire is directly welded to the carbon steel surface and the dilution ratio on the steel side. Both the MIG single welding result and the TIG-MIG composite welding result are shown together. Yes.

該図に示す希釈率α(%)は、鋼側の溶融断面積をb、溶接部全体の溶融断面積をa+bとした時に、α=b/(a+b)×100の式で算出した。各溶接部の溶融断面積は、約10倍に拡大した溶接断面写真から溶接部の輪郭を描くと共に、その輪郭内部の溶融断面積a、bを面積計算ソフトによって算出した後に、希釈率αをそれぞれ算出した。   The dilution rate α (%) shown in the figure was calculated by the equation: α = b / (a + b) × 100, where b is the cross-sectional area of the steel side and a + b is the cross-sectional area of the entire weld. The melt cross-sectional area of each weld is drawn from the weld cross-section photograph magnified about 10 times, and the melt cross-sections a and b inside the contour are calculated by the area calculation software, and then the dilution rate α is set. Each was calculated.

その結果、ワイヤ送り速度Wfを増加(MIG電流も連動して増加)すると、溶込み深さc及び希釈率αは増加する傾向にあると共に、溶接速度が速い方が大きくなっている。また、TIG−MIG複合溶接の場合は、ワイヤ送り速度Wfを12.2m/分まで増加して溶接したが、割れは発生しなかった。   As a result, when the wire feed speed Wf is increased (the MIG current is also increased), the penetration depth c and the dilution rate α tend to increase, and the welding speed is higher. In the case of TIG-MIG composite welding, the wire feed speed Wf was increased to 12.2 m / min for welding, but no cracks occurred.

一方、MIG単独溶接の場合には、TIG−MIG複合溶接の場合と比較して、溶込み深さc及び希釈率αが大きく、その溶込み深さcが約7mm以上、希釈率αが約50%以上の時に、溶接ビード表面に開口した割れが発生した。このため、TIG−MIG複合溶接でも、ワイヤ送り速度Wfをさらに増加すると、溶込み深さc及び希釈率αは増加すると推定されることから、割れの発生に至ると考えられる。   On the other hand, in the case of MIG single welding, the penetration depth c and the dilution rate α are larger than in the case of TIG-MIG composite welding, the penetration depth c is about 7 mm or more, and the dilution rate α is about When it was 50% or more, cracks opened on the surface of the weld bead occurred. For this reason, in TIG-MIG combined welding, if the wire feed speed Wf is further increased, the penetration depth c and the dilution rate α are estimated to increase, which is considered to cause cracking.

このような結果より、割れ発生の境界は、鋼側の希釈率αが50%以上及び溶込み深さcが約6mm以上であり、これらの値よりも小さい領域では割れ難いと推定される。   From these results, the cracking boundary is estimated to be difficult to crack in the region where the steel side dilution rate α is 50% or more and the penetration depth c is about 6 mm or more, and is smaller than these values.

MIG溶接の場合には、高いピーク電流と低いベース電流とを繰り返すパルス波形のアークを真下方向に発生させて溶接していることから、アーク力及び指向力等の増加に伴って溶込み深さcが増加することが考えられる。   In the case of MIG welding, since the arc having a pulse waveform that repeats a high peak current and a low base current is generated in the downward direction and welding is performed, the penetration depth increases with increasing arc force and directivity. It is conceivable that c increases.

これに対して、TIG−MIG複合溶接の場合には、先行TIGの非消耗電極及び後続MIGのワイヤ電極を溶接方向に傾斜させており、かつ、TIGアークとMIGアークを反発し合う方向に偏向させた状態で発生させて溶接していることから、MIG溶接の場合と比べて、アーク力及び指向力が抑制されて、溶込み深さの増加を抑制していることが考えられる。   On the other hand, in the case of TIG-MIG composite welding, the non-consumable electrode of the preceding TIG and the wire electrode of the subsequent MIG are inclined in the welding direction, and the TIG arc and the MIG arc are deflected in a repulsive direction. Since it is generated and welded in this state, it is considered that the arc force and directivity are suppressed and increase in penetration depth is suppressed as compared with the case of MIG welding.

なお、CuSiワイヤの代わりにCuワイヤを用いて、炭素鋼表面にMIG溶接した場合には、割れ感受性が高まることから、例えば、ワイヤ送り速度Wfが約10m/分以上の領域で溶接ビード表面に開口した割れが発生することを確認している。一方、銅と鋼との異材継手溶接では、投入する熱エネルギがワイヤ溶融と銅及び鋼溶融に分散されるため、深い溶込みにはならずに、溶込み深さの浅い溶接部が形成され易いことから、割れは発生し難いものと考えられる。   In addition, when MIG welding is performed on the carbon steel surface using Cu wire instead of CuSi wire, since the cracking sensitivity is increased, for example, the wire feed speed Wf is about 10 m / min or more on the surface of the weld bead. It has been confirmed that an open crack occurs. On the other hand, in dissimilar joint welding of copper and steel, the input heat energy is dispersed to wire melting and copper and steel melting, so that a deep weld penetration is formed without deep penetration. It is considered that cracks are unlikely to occur because it is easy.

また、シリコン入りのCuSiワイヤを用いて溶接することで、銅と鋼との異材継手溶接であっても、銅と鋼及びSiとが固溶可能な状態で適度に混合し合って割れのない良好な溶接ビード及び溶接断面部を得ることができる。鋼側の溶込み深さcが約6mm以下(c≦6mm)であれば、割れの問題は解消可能である。従って、溶込み深さcの許容範囲は、0.05≦c≦6mmが良い。   Also, by welding using CuSi wire containing silicon, even when dissimilar joint welding of copper and steel, copper, steel and Si are mixed properly in a state where they can be dissolved, and there is no crack Good weld beads and weld cross sections can be obtained. If the penetration depth c on the steel side is about 6 mm or less (c ≦ 6 mm), the problem of cracking can be solved. Therefore, the allowable range of the penetration depth c is preferably 0.05 ≦ c ≦ 6 mm.

ただし、希釈率αの増加によって溶接部の熱伝導率が減少することが予想されるため、これを抑制する観点から、溶込み深さcの上限値を4mm以下(c≦4mm)に制限することにした。   However, since it is expected that the thermal conductivity of the welded portion is reduced by increasing the dilution rate α, the upper limit value of the penetration depth c is limited to 4 mm or less (c ≦ 4 mm) from the viewpoint of suppressing this. It was to be.

表1は、端面平坦面の銅板と炭素鋼との隅肉継手部のギャップ及びトーチ位置のシフト量を変化させてTIG−MIG複合溶接試験を行った時の溶接条件を示すものである。   Table 1 shows the welding conditions when the TIG-MIG composite welding test was performed by changing the gap of the fillet joint between the copper plate of the end face flat surface and the carbon steel and the shift amount of the torch position.

本溶接試験では、溶接品質に及ぼす影響や溶接条件裕度を確認するため、隅肉継手部のギャップGを変化(G=0〜3mm)させると共に、トーチ位置のシフト量S2(第2の距離S2)を変化(S2=3〜9mm)させ、下向姿勢で先行TIG後続MIGの溶接試験を行った。板厚5mmの銅板(C1020P)と板厚50mmの炭素鋼板(SM400A)との隅肉継手であり、溶接ワイヤは1.2mm径のCuSiワイヤ、シールドガスはArガスとHeガスとの混合ガスをそれぞれ用いた(なお、継手及びトーチ配置については図18〜図22を参照)。   In this welding test, in order to confirm the influence on the welding quality and the welding condition tolerance, the gap G of the fillet joint is changed (G = 0 to 3 mm) and the torch position shift amount S2 (second distance) S2) was changed (S2 = 3 to 9 mm), and a welding test of the preceding TIG and the subsequent MIG was performed in a downward posture. This is a fillet joint of a copper plate (C1020P) with a thickness of 5 mm and a carbon steel plate (SM400A) with a thickness of 50 mm. The welding wire is a 1.2 mm diameter CuSi wire, the shielding gas is a mixed gas of Ar gas and He gas. Each was used (refer to FIGS. 18 to 22 for the joint and torch arrangement).

Figure 2016010805
Figure 2016010805

表2は、表1に示した溶接条件で溶接試験した時のTIG−MIG複合溶接部の形状寸法と引張試験及び評価結果を示すものである。   Table 2 shows the shape, tensile test and evaluation results of the TIG-MIG composite weld when the welding test is performed under the welding conditions shown in Table 1.

表2中には、各溶接試験片の前半側及び後半側の2箇所ずつ採取した各溶接断面部ののど厚L、ビード垂直高さH、溶け込み深さcの各値及びとその平均値等を記載し、また、同一の溶接試験片の中央部分から採取した各引張試験片(幅40mmの溶接継手)の引張荷重及び引張強さを記載すると共に、品質基準を満足するか否かの合否判定の結果をそれぞれ記している。   In Table 2, each value and average value of the throat thickness L, bead vertical height H, penetration depth c, etc. of each welded cross-section sampled from the first half side and the second half side of each weld specimen are shown. In addition, the tensile load and tensile strength of each tensile test piece (welded joint with a width of 40 mm) taken from the central part of the same weld test piece are described, and whether or not the quality standard is satisfied The determination results are shown respectively.

Figure 2016010805
Figure 2016010805

例えば、のど厚Lが板厚5mm未満のもの(No.9とNo.13の2本)、溶込み深さcが4mmを超えるもの(0本)、ビード止端部のアンダーカットが1mmを超えるもの(No.12の1本)、引張荷重Wtが20kN(100N/mm)未満のもの(No.3は切断中に破断)を不合格としている。他の番号の試験片は、各基準値を満足しているので合格としている。また、表1及び表2中には記載していないが、シフト量S2=1mm、ギャップG=0mmの継手についても溶接試験を実施している。 For example, the throat thickness L is less than 5 mm (No. 9 and No. 13), the penetration depth c exceeds 4 mm (0), and the undercut at the bead toe is 1 mm. Exceeding one (No. 12 No. 12), and having a tensile load Wt of less than 20 kN (100 N / mm 2 ) (No. 3 breaks during cutting) are rejected. The test pieces with other numbers satisfy each standard value, and therefore pass. Although not shown in Tables 1 and 2, a welding test is also performed on a joint with a shift amount S2 = 1 mm and a gap G = 0 mm.

図29は、隅肉継手部のギャップ及びトーチ位置のシフト量を変化させて、TIG−MIG複合溶接試験を行った時の溶接部の品質評価結果及び適正条件領域を示すものである。図29は、横軸に銅端面角部からの距離S1、縦軸にギャップGを示し、その図中に溶接品質評価の合否から適正条件領域及び不適領域を記載している。なお、銅端面角部からの距離S1(第1の距離S1)と、トーチ位置のシフト量S2(第2の距離S2)との関係は、上述したように、端面平坦面継手の場合、S1=S2−{T1/tan(180−θ1)+G/sin(180−θ1)}の簡略式で算出することができる。   FIG. 29 shows the quality evaluation result and appropriate condition region of the welded part when the TIG-MIG combined welding test is performed by changing the gap of the fillet joint and the shift amount of the torch position. In FIG. 29, the abscissa indicates the distance S1 from the corner portion of the copper end surface, and the ordinate indicates the gap G. In the drawing, the appropriate condition region and the inappropriate region are described from the pass / fail of the welding quality evaluation. As described above, the relationship between the distance S1 (first distance S1) from the corner portion of the copper end face and the shift amount S2 (second distance S2) of the torch position is S1 in the case of the end face flat joint. = S2- {T1 / tan (180- [theta] 1) + G / sin (180- [theta] 1)}.

該図に示すように、品質基準を満足する適正条件領域(○印)は、のど厚不足領域(左側の◆印)と、強度不足(右側の■印)及びアンダーカット過大領域(▲印)とを除いた中央部分にある。ギャップGが3mm以上の領域では、試験データが1つしかないので不明であるが、垂れ落ちやのど厚不足等の溶接不良に至る可能性があると考えられる。   As shown in the figure, the proper condition area (○ mark) that satisfies the quality standards is the area where the throat is insufficient (left mark ◆), the strength is insufficient (right mark ■), and the undercut excessive area (▲ mark). It is in the center part except and. In the region where the gap G is 3 mm or more, since there is only one test data, it is unknown, but it is thought that there is a possibility of leading to poor welding such as sagging or insufficient throat thickness.

また、強度不足(右側の■印)及びアンダーカット過大領域(▲印)内にも品質基準を満足する(○印)データがあるが、適正条件領域から外した。更に、左側ののど厚不足領域(◆印)内にも品質基準を満足する(○印)データ(S1=−1.9,G=0mm)があるが、適正条件領域から外した。   In addition, there is data that satisfies the quality standard (◯ mark) even in the area of insufficient strength (marked on the right side) and excessively undercut (marked with ▲), but it was excluded from the appropriate condition area. Furthermore, there is data (S1 = -1.9, G = 0 mm) that satisfies the quality standards in the throat thickness deficient area (marked with ♦) on the left side, but was excluded from the proper condition area.

従って、ギャップGに対する裕度は、G=0〜2mm程度か若しくはG=0〜3mm程度であり、また、銅端面角部からの距離S1に対する裕度は、S1=−0.5〜4mm程度であると判断した。若しくはS1=0〜4mm程度に限定することもできる。更に、第2の距離S2に置き換えると、S2≒2.5〜7mm程度(若しくはS2≒3〜7mm程度)である。   Therefore, the tolerance for the gap G is about G = 0 to 2 mm or about G = 0 to 3 mm, and the tolerance for the distance S1 from the corner portion of the copper end surface is about S1 = −0.5 to 4 mm. It was judged that. Or it can also be limited to about S1 = 0-4 mm. Further, when replaced with the second distance S2, S2 is approximately 2.5 to 7 mm (or S2 is approximately 3 to 7 mm).

このような裕度内の適正領域で溶接施工することで、品質基準を満足する良好な溶接ビード及び溶接断面部を得ることができる。   By performing welding in an appropriate region within such tolerance, it is possible to obtain a good weld bead and weld cross section that satisfy the quality standards.

図30は、TIG−MIG複合溶接した溶接部の代表的な溶接断面写真の例であり、図30の(1)はギャップG=0mm、シフト量S2=5mmの場合、図30の(2)はギャップG=2mm、シフト量S2=5mmの場合の場合である。   FIG. 30 is an example of a typical weld cross-section photograph of a welded portion where TIG-MIG composite welding is performed. FIG. 30 (1) shows a case where the gap G = 0 mm and the shift amount S2 = 5 mm. Is the case where the gap G = 2 mm and the shift amount S2 = 5 mm.

図30の(1)から分かるように、ギャップGが0mmの場合は、ビード表面が凸形状(曲線形状)で、かつ、銅板の裏側近くまで溶込んだ形状の溶接断面部になり易い。これに対して、図30の(2)から分かるように、ギャップが1mm又は2mm程度ある場合には、銅板の溶融促進及び溶融金属のギャップ内への流入によって銅裏側に貫通した形状の溶込みになると共に、鋼側の溶込み深さも増加しており、また、ビード表面が平坦形状の溶接断面部になり易い。何れも溶接断面部も品質基準を満足している。   As can be seen from (1) of FIG. 30, when the gap G is 0 mm, the bead surface has a convex shape (curved shape) and tends to be a welded cross-section having a shape melted to the vicinity of the back side of the copper plate. On the other hand, as can be seen from (2) of FIG. 30, when the gap is about 1 mm or 2 mm, the penetration of the shape penetrating the copper back side due to the acceleration of the melting of the copper plate and the inflow of the molten metal into the gap. At the same time, the penetration depth on the steel side also increases, and the bead surface tends to be a flat weld cross section. In both cases, the weld cross section satisfies the quality standard.

また、TIG−MIG複合溶接の場合には、MIG単独溶接の場合と比べて、溶接電流(TIG電流/MIG電流)が高く、溶接速度も速く、かつ、銅と鋼との隅肉継手部を2つのアークで加熱・溶融するため、銅側の溶込みが深い形状の溶接断面部になり易い。なお、割れについては、いずれの溶接試験片からも認められなかった。   In addition, in the case of TIG-MIG composite welding, the welding current (TIG current / MIG current) is higher and the welding speed is higher than in the case of MIG single welding, and the fillet joint between copper and steel is used. Since it is heated and melted by two arcs, the penetration on the copper side tends to be a deep weld cross section. In addition, about the crack, it was not recognized from any welding test piece.

図31は、溶接部のビード垂直高さとのど厚の関係を示すものであり、表2に示した試験データの中から該当する各値を抽出してグラフ化したものである。   FIG. 31 shows the relationship between the throat thickness and the bead vertical height of the welded portion, and the corresponding values are extracted from the test data shown in Table 2 and graphed.

該図から分かるように、ビード垂直高さHとのど厚Lとの間には相関性が認められる。バラツキがあるものの、ビード垂直高さHとのど厚Lの関係は、下記の(1)式に示す近似実験式(第1の実験式)で表すことができる。ただし、定数b1は1である。   As can be seen from the figure, there is a correlation between the bead vertical height H and the throat thickness L. Although there is variation, the relationship between the bead vertical height H and the throat thickness L can be expressed by the approximate experimental formula (first experimental formula) shown in the following formula (1). However, the constant b1 is 1.

のど厚:L≒b1×H ・・・・・(1)
溶接内部ののど厚Lや溶込み深さc等の値(寸法)は、溶接部材を切断して検査(破壊検査)しなければならないが、ビード垂直高さHの値は、溶接部材のビード表面部から測定可能である。このため、破壊検査を行わずに、ビード表面部からビード垂直高さHを計測し、その計測したビード垂直高さHの値を第1の実験式(1)式に代入してのど厚Lを算出することで、溶接内部ののど厚Lの値を容易に推定することができる。
Throat thickness: L≈b1 × H (1)
The values (dimensions) such as the throat thickness L and the penetration depth c inside the weld must be inspected (destructive inspection) by cutting the welded member, but the value of the bead vertical height H is the bead of the welded member. It can be measured from the surface. For this reason, the bead vertical height H is measured from the bead surface without performing a destructive inspection, and the value of the measured bead vertical height H is substituted into the first empirical formula (1). By calculating, the value of the throat thickness L inside the weld can be easily estimated.

また、第1の実験式(1)式から算出したのど厚Lの算出値が銅板(伝熱銅フィン3に該当)の板厚T1と同等以上(L≧T1)の場合は、合格であると判定し、板厚T1よりも小さい(L<T1)の場合には、のど厚不足又は伝熱面積不足による不合格であると判定することができる。また、上述したように、事前に溶接試験して採取した溶接断面部から実測したのど厚Lの実測値が銅板の板厚T1よりも小さい(L<T1)の場合も、のど厚不足又は伝熱面積不足であると判定することもできる。   Moreover, when the calculated value of the throat thickness L calculated from the first empirical formula (1) is equal to or greater than the plate thickness T1 of the copper plate (corresponding to the heat transfer copper fin 3) (L ≧ T1), it is acceptable. When the thickness is smaller than the plate thickness T1 (L <T1), it can be determined that the throat is insufficient or the heat transfer area is insufficient. In addition, as described above, when the measured value of the throat thickness L measured from the weld cross-section obtained by the welding test in advance is smaller than the plate thickness T1 of the copper plate (L <T1), the throat thickness is insufficient or transmitted. It can also be determined that the thermal area is insufficient.

