JP2016008892A - Control rod insertion seismic qualification test device - Google Patents

Control rod insertion seismic qualification test device Download PDF

Info

Publication number
JP2016008892A
JP2016008892A JP2014129809A JP2014129809A JP2016008892A JP 2016008892 A JP2016008892 A JP 2016008892A JP 2014129809 A JP2014129809 A JP 2014129809A JP 2014129809 A JP2014129809 A JP 2014129809A JP 2016008892 A JP2016008892 A JP 2016008892A
Authority
JP
Japan
Prior art keywords
fuel
control rod
fuels
simulated
rod insertion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014129809A
Other languages
Japanese (ja)
Inventor
祐一 小出
Yuichi Koide
祐一 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014129809A priority Critical patent/JP2016008892A/en
Publication of JP2016008892A publication Critical patent/JP2016008892A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate vibration in a horizontal plane in fuels within a test container by a plurality of vibrators connected to the fuels in a horizontal direction.SOLUTION: A control rod insertion seismic qualification test device of the present invention comprises: simulant fuels simulating fuels in a nuclear reactor; control rods inserted into clearances among the simulant fuels; a plurality of vibrators connected to the respective simulant fuels via connection jigs; and a reaction force wall fixed to the vibrators. According to the present invention, the vibrators connected to the fuels within a test container in a horizontal direction can generate vibration in a horizontal plane in the fuels.

Description

本発明は、制御棒挿入性耐震試験装置に関する。 The present invention relates to a control rod insertion property seismic test apparatus.

原子力発電所は、運転によって放射性物質を生じさせることから、周囲環境へ影響を及ぼさないように、各種の安全対策が講じられている施設である。世界でも有数の地震国である日本では、原子炉建屋に地震感知器が設置されており、原子炉は設定値を上回る大きな揺れを感知すると制御棒を炉心に挿入して自動停止するように設計されている。   A nuclear power plant is a facility where various safety measures are taken so as not to affect the surrounding environment because radioactive materials are generated by operation. In Japan, one of the world's most earthquake-prone countries, an earthquake detector is installed in the reactor building, and the reactor is designed to automatically shut down by inserting a control rod into the reactor core when a large shake exceeding the set value is detected. Has been.

日本電気協会が発行した「原子力発電所耐震設計技術規程JEAC4601-2008」においては、「制御棒は、基準地震動Ssが起きている状態であっても緊急に挿入されなければならない」および「BWRにおいてはシースが、PWRにおいては制御棒被覆管が、中性子吸収材を保持する機能を喪失していない」と記載されており、制御棒に求められる機能として、地震時の挿入機能と中性子吸収材を保持する機能が挙げられている。さらに、これらの機能については、解析あるいは試験によって、許容基準の適合性について確認しなければならないと規定されている。   According to the “JEAC4601-2008 Nuclear Power Station Seismic Design Technical Regulations” issued by the NEC Association, “Control rods must be urgently inserted even when the standard seismic motion Ss is occurring” and “BWR `` The sheath does not lose the function to hold the neutron absorber in the PWR in the PWR '', and the functions required for the control rod include the insertion function during earthquakes and the neutron absorber. The function to hold is mentioned. Furthermore, for these functions, it is stipulated that the conformity of acceptance criteria must be confirmed by analysis or testing.

