JP2016008179A - 4h-chromone derivative, method of producing the same and cancer cell detecting method using the same - Google Patents
4h-chromone derivative, method of producing the same and cancer cell detecting method using the same Download PDFInfo
- Publication number
- JP2016008179A JP2016008179A JP2014128262A JP2014128262A JP2016008179A JP 2016008179 A JP2016008179 A JP 2016008179A JP 2014128262 A JP2014128262 A JP 2014128262A JP 2014128262 A JP2014128262 A JP 2014128262A JP 2016008179 A JP2016008179 A JP 2016008179A
- Authority
- JP
- Japan
- Prior art keywords
- group
- cells
- carbon atoms
- hydrogen atom
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 CN(*)C=CC=C(CCC(Oc1c2ccc(OCC*)c1)=C(*)C2=*)C=C Chemical compound CN(*)C=CC=C(CCC(Oc1c2ccc(OCC*)c1)=C(*)C2=*)C=C 0.000 description 2
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Pyrane Compounds (AREA)
Abstract
Description
本発明は、癌細胞の蛍光プローブとして有用な4H−クロモン誘導体、それらの製造方法およびそれらを用いた癌細胞の検出方法に関する。 The present invention relates to 4H-chromone derivatives useful as a fluorescent probe for cancer cells, a method for producing them, and a method for detecting cancer cells using them.
正常細胞あるいは正常組織中に混在する癌細胞の精度高い検出方法は、癌の早期発見や治療において重要な技術である。これまでに、様々な癌細胞の検出方法が開発されているが、蛍光プローブを用いた検出方法は、高感度な検出方法の一つである。グルタチオン−S−転移酵素(以下、GSTと称する。)は、癌細胞に高発現していることが報告されている。(非特許文献1)
GSTを発現している癌細胞株として、例えばマウス乳癌由来のFM3A細胞(非特許文献3)、ヒト肺腺癌由来の非小細胞肺癌細胞のPC−9細胞(非特許文献4)、ヒト乳腺癌由来のSK−BR−3細胞(非特許文献5)などがある。
A highly accurate method for detecting cancer cells mixed in normal cells or normal tissues is an important technique in the early detection and treatment of cancer. Various detection methods for cancer cells have been developed so far, and the detection method using a fluorescent probe is one of highly sensitive detection methods. It has been reported that glutathione-S-transferase (hereinafter referred to as GST) is highly expressed in cancer cells. (Non-Patent Document 1)
Examples of cancer cell lines expressing GST include mouse breast cancer-derived FM3A cells (Non-patent Document 3), human lung adenocarcinoma-derived non-small cell lung cancer PC-9 cells (Non-patent Document 4), and human mammary gland. There are SK-BR-3 cells derived from cancer (Non-patent Document 5).
前記GSTを高感度に蛍光検出することによって、正常細胞あるいは正常組組織中に混在する癌細胞を精度高く検出することができる。GSTは、細胞内に侵入した異物を解毒する解毒酵素であり、グルタチオン(以下、GSHと称する)と異物からグルタチオン−異物抱合体を形成する反応を触媒する。特に、異物が求電子性アリールスルホニル化合物の場合は、GSHと芳香族求核置換反応により抱合体を形成することが知られている。この反応を利用して、蛍光色素にアリールスルホニル化合物を導入し、GSHとの芳香族求核置換反応により、アリールスルホニル化合物を除去することで、細胞を蛍光検出する方法が開示されている。(特許文献1、非特許文献2)。
By detecting fluorescence of GST with high sensitivity, it is possible to detect cancer cells mixed in normal cells or normal tissues with high accuracy. GST is a detoxifying enzyme that detoxifies foreign substances that have entered cells, and catalyzes a reaction that forms glutathione-foreign substance conjugates from glutathione (hereinafter referred to as GSH) and foreign substances. In particular, when the foreign substance is an electrophilic arylsulfonyl compound, it is known that a conjugate is formed by GSH and an aromatic nucleophilic substitution reaction. A method is disclosed in which an arylsulfonyl compound is introduced into a fluorescent dye by using this reaction, and the arylsulfonyl compound is removed by an aromatic nucleophilic substitution reaction with GSH to detect fluorescence of cells. (
しかしながら、アリールスルホニル化合物は、GSHもしくはその他の細胞内チオール化合物(例えばシステイン)とも、酵素非依存的に芳香族求核置換反応が進行する可能性があり(非特許文献2)、正常細胞共存下、癌細胞の検出方法には課題があった。 However, an arylsulfonyl compound may proceed with an aromatic nucleophilic substitution reaction in an enzyme-independent manner with GSH or other intracellular thiol compounds (for example, cysteine) (Non-Patent Document 2), and in the presence of normal cells. The cancer cell detection method has a problem.
本発明の課題は、癌細胞を検出するための蛍光プローブを提供することにある。特に、正常細胞共存下、癌細胞を検出するための蛍光プローブを提供することが本発明の課題である。 An object of the present invention is to provide a fluorescent probe for detecting cancer cells. In particular, it is an object of the present invention to provide a fluorescent probe for detecting cancer cells in the presence of normal cells.
本発明者らは、上記課題を解決すべく鋭意検討した結果、本発明の4H−クロモン誘導体を用いると、正常細胞共存下、癌細胞を蛍光検出できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that cancer cells can be detected with fluorescence in the presence of normal cells when the 4H-chromone derivative of the present invention is used, and the present invention has been completed. .
すなわち本発明は、
[1]一般式(1)
That is, the present invention
[1] General formula (1)
(式中、R2およびR3は各々独立に炭素数1から3のアルキル基を表す。R4−1、R4−2、R4−3、R4−4、R5−1、R5−2およびR5−3は各々独立に水素原子、ハロゲン原子またはメトキシ基を表す。R6は水素原子、炭素数1から4のアルキル基、炭素数7もしくは8のアラルキル基、またはベンゾイル基を表す。R7は水素原子または炭素数1から3のアルキル基を表す。R8、R9およびR10は各々独立に水素原子、ニトロ基またはトリフルオロメチル基を表す。ただし、R8、R9、R10のうち少なくとも一つはニトロ基を表す。nは0または1を表し、mは0または1を表し、kは1から12の整数を表す。)で表される4H−クロモン誘導体に関する。
また本発明は[2] R8がニトロ基またはトリフルオロメチル基、R9がニトロ基、R10が水素原子、kが1から6の整数である[1] に記載の4H−クロモン誘導体に関する。
また本発明は[3] R2およびR3がメチル基、R4−1、R4−2、R4−3、R4−4、R5−1、R5−2およびR5−3が水素原子である、[1]または[2]に記載の4H−クロモン誘導体に関する。
(In the formula, R 2 and R 3 each independently represent an alkyl group having 1 to 3 carbon atoms. R 4-1 , R 4-2 , R 4-3 , R 4-4 , R 5-1 , R 5-2 and R 5-3 each independently represent a hydrogen atom, a halogen atom or a methoxy group, R 6 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group having 7 or 8 carbon atoms, or a benzoyl group R 7 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 8 , R 9 and R 10 each independently represents a hydrogen atom, a nitro group or a trifluoromethyl group, provided that R 8 , At least one of R 9 and R 10 represents a nitro group, n represents 0 or 1, m represents 0 or 1, and k represents an integer of 1 to 12). Relates to derivatives.
The present invention also relates to [2] 4H-chromone derivative according to [1], wherein R 8 is a nitro group or trifluoromethyl group, R 9 is a nitro group, R 10 is a hydrogen atom, and k is an integer of 1 to 6. .
In the present invention, [3] R 2 and R 3 are a methyl group, R 4-1 , R 4-2 , R 4-3 , R 4-4 , R 5-1 , R 5-2 and R 5-3. Relates to the 4H-chromone derivative according to [1] or [2], wherein is a hydrogen atom.
また本発明は[4]一般式(2) The present invention also provides [4] general formula (2).
(式中、R2およびR3は各々独立に炭素数1から3のアルキル基を表す。R4−1、R4−2、R4−3、R4−4、R5−1、R5−2およびR5−3は各々独立に水素原子、ハロゲン原子またはメトキシ基を表す。R6は水素原子、炭素数1から4のアルキル基、炭素数7もしくは8のアラルキル基、またはベンゾイル基を表す。nは0または1を表し、mは0または1を表し、kは1から12の整数を表す。)で表されるアミン誘導体を、塩基の存在下、一般式(3) (In the formula, R 2 and R 3 each independently represent an alkyl group having 1 to 3 carbon atoms. R 4-1 , R 4-2 , R 4-3 , R 4-4 , R 5-1 , R 5-2 and R 5-3 each independently represent a hydrogen atom, a halogen atom or a methoxy group, R 6 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group having 7 or 8 carbon atoms, or a benzoyl group N represents 0 or 1, m represents 0 or 1, k represents an integer of 1 to 12, and an amine derivative represented by the general formula (3) is present in the presence of a base.
(式中、R8、R9およびR10は各々独立に水素原子、ニトロ基またはトリフルオロメチル基を表す。ただし、R8、R9、R10のうち少なくとも一つはニトロ基を表す。Xはハロゲン原子を表す。)で表されるアリールスルホニル化合物と反応させることを特徴とする、一般式(1a) (Wherein R 8 , R 9 and R 10 each independently represents a hydrogen atom, a nitro group or a trifluoromethyl group, provided that at least one of R 8 , R 9 and R 10 represents a nitro group. X represents a halogen atom) and is reacted with an arylsulfonyl compound represented by the general formula (1a)
(式中、R2、R3、R4−1、R4−2、R4−3、R4−4、R5−1、R5−2、R5−3、R6、R8、R9、R10、n、mおよびkは前記と同じ意味を表す。)で表される4H−クロモン誘導体の製造方法に関する。
(Wherein, R 2, R 3, R 4-1, R 4-2, R 4-3, R 4-4, R 5-1, R 5-2, R 5-3,
また本発明は[5]一般式(1) The present invention also provides [5] general formula (1).
(式中、R2およびR3は各々独立に炭素数1から3のアルキル基を表す。R4−1、R4−2、R4−3、R4−4、R5−1、R5−2およびR5−3は各々独立に水素原子、ハロゲン原子またはメトキシ基を表す。R6は水素原子、炭素数1から4のアルキル基、炭素数7もしくは8のアラルキル基、またはベンゾイル基を表す。R7は水素原子または炭素数1から3のアルキル基を表す。R8、R9およびR10は各々独立に水素原子、ニトロ基またはトリフルオロメチル基を表す。ただし、R8、R9、R10のうち少なくとも一つはニトロ基を表す。nは0または1を表し、mは0または1を表し、kは1から12の整数を表す。)で表される4H−クロモン誘導体よりなる蛍光プローブに関する。 (In the formula, R 2 and R 3 each independently represent an alkyl group having 1 to 3 carbon atoms. R 4-1 , R 4-2 , R 4-3 , R 4-4 , R 5-1 , R 5-2 and R 5-3 each independently represent a hydrogen atom, a halogen atom or a methoxy group, R 6 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group having 7 or 8 carbon atoms, or a benzoyl group R 7 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 8 , R 9 and R 10 each independently represents a hydrogen atom, a nitro group or a trifluoromethyl group, provided that R 8 , At least one of R 9 and R 10 represents a nitro group, n represents 0 or 1, m represents 0 or 1, and k represents an integer of 1 to 12). The present invention relates to a fluorescent probe comprising a derivative.
また本発明は[6]一般式(1) The present invention also provides [6] general formula (1).
(式中、R2およびR3は各々独立に炭素数1から3のアルキル基を表す。R4−1、R4−2、R4−3、R4−4、R5−1、R5−2およびR5−3は各々独立に水素原子、ハロゲン原子またはメトキシ基を表す。R6は水素原子、炭素数1から4のアルキル基、炭素数7もしくは8のアラルキル基、またはベンゾイル基を表す。R7は水素原子または炭素数1から3のアルキル基を表す。R8、R9およびR10は各々独立に水素原子、ニトロ基またはトリフルオロメチル基を表す。ただし、R8、R9、R10のうち少なくとも一つはニトロ基を表す。nは0または1を表し、mは0または1を表し、kは1から12の整数を表す。)で表される4H−クロモン誘導体を用いることを特徴とする、グルタチオン−S−トランスフェラーゼの検出方法に関する。 (In the formula, R 2 and R 3 each independently represent an alkyl group having 1 to 3 carbon atoms. R 4-1 , R 4-2 , R 4-3 , R 4-4 , R 5-1 , R 5-2 and R 5-3 each independently represent a hydrogen atom, a halogen atom or a methoxy group, R 6 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group having 7 or 8 carbon atoms, or a benzoyl group R 7 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 8 , R 9 and R 10 each independently represents a hydrogen atom, a nitro group or a trifluoromethyl group, provided that R 8 , At least one of R 9 and R 10 represents a nitro group, n represents 0 or 1, m represents 0 or 1, and k represents an integer of 1 to 12). Glutathione, characterized by using a derivative The present invention relates to a method for detecting S-transferase.
また本発明は[7]一般式(1) The present invention also provides [7] general formula (1)
(式中、R2およびR3は各々独立に炭素数1から3のアルキル基を表す。R4−1、R4−2、R4−3、R4−4、R5−1、R5−2およびR5−3は各々独立に水素原子、ハロゲン原子またはメトキシ基を表す。R6は水素原子、炭素数1から4のアルキル基、炭素数7もしくは8のアラルキル基、またはベンゾイル基を表す。R7は水素原子または炭素数1から3のアルキル基を表す。R8、R9およびR10は各々独立に水素原子、ニトロ基またはトリフルオロメチル基を表す。ただし、R8、R9、R10のうち少なくとも一つはニトロ基を表す。nは0または1を表し、mは0または1を表し、kは1から12の整数を表す。)で表される4H−クロモン誘導体を用いることを特徴とする、癌細胞の検出方法に関するものである。 (In the formula, R 2 and R 3 each independently represent an alkyl group having 1 to 3 carbon atoms. R 4-1 , R 4-2 , R 4-3 , R 4-4 , R 5-1 , R 5-2 and R 5-3 each independently represent a hydrogen atom, a halogen atom or a methoxy group, R 6 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an aralkyl group having 7 or 8 carbon atoms, or a benzoyl group R 7 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 8 , R 9 and R 10 each independently represents a hydrogen atom, a nitro group or a trifluoromethyl group, provided that R 8 , At least one of R 9 and R 10 represents a nitro group, n represents 0 or 1, m represents 0 or 1, and k represents an integer of 1 to 12). Method for detecting cancer cells, characterized by using a derivative It is about the law.
本発明の4H−クロモン誘導体は、正常細胞共存下、癌細胞を蛍光染色し、癌細胞が強い発光を示すので、癌細胞を検出する蛍光プローブとして有用である。 The 4H-chromone derivative of the present invention is useful as a fluorescent probe for detecting cancer cells because the cancer cells are fluorescently stained in the presence of normal cells and the cancer cells exhibit strong luminescence.
以下に本発明を詳細に説明する。本明細書における、R2、R3、R4−1、R4−2、R4−3、R4−4、R5−1、R5−2、R5−3、R6、R7、R8、R9、R10、Xおよびkの定義について説明する。
R2およびR3で表される炭素数1から3のアルキル基としては、直鎖状、分岐状または環状アルキル基のいずれであってもよく、メチル基、エチル基、プロピル基、シクロプロピル基およびイソプロピル基を例示することができる。蛍光強度が強い点で、R2およびR3としてはメチル基が好ましい。
The present invention is described in detail below. Herein, R 2, R 3, R 4-1, R 4-2, R 4-3, R 4-4, R 5-1, R 5-2, R 5-3,
The alkyl group having 1 to 3 carbon atoms represented by R 2 and R 3 may be any of a linear, branched or cyclic alkyl group, and is a methyl group, an ethyl group, a propyl group or a cyclopropyl group. And an isopropyl group. In terms of strong fluorescence intensity, methyl groups are preferred as R 2 and R 3 .
R4−1、R4−2、R4−3およびR4−4で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子を例示することができる。蛍光強度が強い点で、R4−1、R4−2、R4−3およびR4−4としてはフッ素原子が好ましい。 Examples of the halogen atom represented by R 4-1 , R 4-2 , R 4-3 and R 4-4 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. In terms of strong fluorescence intensity, R 4-1 , R 4-2 , R 4-3 and R 4-4 are preferably fluorine atoms.
R4−1、R4−2、R4−3およびR4−4としては、蛍光強度が強い点で、水素原子が好ましい。 R 4-1 , R 4-2 , R 4-3 and R 4-4 are preferably hydrogen atoms in terms of strong fluorescence intensity.
R5−1、R5−2およびR5−3で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子を例示することができる。 R 5-1, examples of the halogen atom represented by R 5-2 and R 5-3, can be exemplified fluorine atom, chlorine atom, bromine atom and iodine atom.
R5−1、R5−2およびR5−3としては、蛍光強度が強い点で、水素原子が好ましい。 As R <5-1> , R <5-2> and R <5-3> , a hydrogen atom is preferable in terms of strong fluorescence intensity.
R6で表される炭素数1から4のアルキル基としては、直鎖状、分岐状および環状アルキル基のいずれであってもよく、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、シクロプロピル基、イソブチル基、sec−ブチル基およびtert−ブチル基を例示することができる。 The alkyl group having 1 to 4 carbon atoms represented by R 6 may be any of linear, branched and cyclic alkyl groups, and includes a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, Examples thereof include a cyclopropyl group, an isobutyl group, a sec-butyl group and a tert-butyl group.
R6で表される炭素数7もしくは8のアラルキル基としては、ベンジル基およびフェネチル基を例示することができる。蛍光強度が強い点で、R6としては水素原子またはベンジル基が好ましい。 Examples of the aralkyl group having 7 or 8 carbon atoms represented by R 6 include a benzyl group and a phenethyl group. In view of strong fluorescence intensity, R 6 is preferably a hydrogen atom or a benzyl group.
R7で表される炭素数1から3のアルキル基としては、直鎖状、分岐状のいずれであってもよく、メチル基、エチル基、プロピル基およびイソプロピル基を例示することができる。蛍光強度が強い点で、R7としては水素原子が好ましい。 The alkyl group having 1 to 3 carbon atoms represented by R 7 may be linear or branched, and examples thereof include a methyl group, an ethyl group, a propyl group, and an isopropyl group. In terms of strong fluorescence intensity, R 7 is preferably a hydrogen atom.
R8、R9およびR10としては、検出感度が高い点で、R8がニトロ基またはトリフルオロメチル基、R9がニトロ基、R10が水素原子であることが好ましい。 As R 8 , R 9 and R 10, it is preferable that R 8 is a nitro group or a trifluoromethyl group, R 9 is a nitro group, and R 10 is a hydrogen atom in terms of high detection sensitivity.
Xで表されるハロゲン原子としては、ヨウ素原子、臭素原子、塩素原子を例示することができる。中でも収率が良い点で塩素原子が望ましい。またkとしては、蛍光強度が高い点で、1から6の整数が好ましい。 Examples of the halogen atom represented by X include an iodine atom, a bromine atom, and a chlorine atom. Among them, a chlorine atom is desirable in terms of a good yield. Further, k is preferably an integer of 1 to 6 in view of high fluorescence intensity.
更に、本発明の4H−クロモン誘導体(1)の好ましい例として、(E)−2−[4−(ジメチルアミノ)スチリル]−7−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]エトキシ]−3−ヒドロキシ−4H−クロメン−4−オン、(E)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)スチリル]−7−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]エトキシ]−4H−クロメン−4−オン、(E)−2−[4−(ジメチルアミノ)スチリル]−8−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]エトキシ]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン、2−[4−(ジメチルアミノ)フェニル]−8−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]エトキシ]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン、3−ベンジルオキシ−2−[4−(ジメチルアミノ)フェニル]−8−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]エトキシ]−4H−ベンゾ[g]クロメン−4−オン、(E)−2−[4−(ジメチルアミノ)スチリル]−7−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]ブトキシ]−3−ヒドロキシ−4H−クロメン−4−オン、(E)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)スチリル]−7−[2−[[[4−ニトロ−2−(トリフルオロメチル)フェニル]スルホニル]アミノ]エトキシ]−4H−クロメン−4−オン、(E)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)スチリル]−7−[2−[[(2,4−ジニトロフェニル)スルホニル]メチルアミノ]エトキシ]−4H−クロメン−4−オンを、挙げることができる。 Furthermore, preferred examples of the 4H-chromone derivative (1) of the present invention include (E) -2- [4- (dimethylamino) styryl] -7- [2-[[(2,4-dinitrophenyl) sulfonyl]. Amino] ethoxy] -3-hydroxy-4H-chromen-4-one, (E) -3-benzyloxy-2- [4- (dimethylamino) styryl] -7- [2-[[(2,4- Dinitrophenyl) sulfonyl] amino] ethoxy] -4H-chromen-4-one, (E) -2- [4- (dimethylamino) styryl] -8- [2-[[(2,4-dinitrophenyl) sulfonyl ] Amino] ethoxy] -3-hydroxy-4H-benzo [g] chromen-4-one, 2- [4- (dimethylamino) phenyl] -8- [2-[[(2,4-dinitrophenyl) sulfonyl] ] Ami ] Ethoxy] -3-hydroxy-4H-benzo [g] chromen-4-one, 3-benzyloxy-2- [4- (dimethylamino) phenyl] -8- [2-[[(2,4-dinitro Phenyl) sulfonyl] amino] ethoxy] -4H-benzo [g] chromen-4-one, (E) -2- [4- (dimethylamino) styryl] -7- [2-[[(2,4-dinitro Phenyl) sulfonyl] amino] butoxy] -3-hydroxy-4H-chromen-4-one, (E) -3-benzyloxy-2- [4- (dimethylamino) styryl] -7- [2-[[[ 4-nitro-2- (trifluoromethyl) phenyl] sulfonyl] amino] ethoxy] -4H-chromen-4-one, (E) -3-benzyloxy-2- [4- (dimethylamino) styryl] -7 The - [2 [[(2,4-dinitrophenyl) sulphonyl] methylamino] ethoxy] -4H- chromen-4-one, can be mentioned.
