JP2016008844A - Nuclear power plant exhaust gas monitoring system - Google Patents

Nuclear power plant exhaust gas monitoring system Download PDF

Info

Publication number
JP2016008844A
JP2016008844A JP2014128266A JP2014128266A JP2016008844A JP 2016008844 A JP2016008844 A JP 2016008844A JP 2014128266 A JP2014128266 A JP 2014128266A JP 2014128266 A JP2014128266 A JP 2014128266A JP 2016008844 A JP2016008844 A JP 2016008844A
Authority
JP
Japan
Prior art keywords
radioactivity
nuclide
reactor structure
water level
multiplication factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014128266A
Other languages
Japanese (ja)
Other versions
JP6249889B2 (en
JP2016008844A5 (en
Inventor
航治 松本
Koji Matsumoto
航治 松本
祐 鳥谷部
Yu Toyabe
祐 鳥谷部
均 桑原
Hitoshi Kuwabara
均 桑原
博見 丸山
Hiromi Maruyama
博見 丸山
近藤 貴夫
Takao Kondo
貴夫 近藤
暁之 土屋
Akiyuki Tsuchiya
暁之 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2014128266A priority Critical patent/JP6249889B2/en
Publication of JP2016008844A publication Critical patent/JP2016008844A/en
Publication of JP2016008844A5 publication Critical patent/JP2016008844A5/ja
Application granted granted Critical
Publication of JP6249889B2 publication Critical patent/JP6249889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PROBLEM TO BE SOLVED: To provide a nuclear power plant exhaust gas monitoring system capable of acquiring a fluctuation distribution of a neutron multiplication factor corresponding to a change in a water level within a reactor structure.SOLUTION: A nuclear power plant exhaust gas monitoring system for monitoring FP gas discharged from a reactor structure 1, comprises: a radioactivity measuring device 6 measuring the radioactivity of a first nuclide and the radioactivity of a second nuclide for FP gas discharged from the reactor structure 1 whenever a water level within the reactor structure 1 rises; and a neutron multiplication factor distribution estimation device 7 computing a ratio α of the radioactivity of the first nuclide measured by the radioactivity measuring device 6 to the radioactivity of the second nuclide measured by the radioactivity measuring device 6 per water level within the reactor structure 1, computing a neutron multiplication factor k on the basis of this ratio α, and creating a fluctuation distribution of the neutron multiplication factor k corresponding to a change in the water level within the reactor structure 1.

Description

本発明は、原子炉構造物から排出されたFPガスを監視する原子力プラントの排ガス監視システムに関する。   The present invention relates to an exhaust gas monitoring system for a nuclear power plant that monitors FP gas discharged from a nuclear reactor structure.

過酷事故を起こした原子力プラントでは、原子炉内の核燃料が溶融し、原子炉内に設置された核計装系も破損して、原子炉内の状態を監視できない事態が生じる可能性がある。健全な炉心の反応度を測定する場合(具体的には、燃料装荷時や原子炉起動時の臨界近接)には、中性子検出器を主に用いる。しかし、過酷事故を起こした原子力プラントでは、原子炉への接近が制限され、中性子検出器を設置できない状況にある。そこで、原子炉構造物から排出されたFPガス(核分裂生成ガス)が、原子炉構造物内の状態を知る手がかりとなる。   In a nuclear power plant that has caused a severe accident, the nuclear fuel in the nuclear reactor may melt, the nuclear instrumentation system installed in the nuclear reactor may be damaged, and a situation in which the state inside the nuclear reactor cannot be monitored may occur. When measuring the reactivity of a sound core (specifically, when the fuel is loaded or when the reactor is in critical proximity), a neutron detector is mainly used. However, nuclear power plants that have caused severe accidents are in a situation where access to the reactor is limited and neutron detectors cannot be installed. Therefore, the FP gas (fission product gas) discharged from the reactor structure is a clue to know the state in the reactor structure.

ここで、原子炉構造物から排出されたFPガスにおける2つの核種(133Xe,88Kr)の生成量の比率Rを測定値から求め、この比率Rに基づき中性子増倍率kを推定する方法が提唱されている(例えば特許文献1参照)。特許文献1では、下記の数式1を用いて、2つの核種の生成量の比率Rから中性子増倍率kを推定している。式中のγ88Kr,SFは核燃料物質(Cm)の自発核分裂(SF:Spontaneous Fission)による核種(88Kr)の核分裂収率、γ88Kr,NFは核燃料物質(U)の誘起核分裂(NF:Neutron Induced Fission)による核種(88Kr)の核分裂収率である。また、γ133Xe,SFは核燃料物質(Cm)の自発核分裂による核種(133Xe)の核分裂収率、γ133Xe,NFは核燃料物質(U)の誘起核分裂による核種(133Xe)の核分裂収率である。 Here, a method has been proposed in which the ratio R of the production amount of two nuclides (133Xe, 88Kr) in the FP gas discharged from the reactor structure is obtained from the measured value, and the neutron multiplication factor k is estimated based on this ratio R. (For example, refer to Patent Document 1). In Patent Document 1, the following formula 1 is used to estimate the neutron multiplication factor k from the ratio R of the production amounts of two nuclides. Γ 88Kr, SF in the formula is the fission yield of the nuclide (88Kr) by spontaneous fission (SF) of the nuclear fuel material (Cm), and γ 88Kr, NF is the induced fission (NF: Neutron Induced) of the nuclear fuel material (U). Fission) is the fission yield of the nuclide (88 Kr). Further, γ 133Xe, SF is the fission yield of the nuclide (133Xe) by spontaneous fission of the nuclear fuel material (Cm), and γ 133Xe, NF is the fission yield of the nuclide (133Xe) by the induced fission of the nuclear fuel material (U).

Figure 2016008844
Figure 2016008844

特開2013−257209号公報JP 2013-257209 A

原子炉構造物からの溶融燃料(燃料デブリ)の取出しに際して、溶融燃料の反応度や、溶融燃料がどのように分布しているかを知ることは、溶融燃料の取出し作業計画を立案するために重要である。   When extracting molten fuel (fuel debris) from a reactor structure, knowing the reactivity of the molten fuel and how the molten fuel is distributed is important for planning a molten fuel removal operation plan. It is.

ところで、溶融燃料の取出し作業では、γ線を遮蔽する目的で、原子炉構造物内に水張りを行う必要がある。水張りの工程では、原子炉構造物内の水位が上昇し、元々気中に存在していた溶融燃料が水を被るようになる。溶融燃料が水を被れば、中性子との反応が促進され、中性子増倍率が増大する。そこで、本願発明者らは、水張りを利用すれば、水位の変化に対応する中性子増倍率の変動分布を取得でき、溶融燃料の反応度や分布を推定できることに気がついた。   By the way, in the operation of taking out the molten fuel, it is necessary to fill the reactor structure with water for the purpose of shielding γ rays. In the water filling process, the water level in the nuclear reactor structure rises, and the molten fuel originally present in the air is covered with water. If the molten fuel is covered with water, the reaction with neutrons is promoted and the neutron multiplication factor is increased. Therefore, the inventors of the present application have found that if water filling is used, the fluctuation distribution of the neutron multiplication factor corresponding to the change in the water level can be obtained, and the reactivity and distribution of the molten fuel can be estimated.