地震時の制御棒挿入機能の耐震性を試験によって確認する装置の一例が、特開2012-8085号公報に開示されている。本背景技術では、液体で満たされた容器内部に原子炉内の燃料を模擬した複数の模擬燃料および制御棒が収納され、該制御棒を前記模擬燃料間に
挿入する制御棒駆動装置が取り付けられた試験容器と、該試験容器の周囲に設置された反力壁と、該反力壁に固定され、前記試験容器を一方向に振動させる加振機と、前記試験容器が前記一方向に沿って往復動可能に前記試験容器を支持する支持手段とを備えている。本技術により、試験容器を一方向に加振するときに加振機が負担する試験容器の鉛直荷重を低減させ、実際の地震に近い状態で試験容器を好適に加振することを試みている。
An example of an apparatus for confirming the seismic resistance of the control rod insertion function during an earthquake by a test is disclosed in Japanese Patent Laid-Open No. 2012-8085. In this background art, a plurality of simulated fuels and control rods simulating the fuel in a nuclear reactor are housed in a liquid-filled vessel, and a control rod driving device for inserting the control rods between the simulated fuels is attached. A test container, a reaction force wall installed around the test container, a vibrator fixed to the reaction force wall to vibrate the test container in one direction, and the test container along the one direction And a supporting means for supporting the test container so as to be reciprocally movable. With this technology, we are trying to reduce the vertical load of the test vessel that the shaker bears when oscillating the test vessel in one direction, and to suitably excite the test vessel in a state close to an actual earthquake. .

制御棒挿入性耐震試験装置の別の例が、非特許文献1に開示されている。本背景技術では、液体で満たされた容器内部に複数の模擬燃料が収納され、試験容器の外側に設置された加振器と試験容器内の模擬燃料を治具で接続した加振機構を備えている。本技術により、加振機によって試験容器内の模擬燃料を直接加振し、燃料に所望の振動を発生させることを試みている。
Another example of a control rod insertion property seismic test apparatus is disclosed in Non-Patent Document 1. In this background art, a plurality of simulated fuels are stored inside a liquid-filled container, and an excitation mechanism installed outside the test container is connected to the simulated fuel in the test container with a jig. ing. With this technology, an attempt is made to generate a desired vibration in the fuel by directly oscillating the simulated fuel in the test vessel with a vibrator.

特開2012-8085号公報JP 2012-8085 JP

Watanabe, Y., and Motora, Y., “Analysis of CR scrammability characteristics on the condition of the forced vibration of fuel assemblies”, Trans. Int. Conf. Struct. Mech. React. Technol., Vol.7th, No.F, (1983), pp.357-364.Watanabe, Y., and Motora, Y., “Analysis of CR scrammability characteristics on the condition of the forced vibration of fuel assemblies”, Trans. Int. Conf. Struct. Mech. React. Technol., Vol. 7th, No. F, (1983), pp.357-364.

特許文献1の制御棒挿入性耐震試験装置では、複数の加振機が試験容器に接続されているものの、加振方向は一方向に限られている。非特許文献1の制御棒挿入性耐震試験装置では、複数の模擬燃料が一組の加振機と治具により加振される。この場合も、各燃料の加振方向は一方向に限られる。   In the control rod insertion-type seismic test apparatus of Patent Document 1, although a plurality of shakers are connected to the test container, the excitation direction is limited to one direction. In the control rod insertion-type seismic test apparatus of Non-Patent Document 1, a plurality of simulated fuels are vibrated by a set of vibrators and jigs. Also in this case, the excitation direction of each fuel is limited to one direction.

原子炉は型式によって燃料の形状・炉内への配置・設置間隔が異なる。これにより、原子炉の型式によっては地震時に燃料同士の接触が生じ、各々の燃料には異なる方向・振幅の振動が発生する可能性がある。この影響が顕著な場合は、各々の燃料を異なる方向・振幅で振動させた状態での制御棒の挿入試験により、評価の信頼性が向上する。   Reactors have different fuel shapes, placement in the reactor, and installation intervals depending on the model. As a result, depending on the type of the reactor, fuels may contact each other during an earthquake, and vibrations with different directions and amplitudes may occur in each fuel. If this effect is significant, the reliability of the evaluation is improved by a control rod insertion test in a state where each fuel is vibrated in different directions and amplitudes.

本発明の目的は、試験容器内の燃料には、水平方向に接続された複数の加振機によって水平面内の振動を発生させることである。   An object of the present invention is to cause a fuel in a test vessel to generate a vibration in a horizontal plane by a plurality of vibrators connected in a horizontal direction.