次に、本発明の製造方法について詳細に説明する。本発明の4H−クロモン誘導体(1)は、下記スキームにより製造することができる。 Next, the production method of the present invention will be described in detail. The 4H-chromone derivative (1) of the present invention can be produced by the following scheme.
(式中、R2、R3、R4−1、R4−2、R4−3、R4−4、R5−1、R5−2、R5−3、R6、R8、R9、R10、X、n、mおよびkは前記と同じ意味を表す。R6aは炭素数1から4のアルキル基、炭素数7もしくは8のアラルキル基、またはベンゾイル基を表し、R7aは炭素数1から3のアルキル基を表し、Yはハロゲン原子を表し、Zはハロゲン原子を表す。)
R6aで表される炭素数1から4のアルキル基としては、直鎖状、分岐状および環状アルキル基のいずれであってもよく、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、シクロプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基を例示することができる。
(Wherein, R 2, R 3, R 4-1, R 4-2, R 4-3, R 4-4, R 5-1, R 5-2, R 5-3,
The alkyl group having 1 to 4 carbon atoms represented by R 6a may be any of linear, branched and cyclic alkyl groups, and includes a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, Examples thereof include a cyclopropyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
R6aで表される炭素数7もしくは8のアラルキル基としては、ベンジル基、フェネチル基を例示することができる。 Examples of the aralkyl group having 7 or 8 carbon atoms represented by R 6a include a benzyl group and a phenethyl group.
R7aで表される炭素数1から3のアルキル基としては、直鎖状、分岐状のいずれであってもよく、メチル基、エチル基、プロピル基、イソプロピル基を例示することができる。 The alkyl group having 1 to 3 carbon atoms represented by R 7a may be linear or branched, and examples thereof include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
Yで表されるハロゲン原子としては、ヨウ素原子、臭素原子を例示することができる。 Examples of the halogen atom represented by Y include an iodine atom and a bromine atom.
Zで表されるハロゲン原子としては、ヨウ素原子、臭素原子、塩素原子を例示することができる。 Examples of the halogen atom represented by Z include an iodine atom, a bromine atom, and a chlorine atom.
(1)工程−1について
工程−1は、ヒドロキシアセトフェノン誘導体(4)をアルデヒド誘導体(5)と塩基存在下反応させ、エノン誘導体(6)を製造する工程である。
(1) Step-1 Step-1 is a step of producing an enone derivative (6) by reacting the hydroxyacetophenone derivative (4) with an aldehyde derivative (5) in the presence of a base.
本工程の原料であるヒドロキシアセトフェノン誘導体(4)は、文献記載の方法(Bioorganic Medicinal Chemistry,16,7358−7370(2008))を参考に調製することができる。 The hydroxyacetophenone derivative (4) which is a raw material of this step can be prepared with reference to a method described in the literature (Bioorganic Medicinal Chemistry, 16, 7358-7370 (2008)).
本工程の原料であるアルデヒド誘導体(5)は、文献記載の方法(Journal of the American Chemical Society,133,6642−6649(2011)、Organic Letters,5,777−780(2003)、Synthetic Communications,18,1641−1650(1988))を参考に、対応する4−アミノベンズアルデヒドまたは4−アミノハロベンゼンから調製することができる。 The aldehyde derivative (5) which is the raw material of this step is a method described in the literature (Journal of the American Chemical Society, 133, 6642-6649 (2011), Organic Letters, 5, 777-780 (2003), Synthetic Communications, 18). , 1641-1650 (1988)), and can be prepared from the corresponding 4-aminobenzaldehyde or 4-aminohalobenzene.
工程−1の反応は、塩基の存在下に行なうことが必須である。塩基としては、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシド、カリウムt−ブトキシド等のアルカリ金属アルコキシド、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩を例示することができる。中でも収率が良い点で、ナトリウムメトキシド、水酸化ナトリウムが塩基として好ましい。 It is essential to carry out the reaction of Step-1 in the presence of a base. Examples of the base include alkali metal alkoxides such as sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide, potassium t-butoxide, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, sodium carbonate, potassium carbonate And alkali metal carbonates such as cesium carbonate and sodium hydrogen carbonate. Of these, sodium methoxide and sodium hydroxide are preferred as the base from the viewpoint of good yield.
また工程−1の反応は、反応を阻害しない溶媒であれば溶媒中で行なってもよい。本工程で用いることのできる溶媒として、具体的には、テトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン、1,2−ジメトキシエタン等のエーテル、ヘキサン、ペンタン、シクロヘキサン等の炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン等のハロゲン化炭化水素、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、メタノール、エタノール等のアルコール、水等を例示することができ、これらの溶媒の中から2種類以上を混合して用いてもよい。中でも収率が良い点で、ジメチルホルムアミド、エタノールが好ましい。 The reaction in step-1 may be performed in a solvent as long as it does not inhibit the reaction. Specific examples of solvents that can be used in this step include ethers such as tetrahydrofuran, diethyl ether, 1,4-dioxane, and 1,2-dimethoxyethane, hydrocarbons such as hexane, pentane, and cyclohexane, benzene, toluene, Aromatic hydrocarbons such as xylene, halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, alcohols such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, methanol, ethanol Water and the like can be exemplified, and two or more of these solvents may be mixed and used. Of these, dimethylformamide and ethanol are preferred because of their good yield.
ヒドロキシアセトフェノン誘導体(4)とアルデヒド誘導体(5)とのモル比に特に制限はないが、1:1から1:10の範囲が好ましく、中でも収率が良い点で1:1から1:3がさらに好ましい。ヒドロキシアセトフェノン誘導体(4)と塩基とのモル比も特に制限はないが、1:1から1:10の範囲が好ましく、中でも収率が良い点で1:1から1:3がさらに好ましい。 There is no particular limitation on the molar ratio of the hydroxyacetophenone derivative (4) and the aldehyde derivative (5), but a range of 1: 1 to 1:10 is preferable, and 1: 1 to 1: 3 is preferable in terms of good yield. Further preferred. The molar ratio of the hydroxyacetophenone derivative (4) and the base is not particularly limited, but is preferably in the range of 1: 1 to 1:10, and more preferably 1: 1 to 1: 3 in terms of good yield.
工程−1の反応温度は、−78℃から150℃の範囲から適宜選ばれた温度で行なうことができる。中でも収率が良い点で室温から120℃の範囲が好ましい。 The reaction temperature in step-1 can be carried out at a temperature appropriately selected from the range of -78 ° C to 150 ° C. Among them, the range from room temperature to 120 ° C. is preferable in terms of a good yield.
工程−1の反応で得られるエノン誘導体(6)は、必要に応じて反応終了後、反応溶液から精製することができる。精製する方法には特に限定は無いが、溶媒抽出、シリカゲルカラムクロマトグラフィー、薄層分取クロマトグラフィー、分取液体クロマトグラフィー、再結晶または昇華等の汎用的な方法で目的物を精製することができる。 The enone derivative (6) obtained by the reaction in Step-1 can be purified from the reaction solution after completion of the reaction, if necessary. The purification method is not particularly limited, but the target product may be purified by a general method such as solvent extraction, silica gel column chromatography, thin layer preparative chromatography, preparative liquid chromatography, recrystallization or sublimation. it can.
(2)工程−2について
工程−2は、エノン誘導体(6)を酸化して、3−ヒドロキシ−4H−クロモン誘導体(7)を製造する工程である。 工程−2の酸化は、酸化剤の存在下に行なうことが好ましい。用いることのできる酸化剤としては、過酸化水素、tert−ブチルヒドロペルオキシド、3−クロロ過安息香酸、過安息香酸を例示することができる。収率が良い点で過酸化水素が好ましい。
(2) About Step-2 Step-2 is a step of oxidizing the enone derivative (6) to produce a 3-hydroxy-4H-chromone derivative (7). The oxidation in step-2 is preferably performed in the presence of an oxidizing agent. Examples of the oxidizing agent that can be used include hydrogen peroxide, tert-butyl hydroperoxide, 3-chloroperbenzoic acid, and perbenzoic acid. Hydrogen peroxide is preferred because of its good yield.
また、塩基の存在下に行なうことにより収率を向上することができる。塩基としては、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシド、カリウムt−ブトキシド等のアルカリ金属アルコキシド類、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物類、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩を例示することができる。中でも収率が良い点で、水酸化ナトリウム、水酸化カリウムが塩基として好ましい。 Moreover, a yield can be improved by carrying out in presence of a base. Examples of the base include sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide, alkali metal alkoxides such as potassium t-butoxide, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, sodium carbonate, Examples thereof include alkali metal carbonates such as potassium carbonate, cesium carbonate and sodium hydrogen carbonate. Of these, sodium hydroxide and potassium hydroxide are preferred as the base in terms of good yield.
工程−2の反応は、反応を阻害しない溶媒であれば溶媒中で行なってもよい。本工程で用いることのできる溶媒として、具体的には、テトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン、1,2−ジメトキシエタン等のエーテル、ヘキサン、ペンタン、シクロヘキサン等の炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン等のハロゲン化炭化水素、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、メタノール、エタノール等のアルコール、水等を例示することができ、これらの溶媒の中から2種類以上を混合して用いてもよい。中でも収率が良い点で、エタノールが好ましい。 The reaction of step-2 may be performed in a solvent as long as it does not inhibit the reaction. Specific examples of solvents that can be used in this step include ethers such as tetrahydrofuran, diethyl ether, 1,4-dioxane, and 1,2-dimethoxyethane, hydrocarbons such as hexane, pentane, and cyclohexane, benzene, toluene, Aromatic hydrocarbons such as xylene, halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, alcohols such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, methanol, ethanol Water and the like can be exemplified, and two or more of these solvents may be mixed and used. Of these, ethanol is preferred because of its good yield.
エノン誘導体(6)と酸化剤とのモル比に特に制限はないが、1:1から1:30の範囲が好ましく、中でも収率が良い点で1:10から1:15がさらに好ましい。エノン誘導体(6)と塩基とのモル比も特に制限はないが、1:1から1:30の範囲が好ましく、中でも収率が良い点で1:10から1:15がさらに好ましい。 The molar ratio of the enone derivative (6) and the oxidizing agent is not particularly limited, but is preferably in the range of 1: 1 to 1:30, and more preferably 1:10 to 1:15 in terms of good yield. The molar ratio of the enone derivative (6) and the base is not particularly limited, but is preferably in the range of 1: 1 to 1:30, and more preferably 1:10 to 1:15 in terms of good yield.
工程−2の反応温度は、−78℃から150℃の範囲から適宜選ばれた温度で行なうことができる。中でも収率が良い点で室温から120℃の範囲が好ましい。 The reaction temperature in step-2 can be carried out at a temperature appropriately selected from the range of -78 ° C to 150 ° C. Among them, the range from room temperature to 120 ° C. is preferable in terms of a good yield.
工程−2の反応で得られる3−ヒドロキシ−4H−クロモン誘導体(7)は、必要に応じて反応終了後、反応溶液から精製することができる。精製する方法には特に限定は無いが、溶媒抽出、シリカゲルカラムクロマトグラフィー、薄層分取クロマトグラフィー、分取液体クロマトグラフィー、再結晶または昇華等の汎用的な方法で目的物を精製することができる。 The 3-hydroxy-4H-chromone derivative (7) obtained by the reaction in Step-2 can be purified from the reaction solution after the reaction, if necessary. The purification method is not particularly limited, but the target product may be purified by a general method such as solvent extraction, silica gel column chromatography, thin layer preparative chromatography, preparative liquid chromatography, recrystallization or sublimation. it can.
(3)工程−3について
工程−3は、3−ヒドロキシ−4H−クロモン誘導体(7)とハロゲン化物(9)を塩基存在下で反応させ、Boc保護アミン(8)を製造する工程である。
(3) About Step-3 Step-3 is a step of producing a Boc-protected amine (8) by reacting the 3-hydroxy-4H-chromone derivative (7) with a halide (9) in the presence of a base.
本工程の原料であるハロゲン化物(9)は、一部市販されているが、文献記載の方法(Synlett,2012年,23巻,2692−2698頁、Tetrahedron,2002年,58巻,8689−8693頁、Organic Letters,2001年,3巻,3727−3728頁)を参考に調製することができる。 A part of the halide (9) which is a raw material for this step is commercially available, but the method described in the literature (Synlett, 2012, 23, 2692-2698, Tetrahedron, 2002, 58, 8689-8893). Page, Organic Letters, 2001, Vol. 3, pages 3727-3728).
工程−3の反応は、塩基の存在下に行なうことが必須である。塩基としては、水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシド、カリウムt−ブトキシド等のアルカリ金属アルコキシド類、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物類、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩を例示することができる。中でも収率が良い点で、炭酸カリウムが塩基として好ましい。 It is essential to carry out the reaction of Step-3 in the presence of a base. Examples of the base include alkali metal hydrides such as sodium hydride and potassium hydride, alkali metal alkoxides such as sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide and potassium t-butoxide, sodium hydroxide, water Examples include alkali metal hydroxides such as potassium oxide, and alkali metal carbonates such as sodium carbonate, potassium carbonate, cesium carbonate, and sodium bicarbonate. Of these, potassium carbonate is preferred as the base because of its good yield.
工程−3の反応は、反応を阻害しない溶媒であれば溶媒中で行なってもよい。本工程で用いることのできる溶媒として、具体的には、テトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン、1,2−ジメトキシエタン等のエーテル、ヘキサン、ペンタン、シクロヘキサン等の炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン等のハロゲン化炭化水素、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、メタノール、エタノール等のアルコール、水等を例示することができ、これらの溶媒の中から2種類以上を混合して用いてもよい。中でも収率が良い点で、ジメチルホルムアミドが好ましい。 The reaction of step-3 may be performed in a solvent as long as it does not inhibit the reaction. Specific examples of solvents that can be used in this step include ethers such as tetrahydrofuran, diethyl ether, 1,4-dioxane, and 1,2-dimethoxyethane, hydrocarbons such as hexane, pentane, and cyclohexane, benzene, toluene, Aromatic hydrocarbons such as xylene, halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, alcohols such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, methanol, ethanol Water and the like can be exemplified, and two or more of these solvents may be mixed and used. Of these, dimethylformamide is preferred because of its good yield.
3−ヒドロキシ−4H−クロモン誘導体(7)とハロゲン化物(9)とのモル比に特に制限はないが、1:1から1:10の範囲が好ましく、中でも収率が良い点で1:1から1:3がさらに好ましい。3−ヒドロキシ−4H−クロモン誘導体(7)と塩基とのモル比も特に制限はないが、1:1から1:10の範囲が好ましく、中でも収率が良い点で1:3から1:5がさらに好ましい。 The molar ratio of the 3-hydroxy-4H-chromone derivative (7) and the halide (9) is not particularly limited, but is preferably in the range of 1: 1 to 1:10, and 1: 1 in terms of good yield. To 1: 3 is more preferred. The molar ratio of the 3-hydroxy-4H-chromone derivative (7) and the base is not particularly limited, but is preferably in the range of 1: 1 to 1:10, and in particular, 1: 3 to 1: 5 in terms of good yield. Is more preferable.
工程−3の反応温度は、−78℃から150℃の範囲から適宜選ばれた温度で行なうことができる。中でも収率が良い点で室温から100℃の範囲が好ましい。 The reaction temperature in step-3 can be carried out at a temperature appropriately selected from the range of -78 ° C to 150 ° C. Among these, the range from room temperature to 100 ° C. is preferable from the viewpoint of good yield.
工程−3の反応で得られるBoc保護アミン(8)は、必要に応じて反応終了後、反応溶液から精製することができる。精製する方法には特に限定は無いが、溶媒抽出、シリカゲルカラムクロマトグラフィー、薄層分取クロマトグラフィー、分取液体クロマトグラフィー、再結晶または昇華等の汎用的な方法で目的物を精製することができる。 The Boc-protected amine (8) obtained by the reaction in Step-3 can be purified from the reaction solution after completion of the reaction, if necessary. The purification method is not particularly limited, but the target product may be purified by a general method such as solvent extraction, silica gel column chromatography, thin layer preparative chromatography, preparative liquid chromatography, recrystallization or sublimation. it can.
(4)工程−4について
工程−4の反応は、3−ヒドロキシ−4H−クロモン誘導体(7)またはBoc保護アミン(8)を酸処理することにより、アミン誘導体(2)を製造する工程である。
(4) Step-4 The reaction of Step-4 is a step of producing an amine derivative (2) by acid-treating the 3-hydroxy-4H-chromone derivative (7) or the Boc-protected amine (8). .
工程−4の反応で用いることのできる酸としては、塩酸、硫酸、トリフルオロ酢酸、トシル酸およびメシル酸等のブレンステッド酸を例示することができる。 Examples of the acid that can be used in the reaction of Step-4 include Bronsted acids such as hydrochloric acid, sulfuric acid, trifluoroacetic acid, tosylic acid, and mesylic acid.
工程−5の反応は、反応を阻害しない溶媒であれば溶媒中で行なってもよい。本工程で用いることのできる溶媒として、具体的には、テトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン、1,2−ジメトキシエタン等のエーテル、ヘキサン、ペンタン、シクロヘキサン等の炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン等のハロゲン化炭化水素、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、メタノール、エタノール等のアルコール、水等を例示することができ、これらの溶媒の中から2種類以上を混合して用いてもよい。 The reaction of step-5 may be performed in a solvent as long as it does not inhibit the reaction. Specific examples of solvents that can be used in this step include ethers such as tetrahydrofuran, diethyl ether, 1,4-dioxane, and 1,2-dimethoxyethane, hydrocarbons such as hexane, pentane, and cyclohexane, benzene, toluene, Aromatic hydrocarbons such as xylene, halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, alcohols such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, methanol, ethanol Water and the like can be exemplified, and two or more of these solvents may be mixed and used.
3−ヒドロキシ−4H−クロモン誘導体(7)またはBoc保護アミン(8)と酸とのモル比も特に制限はないが、100:1から1:10の範囲が好ましく、中でも収率が良い点で20:1から1:1がさらに好ましい。 The molar ratio of the 3-hydroxy-4H-chromone derivative (7) or Boc-protected amine (8) and the acid is not particularly limited, but is preferably in the range of 100: 1 to 1:10, and in particular, the yield is good. More preferred is 20: 1 to 1: 1.
工程−4の反応温度は、−78℃から150℃の範囲から適宜選ばれた温度で行なうことができる。中でも収率が良い点で室温から100℃の範囲が好ましい。
The reaction temperature in
工程−4の反応で得られるアミン誘導体(2)は、必要に応じて反応終了後、反応溶液から精製することができる。精製する方法には特に限定は無いが、溶媒抽出、シリカゲルカラムクロマトグラフィー、薄層分取クロマトグラフィー、分取液体クロマトグラフィー、再結晶または昇華等の汎用的な方法で目的物を精製することができる。 The amine derivative (2) obtained by the reaction in Step-4 can be purified from the reaction solution after completion of the reaction, if necessary. The purification method is not particularly limited, but the target product may be purified by a general method such as solvent extraction, silica gel column chromatography, thin layer preparative chromatography, preparative liquid chromatography, recrystallization or sublimation. it can.
(5)工程−5について
工程−5の反応は、アミン誘導体(2)とアリールスルホニル化合物(3)を塩基存在下反応させ、4H−クロモン誘導体(1a)を製造する工程である。
(5) About Step-5 The reaction of Step-5 is a step of producing the 4H-chromone derivative (1a) by reacting the amine derivative (2) and the arylsulfonyl compound (3) in the presence of a base.
本発明の製造方法の原料であるアリールスルホニル化合物(3)は、一部市販されているが、文献記載の方法(Angewandte Chemie International Edition,2009年,48巻,7591−7594頁)を参考に調製することができる。 The arylsulfonyl compound (3), which is a raw material for the production method of the present invention, is partly commercially available, but is prepared with reference to a method described in the literature (Angewandte Chemie International Edition, 2009, Vol. 48, pages 7591-7594). can do.
工程−5の反応は、塩基の存在下に行うことが必須である。塩基としては、トリエチルアミン、ジイソプロピルエチルアミン、トリイソプロピルアミン、N−メチルモルホリン等の第3級脂肪族アミン類、ピリジン、ピコリン、4−ジメチルアミノピリジン等の芳香族アミン類、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩を例示することができる。中でも収率が良い点で、ジイソプロピルエチルアミンが塩基として好ましい。 It is essential to carry out the reaction of Step-5 in the presence of a base. Examples of the base include tertiary aliphatic amines such as triethylamine, diisopropylethylamine, triisopropylamine and N-methylmorpholine, aromatic amines such as pyridine, picoline and 4-dimethylaminopyridine, sodium carbonate, potassium carbonate, carbonate Examples thereof include alkali metal carbonates such as cesium and sodium hydrogen carbonate. Of these, diisopropylethylamine is preferred as the base because of its good yield.