のど厚不足等による不合格の溶接部分及びその近傍部を補修する場合には、例えば、図32に示すように、不合格の溶接部50及び近傍の上部(銅板寄りのビード表面部又はビード止端部近傍)に1パス肉盛する補修を行い肉盛補修部30を形成することで、のど厚Lを銅板の板厚T1以上(L≧T1=5mm)に修復でき、のど厚不足及び伝熱面積不足を解消することができる。   When repairing an unacceptable welded part due to insufficient throat thickness or the like and the vicinity thereof, for example, as shown in FIG. 32, an unacceptable welded part 50 and the upper part in the vicinity (bead surface part near the copper plate or bead stop). By repairing 1-pass overlay in the vicinity of the end portion and forming the overlay repair portion 30, the throat thickness L can be restored to a copper plate thickness T1 or more (L ≧ T1 = 5 mm). The lack of heat area can be resolved.

例えば、1パス肉盛すべき補修溶接では、図3、4及び図9に示したように、隅肉継手部を本溶接した時の溶接条件よりも溶接電流や入熱量等を減少した溶接条件を補修溶接工程109、116、119、122で使用して補修することで、容易に肉盛補修することが可能となり、上述したように、のど厚不足及び伝熱面積不足を解消することができる。   For example, in repair welding to be built up in one pass, as shown in FIGS. 3, 4 and 9, the welding conditions in which the welding current, the heat input, etc. are reduced compared to the welding conditions when the fillet joint is fully welded. Is used in repair welding processes 109, 116, 119, and 122, so that it is possible to easily build up and repair the lack of throat thickness and heat transfer area as described above. .

図33は、溶接部のビード垂直高さと溶込み深さの関係を示すものである。   FIG. 33 shows the relationship between the weld bead vertical height and the penetration depth.

該図から分かるように、ビード垂直高さHと溶込み深さcとの間には相関性が認められる。バラツキがあるものの、ビード垂直高さHと溶込み深さcの関係は、下記の(2)式に示す多項近似の実験式(第2の実験式)で表すことができる。ただし、定数b2は−0.0061、b3は0.22、b4は−2.62、b5は10.3である。   As can be seen from the figure, a correlation is recognized between the bead vertical height H and the penetration depth c. Although there is variation, the relationship between the bead vertical height H and the penetration depth c can be expressed by a polynomial approximation empirical formula (second experimental formula) shown in the following formula (2). However, the constant b2 is -0.0067, b3 is 0.22, b4 is -2.62, and b5 is 10.3.

溶込み深さ:c=b2×H+b3×H+b4×H+b5 ・・・・・(2)
上述したように、破壊検査を行わずに、ビード表面部からビード垂直高さHを計測し、その計測したビード垂直高さHの値を第2の実験式(2)式に代入して溶込み深さcを算出することで、溶接内部の溶込み深さcを容易に推定することができる。また、第2の実験式(2)式から算出した溶込み深さcの算出値が0.05mm未満(c<0.05mm)の場合は、鋼側の溶接部分が接合不足又は強度不足であると判定し、溶込み深さcの算出値が4mmを超える(c>4mm)場合には、溶込み過大であると判定することができる。
Penetration depth: c = b2 × H 3 + b3 × H 2 + b4 × H + b5 (2)
As described above, the bead vertical height H is measured from the surface of the bead without performing a destructive inspection, and the value of the measured bead vertical height H is substituted into the second empirical formula (2). By calculating the penetration depth c, it is possible to easily estimate the penetration depth c inside the weld. Moreover, when the calculated value of the penetration depth c calculated from the second empirical formula (2) is less than 0.05 mm (c <0.05 mm), the welded portion on the steel side is insufficient in joining or insufficient in strength. If it is determined that there is a calculated value of the penetration depth c exceeding 4 mm (c> 4 mm), it can be determined that the penetration is excessive.

図34は、溶接部ののど厚と溶込み深さの関係を示すものであり、図31及び図33の場合と同様に、表2に示した試験データの中から該当する各値を抽出してグラフ化したものである。   FIG. 34 shows the relationship between the throat thickness of the weld and the penetration depth. Similar to the cases of FIGS. 31 and 33, each corresponding value is extracted from the test data shown in Table 2. It is a graph.

該図から分かるように、のど厚Lと溶込み深さcとの間には相関性が認められる。バラツキがあるものの、のど厚Lと溶込み深さcの関係は、下記の(3)式に示す多項近似の実験式(第3の実験式)で表すことができる。ただし、定数b6は−0.0067、b7は0.24、b8は−2.87、b9は11.4である。   As can be seen from the figure, there is a correlation between the throat thickness L and the penetration depth c. Although there is a variation, the relationship between the throat thickness L and the penetration depth c can be expressed by a polynomial approximation empirical formula (third empirical formula) shown in the following formula (3). However, the constant b6 is -0.000067, b7 is 0.24, b8 is -2.87, and b9 is 11.4.

溶込み深さ:c=b6×L+b7×L+b8×L+b9 ・・・・・(3)
ビード垂直高さHとのど厚Lとの関係を示す第1の実験式(1)より算出したのど厚Lの算出値を第3の実験式(3)式に代入して、溶込み深さcの値を算出することで、破壊検査を行わずに、溶接内部の溶込み深さcを容易に推定することができる。また、溶込み深さcの算出値が0.05≦c≦4mmの範囲の場合は、合格であると判定し、溶込み深さcの算出値が0.05mm未満(c<0.05mm)の場合には、鋼側の溶接部分が接合不足又は強度不足であると判定し、また、溶込み深さcの算出値が4mmを超える(c>4mm)場合には、溶込み過大であると判定することができる。
Penetration depth: c = b6 × L 3 + b7 × L 2 + b8 × L + b9 (3)
Depth of penetration by substituting the calculated value of the throat thickness L calculated from the first empirical formula (1) showing the relationship between the bead vertical height H and the throat thickness L into the third empirical formula (3). By calculating the value of c, the penetration depth c inside the weld can be easily estimated without performing a destructive inspection. Moreover, when the calculated value of the penetration depth c is in the range of 0.05 ≦ c ≦ 4 mm, it is determined to be acceptable, and the calculated value of the penetration depth c is less than 0.05 mm (c <0.05 mm). ), It is determined that the weld portion on the steel side is insufficiently bonded or insufficient in strength, and if the calculated value of the penetration depth c exceeds 4 mm (c> 4 mm), the penetration is excessive. It can be determined that there is.

また、上述したように、事前に溶接試験して採取した溶接断面部から実測した溶込み深さcの実測値が0.05mm未満の場合や、若しくは4mmを超える場合には、鋼側の溶接部分が接合不足及び強度不足、若しくは溶込み過大であると判定することもできる。   In addition, as described above, when the measured value of the penetration depth c measured from the weld cross section taken in advance by the welding test is less than 0.05 mm or exceeds 4 mm, the steel side welding is performed. It can also be determined that the portion is insufficiently bonded and insufficient in strength, or excessively penetrated.

上述したように、溶接断面部の検査試験は、溶接部材を切断する破壊検査であることから、非破壊検査が可能ならば変更することが望まれる。   As described above, since the inspection test for the weld cross section is a destructive inspection for cutting the welded member, it is desirable to change the non-destructive inspection if possible.

本実施例によれば、溶接ビード表面側からビード垂直高さHを計測すると共に、計測したビード垂直高さHの値を、第1及び2の実験式(1)及び(2)式にそれぞれ代入してのど厚Lや溶込み深さcを算出することで、破壊検査を行わずに、溶接内部ののど厚L及び溶込み深さc等を容易に推定することができる。また、実験式(1)式で算出したのど厚Lの算出値を実験式(3)に代入して溶込み深さcを算出することもできる。   According to the present embodiment, the bead vertical height H is measured from the surface of the weld bead, and the measured value of the bead vertical height H is expressed by the first and second experimental expressions (1) and (2), respectively. By substituting and calculating the throat thickness L and penetration depth c, the throat thickness L and penetration depth c inside the weld can be easily estimated without performing a destructive inspection. Also, the penetration depth c can be calculated by substituting the calculated value of the throat thickness L calculated by the experimental formula (1) into the experimental formula (3).

図35は、溶込み深さと溶接継手の引張荷重の関係を示すものであり、図中には引張荷重Wtが20kN(σ=100N/mm)以上を合格としている。なお、溶接部の引張強度σについては、引張試験片毎の溶接断面積が変化して特定できないため、最大引張荷重Wtと、銅板部の断面積(板厚5mm×幅40mm)とから算出した。 FIG. 35 shows the relationship between the penetration depth and the tensile load of the welded joint. In the figure, the tensile load Wt is 20 kN (σ = 100 N / mm 2 ) or more as acceptable. Note that the tensile strength σ of the welded portion was calculated from the maximum tensile load Wt and the cross-sectional area of the copper plate portion (plate thickness 5 mm × width 40 mm) because the weld cross-sectional area for each tensile test piece was changed and could not be specified. .

実機の金属キャスクは長さ4000〜5000mmの長尺部材であることから、伝熱銅フィンの1枚辺りの溶接線長さを最小の4mと仮定すると、銅板1枚の溶接部の引張荷重(20×4000/40/9.8)で、200トン以上の重量物を吊り上げることが可能である。   Since the actual metal cask is a long member having a length of 4000 to 5000 mm, assuming that the weld line length per one heat transfer copper fin is a minimum of 4 m, the tensile load of the welded portion of one copper plate ( 20 × 4000/40 / 9.8), it is possible to lift heavy objects of 200 tons or more.

溶込み深さcがほぼ0mmの場合は、接合不足により試験片採取の切断中に破断したので0とした。溶込み深さcが0.05mm以上の場合には、バラツキがあるものの、20kN(σ=100N/mm)以上の値を有しており、更に、溶込み深さcが増加すると、のど厚Lの減少を伴うことから、引張荷重(最大引張荷重)Wtは減少する傾向にあるが、基準値の20kN(σ=100N/mm)以上を何れも満足している。 When the penetration depth c was approximately 0 mm, it was set to 0 because it was broken during cutting of specimen collection due to insufficient joining. When the penetration depth c is 0.05 mm or more, there is a variation, but it has a value of 20 kN (σ = 100 N / mm 2 ) or more, and when the penetration depth c increases, the throat Since the thickness L decreases, the tensile load (maximum tensile load) Wt tends to decrease, but all satisfy the reference value of 20 kN (σ = 100 N / mm 2 ) or more.

このような引張試験結果から、溶込み深さcが0.05mm以上であれば、基準値を満足する引張荷重Wt及び引張強度σを確保することができる。   From such a tensile test result, if the penetration depth c is 0.05 mm or more, the tensile load Wt and the tensile strength σ satisfying the reference value can be ensured.

上述した引張試験は、溶接部材を切断する破壊検査であることから、非破壊検査が可能ならば変更することが望まれる。   Since the tensile test described above is a destructive inspection for cutting a welded member, it is desirable to change the tensile test if possible.

本実施例によれば、上述したように、溶接ビード表面側からビード垂直高さHを計測すると共に、第1〜3の実験式(1)〜(3)式を用いて溶込み深さcを算出することで、破壊検査を行わずに、溶接部7の引張荷重Wt又は引張強度σが前記基準値を満足(合格)するか否かを容易に推定することができる。溶込み深さcの算出値が0.05mm以上の場合は合格と判定し、また、0.05mm未満の場合には強度不足の不合格と判定することができる。   According to the present embodiment, as described above, the bead vertical height H is measured from the weld bead surface side, and the penetration depth c is calculated using the first to third empirical formulas (1) to (3). By calculating, it is possible to easily estimate whether or not the tensile load Wt or the tensile strength σ of the welded portion 7 satisfies (passes) the reference value without performing a destructive inspection. When the calculated value of the penetration depth c is 0.05 mm or more, it can be determined as acceptable, and when it is less than 0.05 mm, it can be determined that the strength is insufficient.

上述した溶接試験及び引張試験の結果は、伝熱銅フィンの板厚T1が5mmの銅板と厚板の炭素鋼との隅肉継手部の溶接を想定にした試験結果を記載しているが、板厚T1が5mmより小さい場合や大きい場合でも、上述したような考え方で継手部を溶接することや溶接部を検査することも可能である。   The results of the welding test and the tensile test described above describe the test results assuming welding of a fillet joint between a copper plate having a heat transfer copper fin thickness of T1 of 5 mm and carbon steel of a thick plate. Even when the plate thickness T1 is smaller or larger than 5 mm, it is possible to weld the joint portion or inspect the welded portion based on the above-described concept.

一方、長尺部材の継手部を溶接する場合には、継手の仮付及び組立誤差、溶接線の曲がり、溶接による変形等の要因によって、溶接すべき溶接線に対するトーチ位置(ワイヤ位置/電極位置含む)の位置ズレが発生し易く、溶接不良に至ることがある。このため、トーチ位置の位置ずれを溶接中に修正する必要があることから、位置ズレを検出するセンサが必要となる。センサで検出する位置ズレの検出情報に基づいて、トーチ位置の位置ズレを修正制御することで、位置ズレを防止でき、不良のない良好な溶接部を得ることができると考えられる。   On the other hand, when welding a joint part of a long member, the torch position (wire position / electrode position) with respect to the weld line to be welded due to factors such as joint fitting and assembly errors, bending of the weld line, deformation due to welding, etc. Misalignment) is likely to occur, resulting in poor welding. For this reason, since it is necessary to correct | amend the position shift of a torch position during welding, the sensor which detects a position shift is needed. It is considered that the positional deviation of the torch position can be corrected and controlled based on the positional deviation detection information detected by the sensor, so that the positional deviation can be prevented and a good weld without defect can be obtained.

図36は、本発明の実施例4としての溶接すべき隅肉継手部の溶接線位置及びその位置ずれを検出するスリット光切断式センサを用いた例を示すものである。また、図37及び図38は、実施例4における溶接前に行うトーチ位置(ワイヤ位置)の位置合せとセンサ側の原点位置座標の位置合せの例及び画像モニタでの表示例を示すものである。図中には、MIG溶接を行うMIG溶接トーチ26の例を記載しているが、先行TIGと後続MIGとの複合溶接を行うTIG−MIG溶接トーチ11の場合も同様であるので省略している。   FIG. 36 shows an example using a slit light cutting type sensor for detecting the position of the weld line of the fillet joint portion to be welded and its positional deviation as Example 4 of the present invention. FIGS. 37 and 38 show examples of alignment of the torch position (wire position) and alignment of the origin position coordinates on the sensor side and display examples on the image monitor performed in Example 4 before welding. . In the drawing, an example of the MIG welding torch 26 for performing MIG welding is described, but the same applies to the case of the TIG-MIG welding torch 11 for performing combined welding of the preceding TIG and the subsequent MIG, and is omitted. .

図36に示すように、スリット光切断式センサ41は、MIG溶接を行うMIG溶接トーチ26の前方位置、又は先行TIGと後続MIGとの複合溶接を行う一体構造のTIG−MIG溶接トーチ(図示せず)の前方位置であると共に、隅肉継手部5の溶接線6の上部位置に配置されている。また、スリット光切断式センサ41の内部には、図示を省略しているが、スリット光線42を照射するスリット光照射器、画像を撮影するカメラ、水冷する水路等を内蔵している。   As shown in FIG. 36, the slit light cutting type sensor 41 is a TIG-MIG welding torch (not shown) that is a front position of the MIG welding torch 26 that performs MIG welding or an integrated structure that performs combined welding of the preceding TIG and the subsequent MIG. And the upper position of the weld line 6 of the fillet joint portion 5. Although not shown, the slit light cutting sensor 41 includes a slit light irradiator that irradiates the slit light beam 42, a camera that captures an image, a water-cooled water channel, and the like.

そして、隅肉継手部5の溶接線6を切断する方向にスリット光線42をスリット光照射器から照射し、照射したスリット光線42によって隅肉継手部5の形状を表す線状の線画像45−1、45−2をスリット光切断式センサ41の内部のカメラで撮影して画像処置装置43に取込むと共に、線画像45−1、45−2を画像モニタ44に表示する。   Then, the slit light beam 42 is irradiated from the slit light irradiator in the direction of cutting the weld line 6 of the fillet joint portion 5, and the linear line image 45-representing the shape of the fillet joint portion 5 by the irradiated slit light beam 42. 1 and 45-2 are taken by the camera inside the slit light cutting sensor 41 and taken into the image processing device 43, and line images 45-1 and 45-2 are displayed on the image monitor 44.

この画像モニタ44に表示される線画像45−1、45−2は、伝熱銅フィン3の表面線と鋼側(内筒1又は外筒2に相当)の表面線とを結んだaa点−P点−b点−bb点の線画像である。b点は、伝熱銅フィン3の端面角部である。画像処置装置43には、溶接すべき隅肉継手部5の溶接線位置とトーチ位置との位置ズレ等を検出する溶接用プログラムが内蔵されている。また、後述するが、溶接用プログラムの他に、検査用プログラムを画像処置装置43に内蔵することで、溶接後の溶接ビード表面部を検査する用途に使用することも可能となる。   The line images 45-1 and 45-2 displayed on the image monitor 44 are aa points connecting the surface line of the heat transfer copper fin 3 and the surface line of the steel side (corresponding to the inner cylinder 1 or the outer cylinder 2). It is a line image of -P point-b point-bb point. Point b is an end face corner of the heat transfer copper fin 3. The image processing device 43 has a built-in welding program for detecting misalignment between the weld line position and the torch position of the fillet joint portion 5 to be welded. As will be described later, in addition to the welding program, an inspection program is built in the image processing apparatus 43, so that it can be used for inspecting the weld bead surface after welding.

隅肉継手部5の形状を表す線状の線画像45−1、45−2を画像処理装置43にて適宜画像処理する。例えば、溶接中に略一定時間毎又は略一定距離毎に伝熱銅フィン3の端面角部のb点位置を抽出(検出)すると共に、そのb点位置から伝熱銅フィン3の表面側に所定距離S1だけシフトさせたP点位置を検出する。検出したP点位置は、溶接すべき隅肉継手部5の溶接線6の位置であり、センサの後方で溶接動作を行っているMIG溶接トーチ26の位置座標Pn(Yn、Zn)になると共に、トーチ位置の左右及び上下方向の位置ズレ量(ΔYn、ΔZn)になるので、画像モニタ44内に併記してある。スリット光切断式センサ41はMIG溶接トーチ26の前方位置に配置されているため、スリット光切断式センサ41による検出動作は、後方の溶接トーチによる溶接動作よりも常に先行した溶接線位置で行うことになる。   The linear line images 45-1 and 45-2 representing the shape of the fillet joint portion 5 are appropriately subjected to image processing by the image processing device 43. For example, during welding, the position b of the corner of the end face of the heat transfer copper fin 3 is extracted (detected) at substantially constant time intervals or at substantially constant distances, and from the point b to the surface side of the heat transfer copper fin 3 The P point position shifted by the predetermined distance S1 is detected. The detected P point position is the position of the weld line 6 of the fillet joint portion 5 to be welded, and becomes the position coordinate Pn (Yn, Zn) of the MIG welding torch 26 performing the welding operation behind the sensor. Since the amount of positional deviation (ΔYn, ΔZn) in the left and right and up and down directions of the torch position, it is written in the image monitor 44. Since the slit light cutting type sensor 41 is disposed at the front position of the MIG welding torch 26, the detection operation by the slit light cutting type sensor 41 is always performed at the position of the welding line that precedes the welding operation by the rear welding torch. become.