本発明の目的は、原子炉構造物内の水位の変化に対応する中性子増倍率の変動分布を取得できる原子力プラントの排ガス監視システムを提供することにある。   An object of the present invention is to provide an exhaust gas monitoring system for a nuclear power plant capable of acquiring a fluctuation distribution of a neutron multiplication factor corresponding to a change in a water level in a nuclear reactor structure.

上記目的を達成するために、本発明は、原子炉構造物から排出されたFPガスを監視する原子力プラントの排ガス監視システムにおいて、注水装置の断続的な注水によって前記原子炉構造物内の水位が上昇する度に、前記原子炉構造物から排出されたFPガスに対し、第1核種の放射能及び第2核種の放射能を測定する放射能測定装置と、前記原子炉構造物内の水位毎に、前記放射能測定装置で測定された第1核種の放射能と第2核種の放射能との比を演算し、この比に基づき中性子増倍率を演算して、前記原子炉構造物内の水位の変化に対応する中性子増倍率の変動分布を作成する中性子増倍率分布推定装置と、を備える。   In order to achieve the above object, the present invention provides an exhaust gas monitoring system for a nuclear power plant that monitors FP gas discharged from a nuclear reactor structure, and the water level in the nuclear reactor structure is adjusted by intermittent water injection of a water injection device. A radioactivity measuring device that measures the radioactivity of the first nuclide and the radioactivity of the second nuclide with respect to the FP gas discharged from the reactor structure each time it rises, and for each water level in the reactor structure And calculating the ratio between the radioactivity of the first nuclide and the radioactivity of the second nuclide measured by the radioactivity measuring device, and calculating the neutron multiplication factor based on this ratio, A neutron multiplication factor distribution estimation device that creates a fluctuation distribution of neutron multiplication factors corresponding to changes in the water level.

本発明によれば、原子炉構造物内の水位の変化に対応する中性子増倍率の変動分布を取得できる。   According to the present invention, the fluctuation distribution of the neutron multiplication factor corresponding to the change of the water level in the nuclear reactor structure can be acquired.

本発明の第1の実施形態における原子力プラントの排ガス監視システムの構成を、原子炉構造物及び注水装置とともに表すブロック図である。It is a block diagram showing the structure of the exhaust gas monitoring system of the nuclear power plant in the 1st Embodiment of this invention with a nuclear reactor structure and a water injection apparatus. 本発明の第1の実施形態における2つの核種の放射能比と中性子増倍率との関係式である線形関数を説明するための図である。It is a figure for demonstrating the linear function which is a relational expression of the radioactivity ratio of two nuclides and the neutron multiplication factor in the 1st Embodiment of this invention. 本発明の第1の実施形態における中性子増倍率分布の表示の具体例を表す図である。It is a figure showing the specific example of the display of the neutron multiplication factor distribution in the 1st Embodiment of this invention. 本発明の第2の実施形態における原子力プラントの排ガス監視システムの構成を、原子炉構造物及び注水装置とともに表すブロック図である。It is a block diagram showing the structure of the exhaust gas monitoring system of the nuclear power plant in the 2nd Embodiment of this invention with a nuclear reactor structure and a water injection apparatus.

本発明の第1の実施形態を、図1により説明する。   A first embodiment of the present invention will be described with reference to FIG.

図1は、本実施形態における原子力プラントの排ガス監視システムの構成を、原子炉構造物及び注水装置とともに表すブロック図である。なお、この図1においては、原子炉構造物内の水張りが完了した状態を示している。   FIG. 1 is a block diagram illustrating the configuration of an exhaust gas monitoring system for a nuclear power plant according to the present embodiment, together with a nuclear reactor structure and a water injection device. In addition, in this FIG. 1, the state which water filling in the nuclear reactor structure was completed is shown.

本実施形態では、原子炉構造物1(詳細には、原子炉圧力容器又は原子炉格納容器等)内に、例えば溶融燃料(燃料デブリ)2A,2Bが存在している場合を想定している。そして、原子炉構造物1内の水張りを行うため、注水装置3を設けている。注水装置3は、注水部4及び水位演算部5を備えている。   In the present embodiment, it is assumed that, for example, molten fuel (fuel debris) 2A, 2B exists in the reactor structure 1 (specifically, a reactor pressure vessel or a reactor containment vessel). . And in order to perform the water filling in the nuclear reactor structure 1, the water injection apparatus 3 is provided. The water injection device 3 includes a water injection unit 4 and a water level calculation unit 5.

注水部4は、詳細を図示しないが、例えば、原子炉構造物1に配管等を介して水を注入するポンプと、このポンプを制御するポンプ制御部とを有している。ポンプ制御部は、まず、ポンプを所定の時間だけ駆動させて、原子炉構造物1内の水位を所定の間隔ΔHだけ上昇させる。その後、原子炉構造物1内の水位の上昇に伴い溶融燃料が水を被って中性子との反応が促進される場合を想定し、その反応が定常状態となるための待機時間を考慮して、ポンプを所定の時間だけ停止させる。このようなポンプの駆動と停止を交互に繰返して、原子炉構造物1への注水を断続的に行うようになっている。   Although not shown in detail, the water injection unit 4 includes, for example, a pump that injects water into the nuclear reactor structure 1 via a pipe and the like, and a pump control unit that controls the pump. First, the pump controller drives the pump for a predetermined time to raise the water level in the reactor structure 1 by a predetermined interval ΔH. Thereafter, assuming that the molten fuel is covered with water as the water level in the reactor structure 1 rises and the reaction with neutrons is promoted, considering the waiting time for the reaction to reach a steady state, Stop the pump for a predetermined time. Such pump drive and stop are alternately repeated to intermittently inject water into the reactor structure 1.

水位演算部5は、注水部4からのポンプON/OFF情報(言い換えれば、注水ON/OFF情報)に応じて、ポンプの注水量及び原子炉構造物1の形状に基づき、原子炉構造物1内の水位を演算するようになっている。   The water level calculation part 5 is based on the pump ON / OFF information from the water injection part 4 (in other words, the water injection ON / OFF information), based on the water injection amount of the pump and the shape of the reactor structure 1. The water level inside is calculated.

また、本実施形態では、原子炉構造物1から排出されたFPガスを監視する排ガス監視システムを構成するものとして、放射能測定装置6及び中性子増倍率分布推定装置7を設けている。   Moreover, in this embodiment, the radioactivity measuring apparatus 6 and the neutron multiplication factor distribution estimation apparatus 7 are provided as what constitutes an exhaust gas monitoring system for monitoring the FP gas discharged from the nuclear reactor structure 1.