工程−5の反応は、反応を阻害しない溶媒であれば溶媒中で行なってもよい。本工程で用いることのできる溶媒として、具体的には、テトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン、1,2−ジメトキシエタン等のエーテル、ヘキサン、ペンタン、シクロヘキサン等の炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン等のハロゲン化炭化水素、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、メタノール、エタノール等のアルコール、水等を例示することができ、これらの溶媒の中から2種類以上を混合して用いてもよい。中でも収率が良い点で、ジメチルホルムアミドが好ましい。 The reaction of step-5 may be performed in a solvent as long as it does not inhibit the reaction. Specific examples of solvents that can be used in this step include ethers such as tetrahydrofuran, diethyl ether, 1,4-dioxane, and 1,2-dimethoxyethane, hydrocarbons such as hexane, pentane, and cyclohexane, benzene, toluene, Aromatic hydrocarbons such as xylene, halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, alcohols such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, methanol, ethanol Water and the like can be exemplified, and two or more of these solvents may be mixed and used. Of these, dimethylformamide is preferred because of its good yield.
アミン誘導体(2)とアリールスルホニル化合物(3)とのモル比に特に制限はないが、1:1から1:10の範囲が好ましく、中でも収率が良い点で1:1から1:3がさらに好ましい。アミン誘導体(2)と塩基とのモル比も特に制限はないが、1:1から1:10の範囲が好ましく、中でも収率が良い点で1:1から1:3がさらに好ましい。 There is no particular limitation on the molar ratio of the amine derivative (2) and the arylsulfonyl compound (3), but a range of 1: 1 to 1:10 is preferable, and 1: 1 to 1: 3 is particularly preferable in terms of a good yield. Further preferred. The molar ratio of the amine derivative (2) and the base is not particularly limited, but is preferably in the range of 1: 1 to 1:10, and more preferably 1: 1 to 1: 3 in terms of good yield.
工程−5の反応温度は、−78℃から150℃の範囲から適宜選ばれた温度で行なうことができる。中でも収率が良い点で室温から50℃の範囲が好ましい。 The reaction temperature in Step-5 can be carried out at a temperature appropriately selected from the range of -78 ° C to 150 ° C. Among them, the range from room temperature to 50 ° C. is preferable in terms of a good yield.
工程−5で得られる4H−クロモン誘導体(1a)は、必要に応じて反応終了後、反応溶液から精製することができる。精製する方法には特に限定は無いが、溶媒抽出、シリカゲルカラムクロマトグラフィー、薄層分取クロマトグラフィー、分取液体クロマトグラフィー、再結晶または昇華等の汎用的な方法で目的物を精製することができる。 The 4H-chromone derivative (1a) obtained in step-5 can be purified from the reaction solution after completion of the reaction, if necessary. The purification method is not particularly limited, but the target product may be purified by a general method such as solvent extraction, silica gel column chromatography, thin layer preparative chromatography, preparative liquid chromatography, recrystallization or sublimation. it can.
(6)工程−6について
工程−6は、4H−クロモン誘導体(1a)とハロゲン化アルキル(10)を塩基存在下で反応させ、4H−クロモン誘導体(1b)を製造する工程である。
(6) About Step-6 Step-6 is a step of producing 4H-chromone derivative (1b) by reacting 4H-chromone derivative (1a) with alkyl halide (10) in the presence of a base.
本工程の原料であるハロゲン化アルキル(10)は、一部市販されているが、文献記載の方法(The Journal of Organic Chemistry,1990年,55巻,2927−2938頁)を参考に調製することができる。 Alkyl halide (10), which is a raw material for this step, is partially commercially available, but should be prepared with reference to a method described in the literature (The Journal of Organic Chemistry, 1990, 55, 2927-2938). Can do.
工程−6の反応は、塩基の存在下に行なうことが必須である。塩基としては、水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシド、カリウムt−ブトキシド等のアルカリ金属アルコキシド類、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物類、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩を例示することができる。中でも収率が良い点で、炭酸カリウムが塩基として好ましい。 It is essential to carry out the reaction of Step-6 in the presence of a base. Examples of the base include alkali metal hydrides such as sodium hydride and potassium hydride, alkali metal alkoxides such as sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide and potassium t-butoxide, sodium hydroxide, water Examples include alkali metal hydroxides such as potassium oxide, and alkali metal carbonates such as sodium carbonate, potassium carbonate, cesium carbonate, and sodium bicarbonate. Of these, potassium carbonate is preferred as the base because of its good yield.
工程−6の反応は、反応を阻害しない溶媒であれば溶媒中で行なってもよい。本工程で用いることのできる溶媒として、具体的には、テトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン、1,2−ジメトキシエタン等のエーテル、ヘキサン、ペンタン、シクロヘキサン等の炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン等のハロゲン化炭化水素、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、メタノール、エタノール等のアルコール、水等を例示することができ、これらの溶媒の中から2種類以上を混合して用いてもよい。中でも収率が良い点で、ジメチルホルムアミドが好ましい。 The reaction in Step-6 may be performed in a solvent as long as it does not inhibit the reaction. Specific examples of solvents that can be used in this step include ethers such as tetrahydrofuran, diethyl ether, 1,4-dioxane, and 1,2-dimethoxyethane, hydrocarbons such as hexane, pentane, and cyclohexane, benzene, toluene, Aromatic hydrocarbons such as xylene, halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, alcohols such as acetonitrile, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, methanol, ethanol Water and the like can be exemplified, and two or more of these solvents may be mixed and used. Of these, dimethylformamide is preferred because of its good yield.
4H−クロモン誘導体(1a)とハロゲン化アルキル(10)とのモル比に特に制限はないが、1:1から1:10の範囲が好ましく、中でも収率が良い点で1:1から1:3がさらに好ましい。4H−クロモン誘導体(1a)と塩基とのモル比も特に制限はないが、1:1から1:10の範囲が好ましく、中でも収率が良い点で1:3から1:5がさらに好ましい。 The molar ratio of the 4H-chromone derivative (1a) to the alkyl halide (10) is not particularly limited, but is preferably in the range of 1: 1 to 1:10, and 1: 1 to 1: 3 is more preferable. The molar ratio between the 4H-chromone derivative (1a) and the base is not particularly limited, but is preferably in the range of 1: 1 to 1:10, and more preferably 1: 3 to 1: 5 in terms of good yield.
工程−6の反応温度は、−78℃から150℃の範囲から適宜選ばれた温度で行なうことができる。中でも収率が良い点で室温から100℃の範囲が好ましい。 The reaction temperature in Step-6 can be carried out at a temperature suitably selected from the range of -78 ° C to 150 ° C. Among these, the range from room temperature to 100 ° C. is preferable from the viewpoint of good yield.
工程−6の反応で得られる4H−クロモン誘導体(1b)は、必要に応じて反応終了後、反応溶液から精製することができる。精製する方法には特に限定は無いが、溶媒抽出、シリカゲルカラムクロマトグラフィー、薄層分取クロマトグラフィー、分取液体クロマトグラフィー、再結晶または昇華等の汎用的な方法で目的物を精製することができる。 The 4H-chromone derivative (1b) obtained by the reaction in Step-6 can be purified from the reaction solution after completion of the reaction, if necessary. The purification method is not particularly limited, but the target product may be purified by a general method such as solvent extraction, silica gel column chromatography, thin layer preparative chromatography, preparative liquid chromatography, recrystallization or sublimation. it can.
次に、本発明の4H−クロモン誘導体(1)からなる蛍光プローブ(以下、本発明の蛍光プローブという)について説明する。 Next, a fluorescent probe comprising the 4H-chromone derivative (1) of the present invention (hereinafter referred to as the fluorescent probe of the present invention) will be described.
蛍光プローブは、特定のタンパク質、細胞、又は組織などに特異的に結合又は分布し、蛍光を発する物質であり、それにより特定のタンパク質、細胞、又は組織の観察を容易にする。通常、蛍光プローブといった場合は、その物質自体が蛍光を発する物質を指すが、本発明では、それ自体蛍光を発しないが、変換反応などにより蛍光を発するようになる前駆物質も蛍光プローブに含まれるものとする。 A fluorescent probe is a substance that specifically binds or distributes to a specific protein, cell, or tissue and emits fluorescence, thereby facilitating observation of the specific protein, cell, or tissue. In general, the term “fluorescent probe” refers to a substance that emits fluorescence, but in the present invention, a precursor that does not emit fluorescence itself but becomes fluorescent by a conversion reaction or the like is also included in the fluorescent probe. Shall.
本発明の蛍光プローブは、それ自体では蛍光を発しないものの、癌細胞などの特定の細胞において発現しているGSTの触媒作用によりGSHと反応して、蛍光を発するアミン誘導体(11)に変換される。 Although the fluorescent probe of the present invention does not emit fluorescence by itself, it reacts with GSH by the catalytic action of GST expressed in specific cells such as cancer cells and is converted into an amine derivative (11) that emits fluorescence. The
(式中、R2、R3、R4−1、R4−2、R4−3、R4−4、R5−1、R5−2、R5−3、R6、R7、n、mおよびkは前記と同じ意味を表す。)
アミン誘導体(11)は、所定の励起光、例えば400〜500nm程度の励起光を照射した場合に、極めて強い蛍光(例えば600nmでの蛍光)を発する性質を有する一方で、本発明の蛍光プローブは、同程度の励起光を照射した場合であっても、ほとんど蛍光を発しない。アミン誘導体(11)に対する励起光の範囲の上限は、蛍光波長とのオーバーラップを避ける観点から、500nm以下が好ましく、特に好ましくは495nm以下であり、励起光の範囲の下限は、励起能力の観点から400nm以上が好ましい。蛍光観測の観点から、励起光は、所望される波長のみを透過する励起フィルターを通して得た単一波長の光であることが好ましいが、400〜495nmにピークを有するスペクトルを有する光源を使用することもできる。
(Wherein, R 2, R 3, R 4-1, R 4-2, R 4-3, R 4-4, R 5-1, R 5-2, R 5-3,
The amine derivative (11) has a property of emitting extremely strong fluorescence (for example, fluorescence at 600 nm) when irradiated with predetermined excitation light, for example, excitation light of about 400 to 500 nm. Even when the same level of excitation light is irradiated, it hardly emits fluorescence. The upper limit of the excitation light range for the amine derivative (11) is preferably 500 nm or less, particularly preferably 495 nm or less from the viewpoint of avoiding overlap with the fluorescence wavelength, and the lower limit of the excitation light range is a viewpoint of excitation capability. To 400 nm or more is preferable. From the viewpoint of fluorescence observation, the excitation light is preferably light having a single wavelength obtained through an excitation filter that transmits only a desired wavelength, but a light source having a spectrum having a peak at 400 to 495 nm should be used. You can also.
アミン誘導体(11)は、DNA、RNA等の核酸やタンパク質が存在する場合は、DNA、RNA等の核酸やタンパク質と相互作用し、強い蛍光を発する。アミン誘導体(11)は、結合するDNA、RNA等の核酸やタンパク質に応じて蛍光の波長が変化することがあるが、通常500〜700nm程度の蛍光が発せられ、好ましくは510〜650nm程度の蛍光が観察される。 In the presence of nucleic acids and proteins such as DNA and RNA, the amine derivative (11) interacts with nucleic acids and proteins such as DNA and RNA and emits strong fluorescence. The amine derivative (11) may change the wavelength of fluorescence depending on the nucleic acid or protein such as DNA or RNA to be bound, but usually emits fluorescence of about 500 to 700 nm, preferably about 510 to 650 nm. Is observed.
GSTは、通常細胞質酵素として特に癌細胞で高発現している。癌細胞の細胞膜を透過して細胞内に拡散した蛍光プローブは、細胞質中でGSTの触媒作用によりGSHと反応して、アミン誘導体(11)へ変換され、次に細胞質中に存在する核酸や、タンパク質と相互作用し、癌細胞が強い蛍光を発するようになる。 GST is usually highly expressed as a cytoplasmic enzyme, particularly in cancer cells. The fluorescent probe that has permeated the cell membrane of the cancer cell and diffused into the cell reacts with GSH by the catalytic action of GST in the cytoplasm, and is converted to an amine derivative (11), and then a nucleic acid present in the cytoplasm, It interacts with proteins and cancer cells emit strong fluorescence.
本発明の蛍光プローブは、それ自体蛍光を発しないが、GSTの触媒作用によりGSHと反応して強い蛍光を発するアミン誘導体(11)に変換されるため、蛍光強度の変化を測定することでGSTを検出することができる。 Since the fluorescent probe of the present invention does not emit fluorescence per se, but is converted to an amine derivative (11) that reacts with GSH by the catalytic action of GST and emits strong fluorescence, GST is measured by measuring the change in fluorescence intensity. Can be detected.
次に、本発明の蛍光プローブを用いたGSTの検出方法について説明する。本発明の蛍光プローブを用いたGST検出方法は、(a)蛍光プローブをGSH存在下にGSTと反応させる工程;および(b)工程(a)の発光強度を測定する工程を含む。 Next, a GST detection method using the fluorescent probe of the present invention will be described. The GST detection method using the fluorescent probe of the present invention includes (a) a step of reacting the fluorescent probe with GST in the presence of GSH; and (b) a step of measuring the luminescence intensity in step (a).
GSTの種類及びその由来は特に限定されないが、サブタイプとしてπ、α、μに属するものが好ましい。 The type of GST and its origin are not particularly limited, but those belonging to π, α, and μ are preferred as subtypes.
本発明の蛍光プローブをGSH存在下にGSTと作用させる工程に用いる溶媒は、GSTの活性が低下または失活しなければ特に制限はないものの、緩衝液を用いることが好ましい。用いることのできる緩衝液としては、HEPES緩衝液、トリス−塩酸緩衝液、リン酸緩衝液を例示することができる。さらに、緩衝液に混和可能な有機溶媒を添加してもよい。該有機溶媒としては、ジメチルスルホキシド、N,N−ホルムアミド、N,N−ジメチルアセトアミド、メタノール、エタノール、エチレングリコール、グリセリンを例示することができ、これらの有機溶媒のうち2種類以上を混合して用いてもよい。有機溶媒の割合は、GSTが安定的に触媒反応をおこなう点で、0%から10%の範囲が好ましい。 The solvent used in the step of allowing the fluorescent probe of the present invention to react with GST in the presence of GSH is not particularly limited as long as GST activity is not reduced or deactivated, but a buffer is preferably used. Examples of buffers that can be used include HEPES buffer, Tris-HCl buffer, and phosphate buffer. Furthermore, an organic solvent miscible with the buffer may be added. Examples of the organic solvent include dimethyl sulfoxide, N, N-formamide, N, N-dimethylacetamide, methanol, ethanol, ethylene glycol, and glycerin, and two or more of these organic solvents are mixed. It may be used. The proportion of the organic solvent is preferably in the range of 0% to 10% from the viewpoint that GST performs a catalytic reaction stably.
本発明の蛍光プローブをGSH存在下にGSTと作用させる工程の温度は、GSTの活性が低下または失活しない温度であれば特に制限はないものの、GSTが安定的に触媒反応をおこなう点で、5℃から40℃の範囲であることが好ましく、より好ましくは20℃から37℃の範囲である。また、本発明の蛍光プローブとGSHとGSTを加える順番は特に限定されるものではない。 The temperature of the step of allowing the fluorescent probe of the present invention to react with GST in the presence of GSH is not particularly limited as long as GST activity is not lowered or deactivated, but GST stably performs a catalytic reaction. It is preferably in the range of 5 ° C to 40 ° C, more preferably in the range of 20 ° C to 37 ° C. The order of adding the fluorescent probe of the present invention, GSH, and GST is not particularly limited.
発光強度を測定する工程は、それぞれの測定方法に応じて、当業者であればその条件を適宜設定でき、特に制限はされず、蛍光の検出装置として従来公知のものを用いればよい。当該装置としては、例えばプレートリーダー、蛍光分光装置、蛍光顕微鏡等が好ましく挙げられる。 The step of measuring the emission intensity can be appropriately set by those skilled in the art according to each measurement method, and is not particularly limited, and a conventionally known fluorescence detection device may be used. Preferred examples of the apparatus include a plate reader, a fluorescence spectrometer, and a fluorescence microscope.
発光強度を測定する工程は、工程(a)をそのまま測定しても良いが、発光強度が増加する点で、核酸またはタンパク質存在下で行う方が好ましい。用いることのできる核酸の由来に特に制限は無く、血液、組織、細胞等から抽出されたポリヌクレオチドであってもよいし、化学的に合成されたオリゴヌクレオチドであってもよい。また、用いることのできるタンパク質の由来に特に制限はない。入手が容易な点で、ウシ血清アルブミン、ヒト血清アルブミンが好ましい。用いる核酸またはタンパク質の濃度は、検出に影響を与えなければ特に制限はなく、蛍光強度を考慮の上、適宜設定すればよい。 The step of measuring the luminescence intensity may be performed by measuring the step (a) as it is, but it is preferably performed in the presence of a nucleic acid or protein from the viewpoint that the luminescence intensity increases. There are no particular restrictions on the origin of the nucleic acid that can be used, and it may be a polynucleotide extracted from blood, tissue, cells, or the like, or may be a chemically synthesized oligonucleotide. Moreover, there is no restriction | limiting in particular in the origin of the protein which can be used. In view of easy availability, bovine serum albumin and human serum albumin are preferable. The concentration of the nucleic acid or protein to be used is not particularly limited as long as it does not affect the detection, and may be appropriately set in consideration of the fluorescence intensity.
次に、本発明の蛍光プローブを用いた癌細胞の検出方法について説明する。 Next, a method for detecting cancer cells using the fluorescent probe of the present invention will be described.
本発明の蛍光プローブは、癌細胞検出用のプローブであり、癌の検出、判定、又は診断方法においても使用することができる。癌の検出、判定、又は診断方法は体外で行われる方法であってもよいし、体内で行われる方法であってもよい。 The fluorescent probe of the present invention is a probe for detecting cancer cells, and can also be used in cancer detection, determination, or diagnosis methods. The method for detecting, determining, or diagnosing cancer may be a method performed outside the body or a method performed inside the body.
本発明の蛍光プローブは、プレパラート、ガラスボトムディッシュやスライドガラス、マルチウェルプレートなど、生体イメージングの手法において一般的に用いられる観察容器に保持した生体試料に対して作用させることができるが、特許文献2に記載の、生体試料固定装置に保持した生体試料に対して作用させることもできる。 The fluorescent probe of the present invention can act on a biological sample held in an observation container generally used in a biological imaging technique such as a preparation, a glass bottom dish, a slide glass, and a multiwell plate. The biological sample held in the biological sample fixing device described in 2 can be acted on.
前述のような生体試料固定装置として、例えば、図10に示すように上部電極基板と下部電極基板の間に、スペーサーを配置し、複数の微細孔をアレイ状に配置した平板状の絶縁体及び絶縁体と下部電極基板の間に設置した遮光部材からなる保持部をスペーサーと下部電極基板とで挟んだ構造を有する、生体試料固定装置(以下、「細胞診断チップ」と記載することがある)を、生体試料を保持するための容器として用いることができる。図10の例では、保持部に生体試料懸濁液を導入するための導入口と、保持部から溶液を排出するための排出口とを、前記スペーサーに設け、保持部への生体試料懸濁液の供給と排出が迅速に実施可能となるようにしてある。また、前記遮光部材は、前記下部電極基板の、前記微細孔の底部以外の全面を覆うように配置され、微細孔周辺の光ノイズを低減することができる。これにより、微細孔内において生体試料から発する微弱な蛍光などの情報をより高感度に検出することが可能となる。本発明により提供される蛍光プローブを用いると、白血球細胞と、癌細胞とが混合された状態の細胞群の中から、癌細胞のみを、生きたまま蛍光標識し、生体イメージング手法により、癌細胞と白血球細胞とを精度よく識別することが可能になる。 As the biological sample fixing apparatus as described above, for example, as shown in FIG. 10, a planar insulator in which a spacer is arranged between an upper electrode substrate and a lower electrode substrate and a plurality of micropores are arranged in an array, and Biological sample fixing device having a structure in which a holding portion made of a light shielding member placed between an insulator and a lower electrode substrate is sandwiched between a spacer and a lower electrode substrate (hereinafter sometimes referred to as a “cell diagnostic chip”) Can be used as a container for holding a biological sample. In the example of FIG. 10, an inlet for introducing a biological sample suspension into the holding unit and an outlet for discharging the solution from the holding unit are provided in the spacer, and the biological sample suspension in the holding unit is provided. The liquid can be supplied and discharged quickly. In addition, the light shielding member is disposed so as to cover the entire surface of the lower electrode substrate other than the bottom of the fine hole, and can reduce optical noise around the fine hole. This makes it possible to detect information such as weak fluorescence emitted from a biological sample in the micropore with higher sensitivity. When the fluorescent probe provided by the present invention is used, only cancer cells are fluorescently labeled out of a group of cells in which white blood cells and cancer cells are mixed. And white blood cells can be accurately identified.
前述のような構成の細胞診断チップの保持部に細胞などの生体試料懸濁液を導入し、信号発生器と前記2つの電極を導線でそれぞれ接続し、2つの電極の間に所定の波形を有する交流電圧を前記信号発生器により印加することで、電気力線が微細孔へ集中し、懸濁液中の生体試料が、電気力線の集中する方向に力を受け、保持部分の微細孔内へ移動して容易に固定される。この時に発生する力を誘電泳動力という。 A biological sample suspension such as a cell is introduced into the holding part of the cytodiagnostic chip having the above-described configuration, and the signal generator and the two electrodes are connected to each other by conducting wires, and a predetermined waveform is generated between the two electrodes. By applying an alternating voltage having the signal generator with the signal generator, the electric lines of force concentrate on the micropores, and the biological sample in the suspension receives a force in the direction in which the electric lines of force concentrate, and the micropores in the holding portion Moves in and is easily fixed. The force generated at this time is called dielectrophoretic force.