本発明は、原子炉内の燃料を模擬した模擬燃料、前記模擬燃料の間隙に挿入される制御棒、各々の前記模擬燃料に接続治具を介して接続された複数の加振機、前記加振機に固定された反力壁を備えることを特徴とする。
The present invention includes a simulated fuel simulating a fuel in a nuclear reactor, a control rod inserted in a gap between the simulated fuels, a plurality of vibrators connected to each of the simulated fuels via a connecting jig, A reaction force wall fixed to the vibrator is provided.

本発明によれば、試験容器内の燃料には、水平方向に接続された複数の加振機によって水平面内の振動を発生させることができる。
According to the present invention, vibration in the horizontal plane can be generated in the fuel in the test container by the plurality of shakers connected in the horizontal direction.

本発明の実施例1に係る制御棒挿入性耐震試験装置の全体概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the whole schematic diagram of the control-rod insertion property earthquake-proof test apparatus which concerns on Example 1 of this invention. 図1中のA-A断面における断面図である。It is sectional drawing in the AA cross section in FIG. 図2中の加振機80の制御装置の概略図である。It is the schematic of the control apparatus of the vibration exciter 80 in FIG. 図2中の模擬燃料20と接続治具90の結合部周辺の概略図である。FIG. 3 is a schematic view of a periphery of a joint portion between a simulated fuel 20 and a connection jig 90 in FIG. 2. 実施例2に係る模擬燃料20、接続治具90、および加振器80の概略図である。FIG. 6 is a schematic diagram of a simulated fuel 20, a connection jig 90, and a vibrator 80 according to a second embodiment. 実施例3に係る模擬燃料20、接続治具90、および加振器80の概略図である。FIG. 6 is a schematic view of a simulated fuel 20, a connection jig 90, and a vibration exciter 80 according to a third embodiment. 実施例4に係る制御棒挿入性耐震試験装置の断面図である。It is sectional drawing of the control-rod insertion property earthquake resistance test apparatus which concerns on Example 4. FIG.

本発明は、原子力発電施設の原子炉で利用される制御棒の炉心への挿入機能の耐震性を試験する装置に関する。以下、各実施例について、図面を参照しながら説明する。   The present invention relates to an apparatus for testing the seismic resistance of a function of inserting a control rod into a core used in a nuclear power plant nuclear reactor. Hereinafter, each example will be described with reference to the drawings.

本実施例を図1〜図4により説明する。図1は本実施例による制御棒挿入性耐震試験装置の全体概略図を示す図で、図2は図1中のA-A断面による断面図、図3は図2中の加振機80の制御装置の概略図、図4は図2中の模擬燃料20と接続治具90の結合部周辺の概略図である。本実施例は、沸騰水型原子炉を対象としている。   This embodiment will be described with reference to FIGS. 1 is a diagram showing an overall schematic diagram of a control rod insertion seismic test apparatus according to this embodiment, FIG. 2 is a cross-sectional view taken along section AA in FIG. 1, and FIG. 3 is a control apparatus for a vibrator 80 in FIG. FIG. 4 is a schematic view of the vicinity of the joint between the simulated fuel 20 and the connecting jig 90 in FIG. This embodiment is directed to a boiling water reactor.