放射能測定装置6は、γ線検出器8、放射能演算部9、及び放射能表示部10を備えている。γ線検出器8は、例えば原子炉構造物1から配管を介して排出されたFPガスを一時的に滞留させるガスチェンバーに設けられており、原子炉構造物1から排出されたFPガスのγ線エネルギースペクトルを随時検出する。   The radioactivity measurement device 6 includes a γ-ray detector 8, a radioactivity calculation unit 9, and a radioactivity display unit 10. The γ-ray detector 8 is provided, for example, in a gas chamber that temporarily retains the FP gas discharged from the reactor structure 1 through a pipe, and γ of the FP gas discharged from the reactor structure 1 is provided. The line energy spectrum is detected at any time.

放射能演算部9は、γ線検出器8で検出されたγ線エネルギースペクトルに基づき、原子炉構造物1から排出されたFPガスにおける第1核種(本実施形態では88Kr)の放射能及び第2核種(本実施形態では135Xe)の放射能を随時演算し、それらを放射能表示部10及び中性子増倍率分布推定装置7に出力する。放射能表示部10は、例えば第1核種の放射能及び第2核種の放射能の経時変化(タイムチャート)を表示するようになっている。   The radioactivity calculator 9 is based on the γ-ray energy spectrum detected by the γ-ray detector 8, and the radioactivity of the first nuclide (88 Kr in this embodiment) in the FP gas discharged from the reactor structure 1 and the first The radioactivity of the two nuclides (135Xe in this embodiment) is calculated as needed, and these are output to the radioactivity display unit 10 and the neutron multiplication factor distribution estimation device 7. The radioactivity display unit 10 displays, for example, changes over time (time chart) of radioactivity of the first nuclide and radioactivity of the second nuclide.

中性子増倍率分布測定装置7は、データ収録部11、放射能比演算部12、線形関数記憶部13、中性子増倍率演算部14、中性子増倍率分布作成部15、及び中性子増倍率表示部16(ディスプレイ)を備えている。   The neutron multiplication factor distribution measuring device 7 includes a data recording unit 11, a radioactivity ratio calculation unit 12, a linear function storage unit 13, a neutron multiplication factor calculation unit 14, a neutron multiplication factor distribution creation unit 15, and a neutron multiplication factor display unit 16 ( Display).

データ収録部11は、注水装置3の注水部4から注水ON/OFF情報を入力し、注水装置3の水位演算部5から原子炉構造物1の水位情報を入力し、放射能測定装置6の放射能演算部9から第1核種の放射能及び第2核種の放射能を入力するようになっている。そして、まず、原子炉構造物1内の水位の変化前に原子炉構造物1から排出されたFPガスにおける第1核種の放射能及び第2核種の放射能の経時変化を一時的に記憶し、それらの単位時間当たりの変化量を基準として許容範囲を設定する。その後、原子炉構造物1内の水位の変化後に原子炉構造物1から排出されたFPガスにおける第1核種の放射能及び第2核種の放射能の経時変化(言い換えれば、注水ONからOFFへの切替情報を入力してから所定時間が経過した後に測定された第1核種の放射能及び第2核種の放射能の経時変化)を一時的に記憶し、それらの単位時間当たりの変化量が許容範囲内にあるか否かを判定する。許容範囲内にあると判定した場合に(言い換えれば、定常状態にあると判定した場合に)、それらの単位時間当たりの平均値を演算し、対応する原子炉構造物1内の水位と関連付けて収録する。   The data recording unit 11 inputs water injection ON / OFF information from the water injection unit 4 of the water injection device 3, inputs water level information of the nuclear reactor structure 1 from the water level calculation unit 5 of the water injection device 3, and The radioactivity calculation unit 9 inputs the radioactivity of the first nuclide and the radioactivity of the second nuclide. First, temporal changes in the radioactivity of the first nuclide and the radioactivity of the second nuclide in the FP gas discharged from the reactor structure 1 before the change of the water level in the reactor structure 1 are temporarily stored. The allowable range is set based on the amount of change per unit time. Thereafter, the radioactivity of the first nuclide and the radioactivity of the second nuclide in the FP gas discharged from the reactor structure 1 after the change of the water level in the reactor structure 1 (in other words, from water injection ON to OFF) The time-dependent changes in the radioactivity of the first nuclide and the radioactivity of the second nuclide measured after a predetermined time has passed since the switch information was input, and the amount of change per unit time is It is determined whether it is within the allowable range. When it is determined that it is within the allowable range (in other words, when it is determined that it is in a steady state), the average value per unit time is calculated and associated with the water level in the corresponding reactor structure 1 Record.

放射能比演算部12は、データ収録部11で収録された原子炉構造物1内の水位毎に、対応する第1核種の放射能と第2核種の放射能との比αを演算する。線形関数記憶部13は、放射能比αと中性子増倍率kとの関係式である一次近似式(線形関数)を記憶しており、中性子増倍率演算部14は、その線形関数を用いて、放射能比演算部12で演算された放射能比αから中性子増倍率kを演算する。   The radioactivity ratio calculation unit 12 calculates the ratio α between the radioactivity of the first nuclide and the radioactivity of the second nuclide for each water level in the nuclear reactor structure 1 recorded by the data recording unit 11. The linear function storage unit 13 stores a linear approximate expression (linear function) that is a relational expression between the radioactivity ratio α and the neutron multiplication factor k, and the neutron multiplication factor calculation unit 14 uses the linear function, The neutron multiplication factor k is calculated from the radioactivity ratio α calculated by the radioactivity ratio calculation unit 12.

ここで、上述した線形関数について説明する。まず、中性子源強度をSとすれば、中性子増倍率k<1である場合の中性子数Sは、下記の数式2で表せる。 Here, the linear function described above will be described. First, assuming that the neutron source intensity is S 0 , the neutron number S when the neutron multiplication factor k <1 can be expressed by the following Equation 2.

Figure 2016008844
Figure 2016008844

溶融燃料(燃料デブリ)体系の場合、中性子源は、核燃料物質(Cm)の自発核分裂による中性子と、核燃料物質(U)の誘起核分裂による中性子である。核燃料物質(Cm)の自発核分裂による中性子数SSFは、下記の数式3で表せ、核燃料物質(U)の誘起核分裂による中性子数SNFは、下記の数式4で表せる。 In the case of a molten fuel (fuel debris) system, the neutron sources are neutrons from spontaneous fission of nuclear fuel material (Cm) and neutrons from induced fission of nuclear fuel material (U). The neutron number S SF due to the spontaneous fission of the nuclear fuel material (Cm) can be expressed by the following Equation 3, and the neutron number S NF due to the induced fission of the nuclear fuel material (U) can be expressed by the following Equation 4.

Figure 2016008844
Figure 2016008844

Figure 2016008844
Figure 2016008844

また、核燃料物質(Cm)の自発核分裂数FSFは、下記の数式5で表せ、核燃料物質(U)の誘起核分裂数FNFは、下記の数式6で表せる。式中のνSFは自発核分裂当たりの発生中性子数、νNFは誘起核分裂当たりの発生中性子数である。 Further, the spontaneous fission number F SF of the nuclear fuel material (Cm) can be expressed by the following formula 5, and the induced fission number F NF of the nuclear fuel material (U) can be expressed by the following formula 6. In the equation, ν SF is the number of neutrons generated per spontaneous fission, and ν NF is the number of neutrons generated per induced fission.