観察容器に保持された生体試料に対し、本発明の蛍光プローブ、又はその溶液を加えることにより接触させ、所定の時間インキュベートした後に、蛍光顕微鏡やマイクロプレートリーダーにより励起光を生体試料に照射し、生じた蛍光を検出することができる。蛍光を発する細胞を癌細胞と判定することができる。本発明では、例えば癌の転移を判定する観点から、生体試料は組織であっても血液であってもよく、さらに組織あるいは血液から得られた細胞群であってもよい。例えば転移性の癌を患う患者から採取された血液の細胞群には、大量の血球細胞と少数の癌細胞が含まれているが、本発明の蛍光プローブを用いることにより、大量の細胞のなかから、癌細胞を精度よく検出することが可能になる。被験者の血液細胞中に癌細胞が存在した場合に、被験者が転移性の癌を患っていると判定又は診断することができる。 The biological sample held in the observation container is brought into contact by adding the fluorescent probe of the present invention or a solution thereof, and after incubation for a predetermined time, the biological sample is irradiated with excitation light by a fluorescence microscope or a microplate reader, The resulting fluorescence can be detected. Cells that emit fluorescence can be determined as cancer cells. In the present invention, from the viewpoint of determining cancer metastasis, for example, the biological sample may be a tissue or blood, and may be a tissue or a cell group obtained from blood. For example, a group of blood cells collected from a patient suffering from metastatic cancer contains a large amount of blood cells and a small number of cancer cells. By using the fluorescent probe of the present invention, Therefore, it becomes possible to detect cancer cells with high accuracy. When cancer cells are present in the blood cells of the subject, it can be determined or diagnosed that the subject suffers from metastatic cancer.
別法では、インキュベート後に、フローサイトメトリーや蛍光顕微鏡による画像取得とそれに続くマイクロピペットによる細胞分取技法を用いて、癌細胞数の計測及び癌細胞の取得を行うこともできる。被験者の血液細胞中の癌細胞数を計測することにより、CTなどの画像診断では発見不可能な微小な固形癌の存在を診断することが可能となる。さらに、被験者の血液細胞中の癌細胞数を一定期間ごとに計測することにより、被験者に対する外科手術、放射線治療などによる局所治療、または化学療法などによる全身治療、または分子標的薬の投与などによる治療の効果を判定することが可能となる。また、被験者の血液細胞中の癌細胞を取得することにより、癌細胞に対して別途解析手法を適用することが可能となり、遺伝子解析、発現解析、局在解析などの性状解析が可能となる。 Alternatively, after incubation, the number of cancer cells and the acquisition of cancer cells can be performed using image acquisition by flow cytometry or fluorescence microscopy, followed by cell sorting using a micropipette. By measuring the number of cancer cells in the blood cells of the subject, it is possible to diagnose the presence of a minute solid cancer that cannot be detected by image diagnosis such as CT. In addition, by measuring the number of cancer cells in the blood cells of a subject at regular intervals, the subject undergoes surgical treatment, local treatment such as radiation therapy, systemic treatment such as chemotherapy, or treatment such as administration of a molecular target drug. It is possible to determine the effect of. In addition, by obtaining cancer cells in the blood cells of a subject, it becomes possible to separately apply an analysis method to the cancer cells, and it is possible to perform property analysis such as gene analysis, expression analysis, and localization analysis.
本発明の別の態様では、本発明の蛍光プローブを用いた癌細胞又は癌組織の検出方法に関する。当該検出方法では、本発明の蛍光プローブを、細胞又は組織に適用し、適用後の細胞又は組織に対し所定の励起光を照射することにより、細胞又は組織における蛍光を検出することを含む。例えばかかる方法は、血液中における癌細胞を検出する方法であり、その場合、血液中の細胞は、プレパラートなどの観察容器に固定されていてもよいし、上で説明した生体試料固定装置により固定された診断チップであってもよい。一方で、係る検出方法を、生体の組織に適用して、手術時における癌組織の確定診断に用いることもできる。その場合の適用方法としては、細胞又は組織に対する噴霧又は塗布することにより適用してもよいし、注射や輸液により適用されてもよい。 Another aspect of the present invention relates to a method for detecting cancer cells or cancer tissues using the fluorescent probe of the present invention. The detection method includes detecting the fluorescence in the cell or tissue by applying the fluorescent probe of the present invention to the cell or tissue and irradiating the applied cell or tissue with predetermined excitation light. For example, such a method is a method for detecting cancer cells in the blood, in which case the cells in the blood may be fixed to an observation container such as a preparation or fixed by the biological sample fixing device described above. It may be a diagnostic chip. On the other hand, such a detection method can be applied to a living tissue and used for a definitive diagnosis of cancer tissue at the time of surgery. As an application method in that case, it may be applied by spraying or applying to cells or tissues, or may be applied by injection or infusion.
本発明のさらに別の態様は、本発明の癌細胞又は癌組織の検出方法を用いて、癌の切除領域を決定し、当該領域を切除する工程を含む、手術・治療方法に関してもよい。 Still another embodiment of the present invention may relate to a surgical / treatment method including a step of determining a cancer excision region using the cancer cell or cancer tissue detection method of the present invention and excising the region.
本発明の癌細胞の検出方法は、転移癌の判定に用いることができる。すなわち、本発明の癌細胞の検出方法により、指標となる蛍光よりも高い蛍光が検出された場合に、転移癌が存在すると判定することができる。ここで、判定方法とは、指標との比較をすることにより、医師をはじめとした医療従事者による判断を含まずに特定する方法をいう。例えば指標となる蛍光として、蛍光を有する細胞を選択することができ、この場合、蛍光を有する細胞が検出された場合に、対象が転移癌を有すると決定することができる。別の態様では、蛍光強度や蛍光を有する細胞の数を指標とすることにより、転移癌の重篤度を判定することもできる。 The cancer cell detection method of the present invention can be used for determination of metastatic cancer. That is, when fluorescence higher than the fluorescence serving as an index is detected by the method for detecting cancer cells of the present invention, it can be determined that metastatic cancer exists. Here, the determination method refers to a method of specifying without including a determination by a medical worker including a doctor by comparing with an index. For example, a fluorescent cell can be selected as the fluorescence serving as an index. In this case, when a fluorescent cell is detected, it can be determined that the subject has metastatic cancer. In another aspect, the severity of metastatic cancer can be determined by using the fluorescence intensity or the number of cells having fluorescence as an index.
本明細書において、「癌組織」の用語は癌細胞を含む任意の組織を意味している。「組織」の用語は、臓器の一部又は全体を含めて最も広義に解釈することができ、いかなる意味においても限定的に解釈してはならない。本発明の蛍光プローブは、癌組織において特異的に強発現しているGSTを検出する作用を有していることから、癌組織の中でも、GSTを高発現している組織が好ましく、このような癌組織は、例えばCancer Research,48,pp.527−537,1988(非特許文献6)に説明されている。癌の例として、頭頚部癌、咽頭癌、胃癌、肺癌、乳癌、大腸癌、腎細胞癌、肝臓癌、胆嚢癌、膵臓癌、子宮体癌、卵巣癌、中皮腫、皮膚癌、メラノーマ、骨癌などの典型的な原発癌の他に、リンパ節などのリンパ組織や周囲組織への転移癌の組織も挙げられるが、これらの癌種に限定されることを意図するものではない。 As used herein, the term “cancerous tissue” means any tissue containing cancer cells. The term “tissue” can be interpreted in the broadest sense, including a part or the whole of an organ, and should not be limitedly interpreted in any way. Since the fluorescent probe of the present invention has an action of detecting GST that is specifically strongly expressed in cancer tissues, among cancer tissues, tissues that highly express GST are preferable. Cancer tissues are described in, for example, Cancer Research, 48, pp. 527-537, 1988 (Non-Patent Document 6). Examples of cancer include head and neck cancer, pharyngeal cancer, stomach cancer, lung cancer, breast cancer, colon cancer, renal cell cancer, liver cancer, gallbladder cancer, pancreatic cancer, endometrial cancer, ovarian cancer, mesothelioma, skin cancer, melanoma, In addition to typical primary cancers such as bone cancer, lymph tissues such as lymph nodes and tissues of metastasized cancer to surrounding tissues may be mentioned, but are not intended to be limited to these cancer types.
次に本発明を実施例および参考例によってさらに詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Next, although an Example and a reference example demonstrate this invention further in detail, this invention is not limited to these.
参考例1 Reference example 1
4’−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2’−ヒドロキシアセトフェノン(248mg,0.84mmol)と(E)−3−[4−(ジメチアルアミノ)フェニル]−2−プロペナール(147mg,0.84mmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、ナトリウムメトキシド(136mg,2.5mmol)を加えて、室温で30分間、80℃で12時間撹拌した。反応終了後、反応混合液に1M塩酸を加えて液性をpH7とした後、酢酸エチル(50mL×3)で抽出した。有機層を水(25mL)で洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィー[14%酢酸エチル/ヘキサン、50%酢酸エチル/ヘキサンの順]で精製して、(2E,4E)−5−[4−(ジメチルアミノ)フェニル]−1−[2−ヒドロキシ−4−[2−(tert−ブトキシカルボニルアミノ)エトキシ]フェニル]ペンタ−2,4−ジエン−1−オン(167mg,収率44%)を赤色固体として得て、参考例2に用いた。1H−NMR(400MHz,CDCl3):δ13.67(s,1H),7.76(d,J=8.7Hz,1H),7.71(dd,J=11.0,14.5Hz,1H),7.41(d,J=8.9Hz,2H),7.03(d,J=14.5Hz,1H),6.99(d,J=15.2Hz,1H),6.86(dd,J=11.0,15.2Hz,1H),6.69(d,J=8.9Hz,2H),6.45(dd,J=2.5,8.7Hz,1H),6.43(d,J=2.5Hz,1H),4.97(brs,1H),4.06(t,J=5.0Hz,2H),3.55(m,2H),3.03(s,6H),1.46(s,9H).
参考例2
4 '-[2- (tert-Butoxycarbonylamino) ethoxy] -2'-hydroxyacetophenone (248 mg, 0.84 mmol) and (E) -3- [4- (dimethylamino) phenyl] -2-propenal ( 147 mg, 0.84 mmol) was dissolved in N, N-dimethylformamide (1 mL), sodium methoxide (136 mg, 2.5 mmol) was added, and the mixture was stirred at room temperature for 30 minutes and at 80 ° C. for 12 hours. After completion of the reaction, 1M hydrochloric acid was added to the reaction mixture to adjust the liquidity to
Reference example 2
参考例1で得られた(2E,4E)−5−[4−(ジメチルアミノ)フェニル]−1−[2−ヒドロキシ−4−[2−(tert−ブトキシカルボニルアミノ)エトキシ]フェニル]ペンタ−2,4−ジエン−1−オン(167mg,0.37mmol)をエタノール(2mL)に懸濁させ、4M水酸化ナトリウム水溶液(0.92mL,3.7mmol)、30%過酸化水素水(420mg,3.7mmol)を加えて、2.5時間加熱還流した。反応終了後、反応混合液を室温まで冷却した後、1M塩酸を加えて液性をpH7とし、水を加えて沈殿物を析出させた。析出した沈殿物をろ取した後、得られた固体を分取薄層クロマトグラフィー(5%メタノール/クロロホルム)で精製して、(E)−7−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2−[4−(ジメチルアミノ)スチリル]−3−ヒドロキシ−4H−クロメン−4−オン(35mg,20%)を茶色固体として得て、参考例3に用いた。1H−NMR(400MHz,DMSO−d6):δ9.21(brs,1H),7.94(d,J=8.9Hz,1H),7.51(d,J=8.9Hz,2H),7.40(d,J=16.2Hz,1H),7.21(brs,1H),7.09(m,1H),7.07(d,J=16.2Hz,1H),6.98(dd,J=2.2,8.9Hz,1H),6.76(d,J=8.9Hz,2H),4.10−4.17(m,2H),3.34−3.39(m,2H),2.98(s,6H),1.39(s,9H).
参考例3
(2E, 4E) -5- [4- (Dimethylamino) phenyl] -1- [2-hydroxy-4- [2- (tert-butoxycarbonylamino) ethoxy] phenyl] penta- obtained in Reference Example 1 2,4-Dien-1-one (167 mg, 0.37 mmol) was suspended in ethanol (2 mL), 4M aqueous sodium hydroxide solution (0.92 mL, 3.7 mmol), 30% aqueous hydrogen peroxide (420 mg, 3.7 mmol) was added and heated to reflux for 2.5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, 1M hydrochloric acid was added to adjust the liquid to
Reference example 3
参考例2で得られた(E)−7−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2−[4−(ジメチルアミノ)スチリル]−3−ヒドロキシ−4H−クロメン−4−オン(35mg,75μmol)をジクロロメタン(0.8mL)に溶解し、トリフルオロ酢酸(0.2mL)を加えて、室温で1時間撹拌した。減圧下溶媒を留去し、得られた残渣にジエチルエーテルを加えて固化させ、(E)−7−(2−アンモニオエトキシ)−2−[4−(ジメチルアミノ)スチリル]−3−ヒドロキシ−4H−クロメン−4−オン=トリフルオロアセテート(25mg,69%)を茶色固体として得て、実施例1に用いた。1H−NMR(400MHz,DMSO−d6):δ9.28(brs,1H),8.00(d,J=8.8Hz,1H),7.88−8.17(m,3H),7.52(d,J=8.9Hz,2H),7.41(d,J=16.2Hz,1H),7.26(d,J=2.4Hz,1H),7.09(d,J=16.2Hz,1H),7.04(dd,J=2.4,8.8Hz,1H),6.76(d,J=8.9Hz,2H),4.33(t,J=4.9Hz,2H),3.24−3.35(m,2H),2.99(s,6H).
参考例4
(E) -7- [2- (tert-butoxycarbonylamino) ethoxy] -2- [4- (dimethylamino) styryl] -3-hydroxy-4H-chromen-4-one obtained in Reference Example 2 ( 35 mg, 75 μmol) was dissolved in dichloromethane (0.8 mL), trifluoroacetic acid (0.2 mL) was added, and the mixture was stirred at room temperature for 1 hour. The solvent was distilled off under reduced pressure, diethyl ether was added to the resulting residue to solidify, and (E) -7- (2-ammonioethoxy) -2- [4- (dimethylamino) styryl] -3-hydroxy was obtained. -4H-chromen-4-one trifluoroacetate (25 mg, 69%) was obtained as a brown solid and used in Example 1. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 9.28 (brs, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.88-8.17 (m, 3H), 7.52 (d, J = 8.9 Hz, 2H), 7.41 (d, J = 16.2 Hz, 1H), 7.26 (d, J = 2.4 Hz, 1H), 7.09 (d , J = 16.2 Hz, 1H), 7.04 (dd, J = 2.4, 8.8 Hz, 1H), 6.76 (d, J = 8.9 Hz, 2H), 4.33 (t, J = 4.9 Hz, 2H), 3.24-3.35 (m, 2H), 2.99 (s, 6H).
Reference example 4
参考例3で得られた(E)−2−[4−(ジメチルアミノ)スチリル]−3−ヒドロキシ−7−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−4H−クロメン−4−オン(30mg,64μmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、炭酸カリウム(27mg,0.19mmol)、ベンジルブロミド(11μL,96μmol)を加えて室温で12時間撹拌した。反応終了後、反応液に水(20mL)を加えた後、クロロホルム(20mL×3)で抽出し、有機層を無水硫酸ナトリウムで乾燥した。溶媒を減圧下留去し、得られた残渣を分取薄層クロマトグラフィー(5%メタノール/クロロホルム)で精製して、(E)−3−ベンジルオキシ−7−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2−[4−(ジメチルアミノ)スチリル]−4H−クロメン−4−オン(25mg,70%)を橙色固体として得た。得られた(E)−3−ベンジルオキシ−7−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2−[4−(ジメチルアミノ)スチリル]−4H−クロメン−4−オン(25mg,45μmol)をジクロロメタン(0.8mL)に溶解し、トリフルオロ酢酸(0.2mL)を加えて室温で30分間撹拌した。反応終了後、溶媒を減圧下留去し、得られた残渣にジエチルエーテルを加えて固化させ、(E)−7−(2−アンモニオエトキシ)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)スチリル]−4H−クロメン−4−オン=トリフルオロアセテート(15mg,58%)を橙色固体として得て、実施例2及び7に用いた。1H−NMR(400MHz,DMSO−d6):δ8.03(d,J=8.9Hz,1H),7.98(brs,3H),7.48−7.53(m,2H),7.30−7.47(m,6H),7.28(d,J=2.3Hz,1H),7.08(dd,J=2.3,8.9Hz,1H),6.88(d,J=16,1Hz,1H),6.76(d,J=8.9Hz,2H),5.16(s,2H),4.33(t,J=5.0Hz,2H),3.29−3.35(m,2H),3.00(s,6H).
参考例5
(E) -2- [4- (Dimethylamino) styryl] -3-hydroxy-7- [2- (tert-butoxycarbonylamino) ethoxy] -4H-chromen-4-one obtained in Reference Example 3 ( 30 mg, 64 μmol) was dissolved in N, N-dimethylformamide (1 mL), potassium carbonate (27 mg, 0.19 mmol) and benzyl bromide (11 μL, 96 μmol) were added, and the mixture was stirred at room temperature for 12 hours. After completion of the reaction, water (20 mL) was added to the reaction solution, followed by extraction with chloroform (20 mL × 3), and the organic layer was dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified by preparative thin layer chromatography (5% methanol / chloroform) to give (E) -3-benzyloxy-7- [2- (tert-butoxycarbonyl). Amino) ethoxy] -2- [4- (dimethylamino) styryl] -4H-chromen-4-one (25 mg, 70%) was obtained as an orange solid. The obtained (E) -3-benzyloxy-7- [2- (tert-butoxycarbonylamino) ethoxy] -2- [4- (dimethylamino) styryl] -4H-chromen-4-one (25 mg, 45 μmol) ) Was dissolved in dichloromethane (0.8 mL), trifluoroacetic acid (0.2 mL) was added, and the mixture was stirred at room temperature for 30 minutes. After completion of the reaction, the solvent was distilled off under reduced pressure, diethyl ether was added to the resulting residue to solidify, and (E) -7- (2-ammonioethoxy) -3-benzyloxy-2- [4- ( [Dimethylamino) styryl] -4H-chromen-4-one trifluoroacetate (15 mg, 58%) was obtained as an orange solid and used in Examples 2 and 7. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.03 (d, J = 8.9 Hz, 1H), 7.98 (brs, 3H), 7.48-7.53 (m, 2H), 7.30-7.47 (m, 6H), 7.28 (d, J = 2.3 Hz, 1H), 7.08 (dd, J = 2.3, 8.9 Hz, 1H), 6.88 (D, J = 16, 1 Hz, 1H), 6.76 (d, J = 8.9 Hz, 2H), 5.16 (s, 2H), 4.33 (t, J = 5.0 Hz, 2H) , 3.29-3.35 (m, 2H), 3.00 (s, 6H).
Reference Example 5
6’−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−3’−ヒドロキシ−2’−アセトナフトン(511mg,1.5mmol)と(E)−3−[4−(ジメチアルアミノ)フェニル]−2−プロペナール(285mg,1.6mmol)をN,N−ジメチルホルムアミド(1.5mL)に溶解し、ナトリウムメトキシド(243mg,4.5mmol)を加えて、室温で2.5時間撹拌した。次いで、反応混合液にエタノール(7.5mL)、4M水酸化ナトリウム水溶液(3.8mL,15mmol)、30%過酸化水素水(1.7g,15mmol)を加えて、更に1.5時間加熱還流した。反応終了後、反応混合液を室温まで冷却した後、1M塩酸を加えて液性をpH7とし、水を加えて沈殿物を析出させた。析出した沈殿物をろ取した後、得られた固体をシリカゲルカラムクロマトグラフィー(2.5%メタノール/クロロホルム、5%メタノール/クロロホルムの順)で精製して、(E)−8−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2−[4−(ジメチルアミノ)スチリル]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン(301mg,39%)を赤色固体として得て、参考例6に用いた。1H−NMR(400MHz,DMSO−d6):δ9.26(s,1H),8.67(s,1H),8.13(d,J=9.2Hz,1H),8.02(s,1H),7.57(d,J=8.8Hz,2H),7.50(d,J=16.2Hz,1H),7.42(d,J=2.5Hz,1H),7.14(dd,J=2.5,9.2Hz,1H),7.16(d,J=16.2Hz,1H),7.10(t,J=5.5Hz,1H),6.77(d,J=8.8Hz,2H),4.14(t,J=5.7Hz,2H),3.40(dt,J=5.5,5.7Hz,2H),3.00(s,6H),1.40(s,9H).