試験容器10の内部には、原子炉内の燃料を模擬した模擬燃料20、模擬燃料20間の十字断面の間隙に挿入される制御棒30、模擬燃料20を設置する燃料支持金具40、燃料支持金具40を設置し、原子炉内の炉心支持板の一部を模擬した模擬炉心支持板50、模擬燃料20の上部を支持し、原子炉内の上部格子板の一部を模擬した模擬上部格子板60、および非挿入時の制御棒30が収められている案内管70が設置されている。試験の対象は沸騰水型原子炉の炉心構造の1セル分のため、試験体は、模擬燃料20は4体、制御棒30・燃料支持金具40・案内管70は各1体で構成される。各模擬燃料20には、接続治具90を介して加振機80が接続され、加振機80は反力壁100に固定されている。案内管70の下端には制御棒駆動機構ハウジング71が接続され、制御棒駆動機構が内包されている。さらに制御棒駆動機構にはスクラム配管72を介して制御棒の駆動エネルギーを供給する水圧制御ユニット(図示せず)が接続されている。実機の環境を模擬するため、試験容器10は水で満たされており、試験容器10に接続されたポンプ110とヒータ120によって内部水は実機と同様の高温・高圧状態に保たれる。   Inside the test vessel 10, a simulated fuel 20 that simulates the fuel in the nuclear reactor, a control rod 30 that is inserted into a cross-sectional gap between the simulated fuels 20, a fuel support bracket 40 for installing the simulated fuel 20, and a fuel support A metal fitting 40 is installed, a simulated core support plate 50 that simulates a part of the core support plate in the reactor, and an upper part of the simulated fuel 20, and a simulated upper lattice that simulates a part of the upper grid plate in the reactor. A guide tube 70 in which the plate 60 and the non-inserted control rod 30 are housed is installed. Since the test target is one cell of the core structure of the boiling water reactor, the test body is composed of four simulated fuels 20 and one control rod 30, fuel support bracket 40, and guide tube 70 each. . Each simulated fuel 20 is connected to a shaker 80 via a connection jig 90, and the shaker 80 is fixed to the reaction force wall 100. A control rod drive mechanism housing 71 is connected to the lower end of the guide tube 70 and contains the control rod drive mechanism. Further, a water pressure control unit (not shown) for supplying drive energy of the control rod is connected to the control rod drive mechanism via a scram pipe 72. In order to simulate the environment of the actual machine, the test container 10 is filled with water, and the internal water is maintained at the same high temperature and high pressure as the actual machine by the pump 110 and the heater 120 connected to the test container 10.

図2は、図1中のA-A断面における断面図である。この図に示すように、模擬燃料20には接続治具90を介して加振機80が接続される。模擬燃料20に地震時の振動挙動により近い水平面内の振動を発生させるため、1体の模擬燃料20に対して複数の加振機80が水平方向に接続される。さらに、各々の燃料を異なる方向・振幅で振動させた状態での制御棒の挿入試験が可能なように、各々の模擬燃料20に対して、複数の加振機80が接続治具90を介して水平方向に接続される。   FIG. 2 is a cross-sectional view taken along the line AA in FIG. As shown in this figure, a vibration exciter 80 is connected to the simulated fuel 20 via a connection jig 90. In order to cause the simulated fuel 20 to generate a vibration in a horizontal plane that is closer to the vibration behavior at the time of the earthquake, a plurality of vibrators 80 are connected to the single simulated fuel 20 in the horizontal direction. Further, a plurality of vibrators 80 are connected to each simulated fuel 20 via connecting jigs 90 so that the control rod insertion test can be performed in a state where each fuel is vibrated in different directions and amplitudes. Connected horizontally.

図3は、図2中の加振機の制御装置の概要図である。制御装置130は、処理装置(例えばCPU)と記憶装置を備えたコンピュータであり、各加振機80の変位を制御する。制御棒挿入性の耐震試験の際は、例えば数値シミュレーションによって、対象としている原子炉内炉心構造の振動解析をあらかじめ実施し、燃料群の振動応答変位を計算しておく。振動応答変位の計算結果の中から、評価対象に設定されたセルを構成する4体の燃料の振動応答変位を抽出する。この振動応答変位を試験体である4体の模擬燃料20に発生させる変位、すなわち試験での目標変位として設定する。制御装置130は4体の模擬燃料が目標変位となるように各加振機80をそれぞれ制御する。   FIG. 3 is a schematic diagram of the vibration exciter control device in FIG. The control device 130 is a computer including a processing device (for example, a CPU) and a storage device, and controls the displacement of each vibrator 80. In the case of the control rod insertion seismic test, vibration analysis of the target reactor core structure is performed in advance, for example, by numerical simulation, and the vibration response displacement of the fuel group is calculated. From the vibration response displacement calculation results, the vibration response displacements of the four fuels constituting the cell set as the evaluation target are extracted. This vibration response displacement is set as a displacement generated in the four simulated fuels 20 as test bodies, that is, a target displacement in the test. The control device 130 controls each of the vibrators 80 so that the four simulated fuels have the target displacement.