Figure 2016008844
Figure 2016008844

Figure 2016008844
Figure 2016008844

上述した第1核種及び第2核種を考える。第1核種の核種密度Nは、上記の数式5及び数式6を用いれば、下記の数式7で表せる。同様に、第2核種の核種密度は、上記の数式5及び数式6を用いれば、下記の数式8で表せる。式中のVは原子炉構造物内の気相の容積である。また、λは第1核種の崩壊定数、γA,SFは自発核分裂による第1核種の核分裂収率、γA,NFは誘起核分裂による第1核種の核分裂収率である。また、λは第2核種の崩壊定数、γB,SFは自発核分裂による第2核種の核分裂収率、γB,NFは誘起核分裂による第2核種の核分裂収率である。 Consider the first and second nuclides described above. Nuclide density N A of the first species, the use of Equation 5 and Equation 6 above can be expressed by Equation 7 below. Similarly, the nuclide density of the second nuclide can be expressed by the following equation 8 using the above equations 5 and 6. V in the equation is the volume of the gas phase in the reactor structure. Λ A is the decay constant of the first nuclide, γ A and SF are the fission yield of the first nuclide by spontaneous fission, and γ A and NF are the fission yield of the first nuclide by induced fission. Λ B is the decay constant of the second nuclide, γ B and SF are the fission yield of the second nuclide by spontaneous fission, and γ B and NF are the fission yield of the second nuclide by induced fission.

Figure 2016008844
Figure 2016008844

Figure 2016008844
Figure 2016008844

そして、第1核種の放射能Q(すなわち、第1核種の崩壊定数λと核種密度Nの積)と第2核種の放射能Q(すなわち、第2核種の崩壊定数λと核種密度Nの積)との比αをとれば、上記の数式7及び数式8を用いて、下記の数式9を導き出すことができる。 The radioactivity Q A of the first species (i.e., a product decay constant lambda A and nuclide density N A of the first species) radioactivity Q B and the second species (i.e., the decay constant lambda B of the second species Taking the α ratio of the nuclide product of density N B), using equation 7 and equation 8 above, it is possible to derive the equation 9 below.

Figure 2016008844
Figure 2016008844

そして、上記の数式9を用い、例えば図2で示すように中性子増倍率kと放射能比α(本実施形態では、88Krの放射能と135Xeの放射能との比)の座標系にプロットすれば、放射能比αと中性子増倍率kとの関係式である一次近似式(下記の数式10)を求めることができる。図2の場合は、傾きc=2.055、切片d=−0.111となる。   Then, using Equation 9 above, for example, as shown in FIG. 2, the neutron multiplication factor k and the radioactivity ratio α (in this embodiment, the ratio between 88 Kr radioactivity and 135 Xe radioactivity) are plotted in a coordinate system. For example, a linear approximate expression (Expression 10 below) which is a relational expression between the radioactivity ratio α and the neutron multiplication factor k can be obtained. In the case of FIG. 2, the slope c = 2.555 and the intercept d = −0.111.

Figure 2016008844
Figure 2016008844

このようにして求められた一次近似式(線形関数)が記憶部13に予め記憶されており、中性子増倍率kの演算に用いられる。   The first order approximate expression (linear function) obtained in this way is stored in advance in the storage unit 13 and is used for the calculation of the neutron multiplication factor k.

中性子増倍率分布作成部15は、原子炉構造物1内の水位毎に演算された中性子増倍率kを入力し、原子炉構造物1内の水位の変化に対応する中性子増倍率kの変動分布(以降、中性子増倍率分布という)を作成して、中性子増倍率分布表示部16に出力する。中性子増倍率分布表示部16は、例えば図3で示すような中性子増倍率分布を画面表示するようになっている。   The neutron multiplication factor distribution creating unit 15 inputs the neutron multiplication factor k calculated for each water level in the nuclear reactor structure 1, and the fluctuation distribution of the neutron multiplication factor k corresponding to the change in the water level in the nuclear reactor structure 1. (Hereinafter referred to as neutron multiplication factor distribution) is created and output to the neutron multiplication factor distribution display unit 16. The neutron multiplication factor distribution display unit 16 displays a neutron multiplication factor distribution as shown in FIG. 3, for example.

以上のように本実施形態においては、中性子増倍率分布を取得して表示することができる。したがって、溶融燃料2A,2Bの反応度や分布を推定することができる。   As described above, in the present embodiment, the neutron multiplication factor distribution can be acquired and displayed. Therefore, the reactivity and distribution of the molten fuels 2A and 2B can be estimated.

本発明の第2の実施形態を、図4により説明する。   A second embodiment of the present invention will be described with reference to FIG.

図4は、本実施形態における原子力プラントの排ガス監視システムの構成を、原子炉構造物及び注水装置とともに表すブロック図である。なお、本実施形態において上記第1の実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。   FIG. 4 is a block diagram showing the configuration of the exhaust gas monitoring system for the nuclear power plant in this embodiment, together with the reactor structure and the water injection device. In addition, in this embodiment, the part equivalent to the said 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits description suitably.

本実施形態の中性子増倍率分布推定装置7は、データ収録部11A、放射能補正部17、放射能比演算部12、線形関数記憶部13、中性子増倍率演算部14、中性子増倍率分布作成部15、及び中性子増倍率表示部16を備えている。   The neutron multiplication factor distribution estimation device 7 of this embodiment includes a data recording unit 11A, a radioactivity correction unit 17, a radioactivity ratio calculation unit 12, a linear function storage unit 13, a neutron multiplication factor calculation unit 14, and a neutron multiplication factor distribution creation unit. 15 and a neutron multiplication factor display unit 16.

データ収録部11Aは、上記第1の実施形態のデータ収録部11と同様、注水装置3の注水部4から注水ON/OFF情報を入力し、注水装置3の水位演算部5から原子炉構造物1の水位情報を入力し、放射能測定装置6の放射能演算部9から第1核種(本実施形態では88Kr)の放射能及び第2核種(本実施形態では135Xe)の放射能を入力するようになっている。そして、上記第1の実施形態のデータ収録部11と同様、原子炉構造物1内の水位の変化前に原子炉構造物1から排出されたFPガスにおける第1核種の放射能及び第2核種の放射能の経時変化を一時的に記憶し、それらの単位時間当たりの変化量を基準として許容範囲を設定する。その後、原子炉構造物1内の水位の変化後に原子炉構造物1から排出されたFPガスにおける第1核種の放射能及び第2核種の放射能の経時変化(言い換えれば、注水ONからOFFへの切替情報を入力してから所定時間が経過した後に測定された第1核種の放射能及び第2核種の放射能の経時変化)を一時的に記憶し、それらの単位時間当たりの変化量が許容範囲内にあるか否かを判定する。許容範囲内にあると判定した場合に(言い換えれば、定常状態にあると判定した場合に)、それらの単位時間当たりの平均値を演算し、対応する原子炉構造物1内の水位と関連付けて収録する。   As with the data recording unit 11 of the first embodiment, the data recording unit 11A inputs water injection ON / OFF information from the water injection unit 4 of the water injection device 3 and the reactor structure from the water level calculation unit 5 of the water injection device 3. 1 is input, and the radioactivity of the first nuclide (88 Kr in this embodiment) and the radioactivity of the second nuclide (135 Xe in this embodiment) are input from the radioactivity calculation unit 9 of the radioactivity measuring device 6. It is like that. As in the data recording unit 11 of the first embodiment, the radioactivity of the first nuclide and the second nuclide in the FP gas discharged from the reactor structure 1 before the water level in the reactor structure 1 is changed. Is stored temporarily, and an allowable range is set based on the amount of change per unit time. Thereafter, the radioactivity of the first nuclide and the radioactivity of the second nuclide in the FP gas discharged from the reactor structure 1 after the change of the water level in the reactor structure 1 (in other words, from water injection ON to OFF) The time-dependent changes in the radioactivity of the first nuclide and the radioactivity of the second nuclide measured after a predetermined time has passed since the switch information was input, and the amount of change per unit time is It is determined whether it is within the allowable range. When it is determined that it is within the allowable range (in other words, when it is determined that it is in a steady state), the average value per unit time is calculated and associated with the water level in the corresponding reactor structure 1 Record.