参考例6
6 ′-[2- (tert-Butoxycarbonylamino) ethoxy] -3′-hydroxy-2′-acetonaphthone (511 mg, 1.5 mmol) and (E) -3- [4- (dimethylamino) phenyl]- 2-propenal (285 mg, 1.6 mmol) was dissolved in N, N-dimethylformamide (1.5 mL), sodium methoxide (243 mg, 4.5 mmol) was added, and the mixture was stirred at room temperature for 2.5 hours. Next, ethanol (7.5 mL), 4M aqueous sodium hydroxide solution (3.8 mL, 15 mmol) and 30% aqueous hydrogen peroxide (1.7 g, 15 mmol) were added to the reaction mixture, and the mixture was further heated under reflux for 1.5 hours. did. After completion of the reaction, the reaction mixture was cooled to room temperature, 1M hydrochloric acid was added to adjust the liquid to
Reference Example 6
参考例5で得られた(E)−8−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2−[4−(ジメチルアミノ)スチリル]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン(300mg,0.58mmol)をジクロロメタン(4mL)に溶解し、トリフルオロ酢酸(1mL)を加えて、室温で1時間撹拌した。反応終了後、溶媒を減圧下留去し、得られた残渣にジエチルエーテルを加えて固化させ、(E)−8−(2−アンモニオエトキシ)−2−[4−(ジメチルアミノ)スチリル]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン=トリフルオロアセテート(282mg,95%)を茶褐色固体として得て、実施例3に用いた。1H−NMR(400MHz,DMSO−d6):δ9.30(brs,1H),8.71(s,1H),8.18(d,J=9.2Hz,1H),8.02(s,1H),7.95−8.07(m,3H),7.57(d,J=8.9Hz,2H),7.50(d,J=16.2Hz,1H),7.47(d,J=2.3Hz,1H),7.25(dd,J=2.3,9.2Hz,1H),7.17(d,J=16.2Hz,1H),6.78(d,J=8.9Hz,2H),4.35(t,J=5.0Hz,2H),3.35(m,2H),3.00(s,6H).
参考例7
(E) -8- [2- (tert-butoxycarbonylamino) ethoxy] -2- [4- (dimethylamino) styryl] -3-hydroxy-4H-benzo [g] chromene- obtained in Reference Example 5 4-one (300 mg, 0.58 mmol) was dissolved in dichloromethane (4 mL), trifluoroacetic acid (1 mL) was added, and the mixture was stirred at room temperature for 1 hr. After completion of the reaction, the solvent was distilled off under reduced pressure, and diethyl ether was added to the resulting residue to solidify, and (E) -8- (2-ammonioethoxy) -2- [4- (dimethylamino) styryl]. -3-Hydroxy-4H-benzo [g] chromen-4-one trifluoroacetate (282 mg, 95%) was obtained as a brown solid and used in Example 3. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 9.30 (brs, 1H), 8.71 (s, 1H), 8.18 (d, J = 9.2 Hz, 1H), 8.02 ( s, 1H), 7.95-8.07 (m, 3H), 7.57 (d, J = 8.9 Hz, 2H), 7.50 (d, J = 16.2 Hz, 1H), 7. 47 (d, J = 2.3 Hz, 1H), 7.25 (dd, J = 2.3, 9.2 Hz, 1H), 7.17 (d, J = 16.2 Hz, 1H), 6.78 (D, J = 8.9 Hz, 2H), 4.35 (t, J = 5.0 Hz, 2H), 3.35 (m, 2H), 3.00 (s, 6H).
Reference Example 7
6’−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−3’−ヒドロキシ−2’−アセトナフトン(494mg,1.4mmol)と4−ジメチルアミノベンズアルデヒド(235mg,1.6mmol)をN,N−ジメチルホルムアミド(3mL)に溶解し、0℃に冷却した後、カリウムtert−ブトキシド(513mg,4.2mmol)を加えて、0℃で30分間撹拌した。反応液に水を加えて沈殿を析出させ、ろ過により回収した。得られた固体をフラッシュクロマトグラフィー(50%酢酸エチル/ヘキサン)で精製して、(E)−3−[4−(ジメチルアミノ)フェニル]−1−(2−ヒドロキシ−7−[2−(tert−ブトキシカルボニルアミノ)エトキシナフタレン−3−イル]プロパ−2−エン−1−オン(648mg,97%)を橙色固体として得て、参考例8に用いた。1H−NMR(400MHz,DMSO−d6):δ12.58(s,1H),8.92(s,1H),7.93(d,J=15.3Hz,1H),7.91(d,J=9.0Hz,1H),7.84(d,J= 15.3Hz,1H),7.79(d,J=8.9Hz,2H),7.17(d,J=2.4Hz,1H),7.16(s,1H),7.07(t,J=5.6Hz,1H),7.02(dd,J=2.4,9.0Hz,1H),6.79(d,J=8.9Hz,2H),4.09(t,J=5.6Hz,2H),3.37(q,J=5.6Hz,2H),3.05(s,6H),1.39(s,9H).
参考例8
6 ′-[2- (tert-Butoxycarbonylamino) ethoxy] -3′-hydroxy-2′-acetonaphthone (494 mg, 1.4 mmol) and 4-dimethylaminobenzaldehyde (235 mg, 1.6 mmol) were added to N, N— After dissolving in dimethylformamide (3 mL) and cooling to 0 ° C., potassium tert-butoxide (513 mg, 4.2 mmol) was added and stirred at 0 ° C. for 30 minutes. Water was added to the reaction solution to deposit a precipitate, which was collected by filtration. The resulting solid was purified by flash chromatography (50% ethyl acetate / hexane) to give (E) -3- [4- (dimethylamino) phenyl] -1- (2-hydroxy-7- [2- ( tert-butoxycarbonylamino) ethoxynaphthalen-3-yl] prop-2-en-1-one (648 mg, 97%) was obtained as an orange solid and used in Reference Example 8. 1 H-NMR (400 MHz, DMSO) −d 6 ): δ 12.58 (s, 1H), 8.92 (s, 1H), 7.93 (d, J = 15.3 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.84 (d, J = 15.3 Hz, 1H), 7.79 (d, J = 8.9 Hz, 2H), 7.17 (d, J = 2.4 Hz, 1H), 7. 16 (s, 1H), 7.07 (t, J = 5.6 Hz, 1H ), 7.02 (dd, J = 2.4, 9.0 Hz, 1H), 6.79 (d, J = 8.9 Hz, 2H), 4.09 (t, J = 5.6 Hz, 2H) 3.37 (q, J = 5.6 Hz, 2H), 3.05 (s, 6H), 1.39 (s, 9H).
Reference Example 8
参考例7で得られた(E)−3−[4−(ジメチルアミノ)フェニル]−1−(2−ヒドロキシ−7−[2−(tert−ブトキシカルボニルアミノ)エトキシナフタレン−3−イル]プロパ−2−エン−1−オン(86mg,0.18mmol)をエタノール(1mL)に懸濁させ、30%過酸化水素水(204mg,1.8mmol)、4M水酸化ナトリウム水溶液(0.45mL,1.8mmol)を加えて1時間加熱還流した。反応液を室温に冷却後、1M塩酸を加えて液性をpH7とし、水を加えて沈殿物を析出させた。析出した沈殿物をろ取した後、得られた固体をフラッシュクロマトグラフィー(2%メタノール/クロロホルム)で精製して、8−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2−[4−(ジメチルアミノ)フェニル]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン(20mg,23%)を黄色固体として得て、参考例9に用いた。1H−NMR(400MHz,DMSO−d6):δ9.06(s,1H),8.69(s,1H),8.18(d,J=9.1Hz,2H),8.13(d,J=9.1Hz,1H),8.05(s,1H),7.42(d,J=2.5Hz,1H),7.19(dd,J=2.5,9.1Hz,1H),7.08(m,1H),6.88(d,J=9.1Hz,2H),4.14(t,J=5.7Hz,2H),3.40(q,J=5.7Hz,2H),3.04(s,6H),1.40(s,9H).
参考例9
(E) -3- [4- (Dimethylamino) phenyl] -1- (2-hydroxy-7- [2- (tert-butoxycarbonylamino) ethoxynaphthalen-3-yl] propylene obtained in Reference Example 7 2-en-1-one (86 mg, 0.18 mmol) was suspended in ethanol (1 mL), 30% aqueous hydrogen peroxide (204 mg, 1.8 mmol), 4M aqueous sodium hydroxide solution (0.45 mL, 1 The reaction solution was cooled to room temperature, 1M hydrochloric acid was added to adjust the liquidity to
Reference Example 9
参考例8で得られた8−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2−[4−(ジメチルアミノ)フェニル]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン(20mg,41μmol)をジクロロメタン(0.8mL)に溶解し、トリフルオロ酢酸(0.2mL)を加えて室温で30分間撹拌した。反応終了後、溶媒を減圧下留去し、得られた残渣にジエチルエーテルを加えて固化させ、8−(2−アンモニオエトキシ)−2−[4−(ジメチルアミノ)フェニル]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン=トリフルオロアセテート(14mg,68%)を黄色固体として得て、実施例4に用いた。1H−NMR(400MHz,DMSO−d6):δ8.73(s,1H),8.19(d,J=9.3Hz,2H),8.19(d,J=9.2Hz,1H),8.12(s,1H),7.46(d,J=2.4Hz,1H),7.25(dd,J=2.4,9.2Hz,1H),6.88(d,J=9.3Hz,2H),4.34(t,J=4.8Hz,2H),3.33(q,J=4.8Hz,2H),3.04(s,6H).
参考例10
8- [2- (tert-Butoxycarbonylamino) ethoxy] -2- [4- (dimethylamino) phenyl] -3-hydroxy-4H-benzo [g] chromen-4-one obtained in Reference Example 8 ( 20 mg, 41 μmol) was dissolved in dichloromethane (0.8 mL), trifluoroacetic acid (0.2 mL) was added, and the mixture was stirred at room temperature for 30 minutes. After completion of the reaction, the solvent was distilled off under reduced pressure, diethyl ether was added to the resulting residue to solidify, and 8- (2-ammonioethoxy) -2- [4- (dimethylamino) phenyl] -3-hydroxy was obtained. -4H-benzo [g] chromen-4-one trifluoroacetate (14 mg, 68%) was obtained as a yellow solid and used in Example 4. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.73 (s, 1H), 8.19 (d, J = 9.3 Hz, 2H), 8.19 (d, J = 9.2 Hz, 1H) ), 8.12 (s, 1H), 7.46 (d, J = 2.4 Hz, 1H), 7.25 (dd, J = 2.4, 9.2 Hz, 1H), 6.88 (d , J = 9.3 Hz, 2H), 4.34 (t, J = 4.8 Hz, 2H), 3.33 (q, J = 4.8 Hz, 2H), 3.04 (s, 6H).
Reference Example 10
参考例8で得られた8−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2−[4−(ジメチルアミノ)フェニル]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン(50mg,0.1mmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、炭酸カリウム(42mg,0.3mmol)、ベンジルブロミド(18μL,0.15mmol)を加えて室温で24時間撹拌した。反応終了後、反応液に水(20mL)を加えた後、クロロホルム(20mL×3)で抽出し、有機層を無水硫酸ナトリウムで乾燥した。溶媒を減圧下留去し、得られた残渣をフラッシュクロマトグラフィー(クロロホルム、次いで5%酢酸エチル/クロロホルム)で精製して、3−ベンジルオキシ−8−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2−[4−(ジメチルアミノ)フェニル]−4H−ベンゾ[g]クロメン−4−オン(43mg,74%)を黄色固体として得て、参考例11に用いた。1H−NMR(400MHz,CDCl3):δ8.68(s,1H),8.15(d,J=9.3Hz,1H),8.08(d,J=9.3Hz,2H),8.06(s,1H),7.42−7.46(m,3H),7.29−7.40(m,3H),7.22(dd,J=2.3,9.3Hz,1H),7.07−7.13(m,1H),6.84(d,J=9.3Hz,2H),5.07(s,2H),4.14(t,J=5.5Hz,2H),3.40(q,J=5.5Hz,2H),3.04(s,6H),1.40(s,9H).
参考例11
8- [2- (tert-Butoxycarbonylamino) ethoxy] -2- [4- (dimethylamino) phenyl] -3-hydroxy-4H-benzo [g] chromen-4-one obtained in Reference Example 8 ( 50 mg, 0.1 mmol) was dissolved in N, N-dimethylformamide (1 mL), potassium carbonate (42 mg, 0.3 mmol) and benzyl bromide (18 μL, 0.15 mmol) were added, and the mixture was stirred at room temperature for 24 hours. After completion of the reaction, water (20 mL) was added to the reaction solution, followed by extraction with chloroform (20 mL × 3), and the organic layer was dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the resulting residue was purified by flash chromatography (chloroform, then 5% ethyl acetate / chloroform) to give 3-benzyloxy-8- [2- (tert-butoxycarbonylamino) ethoxy. ] -2- [4- (Dimethylamino) phenyl] -4H-benzo [g] chromen-4-one (43 mg, 74%) was obtained as a yellow solid and used in Reference Example 11. 1 H-NMR (400 MHz, CDCl 3 ): δ 8.68 (s, 1H), 8.15 (d, J = 9.3 Hz, 1H), 8.08 (d, J = 9.3 Hz, 2H), 8.06 (s, 1H), 7.42-7.46 (m, 3H), 7.29-7.40 (m, 3H), 7.22 (dd, J = 2.3, 9.3 Hz , 1H), 7.07-7.13 (m, 1H), 6.84 (d, J = 9.3 Hz, 2H), 5.07 (s, 2H), 4.14 (t, J = 5 .5 Hz, 2H), 3.40 (q, J = 5.5 Hz, 2H), 3.04 (s, 6H), 1.40 (s, 9H).
Reference Example 11
参考例10で得られた3−ベンジルオキシ−8−[2−(tert−ブトキシカルボニルアミノ)エトキシ]−2−[4−(ジメチルアミノ)フェニル]−4H−ベンゾ[g]クロメン−4−オン(43mg,74μmol)をジクロロメタン(0.8mL)に溶解し、トリフルオロ酢酸(0.2mL)を加えて室温で30分間撹拌した。反応終了後、溶媒を減圧下留去し、得られた残渣にジエチルエーテルを加えて固化させ、8−(2−アンモニオエトキシ)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)フェニル]−4H−ベンゾ[g]クロメン−4−オン=トリフルオロアセテート(19mg,51%)を黄色固体として得、実施例5に用いた。1H−NMR(400MHz,DMSO−d6):δ8.72(s,1H),8.20(d,J=9.1Hz,1H),8.12(s,1H),8.08(d,J=9.1Hz,2H),8.01(brs,3H),7.45−7.51(m,2H),7.45(s,1H),7.30−7.40(m,4H),7.27(dd,J=2.3,9.1Hz,1H),6.84(d,J=9.1Hz,2H),5.08(s,2H),4.35(t,J=4.8Hz,2H),3.35−3.40(m,2H),3.05(s,6H).
参考例12
3-Benzyloxy-8- [2- (tert-butoxycarbonylamino) ethoxy] -2- [4- (dimethylamino) phenyl] -4H-benzo [g] chromen-4-one obtained in Reference Example 10 (43 mg, 74 μmol) was dissolved in dichloromethane (0.8 mL), trifluoroacetic acid (0.2 mL) was added, and the mixture was stirred at room temperature for 30 min. After completion of the reaction, the solvent was distilled off under reduced pressure, diethyl ether was added to the resulting residue to solidify, and 8- (2-ammonioethoxy) -3-benzyloxy-2- [4- (dimethylamino) phenyl ] -4H-benzo [g] chromen-4-one trifluoroacetate (19 mg, 51%) was obtained as a yellow solid and used in Example 5. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.72 (s, 1H), 8.20 (d, J = 9.1 Hz, 1H), 8.12 (s, 1H), 8.08 ( d, J = 9.1 Hz, 2H), 8.01 (brs, 3H), 7.45-7.51 (m, 2H), 7.45 (s, 1H), 7.30-7.40 ( m, 4H), 7.27 (dd, J = 2.3, 9.1 Hz, 1H), 6.84 (d, J = 9.1 Hz, 2H), 5.08 (s, 2H), 4. 35 (t, J = 4.8 Hz, 2H), 3.35-3.40 (m, 2H), 3.05 (s, 6H).
Reference Example 12
4’−[5−(tert−ブトキシカルボニルアミノ)ブチルオキシ]−2’−ヒドロキシアセトフェノン(1.29g,3.9mmol)と(E)−3−[4−(ジメチアルアミノ)フェニル]−2−プロペナール(699mg,3.9mmol)をN,N−ジメチルホルムアミド(10mL)に溶解し、カリウムtert−ブトキシド(1.36g,11mmol)を加えて、室温で1時間撹拌した。反応終了後、反応混合液に1M塩酸を加えて液性をpH1とした後、クロロホルム(50mL×3)で抽出した。有機層を1M塩酸(25mL)、飽和炭酸水素ナトリウム水溶液(25mL)、飽和食塩水(25mL)で洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去した。得られた残渣をフラッシュクロマトグラフィー(10%酢酸エチル/ヘキサン、次に25%酢酸エチル/ヘキサン)で精製して、(2E,4E)−1−[4−[5−(tert−ブトキシカルボニルアミノ)ブチルオキシ]−2−ヒドロキシフェニル]−5−[4−(ジメチルアミノ)フェニル]ペンタ−2,4−ジエン−1−オン(500mg,収率28%)を赤色固体として得た。1H−NMR(400MHz,CDCl3):δ13.68(s,1H),7.74(d,J=8.9Hz,1H),7.70(dd,J=11.0,14.4Hz,1H),7.41(d,J=8.9Hz,2H),7.03(d,J=14.4,1H),6.99(d,J=15.3Hz,1H),6.86(dd,J=11.0,15.3Hz,1H),6.69(d,J=8.9Hz,2H),6.41−6.46(m,2H),4.59(brs,1H),4.02(t,J=6.1Hz,2H),3.15−3.25(m,2H),3.03(s,6H),1.78−1.88(m,2H),1.63−1.72(m,2H),1.45(s,9H).
参考例13
4 ′-[5- (tert-Butoxycarbonylamino) butyloxy] -2′-hydroxyacetophenone (1.29 g, 3.9 mmol) and (E) -3- [4- (dimethylamino) phenyl] -2- Propenal (699 mg, 3.9 mmol) was dissolved in N, N-dimethylformamide (10 mL), potassium tert-butoxide (1.36 g, 11 mmol) was added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, 1M hydrochloric acid was added to the reaction mixture to adjust the liquidity to
Reference Example 13
(2E,4E)−1−[4−[3−(tert−ブトキシカルボニルアミノ)ブトキシ]−5−[4−(ジメチルアミノ)フェニル]−2−ヒドロキシフェニル]ペンタ−2,4−ジエン−1−オン(100mg,0.21mmol)をエタノール(1mL)に懸濁させ、4M水酸化カリウム水溶液(0.53mL,2.1mmol)、30%過酸化水素水(236mg,2.1mmol)を加えて、1.5時間加熱還流した。反応終了後、反応混合液を室温まで冷却した後、1M塩酸を加えて液性をpH1とし、更に水(25mL)を加えて反応液を希釈し、クロロホルム(50mL×3)で抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去し、得られた残渣を分取薄層クロマトグラフィー(5%メタノール/クロロホルム)で精製して、(E)−7−[3−(tert−ブトキシカルボニルアミノ)ブトキシ]−2−[4−(ジメチルアミノ)スチリル]−3−ヒドロキシ−4H−クロメン−4−オン(49mg,47%)を茶色固体として得て、参考例14に用いた。1H−NMR(400MHz,DMSO−d6):δ9.21(s,1H),7.94(d,J=8.8Hz,1H),7.52(d,J=8.8Hz,2H),7.41(d,J=16.1Hz,1H),7.16−7.21(m,1H),7.08(d,J=16.1Hz,1H),6.99(dd,J=2.0,8.8Hz,1H),6.85−6.92(m,1H),6.76(d,J=8.8Hz,2H),4.13(t,J=6.0Hz,2H),2.99−3.04(m,2H),2.99(s,6H),1.70−1.82(m,2H),1.50−1.60(m,2H),1.38(s,9H).
参考例14
(2E, 4E) -1- [4- [3- (tert-Butoxycarbonylamino) butoxy] -5- [4- (dimethylamino) phenyl] -2-hydroxyphenyl] penta-2,4-diene-1 -On (100 mg, 0.21 mmol) was suspended in ethanol (1 mL), 4M aqueous potassium hydroxide solution (0.53 mL, 2.1 mmol) and 30% aqueous hydrogen peroxide (236 mg, 2.1 mmol) were added. For 1.5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, 1M hydrochloric acid was added to bring the liquid to
Reference Example 14
実施例1
Example 1
参考例3によって得られた(E)−7−(2−アンモニオエトキシ)−2−[4−(ジメチルアミノ)スチリル]−3−ヒドロキシ−4H−クロメン−4−オン=トリフルオロアセテート(20mg,42μmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、ジイソプロピルエチルアミン(22μL,0.13mmol)、2,4−ジニトロベンゼンスルホニルクロリド(17mg,62μmol)を加えて、室温で30分間撹拌した。反応液に水(5mL)を加えて反応を停止させ、クロロホルム(3×20mL)で抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧下溶媒を留去し、得られた残渣を分取薄層クロマトグラフィー(5%メタノール/クロロホルム)で精製して、(E)−2−[4−(ジメチルアミノ)スチリル]−7−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]エトキシ]−3−ヒドロキシ−4H−クロメン−4−オン(化合物3)(3.0mg,12%)を茶色固体として得て、実施例9乃至14及び比較例1乃至3に用いた。1H−NMR(400MHz,DMSO−d6):δ9.21(s,1H),8.84(d,J=2.2Hz,1H),8.55(dd,J=2.2,8.8Hz,1H),8.27(d,J=8.8Hz,1H),7.95(m,1H),7.87(d,J=8.8Hz,1H),7.52(d,J=8.7Hz,2H),7.38(d,J=16.2Hz,1H),7.07(1H,J=16.2Hz,1H),6.97(d,J=2.1Hz,1H),6.77(dd,J=2.1,8.8Hz,1H),6.76(d,J=8.7Hz,2H),4.13(t,J=4.7Hz,2H),3.43−3.49(m,2H),2.99(s,6H).