一方、図37及び図38に示すように、溶接前にMIG溶接トーチ26を溶接線上の溶接開始位置(X0)に移動させてトーチ位置(ワイヤ位置)の位置合せを行う。ワイヤ先端位置を伝熱銅フィン3の表面側に所定距離S1だけシフトさせた位置P0が溶接開始位置(X0)である。この位置合せ後に、スリット光切断式センサ41を溶接開始位置(X0)まで移動(溶接トーチは回避移動)させて検出動作を行わせ、MIG溶接トーチ26の位置合せと同じ位置P0点で、センサ側の原点位置座標P0(Y0=0、Z0=0)を0に設定すると良い。   On the other hand, as shown in FIGS. 37 and 38, the MIG welding torch 26 is moved to the welding start position (X0) on the weld line before welding to align the torch position (wire position). A position P0 obtained by shifting the wire tip position to the surface side of the heat transfer copper fin 3 by a predetermined distance S1 is a welding start position (X0). After this alignment, the slit light cutting type sensor 41 is moved to the welding start position (X0) (the welding torch is moved to avoid it) and the detection operation is performed. At the same position P0 as the alignment of the MIG welding torch 26, the sensor The origin origin coordinate P0 (Y0 = 0, Z0 = 0) may be set to 0.

溶接開始位置(X0)で溶接動作を開始した後に、溶接進行中の任意の溶接線位置(Xn)でスリット光切断式センサ41及び画像処理装置43によって検出される検出データPn(Yn、Zn)と、溶接前に設定した原点位置合せでの原点位置座標P0(Y0=0、Z0=0)との偏差(Yn−Y0、Zn−Z0)から、左右方向の位置ずれΔYn及び上下方向の位置ずれΔZnを各々算出するようにしている。また、左右及び上下方向の位置ずれ(ΔYn、Zn)の値は、その前に連続して検出及び算出した複数データを平均化処理(平滑化処理)した値に変換して使用することもできる。   After starting the welding operation at the welding start position (X0), detection data Pn (Yn, Zn) detected by the slit light cutting sensor 41 and the image processing device 43 at an arbitrary welding line position (Xn) during welding progress And the deviation (Yn−Y0, Zn−Z0) from the origin position coordinate P0 (Y0 = 0, Z0 = 0) in the origin position alignment set before welding, the horizontal position deviation ΔYn and the vertical position Each deviation ΔZn is calculated. Further, the value of the positional deviation (ΔYn, Zn) in the left and right and up and down directions can be converted into a value obtained by averaging (smoothing) a plurality of pieces of data detected and calculated successively before use. .

なお、図36、図37及び図38では、伝熱銅フィン3の端面部が平坦面形状である隅肉継手部5を対象にして、端面角部のb点位置及び伝熱銅フィン3の表面側にシフトさせたP点位置を検出する例を図示しているが、伝熱銅フィン3の端面部が傾斜面形状である隅肉継手部5の場合でも、平坦面形状の場合と同様に、端面角部のb点位置及び伝熱銅フィン3の表面側にシフトさせたP点位置を検出することができる。   36, FIG. 37, and FIG. 38, for the fillet joint portion 5 in which the end surface portion of the heat transfer copper fin 3 has a flat surface shape, the b point position of the end surface corner portion and the heat transfer copper fin 3 Although the example which detects the P point position shifted to the surface side is illustrated, even in the case of the fillet joint portion 5 in which the end surface portion of the heat transfer copper fin 3 has an inclined surface shape, it is the same as the case of the flat surface shape In addition, it is possible to detect the b point position of the end face corner and the P point position shifted to the surface side of the heat transfer copper fin 3.

MIG溶接トーチ26又はTIG−MIG溶接トーチ11は、スリット光切断式センサ41よりも後方位置で溶接動作を行っていることから、スリット光切断式センサ41及び画像処理装置43によって先行検出した検出位置(Xn)に後続のMIG溶接トーチ26又はTIG−MIG溶接トーチ11が到達した地点かその近傍位置で、左右及び上下の位置ずれ(ΔYn、Zn)をなくす方向にトーチ位置(ワイヤ位置や電極位置を含む)を修正する修正制御を行うようにしている。なお、左右方向の位置ずれΔYn又は上下方向の位置ズレZnのいずれかをなくす方向にトーチ位置を修正制御するようにすることもできる。   Since the MIG welding torch 26 or the TIG-MIG welding torch 11 performs a welding operation at a position behind the slit light cutting sensor 41, the detection position detected in advance by the slit light cutting sensor 41 and the image processing device 43. Torch position (wire position or electrode position) in a direction to eliminate the left and right and vertical position shifts (ΔYn, Zn) at or near the position where the subsequent MIG welding torch 26 or TIG-MIG welding torch 11 reached (Xn). Correction control is performed. It should be noted that the torch position can be corrected and controlled in such a direction as to eliminate either the left-right position shift ΔYn or the vertical position shift Zn.

このようにしてトーチ位置を修正制御することで、溶接線位置とトーチ位置との左右・上下両方向の位置ずれ(ΔYn、Zn)をなくことができ、溶接線外れの不良ビードがない良好な溶接ビードを得ることが可能となる。   By correcting and controlling the torch position in this way, it is possible to eliminate misalignment (ΔYn, Zn) between the welding line position and the torch position in both the left and right directions, and good welding with no defective bead on the welding line. A bead can be obtained.

図39は、伝熱銅フィン3と内筒1(又は外筒2)との隅肉継手部5に仮付溶接部が断続的に形成されている場合の溶接線位置等を検出するスリット光切断式センサ41を用いた例を示すものである。   FIG. 39 shows slit light for detecting the position of a weld line or the like when a temporary welded portion is intermittently formed at the fillet joint portion 5 of the heat transfer copper fin 3 and the inner cylinder 1 (or outer cylinder 2). An example using the cutting sensor 41 is shown.

例えば、伝熱銅フィン3を、内筒1の外面又は外筒2の内面の表面に突合せて隅肉継手部5を仮組形成する時に、隅肉継手部5に予め断続的な仮付溶接を行う場合がある。このため、複数の仮付溶接部56−1、56−2・・・56−nがある部分とない部分が混在した隅肉継手部5になっている。   For example, when the fillet joint 5 is provisionally assembled by abutting the heat transfer copper fins 3 against the outer surface of the inner cylinder 1 or the inner surface of the outer cylinder 2, intermittent tack welding is performed on the fillet joint 5 in advance. May do. For this reason, it is the fillet joint part 5 in which the part with a plurality of tack welding parts 56-1, 56-2, ... 56-n and the part without it are mixed.

図39の(2)は、スリット光切断式センサ41及び画像処理装置43によって、仮付溶接部がない隅肉継手部から取込んだ線画像45−1、45−2であり、また、図39の(3)は、仮付溶接部がある隅肉継手部5から取込んだ線画像45−1、45−2の他に仮付ビード表面に該当する曲線部の線画像46があり、両者の線画像は形状が大きく異なっている。   (2) in FIG. 39 is line images 45-1 and 45-2 taken from the fillet joint portion without the temporary welded portion by the slit light cutting type sensor 41 and the image processing device 43. 39 (3) has a line image 46 of the curved portion corresponding to the surface of the temporary bead in addition to the line images 45-1 and 45-2 taken from the fillet joint portion 5 having the temporary welded portion, Both line images have greatly different shapes.

仮付溶接部56−1、56−2・・・56−nがある隅肉継手部から取込んだ線画像には、伝熱銅フィン3の端面角部に該当するb点位置がなく、仮付ビード止端部に該当するa点位置及び仮付ビード表面該当する曲線部の線画像46があることから、仮付溶接部56−1、56−2・・・56−nであると認知又は異常部であると認知させ、この仮付部の検出データを不採用扱いにしてトーチ位置をそのまま現状維持させると良い。   In the line image taken from the fillet joint with the tack welded portions 56-1, 56-2, ... 56-n, there is no b point position corresponding to the end face corner of the heat transfer copper fin 3, Since there is a line image 46 of the a point position corresponding to the tack bead toe and the curved portion corresponding to the surface of the tack bead, the tack welded portions 56-1, 56-2, ... 56-n. It is good to make it recognize that it is a recognition or an abnormal part, and treat the detection data of this temporary attachment part as non-adoption, and to maintain the torch position as it is.

他方の仮付溶接部がない隅肉継手部5から取込んだ線画像には、仮付ビード止端部に該当するa点位置及び仮付ビード表面の曲線がなく、伝熱銅フィン3の端面角部に該当するb点位置があることから、この端面角部のb点位置を検出させると共に、該b点位置から伝熱銅フィン3の表面側に所定距離S1だけシフトさせたP点の位置座標Pn(Yn、Zn)を検出させる。この検出したP点の位置座標Pn(Yn、Zn)と、上述した原点位置座標P0(Y0=0、Z0=0)との偏差から位置ズレ(ΔYn、ΔZn)を算出させた検出データを採用すると良い。   The line image taken from the fillet joint portion 5 without the other tack welded portion has no point a corresponding to the tack bead toe and the curve of the tack bead surface, and the heat transfer copper fin 3 Since there is a b point position corresponding to the end face corner portion, the b point position of this end face corner portion is detected, and the P point is shifted from the b point position to the surface side of the heat transfer copper fin 3 by a predetermined distance S1. The position coordinates Pn (Yn, Zn) of the. Detected data obtained by calculating the positional deviation (ΔYn, ΔZn) from the deviation between the detected position coordinate Pn (Yn, Zn) of the P point and the origin position coordinate P0 (Y0 = 0, Z0 = 0) described above. Good.

このようにして、仮付溶接部がない隅肉継手部5から検出及び採用した検出データに基づいて、先行検出した溶接線方向の位置Xnに後続の溶接トーチが到達した地点又はその近傍地点で、左右・上下方向の位置ずれ(ΔYn、ΔZn)をそれぞれなくす方向にトーチ位置を修正させ、又は左右方向の位置ズレΔYnをなくす方向にトーチ位置を修正する修正制御を行うことで、仮付溶接部有無の影響に伴う異常な修正動作や誤動作等を防止することができると共に、良好な溶接ビードを形成することが可能となる。   Thus, based on the detection data detected and adopted from the fillet joint portion 5 without the tack welded portion, at the point where the subsequent welding torch has reached the position Xn in the welding line direction detected in advance or in the vicinity thereof. Temporary welding is performed by correcting the torch position in a direction that eliminates the positional deviations (ΔYn, ΔZn) in the horizontal and vertical directions, or by correcting the torch position in a direction that eliminates the positional deviation ΔYn in the horizontal direction. An abnormal correction operation or malfunction due to the influence of the presence or absence of a part can be prevented, and a good weld bead can be formed.

図40は、本発明の実施例5としての長尺アームの先端部にTIG−MIG溶接トーチ及びスリット光切断式センサを配備した例を示すものである。   FIG. 40 shows an example in which a TIG-MIG welding torch and a slit light cutting type sensor are arranged at the distal end portion of the long arm as the fifth embodiment of the present invention.

該図に示す如く、先行TIGと後続MIGとの複合溶接を行う一体構造のTIG−MIG溶接トーチ11は、取付冶具34、35及び左右・上下移動可能な2軸駆動テーブル36を介して長尺アーム31の先端部に配置されている。2軸駆動テーブル36は、溶接線方向に対する左右方向及び上下方向の駆動が可能なものであり、この2軸駆動テーブル36によって、TIG−MIG溶接トーチ11の左右・上下方向の位置を自動で動かすことができる。   As shown in the figure, the TIG-MIG welding torch 11 having an integral structure for performing composite welding of the preceding TIG and the succeeding MIG has a long length via mounting jigs 34 and 35 and a biaxial drive table 36 that can move left and right and up and down. Arranged at the tip of the arm 31. The biaxial drive table 36 can be driven in the horizontal direction and the vertical direction with respect to the welding line direction, and the biaxial drive table 36 automatically moves the horizontal and vertical positions of the TIG-MIG welding torch 11. be able to.

また、スリット光切断式センサ41は、上述したように、TIG−MIG溶接トーチ11の前方位置で、かつ、溶接線の上部位置となる長尺アーム31の下側に配置され、溶接すべき隅肉継手部の溶接線の位置ズレ(ΔY、ΔZ)を検出するものであり、位置ズレの検出データに基づいて、トーチ位置を修正するようにしている。   Further, as described above, the slit light cutting sensor 41 is disposed at the front side of the TIG-MIG welding torch 11 and below the long arm 31 that is the upper position of the welding line, and is to be welded. The position shift (ΔY, ΔZ) of the weld line of the meat joint portion is detected, and the torch position is corrected based on the position shift detection data.

このようにトーチ位置を修正することで、溶接線とトーチ位置との位置ズレをなくすことができ、良好な溶接ビード及び溶接断面部を得ることができる。   By correcting the torch position in this way, it is possible to eliminate the positional deviation between the weld line and the torch position, and to obtain a good weld bead and weld cross section.

また、回転移動可能なガイドローラ32は、TIG−MIG溶接トーチ11及びスリット光切断式センサ41よりも先行する右位置にあって、長尺アーム31の下側に配備され、かつ、溶接線から近距離だけ離れた伝熱銅フィン3の表面部と内筒1側の表面部(又は外筒2側の表面部)との両面に接触回転動するように配備されている。このガイドローラ32の接触回転動によって、TIG−MIG溶接トーチ11及びスリット光切断式センサ41を隅肉継手部の溶接線方向へ容易に走行案内することができる。   Further, the rotationally movable guide roller 32 is located at the right position preceding the TIG-MIG welding torch 11 and the slit light cutting sensor 41, and is provided below the long arm 31, and from the welding line. The heat transfer copper fin 3 and the surface portion on the inner tube 1 side (or the surface portion on the outer tube 2 side) separated from each other by a short distance are arranged to rotate in contact with each other. By the contact rotational movement of the guide roller 32, the TIG-MIG welding torch 11 and the slit light cutting sensor 41 can be easily traveled and guided in the weld line direction of the fillet joint portion.

また、隅肉継手部の溶接線の曲がりや溶接による変形等が小さく、事前の位置決めも正確な継手の溶接であれば、スリット光切断式センサ41による検出データを使用することなく、又はスリット光切断式センサ41をなくして、ガイドローラ32の接触回転動のみによっても、隅肉継手部の溶接線方向に走行案内しながら溶接動作を行うことができると共に、良好な溶接ビード及び溶接断面部を得ることも可能である。   In addition, if the welding of the fillet joint portion is small, such as bending of the weld line and deformation due to welding, and prior positioning is also accurate, it is possible to use the slit light without using the detection data from the slit light cutting sensor 41. The cutting type sensor 41 can be eliminated, and the welding operation can be performed while only guiding and rotating the guide roller 32 in the welding line direction of the fillet joint, and a good weld bead and weld cross section can be obtained. It is also possible to obtain.

一方、溶接線の曲がりや溶接による変形等が発生し易い場合には、スリット光切断式センサ41を配備することで、溶接線の位置ズレ(ΔY、ΔZ)を検出でき、その検出データに基づいて、トーチ位置を修正しながら溶接動作を行うことができると共に、良好な溶接ビード及び溶接断面部を得ることができる。   On the other hand, if bending of the weld line or deformation due to welding is likely to occur, the slit light cutting type sensor 41 can be provided to detect the displacement (ΔY, ΔZ) of the weld line, and based on the detected data Thus, the welding operation can be performed while correcting the torch position, and a good weld bead and weld cross section can be obtained.

また、37は、輻射熱や飛散物を遮蔽する遮蔽板であり、溶接線方向に溶接を行うTIG−MIG溶接トーチ11(又はMIG溶接トーチ26)と、位置ズレ等を検出するスリット光切断式センサ41との間にあり、かつ、溶接線と略直角方向の上部位置で、長尺アーム31先端部の下側に配備している。この遮蔽板37の配備によって、TIG−MIG溶接トーチ11(又はMIG溶接トーチ26)による溶接中に発生する輻射熱やスパッタ、ヒューム等の飛散物を遮蔽することができる。また、スリット光切断式センサ41等の機器を保護することも同時にできる。   Reference numeral 37 denotes a shielding plate that shields radiant heat and scattered matter, and includes a TIG-MIG welding torch 11 (or MIG welding torch 26) that performs welding in the welding line direction, and a slit light cutting type sensor that detects misalignment and the like. 41 and at the upper position in the direction substantially perpendicular to the weld line, it is disposed below the distal end of the long arm 31. By providing the shielding plate 37, it is possible to shield radiant heat generated during welding by the TIG-MIG welding torch 11 (or MIG welding torch 26), and scattered matter such as spatter and fume. In addition, it is possible to protect devices such as the slit light cutting sensor 41 and the like at the same time.

なお、図40に示した実施例では、スリット光切断式センサ41を長尺アーム31の先端部に取付冶具34を介して配備(取付)しているが、左右・上下移動可能な2軸駆動テーブル36を介して長尺アーム31の先端部に配置して、位置ズレの検出動作を行うようにすることもできる。また、一体構造のTIG−MIG溶接トーチ11の配置例を記載しているが、MIG溶接を行うMIG溶接トーチに交換しても同様な機能を発揮することができる。また、TIG−MIG溶接トーチ11は、取付冶具34、35及び2軸駆動テーブル36を介して長尺アーム31の先端部に配置しているが、2軸駆動テーブル36を配置せずに、取付冶具35を介してTIG−MIG溶接トーチ11を長尺アーム31の先端部に配置(取付)することもできる。   In the embodiment shown in FIG. 40, the slit light cutting sensor 41 is provided (attached) to the distal end portion of the long arm 31 via the attachment jig 34, but it is a biaxial drive that can move left and right and up and down. It can also be arranged at the tip of the long arm 31 via the table 36 so as to detect the positional deviation. Moreover, although the example of arrangement | positioning of the TIG-MIG welding torch 11 of integral structure is described, even if it replaces | exchanges for the MIG welding torch which performs MIG welding, the same function can be exhibited. In addition, the TIG-MIG welding torch 11 is disposed at the distal end of the long arm 31 via the mounting jigs 34 and 35 and the biaxial drive table 36, but the biaxial drive table 36 is not disposed. The TIG-MIG welding torch 11 can be disposed (attached) to the distal end portion of the long arm 31 via the jig 35.

また、図40に示した実施例では、長尺アーム31を右側方向に走行移動させて、TIG−MIG溶接トーチ11及びスリット光切断式センサ41を右側方向に移動させながら溶接動作と検出動作を行うように記載している。長尺アーム31を右側方向と反対側左側方向に走行移動させる場合には、ガイドローラ32を先頭位置、スリット光切断式センサ41を中間位置、TIG−MIG溶接トーチ11を後続位置に配置代えすると共に、先行TIG−後続MIGになるように180度回転することで、左側方向に移動させながら正常に溶接動作及び検出動作を行うことができる。仮に、図40に示した構成のままで、溶接進行方向を逆転させた場合には、先行MIG−後続TIGに逆転し、また、検出動作が溶接動作よりも後方位置となることから、正常に溶接することができなくなるので好ましくない。   In the embodiment shown in FIG. 40, the long arm 31 is moved to the right and the TIG-MIG welding torch 11 and the slit light cutting sensor 41 are moved to the right while the welding operation and the detection operation are performed. It is described to do. When the long arm 31 is moved in the left direction opposite to the right direction, the guide roller 32 is replaced at the head position, the slit light cutting sensor 41 is positioned at the intermediate position, and the TIG-MIG welding torch 11 is replaced at the subsequent position. At the same time, by rotating 180 degrees so as to be the preceding TIG-following MIG, the welding operation and the detecting operation can be normally performed while moving in the left direction. If the welding progress direction is reversed while maintaining the configuration shown in FIG. 40, it is reversed to the preceding MIG-following TIG, and the detection operation is in the rear position with respect to the welding operation. Since it becomes impossible to weld, it is not preferable.