なお、本実施形態では、後述する第2核種(135Xe)の放射能の補正のために、放射能測定装置6の放射能演算部9Aは、核種(135I)の放射能も随時演算し、中性子増倍率分布推定装置7に出力する。そして、データ収録部11Aは、上述した第1核種及び第2核種と同様、核種(135I)の単位時間当たりの平均値を演算し、対応する原子炉構造物1内の水位と関連付けて収録する。   In the present embodiment, in order to correct the radioactivity of the second nuclide (135Xe), which will be described later, the radioactivity calculator 9A of the radioactivity measurement device 6 also calculates the radioactivity of the nuclide (135I) as needed, It outputs to the multiplication factor distribution estimation apparatus 7. Then, the data recording unit 11A calculates the average value per unit time of the nuclide (135I) and records it in association with the water level in the corresponding nuclear reactor structure 1 in the same manner as the first nuclide and the second nuclide described above. .

データ収録部11Aは、第1核種又は第2核種の放射能が所定の変動量より大きく変動したか否かを判定することにより、原子炉構造物1内の水位の上昇に伴い溶融燃料が水を被って中性子との反応が促進されたか否かを判定する。そして、第1核種又は第2核種の放射能が所定の変動量より大きく変動した場合は、注水OFFからONへの切替タイミング(言い換えれば、原子炉構造物1内の水位の変動タイミング)と第1核種又は第2核種の放射能の変動タイミングとの差分から遅れ時間(言い換えれば、FPガスが原子炉構造部1からγ線検出器に到達するまでの時間)を演算し、対応する原子炉構造物1内の水位と関連付けて収録する。なお、遅れ時間が得られなかった水位に対しては、その水位より高い水位で得られた遅れ時間を関連付けるか、それもなければ、その水位より低い水位で得られた遅れ時間を関連付けて収録する。   The data recording unit 11A determines whether or not the radioactivity of the first nuclide or the second nuclide has fluctuated more than a predetermined fluctuation amount, so that the molten fuel becomes water as the water level in the reactor structure 1 rises. It is determined whether the reaction with neutrons has been promoted. When the radioactivity of the first nuclide or the second nuclide fluctuates more than a predetermined fluctuation amount, the switching timing from water injection OFF to ON (in other words, the fluctuation timing of the water level in the reactor structure 1) and the first The delay time (in other words, the time until the FP gas reaches the γ-ray detector from the nuclear reactor structure 1) is calculated from the difference from the radioactivity variation timing of the first nuclide or the second nuclide, and the corresponding reactor Recorded in association with the water level in structure 1. For the water level for which the delay time was not obtained, record the delay time obtained at a higher water level than that level, or if not, record the delay time obtained at a lower water level. To do.

放射能補正部17は、データ収録部11で収録された原子炉構造物1内の水位毎に、対応する遅れ時間に基づき、対応する第1核種の放射能と第2核種の放射能を補正する。すなわち、原子炉構造物1から排出されたFPガスにおける第1核種の放射能及び第2核種の放射能(言い換えれば、測定時の放射能)を、原子炉構造物1内のFPガスにおける第1核種の放射能及び第2核種の放射能(言い換えれば、発生時の放射能)となるように補正する。以下、具体的に説明する。   The radioactivity correction unit 17 corrects the radioactivity of the corresponding first nuclide and the radioactivity of the second nuclide based on the corresponding delay time for each water level in the reactor structure 1 recorded by the data recording unit 11. To do. That is, the radioactivity of the first nuclide and the radioactivity of the second nuclide (in other words, the radioactivity at the time of measurement) in the FP gas discharged from the reactor structure 1 are the same as those in the FP gas in the reactor structure 1. Correction is made so that the radioactivity of the first nuclide and the radioactivity of the second nuclide (in other words, the radioactivity at the time of generation) are obtained. This will be specifically described below.

原子炉構造物1から排出されたFPガスにおける核種(88Kr、135Xe、135I)の核種密度をNKr(t)、NXe(t)、NI(t)とし、原子炉構造物1内のFPガスにおける核種(88Kr、135Xe、135I)の核種密度をNKr(0)、NXe(0)、NI(0)とし、核種(88Kr、135Xe、135I)の崩壊定数をλKr、λXe、λとすれば、下記の数式11〜13が成立する。 The nuclide densities (88 Kr, 135 Xe, 135 I) in the FP gas discharged from the reactor structure 1 are defined as N Kr (t) , N Xe (t) , N I (t), and the inside of the reactor structure 1 The nuclide density in the FP gas (88Kr, 135Xe, 135I) is N Kr (0) , N Xe (0) , N I (0), and the decay constant of the nuclide (88Kr, 135Xe, 135I) is λ Kr , λ Xe, if λ I, formula 11 to 13 of the following is established.

Figure 2016008844
Figure 2016008844

Figure 2016008844
Figure 2016008844

Figure 2016008844
Figure 2016008844

また、上記の数式11〜13にて遅れ時間tで積分すれば、下記の数式14〜16を導きだすことができる。   Further, by integrating with the delay time t in the above mathematical expressions 11 to 13, the following mathematical expressions 14 to 16 can be derived.

Figure 2016008844
Figure 2016008844

Figure 2016008844
Figure 2016008844

Figure 2016008844
Figure 2016008844

そして、原子炉構造物1から排出されたFPガスにおける核種(88Kr、135Xe、135I)の放射能をQKr(t)、QXe(t)、QI(t)とし、原子炉構造物1内のFPガスにおける核種(88Kr、135Xe、135I)の放射能をQKr(0)、QXe(0)、QI(0)とすれば、上記の式14〜16を用いることにより、下記の数式17〜19が成立する。 The radioactivity of the nuclides (88Kr, 135Xe, 135I) in the FP gas discharged from the reactor structure 1 is defined as Q Kr (t) , Q Xe (t) , Q I (t) , and the reactor structure 1 If the radioactivity of nuclides (88Kr, 135Xe, 135I) in the FP gas is Q Kr (0) , Q Xe (0) , Q I (0) , Equations 17 to 19 are established.