実施例2
(E) -7- (2-ammonioethoxy) -2- [4- (dimethylamino) styryl] -3-hydroxy-4H-chromen-4-one = trifluoroacetate (20 mg) obtained in Reference Example 3 , 42 μmol) was dissolved in N, N-dimethylformamide (1 mL), diisopropylethylamine (22 μL, 0.13 mmol) and 2,4-dinitrobenzenesulfonyl chloride (17 mg, 62 μmol) were added, and the mixture was stirred at room temperature for 30 minutes. . Water (5 mL) was added to the reaction solution to stop the reaction, and the mixture was extracted with chloroform (3 × 20 mL). The organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the resulting residue was purified by preparative thin layer chromatography (5% methanol / chloroform) to give (E) -2- [4 -(Dimethylamino) styryl] -7- [2-[[(2,4-dinitrophenyl) sulfonyl] amino] ethoxy] -3-hydroxy-4H-chromen-4-one (compound 3) (3.0 mg, 12%) as a brown solid and used in Examples 9-14 and Comparative Examples 1-3. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 9.21 (s, 1H), 8.84 (d, J = 2.2 Hz, 1H), 8.55 (dd, J = 2.2, 8 .8 Hz, 1 H), 8.27 (d, J = 8.8 Hz, 1 H), 7.95 (m, 1 H), 7.87 (d, J = 8.8 Hz, 1 H), 7.52 (d , J = 8.7 Hz, 2H), 7.38 (d, J = 16.2 Hz, 1H), 7.07 (1H, J = 16.2 Hz, 1H), 6.97 (d, J = 2. 1 Hz, 1 H), 6.77 (dd, J = 2.1, 8.8 Hz, 1 H), 6.76 (d, J = 8.7 Hz, 2 H), 4.13 (t, J = 4.7 Hz) , 2H), 3.43-3.49 (m, 2H), 2.99 (s, 6H).
Example 2
参考例4で得られた(E)−7−(2−アンモニオエトキシ)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)スチリル]−4H−クロメン−4−オン(10mg,18μmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、ジイソプロピルエチルアミン(9.4μL,54μmol)、2,4−ジニトロベンゼンスルホニルクロリド(5.6mg,21μmol)を加えて、室温で30分間撹拌した。反応液に水(5mL)を加えて反応を停止させ、クロロホルム(3×20mL)で抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧下溶媒を留去し、得られた残渣を分取薄層クロマトグラフィー(5%メタノール/クロロホルム)で精製して、(E)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)スチリル]−7−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]エトキシ]−4H−クロメン−4−オン(化合物5)(5.6mg,45%)を暗赤色固体として得て、実施例8乃至14及び比較例1乃至3に用いた。1H−NMR(400MHz,DMSO−d6):δ8.83(brs,1H),8.81(d,J=2.2Hz,1H),8.53(dd,J=2.2,8.8Hz,1H),8.26(d,J=8.8Hz,1H),7.89(d,J=8.8Hz,1H),7.48−7.52(m,2H),7.42(d,J=8.9Hz,2H),7.31−7.43(m,4H),6.98(d,J=2.3Hz,1H),6.84(d,J=16.1Hz,1H),6.82(dd,J=2.3,8.8Hz,1H),6.76(d,J=8.9Hz,2H),5.14(s,2H),4.12(t,J=4.8Hz,2H),3.40−3.48(m,2H),3.00(s,6H).
実施例3
(E) -7- (2-ammonioethoxy) -3-benzyloxy-2- [4- (dimethylamino) styryl] -4H-chromen-4-one (10 mg, 18 μmol) obtained in Reference Example 4 Was dissolved in N, N-dimethylformamide (1 mL), diisopropylethylamine (9.4 μL, 54 μmol) and 2,4-dinitrobenzenesulfonyl chloride (5.6 mg, 21 μmol) were added, and the mixture was stirred at room temperature for 30 minutes. Water (5 mL) was added to the reaction solution to stop the reaction, and the mixture was extracted with chloroform (3 × 20 mL). The organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the resulting residue was purified by preparative thin layer chromatography (5% methanol / chloroform) to give (E) -3-benzyloxy. 2- [4- (Dimethylamino) styryl] -7- [2-[[(2,4-dinitrophenyl) sulfonyl] amino] ethoxy] -4H-chromen-4-one (Compound 5) (5.6 mg , 45%) was obtained as a dark red solid and used in Examples 8-14 and Comparative Examples 1-3. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.83 (brs, 1H), 8.81 (d, J = 2.2 Hz, 1H), 8.53 (dd, J = 2.2, 8 .8 Hz, 1H), 8.26 (d, J = 8.8 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.48-7.52 (m, 2H), 7 .42 (d, J = 8.9 Hz, 2H), 7.31-7.43 (m, 4H), 6.98 (d, J = 2.3 Hz, 1H), 6.84 (d, J = 16.1 Hz, 1H), 6.82 (dd, J = 2.3, 8.8 Hz, 1H), 6.76 (d, J = 8.9 Hz, 2H), 5.14 (s, 2H), 4.12 (t, J = 4.8 Hz, 2H), 3.40-3.48 (m, 2H), 3.00 (s, 6H).
Example 3
参考例6で得られた(E)−8−(2−アンモニオエトキシ)−2−[4−(ジメチルアミノ)スチリル]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン=トリフルオロアセテート(13mg,25μmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、ジイソプロピルエチルアミン(13μL,75μmol)、2,4−ジニトロベンゼンスルホニルクロリド(10mg,38μmol)を加えて、室温で30分間撹拌した。反応液に水(5mL)を加えて反応を停止させ、クロロホルム(3×20mL)で抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧下溶媒を留去し、得られた残渣を分取薄層クロマトグラフィー(5%メタノール/クロロホルム)で精製して、(E)−2−[4−(ジメチルアミノ)スチリル]−8−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]エトキシ]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン(化合物7)(4.0mg,25%)を暗紫色固体として得た。1H−NMR(400MHz,DMSO−d6):δ9.27(s,1H),8.88(brs,1H),8.80(d,J=2.3Hz,1H),8.64(s,1H),8.50(dd,J=2.3,8.7Hz,1H),8.29(d,J=8.7Hz,1H),8.04(d,J=9.3Hz,1H),7.97(s,1H),7.58(d,J=8.9Hz,2H),7.50(d,J=16.0Hz,1H),7.27(d,J=2.2Hz,1H),7.16(d,J=16.0Hz,1H),6.96(dd,J=2.2,9.3Hz,1H),6.78(d,J=8.9Hz,2H),4.17(t,J=4.8Hz,2H),3.47−3.55(m,2H),3.00(s,6H).
実施例4
(E) -8- (2-ammonioethoxy) -2- [4- (dimethylamino) styryl] -3-hydroxy-4H-benzo [g] chromen-4-one = trie obtained in Reference Example 6 Fluoroacetate (13 mg, 25 μmol) is dissolved in N, N-dimethylformamide (1 mL), diisopropylethylamine (13 μL, 75 μmol) and 2,4-dinitrobenzenesulfonyl chloride (10 mg, 38 μmol) are added, and the mixture is stirred at room temperature for 30 minutes. Stir. Water (5 mL) was added to the reaction solution to stop the reaction, and the mixture was extracted with chloroform (3 × 20 mL). The organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the resulting residue was purified by preparative thin layer chromatography (5% methanol / chloroform) to give (E) -2- [4 -(Dimethylamino) styryl] -8- [2-[[(2,4-dinitrophenyl) sulfonyl] amino] ethoxy] -3-hydroxy-4H-benzo [g] chromen-4-one (compound 7) ( 4.0 mg, 25%) was obtained as a dark purple solid. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 9.27 (s, 1H), 8.88 (brs, 1H), 8.80 (d, J = 2.3 Hz, 1H), 8.64 ( s, 1H), 8.50 (dd, J = 2.3, 8.7 Hz, 1H), 8.29 (d, J = 8.7 Hz, 1H), 8.04 (d, J = 9.3 Hz) , 1H), 7.97 (s, 1H), 7.58 (d, J = 8.9 Hz, 2H), 7.50 (d, J = 16.0 Hz, 1H), 7.27 (d, J = 2.2 Hz, 1 H), 7.16 (d, J = 16.0 Hz, 1 H), 6.96 (dd, J = 2.2, 9.3 Hz, 1 H), 6.78 (d, J = 8.9 Hz, 2H), 4.17 (t, J = 4.8 Hz, 2H), 3.47-3.55 (m, 2H), 3.00 (s, 6H).
Example 4
参考例9で得られた8−(2−アンモニオエトキシ)−2−[4−(ジメチルアミノ)フェニル]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン=トリフルオロアセテート(10mg,20μmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、ジイソプロピルエチルアミン(10μL,60μmol)、2,4−ジニトロベンゼンスルホニルクロリド(8mg,30μmol)を加えて、室温で30分間撹拌した。反応液に水(5mL)を加えて反応を停止させ、クロロホルム(3×20mL)で抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧下溶媒を留去し、得られた残渣を分取薄層クロマトグラフィー(5%メタノール/クロロホルム)で精製して、2−[4−(ジメチルアミノ)フェニル]−8−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]エトキシ]−3−ヒドロキシ−4H−ベンゾ[g]クロメン−4−オン(化合物9)(1.0mg,8%)を茶色固体として得た。1H−NMR(400MHz,DMSO−d6):δ9.10(s,1H),8.77(m,2H),8.65(s,1H),8.44(m,1H),8.22(m,1H),8.18(d,J=9.3Hz,2H),8.07(d,J=8.9Hz,1H),8.01(s,1H),7.28(d,J=2.3Hz,1H),7.00(dd,J=2.3,8.9Hz,1H),6.89(d,J=9.3Hz,2H),4.09−4.14(m,2H),3.37−3.43(m,2H),3.04(s,6H).
実施例5
8- (2-ammonioethoxy) -2- [4- (dimethylamino) phenyl] -3-hydroxy-4H-benzo [g] chromen-4-one trifluoroacetate (10 mg) obtained in Reference Example 9 , 20 μmol) was dissolved in N, N-dimethylformamide (1 mL), diisopropylethylamine (10 μL, 60 μmol) and 2,4-dinitrobenzenesulfonyl chloride (8 mg, 30 μmol) were added, and the mixture was stirred at room temperature for 30 minutes. Water (5 mL) was added to the reaction solution to stop the reaction, and the mixture was extracted with chloroform (3 × 20 mL). The organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the resulting residue was purified by preparative thin layer chromatography (5% methanol / chloroform) to give 2- [4- (dimethylamino). ) Phenyl] -8- [2-[[(2,4-dinitrophenyl) sulfonyl] amino] ethoxy] -3-hydroxy-4H-benzo [g] chromen-4-one (Compound 9) (1.0 mg, 8%) was obtained as a brown solid. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 9.10 (s, 1H), 8.77 (m, 2H), 8.65 (s, 1H), 8.44 (m, 1H), 8 .22 (m, 1H), 8.18 (d, J = 9.3 Hz, 2H), 8.07 (d, J = 8.9 Hz, 1H), 8.01 (s, 1H), 7.28 (D, J = 2.3 Hz, 1H), 7.00 (dd, J = 2.3, 8.9 Hz, 1H), 6.89 (d, J = 9.3 Hz, 2H), 4.09− 4.14 (m, 2H), 3.37-3.43 (m, 2H), 3.04 (s, 6H).
Example 5
参考例11で得られた8−(2−アンモニオエトキシ)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)フェニル]−4H−ベンゾ[g]クロメン−4−オン=トリフルオロアセテート(10mg,17μmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、トリエチルアミン(7.2μL,51μmol)、2,4−ジニトロベンゼンスルホニルクロリド(6.7mg,25μmol)を加えて、室温で30分間撹拌した。反応液に水(5mL)を加えて反応を停止させ、クロロホルム(3×20mL)で抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧下溶媒を留去し、得られた残渣を分取薄層クロマトグラフィー(5%メタノール/クロロホルム)で精製して、3−ベンジルオキシ−2−[4−(ジメチルアミノ)フェニル]−8−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]エトキシ]−4H−ベンゾ[g]クロメン−4−オン(化合物11)(3.0mg,25%)を茶色固体として得た。1H−NMR(400MHz,DMSO−d6):δ8.88(brs,1H),8.81(d,J=2.2Hz,1H),8.65(s,1H),8.50(dd,J=2.2,8.7Hz,1H),8.28(d,J=8.7Hz,1H),8.08(d,J=9.0Hz,2H),8.06(d,J=9.0Hz,1H),8.01(s,1H),7.43−7.48(m,2H),7.31−7.40(m,3H),7.29(d,J=2.3Hz,1H)6.99(dd,J=2.3,9.0Hz,1H),6.84(d,J=9.0Hz,2H),5.07(s,2H),4.17(t,J=5.3Hz,2H),3.48−3.53(m,2H),3.05(s,6H).
実施例6
8- (2-ammonioethoxy) -3-benzyloxy-2- [4- (dimethylamino) phenyl] -4H-benzo [g] chromen-4-one trifluoroacetate obtained in Reference Example 11 ( 10 mg, 17 μmol) was dissolved in N, N-dimethylformamide (1 mL), triethylamine (7.2 μL, 51 μmol) and 2,4-dinitrobenzenesulfonyl chloride (6.7 mg, 25 μmol) were added, and the mixture was stirred at room temperature for 30 minutes. Stir. Water (5 mL) was added to the reaction solution to stop the reaction, and the mixture was extracted with chloroform (3 × 20 mL). The organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the resulting residue was purified by preparative thin layer chromatography (5% methanol / chloroform) to give 3-benzyloxy-2- [ 4- (Dimethylamino) phenyl] -8- [2-[[(2,4-dinitrophenyl) sulfonyl] amino] ethoxy] -4H-benzo [g] chromen-4-one (Compound 11) (3.0 mg 25%) as a brown solid. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.88 (brs, 1H), 8.81 (d, J = 2.2 Hz, 1H), 8.65 (s, 1H), 8.50 ( dd, J = 2.2, 8.7 Hz, 1H), 8.28 (d, J = 8.7 Hz, 1H), 8.08 (d, J = 9.0 Hz, 2H), 8.06 (d , J = 9.0 Hz, 1H), 8.01 (s, 1H), 7.43-7.48 (m, 2H), 7.31-7.40 (m, 3H), 7.29 (d , J = 2.3 Hz, 1H) 6.99 (dd, J = 2.3, 9.0 Hz, 1H), 6.84 (d, J = 9.0 Hz, 2H), 5.07 (s, 2H) ), 4.17 (t, J = 5.3 Hz, 2H), 3.48-3.53 (m, 2H), 3.05 (s, 6H).
Example 6
参考例14で得られた(E)−7−(2−アンモニオブトキシ)−2−[4−(ジメチルアミノ)スチリル]−3−ヒドロキシ−4H−クロメン−4−オン=トリフルオロアセテート(10mg,20μmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、ジイソプロピルエチルアミン(10μL,60μmol)、2,4−ジニトロベンゼンスルホニルクロリド(6.5mg,24μmol)を加えて、室温で30分間撹拌した。反応液に水(5mL)を加えて反応を停止させ、クロロホルム(3×20mL)で抽出した。有機層を無水硫酸ナトリウムで乾燥した後、減圧下溶媒を留去し、得られた残渣を分取薄層クロマトグラフィー(5%メタノール/クロロホルム)で精製して、(E)−2−[4−(ジメチルアミノ)スチリル]−7−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]ブトキシ]−3−ヒドロキシ−4H−クロメン−4−オン(化合物13)(4.0mg,32%)を茶色固体として得た。1H−NMR(400MHz,DMSO−d6):δ9.22(s,1H),8.90(d,J=2.2Hz,1H),8.64(dd,J=2.2,8.6Hz,1H),8.53−8,60(m,2H),7.93(d,J=9.0Hz,1H),7.52(d,J=8.9Hz,2H),7.41(d,J=16.2Hz,1H),7.15(d,J=2.2Hz,1H),7.08(d,J=16.2Hz,1H),6.95(dd,J=2.2,9.0Hz,1H),6.76(d,J=8.9Hz,2H),4.06−4.14(m,2H),3.02−3.09(m,2H),2.99(s,6H),1.70−1.85(m,2H),1.55−1.68(m,2H).
実施例7
(E) -7- (2-Ammonioboxy) -2- [4- (dimethylamino) styryl] -3-hydroxy-4H-chromen-4-one = trifluoroacetate (10 mg) obtained in Reference Example 14 , 20 μmol) was dissolved in N, N-dimethylformamide (1 mL), diisopropylethylamine (10 μL, 60 μmol) and 2,4-dinitrobenzenesulfonyl chloride (6.5 mg, 24 μmol) were added, and the mixture was stirred at room temperature for 30 minutes. . Water (5 mL) was added to the reaction solution to stop the reaction, and the mixture was extracted with chloroform (3 × 20 mL). The organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the resulting residue was purified by preparative thin layer chromatography (5% methanol / chloroform) to give (E) -2- [4 -(Dimethylamino) styryl] -7- [2-[[(2,4-dinitrophenyl) sulfonyl] amino] butoxy] -3-hydroxy-4H-chromen-4-one (Compound 13) (4.0 mg, 32%) was obtained as a brown solid. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 9.22 (s, 1H), 8.90 (d, J = 2.2 Hz, 1H), 8.64 (dd, J = 2.2, 8 .6 Hz, 1H), 8.53-8, 60 (m, 2H), 7.93 (d, J = 9.0 Hz, 1H), 7.52 (d, J = 8.9 Hz, 2H), 7 .41 (d, J = 16.2 Hz, 1H), 7.15 (d, J = 2.2 Hz, 1H), 7.08 (d, J = 16.2 Hz, 1H), 6.95 (dd, J = 2.2, 9.0 Hz, 1H), 6.76 (d, J = 8.9 Hz, 2H), 4.06-4.14 (m, 2H), 3.02-3.09 (m) , 2H), 2.99 (s, 6H), 1.70-1.85 (m, 2H), 1.55-1.68 (m, 2H).
Example 7
参考例4で得られた(E)−7−(2−アンモニオエトキシ)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)スチリル]−4H−クロメン−4−オン=トリフルオロアセテート(50mg,88μmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、ジイソプロピルエチルアミン(46μL,0.26mmol)、4−ニトロ−2−(トリフルオロメチル)ベンゼンスルホニルクロリド(31mg,0.11mmol)を加えて、室温で30分間撹拌した。反応液に水(10mL)を加えて沈殿を析出させ、生じた沈殿をろ過により回収した。得られた固体をフラッシュクロマトグラフィー(40%酢酸エチル/ヘキサン)で精製して、(E)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)スチリル]−7−[2−[[[4−ニトロ−2−(トリフルオロメチル)フェニル]スルホニル]アミノ]エトキシ]−4H−クロメン−4−オン(化合物15)(10mg,16%)を茶色固体として得た。1H−NMR(400MHz,DMSO−d6):δ8.75(brs,1H),8.61(dd,J=2.3,8.6Hz,1H),8.52(d,J=2.3Hz,1H),8.39(d,J=8.6Hz,1H),7.89(d,J=8.9Hz,1H),7.47−7.53(m,2H),7.42(d,J=8.9Hz,2H),7.29−7.47(m,4H),6.99(d,J=2.3Hz,1H),6.85(d,J=16.1Hz,1H),6.79(dd,J=2.3,8.9Hz,1H),6.76(d,J=8.9Hz,2H),5.14(s,2H),4.14(t,J=4.9Hz,2H),3.48(t,J=4.9Hz,2H),3.00(s,6H).19F−NMR(376MHz,DMSO−d6):δ−56.8(s,3F).
実施例8
(E) -7- (2-ammonioethoxy) -3-benzyloxy-2- [4- (dimethylamino) styryl] -4H-chromen-4-one = trifluoroacetate obtained in Reference Example 4 ( 50 mg, 88 μmol) was dissolved in N, N-dimethylformamide (1 mL), and diisopropylethylamine (46 μL, 0.26 mmol) and 4-nitro-2- (trifluoromethyl) benzenesulfonyl chloride (31 mg, 0.11 mmol) were added. In addition, the mixture was stirred at room temperature for 30 minutes. Water (10 mL) was added to the reaction solution to precipitate a precipitate, and the resulting precipitate was collected by filtration. The resulting solid was purified by flash chromatography (40% ethyl acetate / hexane) to give (E) -3-benzyloxy-2- [4- (dimethylamino) styryl] -7- [2-[[[[ 4-Nitro-2- (trifluoromethyl) phenyl] sulfonyl] amino] ethoxy] -4H-chromen-4-one (Compound 15) (10 mg, 16%) was obtained as a brown solid. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.75 (brs, 1H), 8.61 (dd, J = 2.3, 8.6 Hz, 1H), 8.52 (d, J = 2) .3 Hz, 1H), 8.39 (d, J = 8.6 Hz, 1H), 7.89 (d, J = 8.9 Hz, 1H), 7.47-7.53 (m, 2H), 7 .42 (d, J = 8.9 Hz, 2H), 7.29-7.47 (m, 4H), 6.99 (d, J = 2.3 Hz, 1H), 6.85 (d, J = 16.1 Hz, 1H), 6.79 (dd, J = 2.3, 8.9 Hz, 1H), 6.76 (d, J = 8.9 Hz, 2H), 5.14 (s, 2H), 4.14 (t, J = 4.9 Hz, 2H), 3.48 (t, J = 4.9 Hz, 2H), 3.00 (s, 6H). 19 F-NMR (376 MHz, DMSO-d 6 ): δ-56.8 (s, 3F).