図41は、部材表面までの距離及び距離変化を計測する距離センサを用いた例であり、また、図42は、長尺アームの先端部にTIG−MIG溶接トーチ及び距離センサを配備した例である。   FIG. 41 is an example using a distance sensor that measures the distance to the member surface and a change in the distance, and FIG. 42 is an example in which a TIG-MIG welding torch and a distance sensor are provided at the distal end of the long arm. is there.

即ち、本実施例では、上述したスリット光切断式センサ41の代わりに、距離及び距離変化の測定可能な距離センサ51を用いている。この距離センサ51は、隅肉継手部の溶接線方向に走行移動可能な長尺アーム31の先端部に略下向姿勢に配置された一体構造のTIG−MIG溶接トーチ11(又はMIG溶接トーチ26でも良い)の前方位置又はTIG−MIG溶接トーチ11よりも先行する位置に配置された回転移動可能なガイドローラ32の後方位置で、かつ、溶接線から近距離だけ離れた内筒1側の表面又は外筒2側の表面と略直角方向の上部位置と、溶接線から近距離だけ離れた伝熱銅フィン3側の表面と略直角方向の上部位置とに1つずつ配備されている。   That is, in this embodiment, a distance sensor 51 capable of measuring the distance and the distance change is used instead of the slit light cutting sensor 41 described above. This distance sensor 51 is an integral TIG-MIG welding torch 11 (or MIG welding torch 26) disposed in a substantially downward position at the distal end of a long arm 31 that can move and move in the weld line direction of the fillet joint. Or the front position of the inner cylinder 1 at a position behind the TIG-MIG welding torch 11 and at a position behind the rotationally movable guide roller 32 that is separated from the welding line by a short distance. Alternatively, one is disposed at each of an upper position in a direction substantially perpendicular to the surface on the outer cylinder 2 side, and an upper position in a direction substantially perpendicular to the surface on the heat transfer copper fin 3 side that is a short distance away from the welding line.

そして、距離センサ51の先端部から距離測定光52を内筒1側の表面又は外筒2側の表面と、伝熱銅フィン3側の表面とに照射し、その反射光の受光によって表面までの各々の距離Hs、Hcを計測すると共に、初期設定の基準距離との各偏差ΔHs、ΔHcを距離センサ制御器54経由で距離測定モニタ55に表示するように構成している。   Then, the distance measuring light 52 is irradiated from the tip of the distance sensor 51 to the surface on the inner cylinder 1 side or the surface on the outer cylinder 2 side and the surface on the heat transfer copper fin 3 side, and the reflected light is received to the surface. The distances Hs and Hc are measured, and the deviations ΔHs and ΔHc from the initially set reference distance are displayed on the distance measurement monitor 55 via the distance sensor controller 54.

また、この距離測定モニタ55には、距離偏差ΔHs、ΔHcを溶接線の左右方向の位置ズレ成分(ΔYs+ΔYc)と上下方向の位置ズレ成分(ΔZs+ΔZc)に振分けした値も表記するようにしている。そして、この計測データに基づいて、左右方向の位置ズレ成分(ΔYs+ΔYc)と上下方向の位置ズレ成分(ΔZs+ΔZc)とをなくす方向にトーチ位置を修正することで、溶接線とトーチ位置との位置ズレをなくすことができ、良好な溶接ビード及び溶接断面部を得ることができる。   In addition, the distance measurement monitor 55 also indicates values obtained by distributing the distance deviations ΔHs and ΔHc into a position deviation component (ΔYs + ΔYc) in the horizontal direction and a position deviation component (ΔZs + ΔZc) in the vertical direction of the weld line. Based on this measurement data, the position deviation between the weld line and the torch position is corrected by correcting the torch position in a direction that eliminates the position deviation component (ΔYs + ΔYc) in the horizontal direction and the position deviation component (ΔZs + ΔZc) in the vertical direction. Thus, a good weld bead and weld cross section can be obtained.

なお、図41及び図42に示した実施例では、2つの距離センサ51を内筒1側の上部位置と伝熱銅フィン3側の上部位置に1つずつ配備しているが、距離センサ51を伝熱銅フィン3側の上部位置に1つ配備して、内筒1の板厚よりも格段に変形し易い薄板の伝熱銅フィン3側の距離変化(Hc、ΔHc)を計測するようにしても良い。内筒1の板厚が厚いため、溶接に伴う内筒1側の変形量が小さいことから、無視することも可能であり、伝熱銅フィン3側の上部位置に配備した1つの距離センサ51によって、伝熱銅フィン3側の変形や曲がりに伴う距離変化を計測し、この計測データに基づいて、溶接線とトーチ位置との位置ズレをなくすようにトーチ位置を修正することも可能である。   In the embodiment shown in FIGS. 41 and 42, two distance sensors 51 are provided one at the upper position on the inner cylinder 1 side and the upper position on the heat transfer copper fin 3 side. 1 is arranged at the upper position on the heat transfer copper fin 3 side, and the distance change (Hc, ΔHc) on the heat transfer copper fin 3 side of a thin plate that is much easier to deform than the thickness of the inner cylinder 1 is measured. Anyway. Since the inner cylinder 1 has a large plate thickness, the amount of deformation on the inner cylinder 1 side that accompanies welding is small and can be ignored. One distance sensor 51 provided at the upper position on the heat transfer copper fin 3 side. Thus, it is possible to measure the distance change accompanying the deformation or bending on the heat transfer copper fin 3 side and correct the torch position so as to eliminate the positional deviation between the weld line and the torch position based on this measurement data. .

また、距離センサ51は、スリット光切断式センサ41の場合と同様に、長尺アーム31の先端部に取付冶具34を配備しているが、左右・上下移動可能な2軸駆動テーブル36を介して長尺アーム31の先端部に配置して、部材表面までの距離及びその距離変化を計測するようにしても良い。   The distance sensor 51 is provided with a mounting jig 34 at the tip of the long arm 31 as in the case of the slit light cutting type sensor 41, but via a biaxial drive table 36 that can move left and right and up and down. It may be arranged at the distal end of the long arm 31 to measure the distance to the member surface and the change in the distance.

更に、図41及び図42に示した実施例では、距離センサ51の先端部から距離測定光52を内筒1、伝熱銅フィン3の表面に照射し、その反射光の受光によって表面までの距離Hs、Hcを計測する構造の非接触式の距離センサ51を使用しているが、上下及移動可能な測定針49を内筒1、伝熱銅フィン3の表面に接触させて距離を計測する構造の接触式距離センサに交換して使用することも可能である。   Further, in the embodiment shown in FIGS. 41 and 42, the distance measurement light 52 is irradiated from the tip of the distance sensor 51 to the surface of the inner cylinder 1 and the heat transfer copper fin 3, and the reflected light is received to reach the surface. A non-contact type distance sensor 51 having a structure for measuring the distances Hs and Hc is used, but the distance is measured by bringing a measuring needle 49 movable in the vertical direction into contact with the surface of the inner cylinder 1 and the heat transfer copper fin 3. It is also possible to replace the contact type distance sensor having the structure described above.

上述したように、TIG−MIG溶接トーチ11又はMIG溶接トーチ26の走行動作及び溶接動作の実行中に、距離センサ51で計測する距離変化等の計測データに基づいて、先行計測した溶接線方向の位置Xnに後続の溶接トーチが到達した地点又はその近傍地点で、隅肉継手部の溶接線方向の曲がりや変形に伴う左右方向及び上下方向の位置ずれをなくす方向にトーチ位置を修正することで、溶接線とトーチ位置との位置ズレをなくすことができ、良好な溶接ビード及び溶接断面部を得ることができる。   As described above, during the execution of the traveling operation and the welding operation of the TIG-MIG welding torch 11 or the MIG welding torch 26, based on the measurement data such as the distance change measured by the distance sensor 51, the welding line direction measured in advance is measured. By correcting the torch position in a direction that eliminates the lateral and vertical displacement caused by bending or deformation of the fillet joint at the point where the subsequent welding torch reaches or near the position Xn. The positional deviation between the weld line and the torch position can be eliminated, and a good weld bead and weld cross section can be obtained.

また、上述したように、伝熱銅フィン3の表面部と内筒1側の表面部(又は外筒2側の表面部)との両面に接触回転動するように配備されたガイドローラ32の接触回転動によって、TIG−MIG溶接トーチ11又はMIG溶接トーチ26と距離センサ51を溶接線方向へ容易に走行案内することができる。   In addition, as described above, the guide roller 32 disposed so as to rotate in contact with both the surface portion of the heat transfer copper fin 3 and the surface portion on the inner cylinder 1 side (or the surface portion on the outer cylinder 2 side). By the contact rotation, the TIG-MIG welding torch 11 or the MIG welding torch 26 and the distance sensor 51 can be easily traveled and guided in the welding line direction.

更に、隅肉継手部の溶接線の曲がりや溶接による変形等が小さく、事前の位置決めも正確な継手の溶接であれば、距離センサ51による計測データを使用することなく、又は距離センサ51をなくして、ガイドローラ32の接触回転動のみによっても、隅肉継手部の溶接線方向に走行案内しながら溶接動作を行うことができると共に、良好な溶接ビード及び溶接断面部を得ることが可能である。   Further, if the welding of the joint of the fillet joint is small, such as bending of the weld line and deformation due to welding, and accurate positioning in advance, the measurement data from the distance sensor 51 is not used or the distance sensor 51 is eliminated. Thus, it is possible to perform a welding operation while traveling and guiding in the direction of the weld line of the fillet joint portion only by the contact rotational movement of the guide roller 32, and it is possible to obtain a good weld bead and weld cross section. .

また、TIG−MIG溶接トーチ11又はMIG溶接トーチ26と距離センサ51との間に配備した遮蔽板37によって、TIG−MIG溶接トーチ11又はMIG溶接トーチ26による溶接中に発生する輻射熱及び飛散物を遮蔽することができる。また、距離センサ51等の機器を保護することも同時にできる。   Further, the shielding plate 37 disposed between the TIG-MIG welding torch 11 or the MIG welding torch 26 and the distance sensor 51 prevents radiant heat and scattered matter generated during welding by the TIG-MIG welding torch 11 or the MIG welding torch 26. Can be shielded. Further, it is possible to protect the devices such as the distance sensor 51 at the same time.

また、図40及び図41に示した実施例では、溶接を行うTIG−MIG溶接トーチ11(又はMIG溶接トーチ26)や位置ズレの検出又は計測を行うスリット光切断式センサ41又は距離センサ51等を長尺アーム31の先端部に配備する構成例を示して説明したが、長尺アーム31の代わりに、多関節可動式の溶接ロボットを用い、該溶接ロボットの手首にTIG−MIG溶接トーチ11又はMIG溶接トーチ26やセンサ等を配備して、溶接動作や検出動作等を行うようにすることも可能である。   40 and 41, the TIG-MIG welding torch 11 (or MIG welding torch 26) for performing welding, the slit light cutting sensor 41 or the distance sensor 51 for detecting or measuring positional deviation, and the like. However, instead of the long arm 31, an articulated movable welding robot is used, and the TIG-MIG welding torch 11 is attached to the wrist of the welding robot. Alternatively, a MIG welding torch 26, a sensor, or the like can be provided to perform a welding operation, a detection operation, or the like.

例えば、図5及び図6に示したように、内筒1の外面と伝熱銅フィン3の片方端面部との隅肉継手部5−1、5−2の溶接線6−1、6−2に対する溶接施工では、外筒2がない状態であるために隅肉継手部5−1、5−2の上部空間スペースが広いことから、溶接ロボット使用による溶接動作や検出動作を行うことが可能であると考えられる。   For example, as shown in FIGS. 5 and 6, the weld lines 6-1, 6-6 of fillet joint portions 5-1 and 5-2 between the outer surface of the inner cylinder 1 and one end surface portion of the heat transfer copper fin 3. In the welding construction for No. 2, since the outer cylinder 2 is not present, the space for the fillet joints 5-1 and 5-2 is wide, so that it is possible to perform welding operation and detection operation using a welding robot. It is thought that.

一方、図7及び図8に示したように、内筒1側の隅肉継手部5−1、5−2の溶接終了(溶接部6−1、6−2形成)後に、伝熱銅フィン3の外周長手方向に配備した外筒2の内面と伝熱銅フィン3の他方端面部との隅肉継手部8−1、8−2の溶接線9−1、9−2に対する溶接施工では、空間スペースが狭くなることから、溶接ロボットの手首挿入が困難になるため、狭隘な空間スペースに挿入・走行可能な長尺アーム31に変更して、溶接動作を行うようにする必要があると考えられる。   On the other hand, as shown in FIG.7 and FIG.8, after completion | finish of the fillet joint part 5-1 and 5-2 by the side of the inner cylinder 1 (welding part 6-1 and 6-2 formation), a heat-transfer copper fin In the welding construction to the weld lines 9-1 and 9-2 of the fillet joint portions 8-1 and 8-2 between the inner surface of the outer cylinder 2 arranged in the outer peripheral longitudinal direction of 3 and the other end surface portion of the heat transfer copper fin 3 Since the space space becomes narrow, it becomes difficult to insert the wrist of the welding robot. Therefore, it is necessary to change to the long arm 31 that can be inserted and traveled in a narrow space space to perform the welding operation. Conceivable.

図43は、先行TIGと後続MIGとの複合溶接におけるトーチ位置のシフト量とTIG電流・電圧及びMIG電流・電圧の関係を示すものである。   FIG. 43 shows the relationship between the shift amount of the torch position, the TIG current / voltage, and the MIG current / voltage in the composite welding of the preceding TIG and the subsequent MIG.

該図から分かるように、例えば、トーチ位置のシフト量S2(第2の距離S2)を増加させると、TIG電流Itは増減変化が小さいが、TIG電圧Etは増加する傾向にある。また、他方のMIG電流Imは減少する傾向にあるが、MIG電圧Emは増減変化が小さい。   As can be seen from the figure, for example, when the shift amount S2 (second distance S2) of the torch position is increased, the TIG current It has a small increase / decrease change, but the TIG voltage Et tends to increase. The other MIG current Im tends to decrease, but the MIG voltage Em has a small increase / decrease change.

このような結果より、トーチ位置のシフト量S2とTIG電圧Etの間には相関性があると認められる。このため、前記TIG電圧Etを利用して上下方向のトーチ位置Z(電極高さ)を自動修正する制御を行うことが可能であると考えられる。   From these results, it is recognized that there is a correlation between the shift amount S2 of the torch position and the TIG voltage Et. For this reason, it is possible to perform control for automatically correcting the vertical torch position Z (electrode height) using the TIG voltage Et.

例えば、上述したスリット光切断式センサ41に検出させる検出データの上下方向の位置ズレΔZnの代わり、又は距離センサ51に計測させる測定データの上下方向の位置ズレ(ΔZs+ΔZc)の代わりに、先行TIG側のTIGアーク電圧信号(平均化処理したTIG電圧信号)の値を用いることである。   For example, instead of the vertical position shift ΔZn of the detection data detected by the slit light cutting sensor 41 described above or the vertical position shift (ΔZs + ΔZc) of the measurement data measured by the distance sensor 51, the preceding TIG side The value of the TIG arc voltage signal (averaged TIG voltage signal) is used.

また、所望のTIGアーク長保持に必要なアーク電圧を予め測定して設定した第1の基準電圧値V1と、溶接進行中に先行TIG側のTIGアーク電圧信号を電圧検出手段にてリアルタイムで検出及び平均化処理(平滑化処理)したTIGアーク電圧検出信号の値Vnとの電圧偏差(ΔV1=Vn−V1)を検出し、偏差電圧ΔV1をなくすようにTIG−MIG溶接トーチ11の位置を上下方向に修正する修正制御を行う。   In addition, the first reference voltage value V1 that is set by measuring in advance the arc voltage required to maintain the desired TIG arc length and the TIG arc voltage signal on the preceding TIG side during the welding process are detected in real time by the voltage detection means. Then, a voltage deviation (ΔV1 = Vn−V1) with respect to the value Vn of the TIG arc voltage detection signal subjected to the averaging process (smoothing process) is detected, and the position of the TIG-MIG welding torch 11 is moved up and down so as to eliminate the deviation voltage ΔV1. Perform correction control to correct in the direction.

このように電圧検出及び位置修正制御を行うことで、アーク長変化に伴うトーチ上下方向の位置ずれをなくすことが可能となる。   By performing voltage detection and position correction control in this way, it is possible to eliminate positional deviation in the vertical direction of the torch due to arc length change.

また、溶接開始位置P0で発生させる先行TIG側のTIGアーク22と、該TIGアーク後方近傍に発生させる後続MIG側のMIGアーク23とで1つの溶融プール24を形成させると共に、溶接可能状態の1つの溶融プール24を溶接線方向に移動させた直後又は所定時間経過後に、先行TIG側のTIGアーク電圧信号を所定時間(例えば1〜3秒程度)だけ検出すると共に、平均化処理した平均値を第2の基準電圧値V2に設定し、溶接進行中に先行TIG側のTIGアーク電圧信号を電圧検出手段にてリアルタイムで検出及び平均化処理(平滑化処理)したTIGアーク電圧検出信号の値Vnと、第2の基準電圧値V2との偏差電圧(ΔV2=Vn−V2)を検出し、偏差電圧ΔV2をなくすようにTIG−MIG溶接トーチ11の位置を上下方向に修正する修正制御を行うようにすることもできる。   In addition, one molten pool 24 is formed by the TIG arc 22 on the preceding TIG side generated at the welding start position P0 and the MIG arc 23 on the subsequent MIG side generated in the vicinity of the rear of the TIG arc. Immediately after moving one molten pool 24 in the welding line direction or after a predetermined time has elapsed, the TIG arc voltage signal on the preceding TIG side is detected only for a predetermined time (for example, about 1 to 3 seconds), and the average value obtained by averaging is calculated. The value Vn of the TIG arc voltage detection signal which is set to the second reference voltage value V2 and is detected and averaged (smoothed) in real time by the voltage detection means for the TIG arc voltage signal on the preceding TIG side during welding. The deviation voltage (ΔV2 = Vn−V2) from the second reference voltage value V2 is detected, and the position of the TIG-MIG welding torch 11 is adjusted so as to eliminate the deviation voltage ΔV2. Correction control for correcting in the vertical direction can also be performed.

このように電圧検出及び位置修正制御を行うことで、溶接前のトーチ位置合せの設定変更にも即対応することができると共に、溶接開始位置にて2つのアーク発生で1つの溶融プールを形成する過程で生じ易い不安定アークの電圧検出を回避することができ、アーク長変化に伴うトーチ上下方向の位置ずれをなくすことが可能となる。   By performing voltage detection and position correction control in this way, it is possible to immediately respond to a setting change of torch alignment before welding and to form one molten pool by generating two arcs at the welding start position. It is possible to avoid voltage detection of an unstable arc that is likely to occur in the process, and it is possible to eliminate a positional shift in the vertical direction of the torch accompanying a change in arc length.