図4は、図2中の模擬燃料20と接続治具90の結合部周辺の概略図を示したものである。本実施例に係る接続治具90は、ガイド構造の可動部140を備え、この可動部140を介して模擬燃料20に接続されている。ガイド構造の可動部140は、別に接続された加振機の加振方向に案内し、加振直角方向に可動し、回転動を拘束することにより達成される。例えば、図4中のX軸方向に接続された加振機の場合、可動部140はY軸方向に可動できるため、Y軸方向に接続された加振機によって与えられた模擬燃料20の振動変位を吸収しながら、加振機の振動を模擬燃料20に伝達する。本実施例によれば、試験容器内の燃料には、水平方向に接続された複数の加振機によって水平面内の振動を発生させることができる。さらに、各々の燃料に別々の加振機が接続されているため、各燃料に異なる方向・振幅の振動を発生させることができる。   FIG. 4 is a schematic view of the vicinity of the joint portion between the simulated fuel 20 and the connection jig 90 in FIG. The connection jig 90 according to the present embodiment includes a movable portion 140 having a guide structure, and is connected to the simulated fuel 20 via the movable portion 140. The movable part 140 of the guide structure is achieved by guiding in the vibration direction of a separately connected vibration exciter, moving in the vibration right-angle direction, and restraining the rotational movement. For example, in the case of the shaker connected in the X-axis direction in FIG. 4, the movable portion 140 can move in the Y-axis direction, and therefore the vibration of the simulated fuel 20 provided by the shaker connected in the Y-axis direction. The vibration of the shaker is transmitted to the simulated fuel 20 while absorbing the displacement. According to the present embodiment, the fuel in the test container can generate vibrations in the horizontal plane by the plurality of vibrators connected in the horizontal direction. Furthermore, since a separate vibrator is connected to each fuel, vibrations with different directions and amplitudes can be generated in each fuel.

図5は、本実施例に係る模擬燃料20、接続治具90、および加振器80の鉛直方向概略図である。本実施例に係る接続治具90は、模擬燃料20に接続される側の構造が鉛直方向に二股構造となっており、これにより模擬燃料20の鉛直方向の2ヵ所を加力できる。模擬燃料20は、その上下端を模擬上部格子板60と燃料支持金具40により支持されているため、鉛直方向の2ヵ所を加力されると、4点曲げ状態となる。実施例1に係る接続治具90は、鉛直方向において模擬燃料20の1ヶ所を加力する構造であるため、模擬燃料20は3点曲げ状態となる。地震時の燃料には慣性力が作用し、質量分布がほぼ均一な燃料には等分布荷重が作用する。この場合、燃料に発生する曲げモーメントの分布は放物線状となる。一方、模擬燃料20に作用する曲げモーメント分布は、3点曲げの場合は三角形状、4点曲げの場合は台形状となる。一般に、放物線状の曲げモーメント分布については、三角形状の曲げモーメント分布によるよりも、台形状の曲げモーメント分布による方がよく近似できることから、地震時に作用する曲げモーメント分布をより精度よく模擬するためには、模擬燃料20を4点曲げ状態にできる実施例2が有利となる。   FIG. 5 is a schematic diagram in the vertical direction of the simulated fuel 20, the connection jig 90, and the vibrator 80 according to the present embodiment. In the connection jig 90 according to the present embodiment, the structure on the side connected to the simulated fuel 20 has a bifurcated structure in the vertical direction, so that two places in the vertical direction of the simulated fuel 20 can be applied. Since the upper and lower ends of the simulated fuel 20 are supported by the simulated upper lattice plate 60 and the fuel support fitting 40, when two vertical positions are applied, the simulated fuel 20 is in a four-point bending state. Since the connection jig 90 according to the first embodiment has a structure in which one place of the simulated fuel 20 is applied in the vertical direction, the simulated fuel 20 is in a three-point bent state. Inertial forces act on the fuel during an earthquake, and evenly distributed loads act on fuel with a nearly uniform mass distribution. In this case, the distribution of the bending moment generated in the fuel is parabolic. On the other hand, the bending moment distribution acting on the simulated fuel 20 has a triangular shape in the case of three-point bending and a trapezoidal shape in the case of four-point bending. In general, the parabolic bending moment distribution can be approximated better by the trapezoidal bending moment distribution than by the triangular bending moment distribution, so that the bending moment distribution acting during an earthquake can be simulated more accurately. The second embodiment is advantageous because the simulated fuel 20 can be bent at four points.