Example 8
実施例2によって得られた(E)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)スチリル]−7−[2−[[(2,4−ジニトロフェニル)スルホニル]アミノ]エトキシ]−4H−クロメン−4−オン(化合物5)(23mg,33μmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、炭酸カリウム(92mg,0.66mmol)、ヨウ化メチル(20μL,0.33mmol)を加えて、室温で1時間撹拌した。反応液に水(10mL)を加えて沈殿を析出させ、生じた沈殿をろ過により回収した。得られた固体を分取薄層クロマトグラフィー(5%メタノール/クロロホルム)で精製して、(E)−3−ベンジルオキシ−2−[4−(ジメチルアミノ)スチリル]−7−[2−[[(2,4−ジニトロフェニル)スルホニル]メチルアミノ]エトキシ]−4H−クロメン−4−オン(化合物16)(15mg,65%)を茶色固体として得た。1H−NMR(400MHz,DMSO−d6):δ8.98(d,J=2.3Hz,1H),8.53(dd,J=2.3,8.8Hz,1H),8.31(d,J=8.8Hz,1H),7.94(d,J=8.8Hz,1H),7.48−7.52(m,2H),7.42(d,J=9.0Hz,2H),7.28−7.45(m,4H),7.10(d,J=2.3Hz,1H),6.92(dd,J=2.3,8.8Hz,1H),6.85(d,J=16.2Hz,1H),6.76(d,J=9.0Hz,2H),5.15(s,2H),4.33(t,J=5.2Hz,2H),3.74(t,J=5.2Hz,2H),3.06(s,3H),3.00(s,6H).
実施例9
以下の条件で、本発明の4H−クロモン誘導体(1)(化合物3、化合物5、化合物15、化合物16)にGSTを添加して、発光強度を測定した。また同様に、GSTを添加しない場合の発光強度も測定し、その発光強度と比較することでGSTの検出を評価した。
(E) -3-Benzyloxy-2- [4- (dimethylamino) styryl] -7- [2-[[(2,4-dinitrophenyl) sulfonyl] amino] ethoxy]-obtained by Example 2 4H-chromen-4-one (compound 5) (23 mg, 33 μmol) was dissolved in N, N-dimethylformamide (1 mL), potassium carbonate (92 mg, 0.66 mmol), methyl iodide (20 μL, 0.33 mmol). And stirred at room temperature for 1 hour. Water (10 mL) was added to the reaction solution to precipitate a precipitate, and the resulting precipitate was collected by filtration. The resulting solid was purified by preparative thin layer chromatography (5% methanol / chloroform) to give (E) -3-benzyloxy-2- [4- (dimethylamino) styryl] -7- [2- [ [(2,4-Dinitrophenyl) sulfonyl] methylamino] ethoxy] -4H-chromen-4-one (Compound 16) (15 mg, 65%) was obtained as a brown solid. 1 H-NMR (400 MHz, DMSO-d 6 ): δ 8.98 (d, J = 2.3 Hz, 1H), 8.53 (dd, J = 2.3, 8.8 Hz, 1H), 8.31 (D, J = 8.8 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.48-7.52 (m, 2H), 7.42 (d, J = 9. 0 Hz, 2H), 7.28-7.45 (m, 4H), 7.10 (d, J = 2.3 Hz, 1H), 6.92 (dd, J = 2.3, 8.8 Hz, 1H) ), 6.85 (d, J = 16.2 Hz, 1H), 6.76 (d, J = 9.0 Hz, 2H), 5.15 (s, 2H), 4.33 (t, J = 5) .2 Hz, 2H), 3.74 (t, J = 5.2 Hz, 2H), 3.06 (s, 3H), 3.00 (s, 6H).
Example 9
Under the following conditions, GST was added to the 4H-chromone derivative (1) (
(a)方法
反応溶液:リン酸緩衝溶液(pH7.4)(137mM NaCl、2.68mM KCl、8.1mM Na2HPO4、1.47mM KH2PO4)
化合物3の濃度:15μM(1%DMSO)
GSHの濃度:1mM
GST P1−1,Human,Recombinat(オックスフォード バイオメディカル リサーチ社製)の濃度:20μg/mL
反応温度:37℃
GSTを添加しない場合は、GST溶液の代わりに、同量のリン酸緩衝溶液を反応溶液に加えた。
各時間に上記の反応溶液を抜き取り、ヒト血清アルブミン(200mg/mL)を含むリン酸緩衝溶液で10倍希釈した後、プレートリーダーで発光強度を測定した。
励起光:440nm
検出光:600nm
(b)結果
化合物3のGST存在下および非存在下の蛍光強度の経時変化を図1に示す。なお、図1において、実線黒四角はGST存在下での蛍光強度を、点線黒三角はGST非存在下での蛍光強度を、それぞれ示している。反応開始30分後、GST存在下での蛍光強度は、非存在下での蛍光強度より約5.3倍強い値を示した。このことから、本発明の4H−クロモン誘導体は、GSTを検出できることがわかる。
(A) Method reaction solution: phosphate buffer solution (pH 7.4) (137 mM NaCl, 2.68 mM KCl, 8.1 mM Na 2 HPO 4 , 1.47 mM KH 2 PO 4 )
GSH concentration: 1 mM
Concentration of GST P1-1, Human, Recombinat (manufactured by Oxford Biomedical Research): 20 μg / mL
Reaction temperature: 37 ° C
When GST was not added, the same amount of phosphate buffer solution was added to the reaction solution instead of the GST solution.
The reaction solution was taken out at each time, diluted 10-fold with a phosphate buffer solution containing human serum albumin (200 mg / mL), and the luminescence intensity was measured with a plate reader.
Excitation light: 440 nm
Detection light: 600 nm
(B) Results FIG. 1 shows the time course of fluorescence intensity of
化合物5のGST存在下および非存在下の蛍光強度の経時変化を図2に示す。なお、図2において、実線黒四角はGST存在下での蛍光強度を、点線黒三角はGST非存在下での蛍光強度を、それぞれ示している。反応開始30分後、GST存在下での蛍光強度は、非存在下での蛍光強度より約4.8倍強い値を示した。このことから、本発明の4H−クロモン誘導体は、GSTを検出できることがわかる。
FIG. 2 shows changes with time in fluorescence intensity of
化合物15のGST存在下および非存在下の蛍光強度の経時変化を図3に示す。なお、図3において、実線黒四角はGST存在下での蛍光強度を、点線黒三角はGST非存在下での蛍光強度を、それぞれ示している。反応開始120分後、GST存在下での蛍光強度は、非存在下での蛍光強度より約3.5倍強い値を示した。このことから、本発明の4H−クロモン誘導体は、GSTを検出できることがわかる。
FIG. 3 shows changes with time in fluorescence intensity of
化合物16のGST存在下および非存在下の蛍光強度の経時変化を図4に示す。なお、図4において、実線黒四角はGST存在下での蛍光強度を、点線黒三角はGST非存在下での蛍光強度を、それぞれ示している。反応開始120分後、GST存在下での蛍光強度は、非存在下での蛍光強度より約3.8倍強い値を示した。このことから、本発明の4H−クロモン誘導体は、GSTを検出できることがわかる。 FIG. 4 shows changes with time in fluorescence intensity of Compound 16 in the presence and absence of GST. In FIG. 4, the solid black square indicates the fluorescence intensity in the presence of GST, and the dotted black triangle indicates the fluorescence intensity in the absence of GST. 120 minutes after the start of the reaction, the fluorescence intensity in the presence of GST was about 3.8 times stronger than that in the absence. This shows that the 4H-chromone derivative of the present invention can detect GST.
実施例10
以下の条件で、本発明の4H−クロモン誘導体(1)(化合物3、化合物5)に癌細胞内タンパク質抽出液を添加して、発光強度を測定した。また、癌細胞内タンパク質抽出液を添加しない場合、白血球細胞内タンパク抽出液を添加した場合(比較例1)、並びに、癌細胞内タンパク質抽出液および2,4−dinitrochlorobenzene(CDNB)を添加した場合(比較例2)の発光強度も測定し、それらの発光強度と比較することでGSTおよび癌細胞検出能を評価した。
Example 10
Under the following conditions, the protein extract of cancer cells was added to the 4H-chromone derivative (1) (
(a)方法
マウス乳癌由来のFM3A細胞を、10%FBSを含むEMEM培地中で、5%CO2雰囲気下、37℃にて、浮遊培養用シャーレ90φ(深型)(住友ベークライト社製)内で24時間以上培養した。
(A) Method In an EMEM medium containing 10% FBS of FM3A cells derived from mouse breast cancer, in a petri dish for suspension culture 90φ (deep type) (manufactured by Sumitomo Bakelite) in an atmosphere of 5% CO 2 at 37 ° C. For 24 hours or more.
細胞がサブコンフルエントに達した後に細胞を回収した。回収した細胞を遠心し(200×g、25℃、5分)、上澄みを捨てた後、PBS(リン酸緩衝生理食塩水)で洗浄した。さらに細胞を遠心し(200×g、25℃、5分)、上澄みを捨てた後、250μLのPBSで細胞を懸濁し、細胞懸濁液を得た。細胞懸濁液中の細胞数は、1.45×106個であった。続いて、細胞懸濁液を超低温フリーザー(−80℃)内で一旦凍結し、その後解凍した。続いて、解凍した細胞懸濁液をタッチミキサーで約10分間、氷上で冷却しながら激しく混合し、細胞膜を破壊した。続いて、遠心(10000×g、4℃、10分)し、上澄みを回収することで、癌細胞内タンパク質抽出液を得た。得られた癌細胞内タンパク質抽出液は、使用するまでは超低温フリーザー(−80℃)内で凍結保存した。 Cells were harvested after they reached subconfluence. The collected cells were centrifuged (200 × g, 25 ° C., 5 minutes), and the supernatant was discarded, followed by washing with PBS (phosphate buffered saline). The cells were further centrifuged (200 × g, 25 ° C., 5 minutes), the supernatant was discarded, and the cells were suspended in 250 μL of PBS to obtain a cell suspension. The number of cells in the cell suspension was 1.45 × 10 6 . Subsequently, the cell suspension was once frozen in an ultra-low temperature freezer (−80 ° C.) and then thawed. Subsequently, the thawed cell suspension was vigorously mixed with a touch mixer for about 10 minutes while cooling on ice to break the cell membrane. Subsequently, centrifugation (10000 × g, 4 ° C., 10 minutes) was performed, and the supernatant was collected to obtain a cancer cell protein extract. The obtained cancer cell protein extract was stored frozen in an ultra-low temperature freezer (−80 ° C.) until use.
以下の条件で、本発明の化合物3または化合物5に癌細胞内タンパク質抽出液を添加して、蛍光強度を測定した。また同様に、癌細胞内タンパク質抽出液を添加しない場合の蛍光強度も測定し、その蛍光強度と比較することで癌細胞内タンパク質抽出液に含まれるGSTの検出を評価した。
Under the following conditions, the cancer cell protein extract was added to
反応溶液
緩衝溶液:PBS(リン酸緩衝生理食塩水)
化合物3、または化合物5の濃度:15μM(1%DMSO)
GSHの濃度:1mM
癌細胞内タンパク質抽出液:反応溶液量の10分の1量
反応温度:37℃
癌細胞内タンパク質抽出液を添加しない場合は、癌細胞内タンパク質抽出液の代わりに、同量のPBSを反応溶液に加えた。0分、30分、60分、及び120分経過時に上記の反応溶液を抜き取り、測定まで超低温フリーザー(−80℃)内で凍結保持した。解凍した反応溶液を、牛血清アルブミン(200μg/mL)を含むPBSで10倍希釈した後、プレートリーダーで蛍光強度を測定した。
化合物3
励起光:470nm
検出光:650nm
化合物5
励起光:450nm
検出光:579nm
(b)結果
その結果を図5に示す。癌細胞内タンパク質抽出液を添加した場合は、反応時間経過に伴い、化合物3を含む溶液の蛍光強度(図5A、実線黒四角)、及び化合物5を含む溶液の蛍光強度(図5B、実線黒四角)が増大した。一方、癌細胞内タンパク質抽出液を添加しない場合(化合物3:図5A、破線黒丸、化合物5:図5B、破線黒丸)は、反応時間経過に伴う溶液の蛍光強度の変化は僅かであった。
Reaction solution buffer solution: PBS (phosphate buffered saline)
Concentration of
GSH concentration: 1 mM
Cancer cell protein extract: 1/10 of the reaction solution volume Reaction temperature: 37 ° C
When the cancer cell protein extract was not added, the same amount of PBS was added to the reaction solution instead of the cancer cell protein extract. The above reaction solution was withdrawn at the lapse of 0 minutes, 30 minutes, 60 minutes, and 120 minutes, and kept frozen in an ultra-low temperature freezer (−80 ° C.) until measurement. The thawed reaction solution was diluted 10-fold with PBS containing bovine serum albumin (200 μg / mL), and the fluorescence intensity was measured with a plate reader.
Excitation light: 470 nm
Detection light: 650 nm
Excitation light: 450 nm
Detection light: 579 nm
(B) Results The results are shown in FIG. When a cancer cell protein extract was added, the fluorescence intensity of the solution containing Compound 3 (FIG. 5A, solid black square) and the fluorescence intensity of the solution containing Compound 5 (FIG. 5B, solid black) with the lapse of reaction time. Square) increased. On the other hand, when the cancer cell protein extract was not added (Compound 3: FIG. 5A, dashed black circle, Compound 5: FIG. 5B, dashed black circle), the change in the fluorescence intensity of the solution over the course of the reaction time was slight.
比較例1
(a)方法
EDTA−2K採血管(VP−DK050K、テルモ社製)に採血したヒト健常者血液3mLを等量の生理食塩水で希釈して計6mLの希釈血液とした。前期希釈血液6mLを2mLのFicoll−Paque PREMIUM(GEヘルスケアジャパン社製)に重層し、遠心(1100×g、10分、25℃)し、白血球細胞層を回収した。回収した白血球細胞を生理食塩水に懸濁して計30mLとし、遠心(300×g、5分、25℃)し、上澄みを捨てた後、再度生理食塩水に懸濁して計30mLとし、遠心(300×g、5分、25℃)して上澄みを捨てることで、血小板の除去と、白血球細胞の洗浄とを同時に行い、白血球細胞を得た。
Comparative Example 1
(A)
白血球細胞を遠心し、上澄みを捨て、PBS(リン酸緩衝生理食塩水)で懸濁し、250μLの白血球細胞懸濁液を得た。白血球細胞懸濁液中の細胞数は、3.25×106個であった。続いて、細胞懸濁液を超低温フリーザー(−80℃)内で一旦凍結し、その後解凍し、細胞膜を破壊した。続いて、細胞膜を破壊した細胞懸濁液をタッチミキサーで約10分間、氷上で冷却しながら激しく混合した。続いて、遠心(10000×g、4℃、10分)し、上澄みを回収することで、白血球細胞内タンパク質抽出液を得た。得られた白血球細胞内タンパク質抽出液は、使用するまでは超低温フリーザー(−80℃)内で凍結保存した。 The white blood cells were centrifuged, the supernatant was discarded, and the suspension was suspended in PBS (phosphate buffered saline) to obtain 250 μL of white blood cell suspension. The number of cells in the white blood cell suspension was 3.25 × 10 6 . Subsequently, the cell suspension was once frozen in an ultra-low temperature freezer (−80 ° C.) and then thawed to break the cell membrane. Subsequently, the cell suspension in which the cell membrane was disrupted was vigorously mixed with a touch mixer for about 10 minutes while cooling on ice. Subsequently, the mixture was centrifuged (10000 × g, 4 ° C., 10 minutes), and the supernatant was collected to obtain a leukocyte intracellular protein extract. The obtained leukocyte intracellular protein extract was stored frozen in an ultra-low temperature freezer (−80 ° C.) until use.
以下の条件で、本発明の化合物3、または化合物5に白血球細胞内タンパク質抽出液を添加して、蛍光強度を測定した。また同様に、白血球細胞内タンパク質抽出液を添加しない場合の蛍光強度も測定した。
反応溶液
緩衝溶液:PBS(リン酸緩衝生理食塩水)
化合物3、または化合物5の濃度:15μM(1%DMSO)
GSHの濃度:1mM
白血球細胞内タンパク質抽出液:反応溶液量の10分の1量
反応温度:37℃
白血球細胞内タンパク質抽出液を添加しない場合は、白血球細胞内タンパク質抽出液の代わりに、同量のPBSを反応溶液に加えた。0分、30分、60分、90分、及び120分経過時に上記の反応溶液を抜き取り、測定まで超低温フリーザー(−80℃)内で凍結保持した。解凍した反応溶液を、牛血清アルブミン(200μg/mL)を含むPBSで10倍希釈した後、プレートリーダーで蛍光強度を測定した。
化合物3
励起光:470nm
検出光:650nm
化合物5
励起光:450nm
検出光:579nm
(b)結果
その結果、図5A(化合物3:点線黒三角)及び図5B(化合物5:点線黒三角)に示すように、白血球細胞内タンパク質抽出液の存在下では、反応時間経過に伴う溶液の蛍光強度の変化は僅かであった。
Under the following conditions, the white blood cell protein extract was added to the
Reaction solution buffer solution: PBS (phosphate buffered saline)
Concentration of
GSH concentration: 1 mM
Leukocyte intracellular protein extract: 1/10 of the reaction solution volume Reaction temperature: 37 ° C
When the white blood cell protein extract was not added, the same amount of PBS was added to the reaction solution instead of the white blood cell protein extract. The above reaction solution was withdrawn at the lapse of 0 minutes, 30 minutes, 60 minutes, 90 minutes, and 120 minutes, and kept frozen in an ultra-low temperature freezer (−80 ° C.) until measurement. The thawed reaction solution was diluted 10-fold with PBS containing bovine serum albumin (200 μg / mL), and the fluorescence intensity was measured with a plate reader.
Excitation light: 470 nm
Detection light: 650 nm
Excitation light: 450 nm
Detection light: 579 nm
(B) Results As a result, as shown in FIG. 5A (compound 3: dotted black triangle) and FIG. 5B (compound 5: dotted black triangle), in the presence of the leukocyte intracellular protein extract, the solution with the reaction time elapsed The change in the fluorescence intensity was slight.
比較例2
(a)方法
以下の条件で、本発明の化合物3または化合物5に、実施例10と同様に調製した癌細胞内タンパク質抽出液と、GSTの基質であり、化合物3及び化合物5に対し競合阻害的に作用する2,4−Dinitrochlorobenzene(CDNB)(非特許文献7)を添加して、蛍光強度を測定した。また同様に、CDNBを添加しない場合の蛍光強度も測定し、その蛍光強度と比較することで化合物3、または化合物5のGST酵素特異性を評価した。
反応溶液
緩衝溶液:PBS(リン酸緩衝生理食塩水)
化合物3、または化合物5の濃度:15μM(1%DMSO)
GSHの濃度:1mM
癌細胞内タンパク質抽出液:反応溶液量の10分の1量
CDNBの濃度:4mM(4%エタノール)
反応温度:37℃
CDNBを添加しない場合は、CDNBエタノール溶液の代わりに、同量のエタノールを加えた。0分、30分、60分、及び120分経過時に上記の反応溶液を抜き取り、測定まで超低温フリーザー(−80℃)内で凍結保持した。解凍した反応溶液を、牛血清アルブミン(200μg/mL)を含むPBSで10倍希釈した後、プレートリーダーで蛍光強度を測定した。
化合物3、及び化合物5
励起光:440nm
検出光:580nm
(b)結果
その結果を図5Cおよび図5Dに示す。CDNBを添加しなかった場合は、反応時間経過に伴い、化合物3を含む溶液の蛍光強度(図5C、点線黒三角)、及び化合物5を含む溶液の蛍光強度(図5D、点線黒三角)が増大した。一方、CDNBを添加した場合(図5Cおよび図5D、実線黒四角)は、反応時間経過に伴い溶液の蛍光強度が変化しなかった。
Comparative Example 2
(A) Method In the following conditions,
Reaction solution buffer solution: PBS (phosphate buffered saline)
Concentration of
GSH concentration: 1 mM
Cancer cell protein extract: 1/10 of reaction solution volume CDNB concentration: 4 mM (4% ethanol)
Reaction temperature: 37 ° C
When CDNB was not added, the same amount of ethanol was added instead of the CDNB ethanol solution. The above reaction solution was withdrawn at the lapse of 0 minutes, 30 minutes, 60 minutes, and 120 minutes, and kept frozen in an ultra-low temperature freezer (−80 ° C.) until measurement. The thawed reaction solution was diluted 10-fold with PBS containing bovine serum albumin (200 μg / mL), and the fluorescence intensity was measured with a plate reader.
Excitation light: 440 nm
Detection light: 580 nm
(B) Results The results are shown in FIGS. 5C and 5D. When CDNB was not added, the fluorescence intensity of the solution containing Compound 3 (FIG. 5C, dotted black triangle) and the fluorescence intensity of the solution containing Compound 5 (FIG. 5D, dotted black triangle) increased with the reaction time. Increased. On the other hand, when CDNB was added (FIGS. 5C and 5D, solid black squares), the fluorescence intensity of the solution did not change with the lapse of the reaction time.