図44は、本発明の実施例6としてのスリット光切断式センサ41による溶接ビード及びその溶接断面部7のビード垂直高さHの検出を示す例である。   FIG. 44 is an example showing detection of the weld bead and the bead vertical height H of the weld cross section 7 by the slit light cutting sensor 41 as the sixth embodiment of the present invention.

例えば、図4及び図9に示したように、溶接ビード及びその溶接断面部7の品質を検査・確認する内筒1側の検査工程107と外筒2側の検査工程114でスリット光切断式センサ41を使用すると良い。また、1〜5枚程の伝熱銅フィン3の片方端面部の隅肉継手部(溶接箇所)に溶接を行って終了する毎に、溶接後の溶接ビード及びその溶接断面部7をスリット光切断式センサ41によって検査するように、溶接と検査との両作業を繰り返すようにすることもできる。   For example, as shown in FIGS. 4 and 9, the slit light cutting type is performed in the inspection process 107 on the inner cylinder 1 side and the inspection process 114 on the outer cylinder 2 side for inspecting and confirming the quality of the weld bead and the weld cross section 7. A sensor 41 may be used. Further, every time the welding is completed on the fillet joint (welded part) on one end face of the heat transfer copper fin 3 of about 1 to 5 sheets, the weld bead after welding and the weld cross section 7 are slit light. As inspected by the cutting sensor 41, both the welding and inspection operations can be repeated.

溶接ビード及びその溶接断面部7のビード表面部からビード垂直高さHを自動で計測する手段は、例えば、図36に示した溶接線位置及びその位置ずれを検出するスリット光切断式センサ41と同様な構成のスリット光切断式センサである。このスリット光切断式センサの内部には、スリット光を照射するスリット光照射器及び画像を撮影するカメラ、水冷する水路等を内蔵している。スリット光切断式センサ41は、溶接ビード及びその溶接断面部7のビード表面の上部位置に配置されており、溶接ビード及びその溶接断面部7を切断する方向にスリット光線42をスリット光照射器から照射する。照射したスリット光線42によって溶接部及び近傍の形状を表す線状の線画像45−1、45−2を、スリット光切断センサ41内部のカメラで撮影して画像処理装置43に取込むと共に、線画像45−1、45−2を画像モニタ44に表示する。なお、図44では、溶接ビード及びその溶接断面部7の内筒1側を水平に図示しているが、溶接時の姿勢と同様な姿勢で検査することもできる。   The means for automatically measuring the bead vertical height H from the bead surface portion of the weld bead and its weld cross section 7 is, for example, a slit light cutting sensor 41 for detecting the position of the weld line and its displacement as shown in FIG. This is a slit light cutting type sensor having a similar configuration. The slit light cutting type sensor incorporates a slit light irradiator for irradiating slit light, a camera for taking an image, a water channel for water cooling, and the like. The slit light cutting type sensor 41 is arranged at the upper position of the bead surface of the weld bead and its weld cross section 7, and the slit light beam 42 is emitted from the slit light irradiator in the direction of cutting the weld bead and its weld cross section 7. Irradiate. The linear line images 45-1 and 45-2 representing the shape of the welded part and the vicinity thereof by the irradiated slit light beam 42 are photographed by the camera inside the slit light cutting sensor 41 and taken into the image processing device 43. The images 45-1 and 45-2 are displayed on the image monitor 44. In addition, in FIG. 44, although the weld bead and the inner cylinder 1 side of the welding cross-section part 7 are shown horizontally, it can also test | inspect with the attitude | position similar to the attitude | position at the time of welding.

上述した画像処理装置43には、溶接終了後に、溶接ビード及びその溶接断面部7のビード止端部、ビード垂直高さ、アンダーカットの深さ等を検出及び計測するための検査用プログラムが内蔵されている。また、上述したように、溶接すべき溶接線位置とトーチ位置との位置ズレ等を検出する溶接用プログラムも内蔵することもできる。これら溶接用プログラム及び検査用プログラムの両方を画像処理装置43に内蔵することで、スリット光切断式センサ41は、溶接用と検査用の両方の機能を兼ね備えた溶接及び検査兼用センサとして使用することもできる。また、溶接専用センサと別な検査専用センサとして使用することもできる。   The above-described image processing apparatus 43 has a built-in inspection program for detecting and measuring the weld bead, the bead toe portion of the weld cross section 7, the bead vertical height, the depth of the undercut, and the like after the end of welding. Has been. Further, as described above, a welding program for detecting a positional deviation between the position of the weld line to be welded and the torch position can be incorporated. By incorporating both the welding program and the inspection program in the image processing device 43, the slit light cutting sensor 41 can be used as a welding and inspection combined sensor having both functions for welding and inspection. You can also. Moreover, it can also be used as an inspection dedicated sensor different from the welding dedicated sensor.

更に、スリット光切断式センサ41は、例えば、溶接線上を走行移動可能な長尺アーム31の先端部に取付冶具を介して取付け、又は長尺アーム31の先端部に取付冶具及び左右・上下移動可能な2軸駆動テーブル36を介して取付けると良い。また、スリット光切断式センサ41を溶接用及び検査用の両方の機能を兼ね備えた溶接及び検査兼用センサとして使用する場合には、上述したように、MIG溶接を行うMIG溶接トーチ26の前方、又は先行TIGと後続MIGとの複合溶接を行う一体構造のTIG−MIG溶接トーチ11の前方に取付けると良い。そして、溶接終了後に、溶接線6の上部位置に配置した姿勢のままで、溶接ビード表面部を検査する動作に切り換えて検査動作を行うようにしている。また、溶接用プログラムから検出用プログラムに切り換えれば良い。   Further, the slit light cutting type sensor 41 is attached to, for example, a distal end portion of a long arm 31 that can be moved and moved on a welding line via an attachment jig, or is attached to the distal end portion of the long arm 31 and can be moved left and right and up and down. It may be attached via a possible two-axis drive table 36. When the slit light cutting sensor 41 is used as a welding / inspection sensor having both functions for welding and inspection, as described above, the front of the MIG welding torch 26 for performing MIG welding, or It is good to attach to the front of the TIG-MIG welding torch 11 having an integral structure for performing composite welding of the preceding TIG and the succeeding MIG. Then, after the end of welding, the inspection operation is performed by switching to the operation of inspecting the surface of the weld bead while maintaining the posture arranged at the upper position of the weld line 6. Further, it is only necessary to switch from the welding program to the detection program.

溶接終了後に、溶接終了側の方向から溶接開始側の方向の溶接線上を逆走行移動させて、スリット光切断式センサ41及び画像処理装置43に検出動作を行わせることができる。若しくは溶接終了後にスリット光切断式センサ41を溶接開始側に戻し、その後に、溶接開始側の溶接ビード表面位置から溶接終了側の溶接ビードの表面位置まで溶接線上を走行移動させて、スリット光切断式センサ41及び画像処理装置43に検出動作を行わせることもできる。溶接ビードの表面部及び近傍の形状を表す線状の線画像を、スリット光切断式センサ41から画像処理装置43に略一定時間毎又は略一定距離毎に取込んで適宜画像処理するようにしている。   After the end of welding, the slit light cutting sensor 41 and the image processing device 43 can perform detection operations by moving backward on the welding line from the welding end direction to the welding start side direction. Alternatively, after finishing the welding, the slit light cutting type sensor 41 is returned to the welding start side, and then, the slit light cutting is performed by moving on the welding line from the welding bead surface position on the welding start side to the surface position of the welding bead on the welding end side. It is also possible to cause the type sensor 41 and the image processing device 43 to perform a detection operation. A linear line image representing the shape of the surface portion of the weld bead and the vicinity thereof is taken into the image processing device 43 from the slit light cutting sensor 41 at substantially constant time intervals or at substantially constant distances, and image processing is appropriately performed. Yes.

例えば、内筒1の表面部の直線部をビード止端部(b点)の方向に延長させた延長直線(bb点−b点−c点)を描く。他方の伝熱銅フィン3の表面部の直線部と交差する他方のビード止端部の交点位置をa点と決定しると共に、延長直線(bb点−b点−c点)に対して、a点より直角方向に描いた直線(a点−d点−e点)と延長直線とが直角に交差する位置をd点と決定する。そして、a点とd点との距離(a点−d点)を計測し、該計測した距離(a点−d点)をビード垂直高さHの値と決定することで、ビード垂直高さHを計測することができる。また、計測したビード垂直高さHの値を第1及び第2の実験式の(1)及び(2)式に各々代入して、のど厚Lの値や溶込み深さcの値を算出することで、破壊検査を行わずに、溶接内部ののど厚L及び溶込み深さcを容易に推定することができる。   For example, an extended straight line (bb point-b point-c point) obtained by extending the straight line portion of the surface portion of the inner cylinder 1 in the direction of the bead toe end portion (b point) is drawn. The intersection position of the other bead toe that intersects with the straight line portion of the surface portion of the other heat transfer copper fin 3 is determined as a point, and with respect to the extended straight line (bb point−b point−c point), A position where a straight line (a point-d point-e point) drawn in a direction perpendicular to the point a and an extended straight line intersect at a right angle is determined as a point d. Then, the distance between the points a and d (a point-d point) is measured, and the measured distance (a point-d point) is determined as the value of the bead vertical height H, whereby the bead vertical height is determined. H can be measured. Also, the value of the measured bead vertical height H is substituted into the first and second empirical formulas (1) and (2), respectively, to calculate the value of the throat thickness L and the penetration depth c. By doing so, the throat thickness L and the penetration depth c inside the weld can be easily estimated without performing a destructive inspection.

このように、スリット光切断式センサ41及び画像処理装置43を用いて、ビード表面部からビード垂直高さHを自動計測することで、溶接品質を検査することができ、かつ、検査時間を短縮することが可能となる。また、上述したように、第1の実験式の(1)式から算出したのど厚Lの算出値が伝熱銅フィン3の板厚T1と同等以上(L≧T1)の場合は、合格であると判定し、板厚T1よりも小さい(L<T1)の場合には、のど厚不足又は伝熱面積不足による不合格であると判定することができる。他方の第2の実験式の(2)式から算出した溶込み深さcの算出値が0.05≦c≦4mmの範囲の場合は、合格であると判定するようにしている。   Thus, by automatically measuring the bead vertical height H from the bead surface using the slit light cutting sensor 41 and the image processing device 43, the weld quality can be inspected and the inspection time can be shortened. It becomes possible to do. Further, as described above, when the calculated value of the throat thickness L calculated from the formula (1) of the first empirical formula is equal to or greater than the plate thickness T1 of the heat transfer copper fin 3 (L ≧ T1), it is acceptable. If it is determined that there is less than the plate thickness T1 (L <T1), it can be determined that the throat is insufficient or the heat transfer area is insufficient. On the other hand, when the calculated value of the penetration depth c calculated from the expression (2) of the other second empirical formula is in the range of 0.05 ≦ c ≦ 4 mm, it is determined that it is acceptable.

また、溶込み深さcの算出値が0.05mm未満(c<0.05mm)の場合には、鋼側の溶接部分が接合不足又は強度不足であると判定し、更に、溶込み深さcの算出値が4mmを超える(c>4mm)場合には、溶込み過大であると判定することができる。   Further, when the calculated value of the penetration depth c is less than 0.05 mm (c <0.05 mm), it is determined that the weld portion on the steel side is insufficiently bonded or insufficient in strength, and further, the penetration depth is determined. When the calculated value of c exceeds 4 mm (c> 4 mm), it can be determined that the penetration is excessive.

図45は、スリット光切断式センサ41によるアンダーカット40の大きさ(深さ)の検出を示す画像図の例である。   FIG. 45 is an example of an image diagram showing detection of the size (depth) of the undercut 40 by the slit light cutting type sensor 41.

トーチ位置のシフト量(第1及び第2の距離S1及びS2)を大きくして溶接すると、溶接部ののど厚Lは増加するが、伝熱銅フィン3のビード止端部近傍(a点の上)にアンダーカット40(凹み)が発生することがある。そこで、ビード垂直高さHの他に、アンダーカット40の有無及び深さRを検査するため、スリット光切断式センサ41及び画像処理装置43を用いて、線画像46のa点上部のアンダーカット40の有無及び深さRを検出するようにしている。   When the torch position shift amount (first and second distances S1 and S2) is increased and welding is performed, the throat thickness L of the welded portion increases, but near the bead toe portion of the heat transfer copper fin 3 (at the point a). Undercut 40 (dent) may occur on the top. Therefore, in addition to the bead vertical height H, in order to inspect the presence and depth R of the undercut 40, the slit light cutting sensor 41 and the image processing device 43 are used to check the undercut above the point a of the line image 46. The presence / absence of 40 and the depth R are detected.

即ち、伝熱銅フィン3の表面線aa点−a点間の変曲部をf点と決定し、a点とf点との凹み部をアンダーカット40として認定すると共に、その深さRを計測する。例えば、計測したアンダーカット40の深さRが0.5mm未満(R<0.5mm)の時はなし又は正常と判定し、深さRが0.5〜1mmの範囲(0.5≦R≦1mm)の時はありと判定し、更に、深さRが1mmを超える時(R>1mm)は過大と判定するようにしている。アンダーカット40の深さRが大き過ぎると、溶接品質が低下すると共に、除熱に必要な熱伝導断面積が減少することになる。   That is, the inflection portion between the surface line aa point-a point of the heat transfer copper fin 3 is determined as the f point, and the concave portion between the a point and the f point is recognized as the undercut 40, and the depth R is determined. measure. For example, when the measured depth R of the undercut 40 is less than 0.5 mm (R <0.5 mm), it is judged as none or normal, and the depth R is in the range of 0.5 to 1 mm (0.5 ≦ R ≦ 1 mm), and when the depth R exceeds 1 mm (R> 1 mm), it is determined that it is excessive. When the depth R of the undercut 40 is too large, the welding quality is deteriorated and the heat conduction cross-sectional area necessary for heat removal is reduced.

上述したように、スリット光切断式センサ41及び画像処理装置43を用いて、溶接表面部のビード垂直高さHを計測し、この計測したビード垂直高さHからのど厚Lを算出すると共に、アンダーカット40の有無及び深さRを検出・判定することで、溶接品質を管理することができる。   As described above, using the slit light cutting sensor 41 and the image processing device 43, the bead vertical height H of the weld surface portion is measured, and the throat thickness L is calculated from the measured bead vertical height H. By detecting and determining the presence / absence of the undercut 40 and the depth R, the welding quality can be managed.

なお、アンダーカット40の深さRが1mmを超える場合(R>1mm)には、のど厚不足の溶接部分及び近傍を肉盛補修する場合と同様に、図32に示したように、アンダーカット過大の判定の溶接部分及び近傍の上部(銅板寄りのビード表面又はビード止端部近傍)に1パス肉盛する補修を行うことで、アンダーカット40を解消することができるる。また、アンダーカット40の深さRがR≧0.5mm以上(R≧0.5mm)の場合には、アンダーカット40ありの判定の溶接部分及び近傍の上部(銅板寄りのビード表面又はビード止端部近傍)に1パス肉盛する補修を行うようにすることで、アンダーカット40の深さRが浅いものも含む大きさ(R≧0.5mm)のアンダーカットを解消することができるのでさらに良い。   In addition, when the depth R of the undercut 40 exceeds 1 mm (R> 1 mm), as shown in FIG. The undercut 40 can be eliminated by performing a repair that builds up one pass on the welded portion determined to be excessive and the upper portion in the vicinity (bead surface near the copper plate or near the bead toe). In addition, when the depth R of the undercut 40 is R ≧ 0.5 mm or more (R ≧ 0.5 mm), the welded portion determined to have the undercut 40 and the upper portion in the vicinity (bead surface near the copper plate or bead stop) By performing repair that builds up one pass in the vicinity of the edge), it is possible to eliminate undercuts of a size (R ≧ 0.5 mm) including those with a depth R of the undercut 40 being shallow. Even better.

例えば、1パス肉盛すべき補修溶接では、図3、4及び図9に示したように、隅肉継手部を本溶接した時の溶接条件よりも溶接電流や入熱量等を減少した溶接条件を補修溶接工程109、116、119、122で補修することで、容易に肉盛補修することが可能となり、上述したように、アンダーカットを解消することができる。   For example, in repair welding to be built up in one pass, as shown in FIGS. 3, 4 and 9, the welding conditions in which the welding current, the heat input, etc. are reduced compared to the welding conditions when the fillet joint is fully welded. Is repaired by repair welding processes 109, 116, 119, and 122, so that the overlay repair can be easily performed, and the undercut can be eliminated as described above.

図46は、本発明の実施例7としての手動操作の寸法測定器による溶接部のビード垂直高さの検出の例を示すものである。   FIG. 46 shows an example of detection of the bead vertical height of the welded portion by the manually operated size measuring instrument as the seventh embodiment of the present invention.

該図に示す如く、内筒1の母材表面に寸法測定器48を配置し、手動操作によって上下又は上下及び前後に移動可能な測定針49を伝熱銅フィン3のビード止端部47に接触させて溶接ビード部のビード垂直高さHを特定間隔毎に計測すると共に、表示部に表示するものである。   As shown in the figure, a dimension measuring device 48 is arranged on the surface of the base material of the inner cylinder 1, and a measuring needle 49 that can be moved up and down or up and down and back and forth by manual operation is attached to the bead toe 47 of the heat transfer copper fin 3. It is made to contact and the bead vertical height H of a weld bead part is measured for every specific interval, and is displayed on a display part.

このように、手動操作の寸法測定器48を使用することで、簡単にビード垂直高さHを計測することができるし、計測したビード垂直高さHの各値を第1及び第2の実験式の(1)及び(2)式に各々代入して、のど厚Lの値及び溶込み深さcの値を各々算出することで、破壊検査を行わずに、溶接内部の溶込み深さcを容易に推定することができる。また、ビード止端部47にアンダーカット40があれば、アンダーカット40の深さRも計測して、その深さRから品質良否を判定するようにすることもできる。   Thus, by using the manually operated dimension measuring device 48, the bead vertical height H can be easily measured, and each value of the measured bead vertical height H is measured in the first and second experiments. By substituting into the equations (1) and (2), respectively, and calculating the values of the throat thickness L and the penetration depth c, the penetration depth inside the weld without destructive inspection. c can be easily estimated. In addition, if the bead toe 47 has the undercut 40, the depth R of the undercut 40 can also be measured, and quality can be determined from the depth R.

上述したように、第1の実験式の(1)式から算出したのど厚Lの算出値が伝熱銅フィン3の板厚T1と同等以上(L≧T1)の場合は、合格であると判定し、伝熱銅フィン3の板厚T1よりも小さい(L<T1)の場合には、のど厚不足又は伝熱面積不足による不合格であると判定することができる。   As described above, when the calculated value of the throat thickness L calculated from the formula (1) of the first empirical formula is equal to or greater than the plate thickness T1 of the heat transfer copper fin 3 (L ≧ T1), it is acceptable. If the thickness is smaller than the plate thickness T1 of the heat transfer copper fin 3 (L <T1), it can be determined that the heat transfer copper fin 3 is unacceptable due to insufficient throat thickness or insufficient heat transfer area.