Figure 2016008844
Figure 2016008844

Figure 2016008844
Figure 2016008844

Figure 2016008844
Figure 2016008844

放射能演算部17は、上記の数式17〜19を用いて、第1核種(88Kr)の放射能QKr(t)をQKr(0)に補正し、第2核種(135Xe)の放射能QXe(t)をQXe(0)に補正する。そして、放射能比演算部12は、補正された第1核種の放射能と補正された第2核種の放射能との比を演算する。 The radioactivity calculator 17 corrects the radioactivity Q Kr (t) of the first nuclide (88 Kr) to Q Kr (0) using the above equations 17 to 19, and the radioactivity of the second nuclide (135Xe) Q Xe (t) is corrected to Q Xe (0) . The radioactivity ratio calculator 12 calculates the ratio between the corrected radioactivity of the first nuclide and the corrected radioactivity of the second nuclide.

以上のように構成された本実施形態においても、上記第1の実施形態と同様、中性子増倍率分布を取得して表示することができる。したがって、溶融燃料2A,2Bの反応度や分布を推定することができる。また、本実施形態では、上記第1の実施形態と比べ、中性子増倍率の精度を高めることができる。   Also in the present embodiment configured as described above, a neutron multiplication distribution can be acquired and displayed as in the first embodiment. Therefore, the reactivity and distribution of the molten fuels 2A and 2B can be estimated. Moreover, in this embodiment, the precision of a neutron multiplication factor can be improved compared with the said 1st Embodiment.

なお、上記第2の実施形態においては、原子炉構造物1から排出されたFPガスにおける核種(135I)の放射能QI(t)を測定し、原子炉構造物1内のFPガスにおける核種(135I)の放射能QI(0)を演算し、この核種(135I)の放射能QI(0)をパラメータとして含む上記の数式18を用いて、原子炉構造物1内のFPガスにおける核種(135Xe)の放射能QXe(0)を演算する場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、核種(135I)が水溶性であることや、その崩壊定数が核種(135Xe)より小さいことを考慮すれば、数式18の第二項を零に近似してもよい。したがって、原子炉構造物1から排出されたFPガスにおける核種(135I)の放射能QI(t)を測定しなくともよい。この場合も、上記第1の実施形態と比べ、中性子増倍率の精度を高めることができる。 In the second embodiment, the radioactivity Q I (t) of the nuclide (135I) in the FP gas discharged from the reactor structure 1 is measured, and the nuclide in the FP gas in the reactor structure 1 is measured. The radioactivity Q I (0) of (135I ) is calculated, and the above formula 18 including the radioactivity Q I (0) of this nuclide (135I) as a parameter is used to calculate the FP gas in the reactor structure 1 The case where the radioactivity Q Xe (0) of the nuclide (135Xe) is calculated has been described as an example. However, the present invention is not limited to this, and modifications can be made without departing from the spirit and technical idea of the present invention. That is, considering that the nuclide (135I) is water-soluble and its decay constant is smaller than that of the nuclide (135Xe), the second term of Equation 18 may be approximated to zero. Therefore, the radioactivity Q I (t) of the nuclide (135I) in the FP gas discharged from the nuclear reactor structure 1 need not be measured. Also in this case, the accuracy of the neutron multiplication factor can be improved as compared with the first embodiment.

また、上記第2の実施形態においては、中性子増倍率分布推定装置7のデータ収録部11が遅れ時間を演算する場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、例えば放射線測定装置6の放射能表示部10にて第1核種の放射能及び第2核種の放射能の経時変化とともに注水ON/OFFのタイミングを表示し、これに基づいて作業者が遅れ時間を演算して中性子増倍率分布推定装置7に入力してもよい。この場合も、上記同様の効果を得ることができる。   In the second embodiment, the case where the data recording unit 11 of the neutron multiplication factor distribution estimation device 7 calculates the delay time has been described as an example. However, the present invention is not limited to this, and the gist and technical idea of the present invention are described. Modifications can be made without departing from the scope. That is, for example, the radioactivity display unit 10 of the radiation measuring device 6 displays the timing of water injection ON / OFF together with the time-dependent changes in the radioactivity of the first nuclide and the radioactivity of the second nuclide, and the operator is delayed based on this. The time may be calculated and input to the neutron multiplication factor distribution estimation device 7. In this case, the same effect as described above can be obtained.

また、上記第1及び第2の実施形態においては、注水装置3が水位演算部5を有する場合(すなわち、中性子増倍率分布推定装置7が注水装置3から原子炉構造物1内の水位情報を入力する場合)を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、中性子増倍率分布推定装置7が水位演算部5を有してもよい(すなわち、中性子増倍率分布推定装置7が注水装置3から注水ON・OFF情報を入力し、これに基づいて原子炉構造物1内の水位を演算してもよい)。この場合も、上記同様の効果を得ることができる。   Moreover, in the said 1st and 2nd embodiment, when the water injection apparatus 3 has the water level calculating part 5 (that is, the neutron multiplication factor distribution estimation apparatus 7 receives the water level information in the reactor structure 1 from the water injection apparatus 3). However, the present invention is not limited to this, and modifications can be made without departing from the spirit and technical idea of the present invention. That is, the neutron multiplication factor distribution estimation device 7 may have the water level calculation unit 5 (that is, the neutron multiplication factor distribution estimation device 7 inputs water injection ON / OFF information from the water injection device 3 and based on this information, the reactor The water level in the structure 1 may be calculated). In this case, the same effect as described above can be obtained.

また、上記第1及び第2の実施形態においては、中性子増倍率分布を出力する出力部として、中性子増倍率分布を画面表示する表示部16を備える場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、例えば、中性子増倍率分布の画像を印刷するプリンタを備えてもよい。この場合も、上記同様の効果を得ることができる。   Moreover, in the said 1st and 2nd embodiment, although the case where the display part 16 which displays a neutron multiplication distribution on a screen was provided as an example as an output part which outputs a neutron multiplication distribution was demonstrated, it is not restricted to this. Modifications can be made without departing from the spirit and technical idea of the present invention. That is, for example, a printer that prints an image of the neutron multiplication factor distribution may be provided. In this case, the same effect as described above can be obtained.