図6は、本実施例に係る模擬燃料20、接続治具90、および加振器80の鉛直方向概略図である。本実施例に係る模擬燃料20には、鉛直方向に配置された複数の加振機80が接続治具90を介して接続されている。模擬燃料20は鉛直方向に配置された複数の加振機80によって加力されるため、模擬燃料20は他点加力による曲げ状態となり、地震時に作用する曲げモーメント分布をより精度よく模擬できる。また、加力点1か所あたりに必要な荷重を小さくできるため、接続治具90を剛性の小さい軽量構造とできることや、加振機の容量を小さくできるという利点がある。   FIG. 6 is a schematic diagram in the vertical direction of the simulated fuel 20, the connection jig 90, and the vibrator 80 according to the present embodiment. A plurality of vibrators 80 arranged in the vertical direction are connected to the simulated fuel 20 according to the present embodiment via connection jigs 90. Since the simulated fuel 20 is energized by a plurality of vibrators 80 arranged in the vertical direction, the simulated fuel 20 is in a bending state due to other-point excitation, and the bending moment distribution acting during an earthquake can be simulated more accurately. Further, since the load required per one point of application can be reduced, there is an advantage that the connection jig 90 can be a lightweight structure with low rigidity and the capacity of the vibration exciter can be reduced.

図7は、本実施例に係る制御棒挿入性耐震試験装置の断面図である。本実施例は、次世代型沸騰水型原子炉を対象としている。この原子炉の実施例1との違いは、模擬燃料20の断面形状が六角形であること、制御棒30の断面形状がY字型であること、および1セルを構成する燃料の数が3体であることである。この図に示すように、実施例1と同様に、模擬燃料20には接続治具90を介して加振機80が接続される。模擬燃料20に地震時の振動挙動により近い水平面内の振動を発生させるため、1体の模擬燃料20に対して複数の加振機80が水平方向に接続される。さらに、各々の燃料を異なる方向・振幅で振動させた状態での制御棒の挿入試験が可能なように、各々の模擬燃料20に対して、複数の加振機80が接続治具90を介して水平方向に接続される。なお、実施例2〜3は、本実施例にも適用することができる。一般に、原子炉の燃料の構造は長尺構造物であり、制御棒は、1セルを構成する複数の燃料に囲まれた間隙に挿入されるか、あるいは加圧水型原子炉のように各燃料構造の内部に挿入されるという共通点をもつ。このため、試験対象とする原子炉型式が異なると、加振機80や接続治具90の必要数が異なるものの、模擬燃料20の加振方法、接続治具の90の構造、各加振機80の制御方法については同様とできるため、本実施例の制御棒挿入性耐震試験装置は各種の原子炉に適用できる。
FIG. 7 is a cross-sectional view of a control rod insertion seismic test apparatus according to this embodiment. This embodiment is intended for a next-generation boiling water reactor. The differences from the first embodiment of the nuclear reactor are that the cross-sectional shape of the simulated fuel 20 is hexagonal, the cross-sectional shape of the control rod 30 is Y-shaped, and the number of fuels constituting one cell is three. It is to be a body. As shown in this figure, similarly to the first embodiment, a vibration exciter 80 is connected to the simulated fuel 20 via a connection jig 90. In order to cause the simulated fuel 20 to generate a vibration in a horizontal plane that is closer to the vibration behavior at the time of the earthquake, a plurality of vibrators 80 are connected to the single simulated fuel 20 in the horizontal direction. Further, a plurality of vibrators 80 are connected to each simulated fuel 20 via connecting jigs 90 so that the control rod insertion test can be performed in a state where each fuel is vibrated in