他方の第2の実験式の(2)式から算出した溶込み深さcの算出値が0.05≦c≦4mmの範囲の場合は、合格であると判定し、また、溶込み深さcの算出値が0.05mm未満(c<0.05mm)の場合には、内筒1及び/又は外筒2側の溶接部分が接合不足又は強度不足であると判定し、溶込み深さcの算出値が4mmを超える(c>4mm)場合には、溶込み過大であると判定することができる。   When the calculated value of the penetration depth c calculated from the expression (2) of the other second empirical formula is in the range of 0.05 ≦ c ≦ 4 mm, it is determined to be acceptable, and the penetration depth When the calculated value of c is less than 0.05 mm (c <0.05 mm), it is determined that the welded portion on the inner cylinder 1 and / or outer cylinder 2 side is insufficiently bonded or insufficient in strength, and the penetration depth When the calculated value of c exceeds 4 mm (c> 4 mm), it can be determined that the penetration is excessive.

以上述べたように、本実施例によれば、銅と鋼との異材継手の溶接性に優れ、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確保でき、かつ、割れ等の欠陥がない品質良好な溶接ビード及び溶接断面部を得ることができると共に、除熱性能の向上及び製造コストの低減にも寄与することができる。   As described above, according to the present embodiment, the weldability of the dissimilar joint between copper and steel is excellent, the throat thickness L having a sufficient size and a heat conduction cross-sectional area effective for heat removal can be secured, and It is possible to obtain a weld bead and a weld cross section having good quality free from defects such as cracks, and to contribute to an improvement in heat removal performance and a reduction in manufacturing cost.

また、本実施例によれば、位置ズレの検出データに基づいて、トーチ位置の修正制御を行うことで、溶接線位置とトーチ位置との左右及び上下の各位置ずれ(ΔYn,Zn)をなくすことができ、溶接線外れの不良ビードがない良好な溶接ビードを得ることができる。また、溶接ビード表面からビード垂直高さHを計測し、計測したビード垂直高さHの値を近似実験式にそれぞれ代入してのど厚Lや溶込み深さc等を算出することで、破壊検査を行わずに、溶接内部ののど厚L及び溶込み深さc等を容易に推定することができると共に、溶接品質の合否を判定することもできる。   In addition, according to the present embodiment, by performing correction control of the torch position based on the positional deviation detection data, the horizontal and vertical misalignments (ΔYn, Zn) between the weld line position and the torch position are eliminated. It is possible to obtain a good weld bead having no defective bead that is out of the weld line. In addition, by measuring the bead vertical height H from the surface of the weld bead and substituting the measured bead vertical height H into the approximate empirical formula, the throat thickness L, the penetration depth c, and the like are calculated. Without inspecting, it is possible to easily estimate the throat thickness L, the penetration depth c, and the like inside the weld, and to determine whether the welding quality is acceptable.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…内筒、2…外筒、2−2…外筒板、3…伝熱銅フィン、4…空間、5、5−1、5−2・・・5−N、8、8−1、8−2・・・8−N…隅肉継手部、6、6−1、6−2・・・6−N、9−1、9−2・・・9−N…溶接線、7…内側溶接部、7−1、7−2・・・7−N、10−1、10−2・・・10−N…溶接ビード及びその溶接断面部、10…外側溶接部、11…TIG−MIG溶接トーチ、12…TIGユニット、13…非消耗電極、14…第1のシールドガス、15…TIG溶接電源、17…MIGユニット、18…消耗ワイヤ、19…第2のシールドガス、20、28…MIG溶接電源、16−1、16−2、21−1、21−2、29−1、29−2…給電ケーブル、22…TIGアーク、23…MIGアーク、24…溶融プール、25…溶接進行方向、26…MIG溶接トーチ、27…MIG用シールドガス、30…肉盛補修部、31…長尺アーム、32…ガイドローラ、33、34、35…取付冶具、36…2軸駆動テーブル、37…遮蔽板、38…傾斜面形状、39…平坦面形状、40…アンダーカット、41…スリット光切断式センサ、42…スリット光線、43…画像処理装置、44…画像モニタ、45-1、45−2、46…線画像、47…ビード止端部、48…寸法測定器、49…測定針、51…距離センサ、52…距離測定光、53…センサ収納容器、54…距離センサ制御器、55…距離測定モニタ、56−1、56−2・・・56−N…仮付溶接部、99…伝熱銅フィンの溶接手順(その1)、100…伝熱銅フィンの溶接手順(その2)、101…伝熱銅フィンの溶接手順(その3)、102…ワイヤ溶着断面積決定工程、103…内筒側の第1の溶接工程、105…内筒側のN箇所の溶接の繰り返し溶接工程、106…内筒側の少数単位での溶接及び検査の繰り返し溶接工程、107、117…内筒側の検査工程、109、116、119、122…補修溶接工程、110…外筒側の第2の溶接工程、112…外筒側のN箇所の溶接の繰り返し溶接工程、113…外筒側の少数単位での溶接及び検査の繰り返し溶接工程、114、120…外筒側の検査工程、123…外筒の溶接仕上げ工程、201…溶接制御機器、311…駆動装置。   DESCRIPTION OF SYMBOLS 1 ... Inner cylinder, 2 ... Outer cylinder, 2-2 ... Outer cylinder board, 3 ... Heat-transfer copper fin, 4 ... Space, 5-1, 5-2 ... 5-N, 8, 8-1 , 8-2... 8-N ... fillet joint, 6, 6-1, 6-2 ... 6-N, 9-1, 9-2 ... 9-N ... weld line, 7 ... inner weld, 7-1, 7-2 ... 7-N, 10-1, 10-2 ... 10-N ... weld bead and weld cross section, 10 ... outer weld, 11 ... TIG -MIG welding torch, 12 ... TIG unit, 13 ... non-consumable electrode, 14 ... first shield gas, 15 ... TIG welding power source, 17 ... MIG unit, 18 ... consumable wire, 19 ... second shield gas, 20, 28 ... MIG welding power source, 16-1, 16-2, 21-1, 21-2, 29-1, 29-2 ... feeder cable, 22 ... TIG arc, 23 ... MIG arc, 24 Melting pool, 25 ... welding direction, 26 ... MIG welding torch, 27 ... MIG shielding gas, 30 ... overlay repair part, 31 ... long arm, 32 ... guide roller, 33, 34, 35 ... mounting jig, 36 ... 2-axis drive table, 37 ... shielding plate, 38 ... inclined surface shape, 39 ... flat surface shape, 40 ... undercut, 41 ... slit light cutting sensor, 42 ... slit light beam, 43 ... image processing device, 44 ... image Monitor, 45-1, 45-2, 46 ... line image, 47 ... bead toe, 48 ... dimension measuring instrument, 49 ... measuring needle, 51 ... distance sensor, 52 ... distance measuring light, 53 ... sensor container, 54 ... Distance sensor controller, 55 ... Distance measurement monitor, 56-1, 56-2 ... 56-N ... Temporary welded part, 99 ... Welding procedure of heat transfer copper fin (1), 100 ... Heat transfer Copper Fin Welding Procedure (Part 2 101 ... Welding procedure of heat transfer copper fin (No. 3), 102 ... Wire welding cross-sectional area determining step, 103 ... First welding step on the inner cylinder side, 105 ... Repetitive welding step of welding N points on the inner cylinder side , 106... Repeated welding process of welding and inspection in a small number unit on the inner cylinder side, 107, 117... Inspection process on the inner cylinder side, 109, 116, 119, 122 ... Repair welding process, 110 ... Second on the outer cylinder side 112 ... Repeat welding process of welding of N places on the outer cylinder side, 113 ... Repeat welding process of welding and inspection in the minor unit on the outer cylinder side, 114, 120 ... Inspection process on the outer cylinder side, 123 ... Outer cylinder welding finishing process, 201 ... welding control device, 311 ... drive device.

Claims (23)