また、上記第1及び第2の実施形態においては、第1核種として88Krを選定し、第2核種として135Xeを選定した場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、上述した数式9を成立させるために、第1核種として質量数90近傍の核種を選定し、第2核種として質量数135近傍の核種を選定すればよい(具体的には、第2核種として、例えば133Xeを選定してもよい)。但し、選定条件として、好ましくは、長寿命の親核種を持たない、比較的単純な崩壊チェインを持つものがよい。また、好ましくは、第1核種の誘起核分裂の収率γA,NF及び第2核種の誘起核分裂の収率γB,NFが比較的大きく(例えばγA,NF,γB,NF>0.01)、第1核種の誘起核分裂の収率γA,NFと自発核分裂の収率γA,SFとの比が比較的小さく(例えばγA,SF/γA,NF<0.2)、第2核種の誘起核分裂の収率γA,NFと自発核分裂の収率γA,SFとの比が1に近く(例えば0.8<γA,SF/γA,NF<1.2)、第1核種の半減期及び第2核種の半減期が遅れ時間に比べて大きいほうがよい。なお、下記の表1に示すように、第1核種としての88Kr、第2核種としての135Xe又は133Xeは、前述した選定条件を満たしている。 In the first and second embodiments, the case where 88 Kr is selected as the first nuclide and 135 Xe is selected as the second nuclide has been described as an example. However, the present invention is not limited to this, and the gist and technology of the present invention Modifications can be made without departing from the concept. That is, in order to establish the above-described Equation 9, a nuclide near the mass number 90 may be selected as the first nuclide, and a nuclide near the mass number 135 may be selected as the second nuclide (specifically, the second nuclide) For example, 133Xe may be selected). However, the selection conditions are preferably those having a relatively simple decay chain that does not have a long-lived parent nuclide. Preferably, the yield of induced fission γ A, NF of the first nuclide and the yield of induced fission γ B, NF of the second nuclide are relatively large (for example, γ A, NF , γ B, NF > 0. 01), the ratio between the induced fission yield γ A, NF of the first nuclide and the yield γ A, SF of the spontaneous fission is relatively small (for example, γ A, SF / γ A, NF <0.2), The ratio between the induced fission yield γ A, NF of the second nuclide and the yield γ A, SF of the spontaneous fission is close to 1 (for example, 0.8 <γ A, SF / γ A, NF <1.2). The half-life of the first nuclide and the half-life of the second nuclide should be larger than the delay time. As shown in Table 1 below, 88Kr as the first nuclide and 135Xe or 133Xe as the second nuclide satisfy the selection conditions described above.

Figure 2016008844
Figure 2016008844

また、上記第1及び第2の実施形態においては、特に説明しなかったが、中性子増倍率kが1に近い領域において誘起核分裂を考慮する場合や、中性子増倍率kが0に近い領域において自発核分裂を考慮する場合は、核分裂体系の組成から、核種の収率に重みづけをしてもよい。このような変形例においても、上記同様の効果を得ることができる。   Although not specifically described in the first and second embodiments, spontaneous fission is considered when induced fission is considered in a region where the neutron multiplication factor k is close to 1 or in a region where the neutron multiplication factor k is close to 0. When considering fission, the yield of nuclides may be weighted based on the composition of the fission system. Even in such a modification, the same effect as described above can be obtained.

1 原子炉構造物
3 注水装置
6 放射能測定装置
7 中性子増倍率分布推定装置
16 中性子増倍率分布表示部
DESCRIPTION OF SYMBOLS 1 Reactor structure 3 Water injection apparatus 6 Radioactivity measuring apparatus 7 Neutron multiplication factor distribution estimation apparatus 16 Neutron multiplication factor distribution display part

Claims (4)

原子炉構造物から排出されたFPガスを監視する原子力プラントの排ガス監視システムにおいて、
注水装置の断続的な注水によって前記原子炉構造物内の水位が上昇する度に、前記原子炉構造物から排出されたFPガスに対し、第1核種の放射能及び第2核種の放射能を測定する放射能測定装置と、
前記原子炉構造物内の水位毎に、前記放射能測定装置で測定された第1核種の放射能と第2核種の放射能との比を演算し、この比に基づき中性子増倍率を演算して、前記原子炉構造物内の水位の変化に対応する中性子増倍率の変動分布を作成する中性子増倍率分布推定装置と、を備えたことを特徴とする原子力プラントの排ガス監視システム。
In an exhaust gas monitoring system of a nuclear power plant that monitors FP gas discharged from a nuclear reactor structure,
Each time the water level in the reactor structure rises due to intermittent water injection by the water injection device, the radioactivity of the first nuclide and the radioactivity of the second nuclide are applied to the FP gas discharged from the reactor structure. A radioactivity measuring device to measure,
For each water level in the reactor structure, the ratio between the radioactivity of the first nuclide and the radioactivity of the second nuclide measured by the radioactivity measuring device is calculated, and the neutron multiplication factor is calculated based on this ratio. An exhaust gas monitoring system for a nuclear power plant, comprising: a neutron multiplication factor distribution estimation device that creates a fluctuation distribution of a neutron multiplication factor corresponding to a change in a water level in the nuclear reactor structure.
請求項1記載の原子力プラントの排ガス監視システムにおいて、
前記中性子増倍率分布推定装置は、
前記原子炉構造物内の水位の変化後に前記原子炉構造物から排出されたFPガスにおける第1核種の放射能の単位時間当たりの変化量が、前記原子炉構造物内の水位の変化前に前記原子炉構造物から排出されたFPガスにおける第1核種の放射能の単位時間当たりの変化量を基準として設定された許容範囲内にあると判定した場合に、前記原子炉構造物内の水位の変化後に前記原子炉構造物から排出されたFPガスにおける第1核種の放射能の単位時間当たりの平均値を用い、
前記原子炉構造物内の水位の変化後に前記原子炉構造物から排出されたFPガスにおける第2核種の放射能の単位時間当たりの変化量が、前記原子炉構造物内の水位の変化前に前記原子炉構造物から排出されたFPガスにおける第2核種の放射能の単位時間当たりの変化量を基準として設定された許容範囲内にあると判定した場合に、前記原子炉構造物内の水位の変化後に前記原子炉構造物から排出されたFPガスにおける第2核種の放射能の単位時間当たりの平均値を用いて、
前記第1核種の放射能と前記第2核種の放射能との比を演算することを特徴とする原子力プラントの排ガス監視システム。
The exhaust gas monitoring system for a nuclear power plant according to claim 1,
The neutron multiplication factor distribution estimation apparatus is
The amount of change per unit time of the radioactivity of the first nuclide in the FP gas discharged from the reactor structure after the change of the water level in the reactor structure is changed before the change of the water level in the reactor structure. When it is determined that the amount of change per unit time of the radioactivity of the first nuclide in the FP gas discharged from the reactor structure is within the allowable range set as a reference, the water level in the reactor structure Using the average value per unit time of the radioactivity of the first nuclide in the FP gas discharged from the reactor structure after the change of
The amount of change per unit time of the radioactivity of the second nuclide in the FP gas discharged from the reactor structure after the change of the water level in the reactor structure is changed before the change of the water level in the reactor structure. When it is determined that the change per unit time of the radioactivity of the second nuclide in the FP gas discharged from the reactor structure is within the allowable range set as a reference, the water level in the reactor structure Using the average value per unit time of the radioactivity of the second nuclide in the FP gas discharged from the reactor structure after the change of
An exhaust gas monitoring system for a nuclear power plant, wherein a ratio between the radioactivity of the first nuclide and the radioactivity of the second nuclide is calculated.
請求項1記載の原子力プラントの排ガス監視システムにおいて、
前記中性子増倍率分布推定装置は、
前記注水装置による前記原子炉構造物内の水位の変動タイミングと前記放射能測定装置で測定された第1核種又は第2核種の放射能の変動タイミングとの差分から遅れ時間を演算し、この遅れ時間に基づき、前記原子炉構造物から排出されたFPガスにおける第1核種の放射能及び第2核種の放射能を、前記原子炉構造物内のFPガスにおける第1核種の放射能及び第2核種の放射能となるように補正する機能を有し、
前記原子炉構造物内の水位毎に、補正された第1核種の放射能と補正された第2核種の放射能との比を演算し、この比に基づき中性子増倍率を演算して、前記原子炉構造物内の水位の変化に対応する中性子増倍率の変動分布を作成することを特徴とする原子力プラントの排ガス監視システム。
The exhaust gas monitoring system for a nuclear power plant according to claim 1,
The neutron multiplication factor distribution estimation apparatus is
The delay time is calculated from the difference between the water level fluctuation timing in the reactor structure by the water injection device and the radioactivity fluctuation timing of the first nuclide or the second nuclide measured by the radioactivity measurement device. Based on the time, the radioactivity of the first nuclide and the radioactivity of the second nuclide in the FP gas exhausted from the reactor structure are calculated as the radioactivity of the first nuclide and the second radioactivity of the FP gas in the reactor structure. It has a function to correct for radioactivity of nuclides,
For each water level in the reactor structure, calculate the ratio between the corrected radioactivity of the first nuclide and the corrected radioactivity of the second nuclide, calculate the neutron multiplication factor based on this ratio, An exhaust gas monitoring system for a nuclear power plant that creates a fluctuation distribution of a neutron multiplication factor corresponding to a change in a water level in a nuclear reactor structure.
請求項1記載の原子力プラントの排ガス監視システムにおいて、
前記原子炉構造物内の水位の変化に対応する中性子増倍率の変動分布を画面表示する表示部、を備えたことを特徴とする原子力プラント。
The exhaust gas monitoring system for a nuclear power plant according to claim 1,
A nuclear power plant, comprising: a display unit that displays a fluctuation distribution of a neutron multiplication factor corresponding to a change in a water level in the nuclear reactor structure.
JP2014128266A 2014-06-23 2014-06-23 Exhaust gas monitoring system for nuclear power plant Active JP6249889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128266A JP6249889B2 (en) 2014-06-23 2014-06-23 Exhaust gas monitoring system for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128266A JP6249889B2 (en) 2014-06-23 2014-06-23 Exhaust gas monitoring system for nuclear power plant