different directions and amplitudes. Connected horizontally. In addition, Example 2-3 can be applied also to a present Example. Generally, the fuel structure of a nuclear reactor is a long structure, and the control rod is inserted into a gap surrounded by a plurality of fuels constituting one cell, or each fuel structure as in a pressurized water reactor. It has the common point that it is inserted inside the. For this reason, although the required number of shakers 80 and connecting jigs 90 differ depending on the reactor type to be tested, the method for exciting simulated fuel 20, the structure of connecting jig 90, each shaker Since the control method of 80 can be the same, the control rod insertion seismic test apparatus of the present embodiment can be applied to various nuclear reactors.

10 試験容器
20 模擬燃料
30 制御棒
40 燃料支持金具
50 模擬炉心支持板
60 模擬上部格子板
70 案内管
71 制御棒駆動機構ハウジング
72 スクラム配管
80 加振機
90 接続治具
100 反力壁
110 ポンプ
120 ヒータ
130 制御装置
140 可動部
DESCRIPTION OF SYMBOLS 10 Test container 20 Simulated fuel 30 Control rod 40 Fuel support metal fitting 50 Simulated core support plate 60 Simulated upper lattice plate 70 Guide tube 71 Control rod drive mechanism housing 72 Scram piping 80 Exciter 90 Connecting jig 100 Reaction force wall 110 Pump 120 Heater 130 Control device 140 Movable part

Claims (3)

原子炉内の燃料を模擬した模擬燃料、前記模擬燃料の間隙に挿入される制御棒、各々の前記模擬燃料に接続治具を介して接続された複数の加振機、前記加振機に固定された反力壁を備えることを特徴とする制御棒挿入性耐震試験装置。 Simulated fuel simulating fuel in a nuclear reactor, control rods inserted into the gap of the simulated fuel, a plurality of shakers connected to each simulated fuel via a connecting jig, fixed to the shaker A control rod insertion seismic test device characterized by comprising a reaction wall that is provided. 請求項1記載の制御棒挿入性耐震試験装置であって、
前記接続治具の先端にガイド構造の可動部を備えることを特徴とする制御棒挿入性耐震試験装置。
A control rod insertion seismic test device according to claim 1,
A control rod insertion seismic test apparatus comprising a movable part having a guide structure at a tip of the connection jig.
請求項1記載の制御棒挿入性耐震試験装置であって、
前記接続治具の前記模擬燃料に接続される側の構造が鉛直方向に二股構造であることを特徴とする制御棒挿入性耐震試験装置。
A control rod insertion seismic test device according to claim 1,
The control rod insertion seismic test apparatus characterized in that the structure of the connecting jig connected to the simulated fuel has a bifurcated structure in the vertical direction.
JP2014129809A 2014-06-25 2014-06-25 Control rod insertion seismic qualification test device Pending JP2016008892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014129809A JP2016008892A (en) 2014-06-25 2014-06-25 Control rod insertion seismic qualification test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014129809A JP2016008892A (en) 2014-06-25 2014-06-25 Control rod insertion seismic qualification test device