放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置される鋼製の外筒との間の周方向に略等間隔に傾斜配備される銅製の複数の伝熱銅フィンを溶接する際に、鋼製の前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて各々形成された前記内筒側の広角傾斜の各隅肉継手部、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を略等間隔に突合せて各々形成された前記外筒側の広角傾斜の各隅肉継手部、若しくは前記内筒及び前記外筒の両面に各々形成された各隅肉継手部に、先行TIGと後続MIGとの複合溶接又はMIG溶接によって溶接施工する金属キャスク用伝熱銅フィンの溶接方法であって、
前記伝熱銅フィン側の溶融底部から溶接ビード表面までの最小距離を溶接部ののど厚とした時に、前記のど厚が所定の大きさ以上に形成されるようにワイヤ送り速度又は該ワイヤ送り速度とワイヤ径及び所定の溶接速度からワイヤ溶着断面積を決定し、かつ、前記各隅肉継手部の溶接開始位置から終了位置まで溶接すべきパス毎の溶接線に対して、CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって1パスずつ溶接施工することを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
Inclined at substantially equal intervals in the circumferential direction between a steel inner cylinder that houses a collection of spent fuel containing radioactive material and a steel outer cylinder that is coaxially disposed outside the inner cylinder When welding a plurality of heat transfer copper fins made of copper, each end face portion of the predetermined number of heat transfer copper fins is abutted at substantially equal intervals in the longitudinal direction of the outer surface of the inner cylinder made of steel, respectively. Each outer joint formed by abutting each other end face portion of the heat transfer copper fins at a substantially equal interval in the longitudinal direction of the inner cylindrical inner surface or each of the fillet joint portions having a wide-angle inclination on the inner cylinder side. Welding is performed on each fillet joint portion having a wide-angle inclination on the cylinder side, or on each fillet joint portion formed on both surfaces of the inner cylinder and the outer cylinder by composite welding of the preceding TIG and the succeeding MIG or MIG welding. A method for welding a heat transfer copper fin for a metal cask,
Wire feed speed or wire feed speed so that the throat thickness is not less than a predetermined size when the minimum distance from the molten bottom on the heat transfer copper fin side to the weld bead surface is the throat thickness of the weld The wire welding cross-sectional area is determined from the wire diameter and a predetermined welding speed, and a CuSi wire is used for the welding line for each path to be welded from the welding start position to the end position of each fillet joint, A welding method for heat transfer copper fins for metal casks, wherein welding is performed one pass at a time by composite welding of the preceding TIG and the subsequent MIG or the MIG welding.
請求項1に記載の金属キャスク用伝熱銅フィンの溶接方法において、
溶接施工された前記各隅肉継手部の溶接部に、少なくとも前記のど厚Lが前記伝熱銅フィンの板厚T1以上に形成され、かつ、鋼製の前記内筒側又は前記外筒側若しくは前記内筒及び前記外筒の両側の溶込み深さcが0.05≦c≦6mmの範囲に形成されていることを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat-transfer copper fin for metal casks of Claim 1,
At the welded portion of each fillet joint that has been welded, at least the throat thickness L is formed to be equal to or greater than the plate thickness T1 of the heat transfer copper fin, and the inner tube side or the outer tube side made of steel or The welding depth c on both sides of the inner cylinder and the outer cylinder is formed in a range of 0.05 ≦ c ≦ 6 mm.
放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置される鋼製の外筒との間の周方向に略等間隔に傾斜配備される銅製の複数の伝熱銅フィンを溶接する際に、鋼製の前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて各々形成された前記内筒側の広角傾斜の各隅肉継手部、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を略等間隔に突合せて各々形成された前記外筒側の広角傾斜の各隅肉継手部、若しくは前記内筒及び前記外筒の両面に各々形成された各隅肉継手部に、先行TIGと後続MIGとの複合溶接又はMIG溶接によって溶接施工する金属キャスク用伝熱銅フィンの溶接方法であって、
前記伝熱銅フィン側の溶融底部から溶接ビード表面までの最小距離を溶接部ののど厚とした時に、前記のど厚が所定の大きさ以上に形成されるようにワイヤ送り速度又は該ワイヤ送り速度とワイヤ径及び所定の溶接速度からワイヤ溶着断面積を決定するワイヤ溶着量決定工程と、前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて広角傾斜の隅肉継手部をN箇所形成した後に、CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって前記内筒側の各隅肉継手部に1パスずつ溶接する前記内筒側の第1の溶接工程と、前記内筒側の溶接終了後又は前記内筒側の溶接終了及びその溶接部の検査終了後に、前記伝熱銅フィンの外周側に前記外筒を配置し、前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を突合せて広角傾斜の隅肉継手部をN箇所形成した後に、前記CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって前記外筒側の前記各隅肉継手部に1パスずつ溶接する外筒側の第2の溶接工程とを備えていることを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
Inclined at substantially equal intervals in the circumferential direction between a steel inner cylinder that houses a collection of spent fuel containing radioactive material and a steel outer cylinder that is coaxially disposed outside the inner cylinder When welding a plurality of heat transfer copper fins made of copper, each end face portion of the predetermined number of heat transfer copper fins is abutted at substantially equal intervals in the longitudinal direction of the outer surface of the inner cylinder made of steel, respectively. Each outer joint formed by abutting each other end face portion of the heat transfer copper fins at a substantially equal interval in the longitudinal direction of the inner cylindrical inner surface or each of the fillet joint portions having a wide-angle inclination on the inner cylinder side. Welding is performed on each fillet joint portion having a wide-angle inclination on the cylinder side, or on each fillet joint portion formed on both surfaces of the inner cylinder and the outer cylinder by composite welding of the preceding TIG and the succeeding MIG or MIG welding. A method for welding a heat transfer copper fin for a metal cask,
Wire feed speed or wire feed speed so that the throat thickness is not less than a predetermined size when the minimum distance from the molten bottom on the heat transfer copper fin side to the weld bead surface is the throat thickness of the weld A wire welding amount determining step for determining a wire welding cross-sectional area from the wire diameter and a predetermined welding speed, and butting one end surface portion of the predetermined number of heat transfer copper fins at substantially equal intervals in the longitudinal direction of the outer surface of the inner cylinder. After N fillet joint portions having a wide angle are formed, CuSi wires are used to weld one pass to each fillet joint portion on the inner cylinder side by composite welding of the preceding TIG and the following MIG or the MIG welding. After the first welding step on the inner cylinder side and the end of welding on the inner cylinder side or the end of welding on the inner cylinder side and the inspection of the welded portion, the outer cylinder is placed on the outer peripheral side of the heat transfer copper fin. Arrange the inner surface of the outer cylinder After joining the other end face portions of the heat transfer copper fins of the predetermined number of sheets in the longitudinal direction to form wide-angle inclined fillet joint portions, composite welding of the preceding TIG and the subsequent MIG using the CuSi wire Or a second welding step on the outer cylinder side for welding one pass at a time to each fillet joint on the outer cylinder side by the MIG welding. Method.
請求項3に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記第1の溶接工程及び前記第2の溶接工程では、前記各隅肉継手部の溶接部に、少なくとも前記のど厚Lを前記伝熱銅フィンの板厚T1以上に形成され、かつ、鋼製の前記内筒側又は前記外筒側若しくは前記内筒及び前記外筒両側の溶込み深さcが0.05≦c≦6mmの範囲に形成されていることを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of Claim 3,
In the first welding step and the second welding step, at least the throat thickness L is formed to be equal to or greater than the plate thickness T1 of the heat transfer copper fin at the welded portion of each fillet joint, and the steel is made of steel. The metal cask heat transfer is characterized in that a penetration depth c on the inner cylinder side or the outer cylinder side or both sides of the inner cylinder and the outer cylinder is formed in a range of 0.05 ≦ c ≦ 6 mm. Copper fin welding method.
放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置される鋼製の外筒との間の周方向に略等間隔に傾斜配備される銅製の複数の伝熱銅フィンを溶接する際に、鋼製の前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて各々形成された前記内筒側の広角傾斜の各隅肉継手部、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を略等間隔に突合せて各々形成された前記外筒側の広角傾斜の各隅肉継手部、若しくは前記内筒及び外筒の両面に各々形成された各隅肉継手部に、先行TIGと後続MIGとの複合溶接又はMIG溶接によって溶接施工する金属キャスク用伝熱銅フィンの溶接方法であって、
前記伝熱銅フィン側の溶融底部から溶接ビード表面までの最小距離を溶接部ののど厚とした時に、前記のど厚が所定の大きさ以上に形成されるようにワイヤ送り速度又は該ワイヤ送り速度とワイヤ径及び所定の溶接速度からワイヤ溶着断面積を決定するワイヤ溶着量決定工程と、
前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて広角傾斜の前記隅肉継手部をN箇所形成した後に、CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって前記内筒側の前記各隅肉継手部に1パスずつ溶接する工程か、又は前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて広角傾斜の前記隅肉継手部をN箇所形成した後に、該N箇所の前記隅肉継手部を1〜5箇所ずつ単位に予め分割し、その分割した1〜5箇所ずつ単位の前記隅肉継手部に溶接施工すると共に、その溶接部を検査するように前記隅肉継手部の溶接と検査とを繰り返す工程か、若しくは所定枚数の前記伝熱銅フィンを予め分割し、その分割した単位の前記伝熱銅フィンの片方端面部を前記内筒外面に突き合せて隅肉継手部を形成した後に溶接施工すると共に、その溶接部を検査するように前記隅肉継手部の形成と溶接と検査とを繰り返す工程のいずれかを行う前記内筒側の第1の溶接工程と、
前記内筒側の溶接終了後又は前記内筒側の溶接終了及びその溶接部の検査終了後に、前記伝熱銅フィンの外周側に前記外筒を配置し、前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を突合せて広角傾斜の隅肉継手部をN箇所形成した後に、溶接時に前記CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって前記外筒側の前記各隅肉継手部に1パスずつ溶接する工程か、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を突合せて広角傾斜の隅肉継手部をN箇所形成した後に、該N箇所の前記隅肉継手部を予め分割し、その分割した単位の前記隅肉継手部に溶接施工すると共に、その溶接部を検査するように前記隅肉継手部の溶接と検査とを繰り返す工程か、若しくは前記外筒の代わりに、予め複数枚に分割した板状の外筒板を使用し、該板状の外筒板内面の長手方向に該当する前記伝熱銅フィンの他方の端面部を突合せて広角傾斜の隅肉継手部を形成した後に、その隅肉継手部に溶接施工すると共に、その溶接部を検査するように前記隅肉継手部の形成と溶接と検査とを繰り返す工程のいずれかを行う前記外筒側の第2の溶接工程とを備えていることを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
Inclined at substantially equal intervals in the circumferential direction between a steel inner cylinder that houses a collection of spent fuel containing radioactive material and a steel outer cylinder that is coaxially disposed outside the inner cylinder When welding a plurality of heat transfer copper fins made of copper, each end face portion of the predetermined number of heat transfer copper fins is abutted at substantially equal intervals in the longitudinal direction of the outer surface of the inner cylinder made of steel, respectively. Each outer joint formed by abutting each other end face portion of the heat transfer copper fins at a substantially equal interval in the longitudinal direction of the inner cylindrical inner surface or each of the fillet joint portions having a wide-angle inclination on the inner cylinder side. Metal to be welded to each fillet joint portion with a wide-angle inclination on the cylinder side, or to each fillet joint portion formed on both surfaces of the inner cylinder and the outer cylinder, by composite welding of preceding TIG and subsequent MIG or MIG welding A welding method for heat transfer copper fins for cask,
Wire feed speed or wire feed speed so that the throat thickness is not less than a predetermined size when the minimum distance from the molten bottom on the heat transfer copper fin side to the weld bead surface is the throat thickness of the weld Wire welding amount determination step for determining the wire welding cross-sectional area from the wire diameter and a predetermined welding speed;
After a predetermined number of heat transfer copper fins on one end surface of the inner cylinder outer surface are abutted at substantially equal intervals to form N wide fillet joints, CuSi wire is used to form the preceding TIG A step of welding one pass at a time to each fillet joint on the inner cylinder side by composite welding of the MIG and the subsequent MIG or the MIG welding, or a predetermined number of the heat transfer copper fins in the longitudinal direction of the outer surface of the inner cylinder After the N-side end face part is abutted at substantially equal intervals to form the wide-angle-inclined fillet joint part at N places, the N fillet joint parts are preliminarily divided into units of 1 to 5 places, and the divided 1 A process of repeating welding and inspection of the fillet joint part so as to inspect the welded part, and welding a predetermined number of the heat transfer copper fins while performing welding on the fillet joint part in units of 5 units. Divide in advance, and the divided unit After forming the fillet joint part by butting one end face part of the heat transfer copper fin to the outer surface of the inner cylinder, forming the welded joint part and inspecting the welded part, welding and inspection And a first welding step on the inner cylinder side that performs any of the steps of repeating
After completion of welding on the inner cylinder side or after completion of welding on the inner cylinder side and completion of inspection of the welded portion, the outer cylinder is arranged on the outer peripheral side of the heat transfer copper fin, and predetermined in the longitudinal direction of the inner surface of the outer cylinder After joining the other end face portions of the number of the heat transfer copper fins to form N portions of wide-angle inclined fillet joint portions, the CuSi wire is used during welding, and combined welding of the preceding TIG and the subsequent MIG or the A step of welding one pass at a time to each fillet joint on the outer tube side by MIG welding, or a wide angle by abutting each other end surface portion of the predetermined number of heat transfer copper fins in the longitudinal direction of the inner surface of the outer tube After forming N fillet joints with an inclination, the N fillet joints are divided in advance and welded to the fillet joints of the divided units, and the welds are inspected. Repeatedly weld and inspect the fillet joint. Or in place of the outer cylinder, a plate-like outer cylinder plate that has been divided into a plurality of sheets is used, and the other of the heat transfer copper fins corresponding to the longitudinal direction of the inner surface of the plate-like outer cylinder plate is used. After the end face part is abutted to form a wide-angle inclined fillet joint part, welding is performed on the fillet joint part, and the formation, welding, and inspection of the fillet joint part are repeated so as to inspect the welded part. And a second welding step on the outer cylinder side for performing any one of the steps. A welding method for heat transfer copper fins for metal casks.
請求項5に記載の金属キャスク用伝熱銅フィンの溶接方法において、
予め複数枚に分割した前記板状の外筒板を使用する際には、少数単位に分割した前記隅肉継手部の形成と溶接と検査とを繰り返す工程の終了後に、前記複数枚の外筒板の幅方向両面部の各接続部分を各々溶接して、円筒状又は多角筒状の一体の前記外筒構造に仕上げる外筒溶接仕上工程をさらに備えていることを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat-transfer copper fin for metal casks of Claim 5,
When using the plate-shaped outer cylinder plate divided into a plurality of pieces in advance, the plurality of outer cylinders are formed after the step of repeating the formation, welding, and inspection of the fillet joint portion divided into a small number of units. A metal cask transmission characterized by further comprising an outer cylinder welding finishing step of welding each connecting portion of both sides of the plate in the width direction to finish the outer cylinder structure in an integral cylindrical or polygonal cylinder shape. Hot copper fin welding method.
請求項5又は6に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記第1の溶接工程及び前記第2の溶接工程では、前記各隅肉継手部の溶接部に、少なくとも前記のど厚Lを伝熱銅フィンの板厚T1以上に形成させ、かつ、鋼製の前記内筒側又は前記外筒側若しくは前記内筒及び前記外筒両側の溶込み深さcが0.05≦c≦4mmの範囲に形成されていることを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of Claim 5 or 6,
In the first welding step and the second welding step, at least the throat thickness L is formed to be equal to or greater than the plate thickness T1 of the heat transfer copper fin at the welded portion of each fillet joint portion, and the steel is made of steel. The heat transfer copper for a metal cask, wherein a penetration depth c on the inner cylinder side or the outer cylinder side or both sides of the inner cylinder and the outer cylinder is formed in a range of 0.05 ≦ c ≦ 4 mm. Fin welding method.
請求項1乃至7のいずれか1項に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記伝熱銅フィンの板厚T1が5mmの場合には、前記CuSiワイヤのワイヤ溶着断面積Awが30mm以上55mm以下(30≦Aw≦55mm)、溶接入熱量Qが12kJ/cm以上35kJ/cm以下(12≦Q≦35kJ/cm)の条件を使用すると共に、前記CuSiワイヤの位置又はトーチ位置を前記伝熱銅フィンの表面側に所定距離だけシフトさせた位置を溶接すべき前記隅肉継手部の溶接線であると決定し、その後、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって前記隅肉継手部の溶接線に溶接施工することを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of any one of Claims 1 thru | or 7,
When the heat transfer Netsudo thickness T1 of the fins is 5mm, the CuSi wire wire welding sectional area Aw is 30 mm 2 or more 55 mm 2 or less (30 ≦ Aw ≦ 55mm 2) , the welding heat input Q is 12 kJ / cm or more While using the condition of 35 kJ / cm or less (12 ≦ Q ≦ 35 kJ / cm), the position where the position of the CuSi wire or the torch position is shifted to the surface side of the heat transfer copper fin by a predetermined distance should be welded For a metal cask characterized in that it is determined to be a weld line of a fillet joint part, and then welded to the weld line of the fillet joint part by composite welding of the preceding TIG and subsequent MIG or the MIG welding Welding method for heat transfer copper fins.
請求項1乃至8のいずれか1項に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記のど厚Lの代わりに、予め作成したビード垂直高さHと前記のど厚Lとの関係を示す下記の第1の実験式(1)を用い、溶接ビード近傍の鋼側表面から銅側の溶接ビード止端部までのビード垂直高さHを計測手段で計測し、該計測手段で計測した前記ビード垂直高さHの値を前記第1の実験式(1)に代入して溶接内部の前記のど厚Lの値を算出し、この算出した前記のど厚Lの値が前記L≧T1を満足しているか否かを判定するようにしたことを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
第1の実験式:L≒b1×H ・・・・・(1)
ただし、b1は定数で1である。
In the welding method of the heat transfer copper fin for metal casks of any one of Claims 1 thru | or 8,
Instead of the throat thickness L, the following first empirical formula (1) showing the relationship between the bead vertical height H and the throat thickness L is used, from the steel side surface near the weld bead to the copper side. The bead vertical height H up to the weld bead toe is measured by the measuring means, and the value of the bead vertical height H measured by the measuring means is substituted into the first empirical formula (1) to determine the inside of the weld. The value of the throat thickness L is calculated, and it is determined whether or not the calculated value of the throat thickness L satisfies the L ≧ T1. Welding method.
First empirical formula: L≈b1 × H (1)
However, b1 is a constant of 1.
請求項9に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記第1の実験式(1)で算出した前記のど厚Lの算出値が前記伝熱銅フィンの板厚T1よりも小さい(L<T1)場合、若しくは溶接断面部から実測した前記のど厚Lの実測値がL<T1の場合には、のど厚不足又は伝熱面積不足であると判定することを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of Claim 9,
When the calculated value of the throat thickness L calculated by the first empirical formula (1) is smaller than the plate thickness T1 of the heat transfer copper fin (L <T1), or the throat thickness L measured from the weld cross section. A welding method for heat transfer copper fins for metal casks, wherein when the measured value of L <T1, the throat thickness is insufficient or the heat transfer area is insufficient.
請求項10に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記のど厚Lが伝熱銅フィンの板厚T1よりも小さい(L<T1)場合には、不良部を補修する補修溶接工程で、該当するのど厚不足又は伝熱面積不足の溶接部分及びその近傍部の上部に1パス肉盛して補修することを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of Claim 10,
When the throat thickness L is smaller than the plate thickness T1 of the heat transfer copper fin (L <T1), in the repair welding process for repairing the defective part, the corresponding welded part with insufficient throat thickness or insufficient heat transfer area and its A method of welding a heat transfer copper fin for a metal cask characterized by repairing by building up one pass on the upper part of the vicinity.
請求項1乃至8のいずれか1項に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記溶込み深さcの代わりに、予め作成したビード垂直高さHと溶込み深さcとの関係を示す下記の第2の実験式(2)を用い、ビード垂直高さHを計測手段で計測し、該計測手段で計測した前記ビード垂直高さHの値を前記第2の実験式(2)に代入して溶接内部の溶込み深さcの値を算出し、算出した前記溶込み深さcの値が所定の0.05≦c≦6mmを満足しているか否かを判定するか、若しくは予め作成した前記のど厚Lと溶込み深さcとの関係を示す下記の第3の実験式(3)と、ビード垂直高さHと前記のど厚Lとの関係を示す下記の第1の実験式(1)とを用い、計測した前記ビード垂直高さHの値を前記第1の実験式(1)に代入して溶接内部の前記のど厚Lの値を算出し、算出後の前記のど厚Lの値を前記第3の実験式(3)に代入して溶接内部の溶込み深さcの値を算出し、算出した前記溶込み深さcの値が所定の0.05≦c≦6mmを満足しているか否かを判定することを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
第1の実験式:L≒b1×H ・・・・・(1)
第2の実験式:C=b2×H+b3×H+b4×H+b5 ・・・(2)
第3の実験式:C=b6×L+b7×L+b8×L+b9 ・・・(3)
ただし、b1は定数で1、b2は定数で−0.0061、b3は定数で0.22、b4は定数で−2.62、b5は定数で10.3、b6は定数で−0.0067、b7は定数で0.24、b8は定数で−2.87、b9は定数で11.4である。
In the welding method of the heat transfer copper fin for metal casks of any one of Claims 1 thru | or 8,
In place of the penetration depth c, the bead vertical height H is measured using the following second empirical formula (2) showing the relationship between the bead vertical height H and the penetration depth c. And the value of the bead vertical height H measured by the measuring means is substituted into the second empirical formula (2) to calculate the value of the penetration depth c inside the weld. It is determined whether or not the value of the penetration depth c satisfies the predetermined 0.05 ≦ c ≦ 6 mm, or the relationship between the previously prepared throat thickness L and the penetration depth c is shown below. 3 and the following first experimental formula (1) showing the relationship between the bead vertical height H and the throat thickness L, the measured value of the bead vertical height H is The value of the throat thickness L inside the weld is calculated by substituting it into the first empirical formula (1), and the calculated value of the throat thickness L is substituted into the third empirical formula (3). A metal characterized by calculating a value of a penetration depth c inside the contact and determining whether or not the calculated value of the penetration depth c satisfies a predetermined 0.05 ≦ c ≦ 6 mm Welding method for heat transfer copper fin for cask.
First empirical formula: L≈b1 × H (1)
Second empirical formula: C = b2 × H 3 + b3 × H 2 + b4 × H + b5 (2)
Third empirical formula: C = b6 × L 3 + b7 × L 2 + b8 × L + b9 (3)
However, b1 is a constant, b2 is a constant of -0.0067, b3 is a constant of 0.22, b4 is a constant of -2.62, b5 is a constant of 10.3, and b6 is a constant of -0.0067. B7 is a constant of 0.24, b8 is a constant of -2.87, and b9 is a constant of 11.4.
請求項12に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記第2の実験式(2)又は第3の実験式(3)で算出した前記溶込み深さcの算出値が0.05mm未満の場合、若しくは溶接断面部から実測した鋼側の最も深い部分の前記溶込み深さcの実測値が0.05mm未満の場合には、鋼側の溶接部分が接合不足又は強度不足であると判定することを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of Claim 12,
When the calculated value of the penetration depth c calculated by the second empirical formula (2) or the third empirical formula (3) is less than 0.05 mm, or the deepest on the steel side measured from the weld cross section When the measured value of the penetration depth c of the portion is less than 0.05 mm, it is determined that the welded portion on the steel side is insufficiently bonded or insufficiently strong. Welding method.
請求項9乃至13のいずれか1項に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記ビード垂直高さHを自動計測する手段はスリット光切断式センサであり、該スリット光切断式センサを、溶接終了後の溶接ビード表面の上部位置に配備すると共に、溶接開始側の前記溶接ビード表面位置から溶接終了側の前記溶接ビード表面位置まで溶接線上を走行移動させるか、若しくは前記溶接終了側の方向から前記溶接開始側の方向の溶接線上を逆走行移動させて、前記スリット光切断式センサに検出動作を行わせ、
前記スリット光切断式センサからの前記溶接ビード表面部及び近傍の形状を表す線状の線画像を画像処理装置に略一定時間毎又は略一定距離毎に取込んで画像処理し、鋼側母材表面部の直線部をビード止端部の方向に延長させた延長直線を描き、他方の銅側母材表面部の直線部と交差する他方のビード止端部の交点位置をa点と決定し、前記延長直線に対して、前記a点より直角方向に描いた直線と前記延長直線とが直角に交差する位置をd点と決定し、前記a点とd点との距離(a点−d点)を計測し、該計測した距離(a点−d点)を前記ビード垂直高さHの値であると特定し、前記ビード垂直高さHの値を前記第1の実験式(1)に代入して溶接内部ののど厚Lの値を算出することを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of any one of Claim 9 thru | or 13,
The means for automatically measuring the bead vertical height H is a slit light cutting type sensor, and the slit light cutting type sensor is disposed at an upper position on the surface of the weld bead after the end of welding, and the welding bead on the welding start side is arranged. The slit light cutting type is moved on the welding line from the surface position to the welding bead surface position on the welding end side, or moved backward on the welding line in the direction of the welding start side from the direction on the welding end side. Let the sensor perform a detection action,
A line image representing the shape of the weld bead surface portion and the vicinity thereof from the slit light cutting type sensor is taken into an image processing apparatus at substantially constant time intervals or at substantially constant distances, and subjected to image processing. Draw an extended straight line by extending the straight part of the surface part in the direction of the bead toe part, and determine the point of intersection of the other bead toe part intersecting with the straight part of the other copper side base metal surface part as a point , A position where a straight line drawn in a direction perpendicular to the point a and the extended line intersects the extension line at a right angle is determined as a point d, and a distance between the points a and d (a point−d Point), the measured distance (point a-point d) is specified as the value of the bead vertical height H, and the value of the bead vertical height H is determined as the first empirical formula (1). A method for welding a heat transfer copper fin for a metal cask, wherein the value of the throat thickness L inside the weld is calculated by substituting
請求項14に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記スリット光切断式センサ及び前記画像処理装置で前記a点近傍にあるアンダーカットの有無及び深さRを検出すると共に、銅側母材の表面線の変曲部をf点と決定し、前記a点とf点との凹み部をアンダーカットとして認定し、そのアンダーカットの深さRを計測し、その計測した深さRが0.5mm未満の時はアンダーカットなし又は正常と判定し、前記深さRが0.5〜1mmの時はアンダーカットありと判定し、前記深さRが1mmを超える時はアンダーカット過大と判定することを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat-transfer copper fin for metal casks of Claim 14,
The slit light cutting sensor and the image processing apparatus detect the presence or absence of the undercut and the depth R in the vicinity of the point a, determine the inflection portion of the surface line of the copper side base material as the point f, Recognize the undercuts at points a and f as undercuts, measure the depth R of the undercut, and determine that there is no undercut or normal when the measured depth R is less than 0.5 mm, When the depth R is 0.5 to 1 mm, it is determined that there is an undercut, and when the depth R exceeds 1 mm, it is determined that the undercut is excessive. Method.
請求項15に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記アンダーカットの深さRが1mmを超える(R>1mm)場合には、不良部を補修する補修溶接工程で、該当するアンダーカット過大の溶接部分及び近傍の上部に1パス肉盛して補修することを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of Claim 15,
When the depth R of the undercut exceeds 1 mm (R> 1 mm), in the repair welding process for repairing the defective part, one pass is built up and repaired at the upper part of the welded part where the undercut is excessive. A method for welding a heat transfer copper fin for a metal cask.
請求項1乃至8のいずれか1項に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記先行TIGと後続MIGとの複合溶接を行う一体構造のTIG−MIG溶接トーチ又は前記MIG溶接を行うMIG溶接トーチの前方位置で、かつ、前記隅肉継手部の溶接線の上部位置にスリット光切断式センサを配備して溶接線の位置ズレを検出させる場合には、溶接進行中に前記隅肉継手部の形状を表す線形状の線画像を前記スリット光切断式センサから画像処理装置に略一定時間毎又は略一定距離毎に取込んで適宜画像処理し、前記伝熱銅フィンの端面角部に該当するb点位置を検出させると共に、該b点位置から前記伝熱銅フィンの表面側に所定距離S1だけシフトさせたP点位置を検出させ、
該検出したP点の位置座標Pn(Yn、Zn)と、溶接前に予め検出させた溶接開始位置X0での前記伝熱銅フィンの端面角部のb点位置から前記伝熱銅フィンの表面側に所定距離S1だけシフトさせたP0点位置を0原点と決定した原点位置座標P0(Y0=0、Z0=0)との偏差(Pn(Yn、Zn)−P0(Y0、Z0))から、左右方向の位置ずれΔYn及び上下方向の位置ずれZnを算出し、該算出した位置ずれ(ΔYn、ΔZn)の検出データに基づいて、前記スリット光切断式センサ及び前記画像処理装置によって先行検出した溶接線方向の位置Xnに後続の前記TIG−MIG溶接トーチ又は前記MIG溶接トーチが到達した地点又はその近傍地点で、前記左右・上下方向の位置ずれ(ΔYn、ΔZn)をそれぞれなくす方向に前記TIG−MIG溶接トーチ又は前記MIG溶接トーチの位置を修正する制御を行うことを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of any one of Claims 1 thru | or 8,
A slit light is formed at a position in front of the integrated TIG-MIG welding torch for performing composite welding of the preceding TIG and the subsequent MIG or the MIG welding torch for performing the MIG welding, and above the weld line of the fillet joint. In the case where a cutting type sensor is provided to detect the displacement of the welding line, a linear line image representing the shape of the fillet joint portion during the progress of welding is substantially omitted from the slit light cutting type sensor to the image processing apparatus. Image capturing is performed at regular time intervals or at substantially constant distances, and the b point position corresponding to the end face corner of the heat transfer copper fin is detected, and the surface side of the heat transfer copper fin from the b point position is detected. P point position shifted by a predetermined distance S1 is detected,
From the position coordinates Pn (Yn, Zn) of the detected P point and the b point position of the end face corner portion of the heat transfer copper fin at the welding start position X0 detected in advance before welding, the surface of the heat transfer copper fin From the deviation (Pn (Yn, Zn) -P0 (Y0, Z0)) from the origin position coordinate P0 (Y0 = 0, Z0 = 0), where the P0 point position shifted by the predetermined distance S1 is set as the zero origin. The horizontal position deviation ΔYn and the vertical position deviation Zn are calculated, and detected in advance by the slit light cutting sensor and the image processing device based on the detection data of the calculated positional deviations (ΔYn, ΔZn). At the point where the subsequent TIG-MIG welding torch or the MIG welding torch arrives at or near the position Xn in the weld line direction, the TIG in the direction to eliminate the horizontal / vertical displacement (ΔYn, ΔZn), respectively. -MI Welding torch or the welding method of the metal cask Den Netsudo fins and performs control to correct the position of the MIG welding torch.
請求項17に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記左右方向の位置ずれΔYnの修正は、前記スリット光切断式センサ及び前記画像処理装置で検出した左右方向の位置ずれの検出データに基づき、その位置ずれΔYnをなくす方向に前記TIG−MIG溶接トーチの位置を修正する制御を行い、
一方、他方の上下方向の位置ずれ修正は、前記検出データの上下方向の位置ズレΔZnの代わりに、先行TIG側のTIGアーク電圧信号を用い、所望のアーク長保持に必要なTIGアーク電圧を予め測定して決定した第1の基準電圧値V1と、溶接進行中に先行TIG側のTIGアーク電圧信号を電圧検出手段にてリアルタイムで検出及び平均化処理し、該平均化処理したTIGアーク電圧検出信号の値Vnとの偏差電圧ΔV1(Vn−V1)を検出し、該偏差電圧ΔV1をなくすように前記TIG−MIG溶接トーチの位置を上下方向に修正する制御を行い、
若しくは溶接開始位置で発生させる先行TIG側のTIGアークと、該TIGアーク後方近傍に発生させる後続MIG側のMIGアークとで1つの溶融プールを形成させると共に、溶接可能状態の前記1つの溶融プールを溶接線方向に移動させた直後又は所定時間経過後に、先行TIG側のTIGアーク電圧信号を所定時間だけ検出させた平均値を第2の基準電圧値V2と決定し、溶接進行中にリアルタイムで検出及び平均化処理する前記TIG電圧検出信号の値Vnと、前記第2の基準電圧値V2との偏差電圧ΔV2(Vn−V2)を検出し、該偏差電圧ΔV2をなくすように前記TIG−MIG溶接トーチの位置を上下方向に修正する制御を行うことを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of Claim 17,
The correction of the lateral displacement ΔYn is based on the detection data of the lateral displacement detected by the slit light cutting sensor and the image processing device, and the TIG-MIG welding torch in the direction to eliminate the displacement ΔYn. Control to correct the position of
On the other hand, the other vertical misalignment correction uses a TIG arc voltage signal on the preceding TIG side in place of the vertical misalignment ΔZn of the detection data, and previously calculates a TIG arc voltage necessary for maintaining a desired arc length. The first reference voltage value V1 determined by measurement and the TIG arc voltage signal on the preceding TIG side during welding progress are detected and averaged in real time by the voltage detection means, and the averaged TIG arc voltage detection is performed. A deviation voltage ΔV1 (Vn−V1) with respect to the signal value Vn is detected, and control is performed to correct the position of the TIG-MIG welding torch vertically so as to eliminate the deviation voltage ΔV1.
Alternatively, one molten pool is formed by the TIG arc on the preceding TIG side generated at the welding start position and the MIG arc on the subsequent MIG side generated near the rear of the TIG arc, and the one molten pool in the weldable state is formed. Immediately after moving in the welding line direction or after a predetermined time has elapsed, the average value obtained by detecting the TIG arc voltage signal on the preceding TIG side for a predetermined time is determined as the second reference voltage value V2 and detected in real time while welding is in progress Further, a deviation voltage ΔV2 (Vn−V2) between the value Vn of the TIG voltage detection signal to be averaged and the second reference voltage value V2 is detected, and the TIG-MIG welding is performed so as to eliminate the deviation voltage ΔV2. A method for welding a heat transfer copper fin for a metal cask, wherein control is performed to correct the position of the torch in the vertical direction.
請求項17又は18に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記隅肉継手部に複数の仮付溶接部が断続的に形成されている場合には、前記スリット光切断式センサ及び前記画像処理装置によって、前記仮付溶接部がある隅肉継手部分から取込んだ線画像は、前記伝熱銅フィンの端面角部に該当するb点位置がなく、仮付ビード止端部及び仮付ビード表面の曲線があることから、前記仮付溶接部であると認知又は異常部であると認知させ、この仮付溶接部の検出データを不採用扱いにしてトーチ位置をそのまま現状維持させ、
一方、他方の仮付溶接部がない隅肉継手部分から取込んだ線画像には、前記伝熱銅フィンの端面角部に該当するb点位置があることから、このb点位置を検出させると共に、該b点位置から前記伝熱銅フィンの表面側に所定距離S1だけシフトさせたP点の位置座標Pn(Yn、Zn)を検出し、このP点の位置座標Pnと原点位置座標P0(Y0=0、Z0=0)との偏差から位置ズレ(ΔYn、ΔZn)を算出して採用し、この位置ずれ(ΔYn、ΔZn)の検出データに基づいて、先行検出した溶接線方向の位置Xnに後続の溶接トーチが到達した地点又はその近傍地点で、左右・上下方向の位置ずれ(ΔYn、ΔZn)をそれぞれなくす方向にトーチ位置を修正させ、又は左右方向の位置ズレΔYnをなくす方向にトーチ位置を修正することを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of Claim 17 or 18,
When a plurality of tack welds are intermittently formed on the fillet joint, the slit light cutting sensor and the image processing device remove the fillet weld from the fillet joint where the tack weld is located. The embedded line image does not have the b point position corresponding to the end face corner of the heat transfer copper fin, and has a temporary bead toe portion and a temporary bead surface curve. Recognize it as a recognized or abnormal part, treat the detection data of this tack welded part as non-adopted and keep the torch position as it is,
On the other hand, since the line image taken from the fillet joint portion having no other tack welded portion has the b point position corresponding to the end face corner of the heat transfer copper fin, the b point position is detected. At the same time, the position coordinate Pn (Yn, Zn) of the P point shifted from the position b by the predetermined distance S1 to the surface side of the heat transfer copper fin is detected, and the position coordinate Pn of the P point and the origin position coordinate P0 are detected. The position deviation (ΔYn, ΔZn) is calculated from the deviation from (Y0 = 0, Z0 = 0) and adopted, and based on the detection data of this positional deviation (ΔYn, ΔZn), the position in the weld line direction detected in advance is used. At the point where the subsequent welding torch arrives at or near Xn, correct the torch position in the direction to eliminate the horizontal / vertical displacement (ΔYn, ΔZn), or eliminate the horizontal displacement ΔYn. Characterized by correcting the torch position Welding method Netsudo fin Den metal cask.
請求項17乃至19のいずれか1項に記載の金属キャスク用伝熱銅フィンの溶接方法において、
前記スリット光切断式センサの代わりに、距離測定可能な距離センサを用い、前記隅肉継手部の溶接線方向に走行移動可能な長尺アームの先端部に略下向姿勢に配置された一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチの前方位置又は前記溶接トーチよりも先行する位置に配置された回転移動可能なガイドローラの後方位置で、かつ、溶接線から近距離だけ離れた前記内筒側の表面又は前記外筒側の表面と略直角方向の上部位置に前記距離センサを1つ配備し、又は前記内筒側の表面又は前記外筒側の表面と略直角方向の上部位置と、前記溶接線から近距離だけ離れた前記伝熱銅フィン側の表面と略直角方向の上部位置とに前記距離センサを1つずつ配備し、
前記TIG−MIG溶接トーチ又はMIG溶接トーチの走行動作及び溶接動作の実行中に、前記距離センサで計測する距離及びその距離変化の計測データに基づいて、先行計測した溶接線方向の位置Xnに後続の溶接トーチが到達した地点又はその近傍地点で、前記隅肉継手部の溶接線方向の曲がりや変形に伴う左右方向及び上下方向の位置ずれをなくす方向にトーチ位置を修正することを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of any one of Claims 17 thru | or 19,
Instead of the slit light cutting type sensor, a distance sensor capable of measuring a distance is used, and an integrated structure arranged in a substantially downward posture at the distal end of a long arm that can move and move in the weld line direction of the fillet joint The TIG-MIG welding torch or the inner cylinder located at a front position of the MIG welding torch or a position behind the rotationally movable guide roller disposed at a position preceding the welding torch and separated from the welding line by a short distance One of the distance sensors is disposed at an upper position in a direction substantially perpendicular to the surface on the side or the surface on the outer cylinder side, or an upper position in a direction substantially perpendicular to the surface on the inner cylinder side or the surface on the outer cylinder side, The distance sensors are arranged one by one on the surface on the side of the heat transfer copper fin that is separated from the weld line by a short distance and at an upper position in a substantially right angle direction,
During the running operation and welding operation of the TIG-MIG welding torch or MIG welding torch, based on the distance measured by the distance sensor and the measurement data of the change in the distance, it follows the position Xn in the welding line direction measured in advance. At the point where the welding torch reaches or near the point, the torch position is corrected in a direction that eliminates the positional deviation in the horizontal direction and the vertical direction due to bending or deformation in the weld line direction of the fillet joint portion. Welding method of heat transfer copper fin for metal cask.
請求項17乃至20のいずれか1項に記載の金属キャスク用伝熱銅フィンの溶接方法において、
少なくとも輻射熱及び飛散物の遮蔽可能な遮蔽板を用い、該遮蔽板は、前記隅肉継手部の溶接線方向に溶接を行う一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチと、前記TIG−MIG溶接トーチ又は前記MIG溶接トーチよりも前方位置で位置ズレを検出する前記スリット光切断式センサ又は距離変化を計測する距離センサとの間にあり、かつ、接線と略直角方向の上部位置で、長尺アームの先端部の下側に配備されていることを特徴とする金属キャスク用伝熱銅フィンの溶接方法。
In the welding method of the heat transfer copper fin for metal casks of any one of Claims 17 thru | or 20,
At least a shielding plate capable of shielding radiant heat and scattered matter is used, and the shielding plate is an integral TIG-MIG welding torch or MIG welding torch for welding in the weld line direction of the fillet joint portion, and the TIG-MIG It is located between the welding torch or the slit light cutting sensor that detects displacement at a position ahead of the MIG welding torch or the distance sensor that measures the distance change, and is long at the upper position substantially perpendicular to the tangent line. A method for welding a heat transfer copper fin for a metal cask, characterized in that it is disposed under the tip of a shank arm.
放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置する鋼製の外筒と、前記内筒器と前記外筒との間の周方向に略等間隔に傾斜配備する銅製の複数の伝熱銅フィンとを備え、
鋼製の前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて各々形成された前記内筒側の広角傾斜の各隅肉継手部、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を略等間隔に突合せて各々形成された前記外筒側の広角傾斜の各隅肉継手部、若しくは前記内筒及び前記外筒の両面に各々形成された各隅肉継手部に、先行TIGと後続MIGとの複合溶接又はMIG溶接によって1パスずつ溶接施工されて形成される伝熱銅フィン付き金属キャスクであって、
CuSiワイヤを用い、前記先行TIGと後続MIGとの複合溶接又は前記MIG溶接によって1パスずつ溶接施工された前記各隅肉継手部の溶接部に、少なくとも前記のど厚Lが伝熱銅フィンの板厚T1以上に形成され、かつ、鋼製の前記内筒側又は前記外筒側若しくは前記内筒及び前記外筒両側の溶込み深さcが0.05≦c≦4mmの範囲に形成されていることを特徴とする伝熱銅フィン付き金属キャスク。
A steel inner cylinder that houses an assembly of spent fuel having a radioactive substance, a steel outer cylinder that is coaxially disposed outside the inner cylinder, and between the inner cylinder and the outer cylinder With a plurality of copper heat transfer copper fins inclined and arranged at substantially equal intervals in the circumferential direction,
Each fillet joint portion having a wide-angle inclination on the inner cylinder side formed by abutting one end face portions of the heat transfer copper fins at substantially equal intervals in the longitudinal direction of the outer surface of the inner cylinder made of steel, or Each outer joint side wide-angle inclined fillet joint portion formed by abutting the other end face portions of the predetermined number of heat transfer copper fins at substantially equal intervals in the longitudinal direction of the inner cylinder inner surface, or the inner cylinder And a metal cask with heat transfer copper fins formed by welding each fillet joint formed on both surfaces of the outer cylinder, one pass at a time by composite welding of the preceding TIG and the subsequent MIG or MIG welding. And
A plate having a heat transfer copper fin having a throat thickness L of at least the throat thickness L at a welded portion of each fillet joint portion welded by one pass by a composite welding of the preceding TIG and the subsequent MIG or the MIG welding using a CuSi wire. It is formed in thickness T1 or more, and the penetration depth c of the steel inner cylinder side or the outer cylinder side or both sides of the inner cylinder and the outer cylinder is formed in a range of 0.05 ≦ c ≦ 4 mm. A metal cask with heat transfer copper fins.
請求項22に記載の伝熱銅フィン付き金属キャスクにおいて、
前記伝熱銅フィンの板厚T1が約5mmの場合には、前記CuSiワイヤのワイヤ溶着断面積Awが30mm以上55mm以下(30≦Aw≦55mm)、溶接入熱量Qが12kJ/cm以上35kJ/cm以下(12≦Q≦35kJ/cm)の条件を使用すると共に、前記先行TIGと後続MIGとの複合溶接又はMIG溶接によって前記隅肉継手部に溶接施工されて形成されていることを特徴とする伝熱銅フィン付き金属キャスク。
A metal cask with a heat transfer copper fin according to claim 22,
When the plate thickness T1 of the heat transfer copper fin is about 5 mm, the wire welding cross-sectional area Aw of the CuSi wire is 30 mm 2 to 55 mm 2 (30 ≦ Aw ≦ 55 mm 2 ), and the welding heat input Q is 12 kJ / cm. More than 35 kJ / cm or less (12 ≦ Q ≦ 35 kJ / cm) is used, and the fillet joint is welded and formed by composite welding of the preceding TIG and subsequent MIG or MIG welding. A metal cask with heat transfer copper fins.
JP2014133808A 2014-06-30 2014-06-30 Welding method of heat transfer copper fin for metal cask and metal cask with heat transfer copper fin Active JP6278852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014133808A JP6278852B2 (en) 2014-06-30 2014-06-30 Welding method of heat transfer copper fin for metal cask and metal cask with heat transfer copper fin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133808A JP6278852B2 (en) 2014-06-30 2014-06-30 Welding method of heat transfer copper fin for metal cask and metal cask with heat transfer copper fin