Publications (3)

Publication Number Publication Date
JP2016008844A true JP2016008844A (en) 2016-01-18
JP2016008844A5 JP2016008844A5 (en) 2016-12-22
JP6249889B2 JP6249889B2 (en) 2017-12-20

Family

ID=55226501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128266A Active JP6249889B2 (en) 2014-06-23 2014-06-23 Exhaust gas monitoring system for nuclear power plant

Country Status (1)

Country Link
JP (1) JP6249889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444304A (en) * 2019-07-17 2019-11-12 中广核工程有限公司 A kind of nuclear power station In-core Instrumentation instrument replaces system and method under water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243597A (en) * 1985-08-20 1987-02-25 株式会社東芝 Shipping device
JPH0390894A (en) * 1989-09-04 1991-04-16 Power Reactor & Nuclear Fuel Dev Corp Method for determining uncritical degree of nuclear fuel test body
US20110164716A1 (en) * 2008-06-09 2011-07-07 Westinghouse Electric Sweden Ab Method comprising measurement on fuel channels of fuel assemblies for nuclear boiling water reactors
JP2013257209A (en) * 2012-06-12 2013-12-26 Nais:Kk Method for subcritical concentration monitoring using measured value of nuclear fission produced gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243597A (en) * 1985-08-20 1987-02-25 株式会社東芝 Shipping device
JPH0390894A (en) * 1989-09-04 1991-04-16 Power Reactor & Nuclear Fuel Dev Corp Method for determining uncritical degree of nuclear fuel test body
US20110164716A1 (en) * 2008-06-09 2011-07-07 Westinghouse Electric Sweden Ab Method comprising measurement on fuel channels of fuel assemblies for nuclear boiling water reactors
JP2013257209A (en) * 2012-06-12 2013-12-26 Nais:Kk Method for subcritical concentration monitoring using measured value of nuclear fission produced gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444304A (en) * 2019-07-17 2019-11-12 中广核工程有限公司 A kind of nuclear power station In-core Instrumentation instrument replaces system and method under water
CN110444304B (en) * 2019-07-17 2021-04-13 中广核工程有限公司 Underwater replacement system and method for nuclear power station reactor core measuring instrument

Also Published As

Publication number Publication date
JP6249889B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
CN104934084B (en) A kind of fuel for nuclear power plant cladding damage monitoring method and system
JP5542150B2 (en) Subcritical reactivity measurement method
Ahlswede et al. Update and improvement of the global krypton-85 emission inventory
JP2011022090A (en) Method and program for evaluating the radioactive concentrations of radioactive wastes and radioactivity concentration evaluation apparatus
JP6249889B2 (en) Exhaust gas monitoring system for nuclear power plant
US20130214171A1 (en) Radioactivity evaluation method and radioactivity evaluation system
Talamo et al. Correction factor for the experimental prompt neutron decay constant
JP2009168801A (en) Method for improving combustion deduction of spent nuclear fuel
JP6363497B2 (en) Neutron measuring device adjusting device and adjusting method thereof
JP5121695B2 (en) Burnup measurement apparatus and burnup measurement method
US20120002774A1 (en) Method for determining intensity of gamma radiation emission of a radioelement
CN108828651B (en) Active neutron analysis method for uranium plutonium content in waste cladding
WO2016007094A1 (en) Method for measuring reactivity in a light water reactor
Kim et al. A study on MCNPX-CINDER90 system for activation analysis
JP2013257209A (en) Method for subcritical concentration monitoring using measured value of nuclear fission produced gas
JP2006029986A (en) Radiation measuring device
Bajpai et al. Evaluation of spatial correction factors for BRAHMMA subcritical assembly
CN109324070B (en) Passive neutron analysis method for uranium plutonium content in waste cladding
JP2010210613A (en) Subcriticality determining device of neutron multiplying system, and program of the same
JP2017026451A (en) Criticality monitoring system and criticality monitoring method
Lucatero et al. Fast neutron fluence calculations as support for a BWR pressure vessel and internals surveillance program
JP2012112862A (en) Method and apparatus for measuring burn-up distribution of fuel assembly
Ray et al. Reactivity measurement using the area-ratio method in the BRAHMMA subcritical system
JP5567904B2 (en) Method for measuring subcritical multiplication factor of irradiated fuel assembly, measuring apparatus, program for measurement, and method for verifying prediction accuracy of nuclide composition of irradiated fuel assembly
JP2015031568A (en) Management system and method of nuclear fuel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171121

R150 Certificate of patent or registration of utility model

Ref document number: 6249889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150