Publications (1)

Publication Number Publication Date
JP2016008892A true JP2016008892A (en) 2016-01-18

Family

ID=55226537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014129809A Pending JP2016008892A (en) 2014-06-25 2014-06-25 Control rod insertion seismic qualification test device

Country Status (1)

Country Link
JP (1) JP2016008892A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632225A (en) * 2018-12-29 2019-04-16 武汉理工大学 A kind of single shaketalle test shearing case considering row wave effect
CN110749407A (en) * 2019-10-29 2020-02-04 唐山市曹妃甸区住房和城乡建设局 System and method for testing low-cycle repeated load anti-seismic performance of composite wall structure
CN114705386A (en) * 2022-02-25 2022-07-05 河海大学 Pseudo-static anti-seismic testing device and method for long and large tunnel structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632225A (en) * 2018-12-29 2019-04-16 武汉理工大学 A kind of single shaketalle test shearing case considering row wave effect
CN110749407A (en) * 2019-10-29 2020-02-04 唐山市曹妃甸区住房和城乡建设局 System and method for testing low-cycle repeated load anti-seismic performance of composite wall structure
CN114705386A (en) * 2022-02-25 2022-07-05 河海大学 Pseudo-static anti-seismic testing device and method for long and large tunnel structure
CN114705386B (en) * 2022-02-25 2024-03-01 河海大学 Quasi-static force anti-seismic test device and test method for long tunnel structure

Similar Documents

Publication Publication Date Title
Frano et al. Isolation systems influence in the seismic loading propagation analysis applied to an innovative near term reactor
JP2016008892A (en) Control rod insertion seismic qualification test device
Forni et al. Seismic isolation of the IRIS nuclear plant
Bläsius et al. Mechanical model for the motion of RPV internals affecting neutron flux noise
KR101349134B1 (en) Bed apparatus for evaluating a seismic performance of a nuclear fuel assembly
Frano Evaluation of the fluid-structure interaction effects in a lead-cooled fast reactor
Kang et al. Structural analysis for the HANARO irradiation capsule through vibration test
Sorensen Energy storage
Kim et al. Development of core seismic analysis models for KNGR fuel assemblies associated with 0.3 g seismic loads
Lo Frano et al. Preliminary assessment of the Fluid-Structure Interaction effects in a GEN IV LMR
Je et al. Optimized assessment of RVIs under pump pulsating conditions
Imbembe Effect of boundary conditions on the modal response of intact surrogate nuclear fuel rods
Zargar et al. Numerical and Experimental Assessment of Fuel Rods Exposed to Vibration Loads during Transportation
Amabili et al. Experiments on Nonlinear Vibrations of a Nuclear Fuel Rod Supported by Spacer Grids in Air and Submerged in Water
Kim et al. A Seismic Analysis for Reflective Metal Insulation
Sun et al. Investigation Into the Influence of Fuel Rods on the Anti-Seismic Mechanical Characteristics of Fuel Assembly Spacer Grid by FEM Method
Ferrari et al. Experimental Characterization of the Nonlinear Boundary Conditions Applied by Two Different Designs of Spacer Grids on PWR Fuel Rods
Frano et al. Structural dynamic evaluation of the effects caused by the core compaction
Ichikawa Test model design for seismic experimental test of PWR reactor components
Martelli et al. Status report on the R and D studies performed in Italy for fast reactor seismic analysis
Dostal Seismic assessment of fast reactors in the UK
HIROSHI et al. Overview Of Nuclear SCCs Seismic Verification 1: Piping And Heavy Components
Nganyi Imbembe EFFECT OF BOUNDARY CONDITIONS ON THE MODAL RESPONSE OF INTACT SURROGATE NUCLEAR FUEL RODS
Collard et al. CEA activities in support of the development and qualification of fuel assemblies
Forasassi et al. Seismic analysis approach applied to a small size Next Generation nuclear reactor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112