Publications (3)

Publication Number Publication Date
JP2016010805A true JP2016010805A (en) 2016-01-21
JP2016010805A5 JP2016010805A5 (en) 2017-03-30
JP6278852B2 JP6278852B2 (en) 2018-02-14

Family

ID=55227870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133808A Active JP6278852B2 (en) 2014-06-30 2014-06-30 Welding method of heat transfer copper fin for metal cask and metal cask with heat transfer copper fin

Country Status (1)

Country Link
JP (1) JP6278852B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079502A (en) * 2016-11-18 2018-05-24 日産自動車株式会社 Welding quality judgment method
JP2021007959A (en) * 2019-06-28 2021-01-28 パナソニックIpマネジメント株式会社 Repair welding system, repair welding method, inspection device and robot control device
JP2021032669A (en) * 2019-08-23 2021-03-01 三菱重工業株式会社 Welding inspection device, welding inspection method, welding inspection system, program for welding inspection and recording medium
JP2022014037A (en) * 2020-07-06 2022-01-19 三菱電機株式会社 Inspection device, arithmetic device and inspection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277844A (en) * 1993-03-26 1994-10-04 Hitachi Ltd Method for multilayer welding of fillet joint
JP2008055448A (en) * 2006-08-30 2008-03-13 Komatsu Ltd Weld joint structure, and lap fillet welding method
JP2008082906A (en) * 2006-09-28 2008-04-10 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage container
JP2010201456A (en) * 2009-03-03 2010-09-16 Nippon Steel & Sumikin Welding Co Ltd Method of gas shielded arc metal welding of fillet with one flat side
JP2015083315A (en) * 2013-10-25 2015-04-30 株式会社東芝 Mig arc brazing wire, mig arc brazing method and mig arc brazing joint body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277844A (en) * 1993-03-26 1994-10-04 Hitachi Ltd Method for multilayer welding of fillet joint
JP2008055448A (en) * 2006-08-30 2008-03-13 Komatsu Ltd Weld joint structure, and lap fillet welding method
JP2008082906A (en) * 2006-09-28 2008-04-10 Hitachi-Ge Nuclear Energy Ltd Radioactive material storage container
JP2010201456A (en) * 2009-03-03 2010-09-16 Nippon Steel & Sumikin Welding Co Ltd Method of gas shielded arc metal welding of fillet with one flat side
JP2015083315A (en) * 2013-10-25 2015-04-30 株式会社東芝 Mig arc brazing wire, mig arc brazing method and mig arc brazing joint body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018079502A (en) * 2016-11-18 2018-05-24 日産自動車株式会社 Welding quality judgment method
JP2021007959A (en) * 2019-06-28 2021-01-28 パナソニックIpマネジメント株式会社 Repair welding system, repair welding method, inspection device and robot control device
JP7228794B2 (en) 2019-06-28 2023-02-27 パナソニックIpマネジメント株式会社 Repair welding system, repair welding method, inspection device and robot controller
JP2021032669A (en) * 2019-08-23 2021-03-01 三菱重工業株式会社 Welding inspection device, welding inspection method, welding inspection system, program for welding inspection and recording medium
JP7274980B2 (en) 2019-08-23 2023-05-17 三菱重工業株式会社 Welding inspection device, welding inspection method, welding inspection system, welding inspection program and recording medium
JP2022014037A (en) * 2020-07-06 2022-01-19 三菱電機株式会社 Inspection device, arithmetic device and inspection method

Also Published As

Publication number Publication date
JP6278852B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
EP3020502A1 (en) Laser welding method
JP6278852B2 (en) Welding method of heat transfer copper fin for metal cask and metal cask with heat transfer copper fin
CN104874919B (en) A kind of slab narrow gap laser photocoagulation method
CN105473267A (en) System for and method of welding with hot wire TIG positioned heat control
JPWO2010021094A1 (en) Composite welding method and composite welding apparatus
JP2010184273A (en) Laser welding method and laser welding apparatus
US20090224530A1 (en) Welded butt joints on tubes having dissimilar end preparations
JP6386330B2 (en) Repair method for defective welds in metal cask welded structures
Kadoi et al. Development of high-efficiency/high-quality hot-wire laser fillet welding process
JP2016011845A (en) Welding method for heat-transfer copper fin for metal cask and welding device therefor
CN111655417B (en) Swing control method and swing control system
JP6327172B2 (en) Laser welding system and laser welding method
EP2783788A2 (en) Welding process and welding system
KR20150086373A (en) Narrow-groove gas-shielded arc welded joint
JP5499590B2 (en) Laser welding equipment
JP5416422B2 (en) Laser-arc combined welding method
JP6322561B2 (en) Temporary welding construction method for metal cask welded structure and metal cask with heat transfer fin
JP2006198657A (en) Method of multi-layer welding, and structure formed by multi-layer welding
JP2014079783A (en) Laser and arc hybrid welding method, hybrid welding head and hybrid welding apparatus
JP6722625B2 (en) Hybrid welding method and hybrid welding apparatus
US20200361033A1 (en) Tack welding method and tack welding apparatus
JP7243812B2 (en) Welding inspection equipment
JP2005279653A (en) Method and device for checking welding state
JP2011050997A (en) Laser beam welding apparatus and laser beam welding method
JP5483553B2 (en) Laser-arc combined welding method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180116

R150 Certificate of patent or registration of utility model

Ref document number: 6278852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350