実施例10、比較例1、及び比較例2の結果から、本発明の化合物3、及び化合物5が細胞内タンパク質抽出液に含まれるGSTを検出できることが分かる。また、蛍光強度を比較することで、癌細胞と正常細胞とを識別することができることがわかる。
From the results of Example 10, Comparative Example 1, and Comparative Example 2, it can be seen that the
実施例11
以下の条件で、本発明の4H−クロモン誘導体(1)(化合物3、化合物5)を癌細胞に接触させ、癌細胞の蛍光検出能を評価した。また、同様に白血球細胞に接触させて、白血球細胞の蛍光検出能を評価した(比較例3)。
Example 11
Under the following conditions, the 4H-chromone derivative (1) (
(a)方法
ヒト乳腺癌由来のSK−BR−3細胞を、10%FBSを含むMcCoy‘s 5a培地中で、また、ヒト肺腺癌由来の非小細胞肺癌細胞のPC−9細胞を、10%FBSを含むD−MEM/Ham‘s F−12培地中で、どちらも5%CO2雰囲気下、37℃にて、マルチウェルプレート24F(接着系細胞用、住友ベークライト社製)内で24時間以上培養した。
(A) Method SK-BR-3 cells derived from human breast adenocarcinoma in McCoy's 5a medium containing 10% FBS, and PC-9 cells of non-small cell lung cancer cells derived from human lung adenocarcinoma, In D-MEM / Ham's F-12 medium containing 10% FBS, both in a multiwell plate 24F (for adherent cells, manufactured by Sumitomo Bakelite) at 37 ° C. in a 5% CO 2 atmosphere. Incubated for more than 24 hours.
SK−BR−3細胞、及びPC−9細胞がどちらも底面の半分程度を覆うような細胞密度になってから、上澄みの培地を捨てた後、フェノールレッドを含まないDMEM/F−12培地で洗浄し、1.5μMの化合物3、もしくは化合物5を含む前記フェノールレッドを含まないDMEM/F−12培地を150μL加えた。
After the cell density is such that both SK-BR-3 cells and PC-9 cells cover about half of the bottom surface, the supernatant medium is discarded, and then DMEM / F-12 medium without phenol red is used. After washing, 150 μL of DMEM / F-12 medium containing 1.5
細胞の蛍光画像を、励起波長470−495nm、蛍光波長510−550nmの条件で、倒立型リサーチ顕微鏡(IX71、オリンパス社製)を通じてEM−CCDカメラで10分、30分、及び60分経過時に撮像した(化合物3:図6上部、化合物5:図7上部)。 Fluorescence images of cells were taken at 10 minutes, 30 minutes, and 60 minutes with an EM-CCD camera through an inverted research microscope (IX71, Olympus) under conditions of excitation wavelengths of 470-495 nm and fluorescence wavelengths of 510-550 nm. (Compound 3: upper part of FIG. 6, compound 5: upper part of FIG. 7).
(b)結果
その結果、SK−BR−3細胞、及びPC−9細胞のどちらも、細胞質が蛍光標識された。また、時間経過に伴い、細胞が発する蛍光強度が増大した。蛍光強度は、SK−BR−3と比較してPC−9細胞の方が大きかった。
(B) Results As a result, the cytoplasm of both the SK-BR-3 cells and the PC-9 cells was fluorescently labeled. In addition, the fluorescence intensity emitted by the cells increased with time. The fluorescence intensity of PC-9 cells was higher than that of SK-BR-3.
比較例3
(a)方法
EDTA−2K採血管(VP−DK050K、テルモ社製)に採血したヒト健常者血液3mLを等量の生理食塩水で希釈して計6mLの希釈血液とした。前期希釈血液6mLを2mLのFicoll−Paque PREMIUM(GEヘルスケアジャパン社製)に重層し、遠心(1100×g、10分、25℃)し、白血球細胞層を回収した。回収した白血球細胞を生理食塩水に懸濁して計30mLとし、遠心(300×g、5分、25℃)し、上澄みを捨てた後、再度生理食塩水に懸濁して計30mLとし、遠心(300×g、5分、25℃)して上澄みを捨てることで、血小板の除去と、白血球細胞の洗浄とを同時に行い、白血球細胞を得た。
Comparative Example 3
(A)
前記白血球細胞を、1.5μMの化合物3、もしくは化合物5を含むフェノールレッドを含まないDMEM/F−12培地で懸濁し(細胞濃度2.0×106個/mL)、マルチウェルプレート24F(接着系細胞用、住友ベークライト社製)に150μL播種した。
The white blood cells are suspended in a DMEM / F-12 medium containing 1.5
前記白血球細胞の蛍光画像を、励起波長470−495nm、蛍光波長510−550nmの条件で、倒立型リサーチ顕微鏡(IX71、オリンパス社製)を通じてEM−CCDカメラで10分、30分、及び60分経過時に撮像した(化合物3:図6下部、化合物5:図7下部)。
(b)結果
その結果、時間経過に伴い、白血球細胞の発する蛍光強度の変化は僅かであった。
Fluorescence images of the white blood cells were passed through an inverted research microscope (IX71, manufactured by Olympus) for 10 minutes, 30 minutes, and 60 minutes under an excitation wavelength of 470-495 nm and a fluorescence wavelength of 510-550 nm. Occasionally images were taken (compound 3: bottom of FIG. 6, compound 5: bottom of FIG. 7).
(B) Results As a result, the change in the fluorescence intensity emitted by the white blood cells was slight with time.
実施例11、及び比較例3の結果から、本発明の化合物3及び化合物5は、癌細胞を蛍光染色し、正常細胞である白血球細胞の蛍光染色は僅かであることが分かる。
From the results of Example 11 and Comparative Example 3, it can be seen that
実施例12
以下の条件で、本発明の4H−クロモン誘導体(1)(化合物3、化合物5)を癌細胞及び白血球細胞の混合体に接触させ、癌細胞の蛍光検出能を評価した。
Example 12
Under the following conditions, the 4H-chromone derivative (1) (
(a)方法
EDTA−2K採血管(VP−DK050K、テルモ社製)に採血したヒト健常者血液3mLを等量の生理食塩水で希釈して計6mLの希釈血液とした。前期希釈血液6mLを2mLのFicoll−Paque PREMIUM(GEヘルスケアジャパン社製)に重層し、遠心(1100×g、10分、25℃)し、白血球細胞層を回収した。回収した白血球細胞を生理食塩水に懸濁して計30mLとし、遠心(300×g、5分、25℃)し、上澄みを捨てた後、再度生理食塩水に懸濁して計30mLとし、遠心(300×g、5分、25℃)して上澄みを捨てることで、血小板の除去と、白血球細胞の洗浄とを同時に行った。次に、得られた白血球細胞をPBS(リン酸緩衝生理食塩水)に懸濁し、10μg/mLのHoechst33342(同仁化学研究所社製)を加えて細胞核染色し、同時に抗CD−45抗体(APC標識)(ミルテニーバイオテク社製)を加えて細胞表面染色を行った。次に遠心(300×g、5分、25℃)し上澄みを捨て、PBS(リン酸緩衝生理食塩水)で白血球細胞を洗浄して抗原に結合しなかった抗CD45抗体(APC標識)を除去した。次に遠心(300×g、5分、25℃)し上澄みを捨て、フェノールレッドを含まないDMEM/F−12培地で懸濁し、白血球細胞懸濁液を得た。
(A)
ヒト肺腺癌由来の非小細胞肺癌細胞のPC−9細胞を、10%FBSを含むD−MEM/Ham‘s F−12培地中で、5%CO2雰囲気下、37℃で培養した。細胞がサブコンフルエントに達した後にPBS(リン酸緩衝生理食塩水)で洗浄し、トリプシン−EDTAを用いて個々の細胞がばらばらになるよう細胞を剥がした。処理した細胞を遠心し(200×g、25℃、5分)、上澄みを捨てた後、フェノールレッドを含まないDMEM/F−12培地で懸濁し、PC−9細胞懸濁液を得た。次に、10μg/mLのHoechst33342(同仁化学研究所社製)を加えて細胞核染色した。 PC-9 cells of non-small cell lung cancer cells derived from human lung adenocarcinoma were cultured at 37 ° C. in a D-MEM / Ham's F-12 medium containing 10% FBS in a 5% CO 2 atmosphere. After the cells reached subconfluence, they were washed with PBS (phosphate buffered saline), and the cells were detached using trypsin-EDTA so that the individual cells were separated. The treated cells were centrifuged (200 × g, 25 ° C., 5 minutes), the supernatant was discarded, and then suspended in a DMEM / F-12 medium not containing phenol red to obtain a PC-9 cell suspension. Next, 10 μg / mL Hoechst 33342 (manufactured by Dojindo Laboratories) was added to stain the cell nucleus.
続いて、PC−9細胞の細胞密度が1.0×105個/mL、白血球細胞の細胞密度が1.0×106個/mLにそれぞれなるよう、前記PC−9細胞懸濁液と前記白血球細胞懸濁液とを混合し、癌細胞及び白血球細胞の混合体を作製した。 Subsequently, the PC-9 cell suspension was adjusted so that the cell density of PC-9 cells was 1.0 × 10 5 cells / mL and the cell density of white blood cells was 1.0 × 10 6 cells / mL. The white blood cell suspension was mixed to prepare a mixture of cancer cells and white blood cells.
前記癌細胞及び白血球細胞の混合体に、1.5μMの化合物3、もしくは化合物5を加え、マルチウェルプレート24F(接着系細胞用、住友ベークライト社製)に400μL播種した。
前記癌細胞及び白血球細胞の混合体の蛍光画像を、倒立型リサーチ顕微鏡(IX71、オリンパス社製)を通じてEM−CCDカメラで10分、30分、及び60分経過時に撮像した(化合物3:図8、化合物5:図9)。なお、抗CD45抗体(APC標識)由来の蛍光像は励起波長600−650nm、蛍光波長670−720nmの条件で撮像し、またHoechst33342由来の蛍光像は励起波長360−370nm、蛍光波長420−460nmの条件で撮像し、また化合物3及び化合物5由来の蛍光像は励起波長470−495nm、蛍光波長510−550nmの条件で撮像した。
1.5
Fluorescence images of the cancer cell and white blood cell mixture were imaged with an EM-CCD camera through an inverted research microscope (IX71, Olympus) at the time of 10 minutes, 30 minutes, and 60 minutes (Compound 3: FIG. 8). Compound 5: FIG. 9). In addition, the fluorescence image derived from the anti-CD45 antibody (APC label) is imaged under the conditions of the excitation wavelength 600-650 nm and the fluorescence wavelength 670-720 nm, and the fluorescence image derived from the Hoechst 33342 has the excitation wavelength 360-370 nm and the fluorescence wavelength 420-460 nm. Images were taken under conditions, and fluorescence images derived from
(b)結果
以上の条件で撮像すると、全ての有核細胞はHoechst3342によりその細胞核が蛍光染色され、また白血球細胞は抗CD45(APC標識)により蛍光染色されることが分かる。従って、Hoechst33342により蛍光染色され、抗CD45抗体(APC標識)により蛍光染色される細胞が白血球細胞であり、またHoechst33342により蛍光染色され、かつ抗CD45抗体(APC標識)により蛍光染色されない細胞はPC−9細胞であることが分かる。その結果、時間経過に伴い、PC−9細胞が発する化合物3及び化合物5由来の蛍光強度が増大した。一方、白血球細胞が発する化合物3及び化合物5由来の蛍光強度は僅かであり、PC−9細胞と白血球細胞とを蛍光強度の違いから、白血球細胞の集団の中から癌細胞を検出することが可能であることが分かった。
(B) Results When imaging is performed under the above conditions, it can be seen that all nucleated cells are fluorescently stained with Hoechst 3342 and white blood cells are fluorescently stained with anti-CD45 (APC label). Therefore, cells that are fluorescently stained with Hoechst 33342 and fluorescently stained with anti-CD45 antibody (APC label) are leukocytes, and cells that are fluorescently stained with Hoechst 33342 and not fluorescently stained with anti-CD45 antibody (APC label) are PC−. It turns out that it is 9 cells. As a result, the fluorescence intensity derived from
実施例13
以下の条件で、本発明の4H−クロモン誘導体(1)(化合物3、化合物5)を細胞診断チップ上に固定化した癌細胞に接触させ、癌細胞の蛍光検出能を評価した。
Example 13
Under the following conditions, the 4H-chromone derivative (1) (
(a)方法
ヒト肺腺癌由来の非小細胞肺癌細胞のPC−9細胞を、10%FBSを含むD−MEM/Ham‘s F−12培地中で、5%CO2雰囲気下、37℃で培養した。細胞がサブコンフルエントに達した後にPBS(リン酸緩衝生理食塩水)で洗浄し、トリプシン−EDTAを用いて個々の細胞がばらばらになるよう細胞を剥がした。処理した細胞を遠心し(200×g、25℃、5分)、上澄みを捨てた後、0.5×105個/mLの細胞密度になるように300mMのマンニトール水溶液に懸濁した。
(A) Method Non-small cell lung cancer cell PC-9 cells derived from human lung adenocarcinoma in D-MEM / Ham's F-12 medium containing 10% FBS at 37 ° C. in a 5% CO 2 atmosphere. In culture. After the cells reached subconfluence, they were washed with PBS (phosphate buffered saline), and the cells were detached using trypsin-EDTA so that the individual cells were separated. The treated cells were centrifuged (200 × g, 25 ° C., 5 minutes), the supernatant was discarded, and the cells were suspended in a 300 mM mannitol aqueous solution so that the cell density was 0.5 × 10 5 cells / mL.
細胞を観察するための容器は、図10及び図11に示すような、孔間隔100μmでアレイ状に配置された、直径30μm、深さ30μmの複数の微細孔を有する絶縁体及び絶縁体と下部電極基板の間に設置した遮光性のクロム膜からなる保持部をスペーサーと下部電極基板とで挟んだ構造を有する、生体試料固定装置(以下、「細胞診断チップ」と記載することがある)を用いた。 As shown in FIGS. 10 and 11, the container for observing cells is an insulator having a plurality of fine holes with a diameter of 30 μm and a depth of 30 μm arranged in an array with a hole interval of 100 μm, and an insulator and a lower part. A biological sample fixing device (hereinafter, sometimes referred to as a “cell diagnostic chip”) having a structure in which a holding portion made of a light-shielding chromium film placed between electrode substrates is sandwiched between a spacer and a lower electrode substrate Using.
細胞診断チップに調整した細胞懸濁液を導入し、信号発生器より交流電圧として電圧20Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したところ、細胞に誘電泳動力が作用し、1分程度の時間でアレイ状に配置した複数の微細孔に細胞を1個ずつ固定することができた。なお、「固定することができた」とは、微細孔に細胞が入った場合を意味し、以下の実施例でも同じ定義とした。 When the adjusted cell suspension is introduced into the cell diagnostic chip and a rectangular wave AC voltage having a voltage of 20 Vpp and a frequency of 3 MHz is applied between the electrodes as an AC voltage from the signal generator, the dielectrophoretic force acts on the cells for 1 minute. The cells could be fixed one by one in a plurality of micropores arranged in an array in about the time. “Fixed” means the case where cells entered the micropores, and the same definition was used in the following examples.
1個の微細孔に概ね1個の細胞が固定された細胞診断チップに、引き続き交流電圧を印加しながら、0.01% ポリ−L−リジンを含む300mM マンニトール水溶液を導入し、2分静置後、交流電圧の印加を停止し、細胞診断チップ内の溶液を吸引除去し、すぐさまPBS(リン酸緩衝生理食塩水)を細胞診断チップに導入し、細胞診断チップ内のポリ−L−リジンを洗浄することで、微細孔内へ細胞を静電気的に結合することができた。なお、ポリ−L−リジンの作用により、細胞は微細孔内に静電気的に結合しているため、洗浄により微細孔から脱離することはない。 A 300 mM mannitol aqueous solution containing 0.01% poly-L-lysine was introduced into a cytodiagnostic chip in which approximately one cell was fixed in one micropore while continuing to apply an AC voltage, and allowed to stand for 2 minutes. Thereafter, the application of the AC voltage is stopped, the solution in the cytodiagnostic chip is sucked and removed, and PBS (phosphate buffered saline) is immediately introduced into the cytodiagnostic chip, and poly-L-lysine in the cytodiagnostic chip is removed. By washing, cells could be electrostatically bound into the micropores. In addition, since the cells are electrostatically bound in the micropores due to the action of poly-L-lysine, they are not detached from the micropores by washing.
続いて、細胞診断チップ内の溶液を吸引除去し、5μMの化合物3、もしくは化合物5を含むPBS(リン酸緩衝生理食塩水)を導入した。細胞診断チップの蛍光画像を、励起波長470−495nm、蛍光波長510−550nmの条件で、倒立型リサーチ顕微鏡(IX71、オリンパス(株)製)を通じてEM−CCDカメラで0分、10分、30分、60分、120分経過時に撮像した(化合物3:図12A、化合物5:図12B)。
Subsequently, the solution in the cytodiagnostic chip was removed by suction, and PBS (phosphate buffered saline) containing 5
(b)結果
その結果、時間経過に伴い、細胞が発する蛍光強度が増大した。PC−9細胞の標識率は、化合物3、及び化合物5のどちらの場合も100%であった。なお、「標識率」とは、蛍光像撮像写真の視野に存在する細胞のうち、蛍光を発する細胞の割合を意味し、以下の実施例でも同じ定義とした。
(B) Results As a result, the fluorescence intensity emitted by the cells increased with time. The labeling rate of PC-9 cells was 100% for both
実施例14
以下の条件で、本発明の4H−クロモン誘導体(1)(化合物3、化合物5)を細胞診断チップ上に固定化した癌細胞及び白血球細胞の混合体に接触させ、癌細胞の蛍光検出能を評価した。
Example 14
Under the following conditions, the 4H-chromone derivative (1) (
(a)方法
EDTA−2K採血管(VP−DK050K、テルモ社製)に採血したヒト健常者血液3mLを等量の生理食塩水で希釈して計6mLの希釈血液とした。前期希釈血液6mLを2mLのFicoll−Paque PREMIUM(GEヘルスケアジャパン社製)に重層し、遠心(1100×g、10分、25℃)し、白血球細胞層を回収した。回収した白血球細胞を生理食塩水に懸濁して計30mLとし、遠心(300×g、5分、25℃)し、上澄みを捨てた後、再度生理食塩水に懸濁して計30mLとし、遠心(300×g、5分、25℃)して上澄みを捨てることで、血小板の除去と、白血球細胞の洗浄とを同時に行った。次に、得られた白血球細胞をPBS(リン酸緩衝生理食塩水)に懸濁し、10μg/mLのHoechst33342(同仁化学研究所社製)を加えて細胞核染色し、同時に抗CD−45抗体(APC標識)(ミルテニーバイオテク社製)を加えて細胞表面染色を行った。続いて、染色を行った白血球細胞を300mMのマンニトール水溶液に懸濁し白血球細胞懸濁液を得た。
(A)
続いて、実施例13と同様に培養したヒト肺腺癌由来の非小細胞肺癌細胞のPC−9細胞がサブコンフルエントに達した後にPBS(リン酸緩衝生理食塩水)で洗浄し、トリプシン−EDTAを用いて個々の細胞がばらばらになるよう細胞を剥がした。処理した細胞に10μg/mLのHoechst33342を加え、細胞核染色した。細胞核染色した細胞を遠心し(200×g、25℃、5分)、上澄みを捨てた後、1×105個/mLの細胞密度になるように300mMのマンニトール水溶液に懸濁し、PC−9細胞懸濁液を調製した。 Subsequently, after PC-9 cells of non-small cell lung cancer cells derived from human lung adenocarcinoma cultured in the same manner as in Example 13 reached subconfluence, they were washed with PBS (phosphate buffered saline), and trypsin-EDTA. Was used to separate the cells so that the individual cells were separated. 10 μg / mL Hoechst 33342 was added to the treated cells, and cell nuclei were stained. The cells stained with cell nuclei were centrifuged (200 × g, 25 ° C., 5 minutes), the supernatant was discarded, and the cells were suspended in 300 mM mannitol aqueous solution so as to have a cell density of 1 × 10 5 cells / mL. A cell suspension was prepared.
続いて、PC−9細胞の細胞密度が0.5×105個/mL、白血球細胞の細胞密度が3.5×105個/mLにそれぞれなるよう、前記PC−9細胞懸濁液と前記白血球細胞懸濁液とを混合し、癌細胞及び白血球細胞の混合体を作製した。 Subsequently, the PC-9 cell suspension was adjusted so that the cell density of PC-9 cells was 0.5 × 10 5 cells / mL and the cell density of white blood cells was 3.5 × 10 5 cells / mL. The white blood cell suspension was mixed to prepare a mixture of cancer cells and white blood cells.
細胞診断チップに前記癌細胞及び白血球細胞の混合体を導入し、交流電圧として電圧20Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したところ、細胞に誘電泳動力が作用し、1分程度の時間でアレイ状に配置した複数の微細孔に白血球細胞、およびPC−9細胞を固定することができた。なお、細胞診断チップに導入した白血球細胞とPC−9細胞のそれぞれの細胞密度の合計が、微細孔の密度(4.0×105個/mL)と等しいため、1個の微細孔に概ね1個の白血球細胞もしくはPC−9細胞が固定された。 When the mixture of cancer cells and white blood cells is introduced into a cytodiagnosis chip and a rectangular wave AC voltage having a voltage of 20 Vpp and a frequency of 3 MHz is applied between the electrodes as an AC voltage, a dielectrophoretic force acts on the cells for about 1 minute. It was possible to fix the white blood cells and PC-9 cells in the plurality of micropores arranged in an array at the above time. The total cell density of the white blood cells and PC-9 cells introduced into the cytodiagnostic chip is equal to the density of the micropores (4.0 × 10 5 cells / mL). One white blood cell or PC-9 cell was fixed.
細胞が固定された細胞診断チップに、引き続き交流電圧を印加しながら、0.01% ポリ−L−リジンを含む300mM マンニトール水溶液を導入し、2分静置後、交流電圧の印加を停止し、細胞診断チップ内の溶液を吸引除去し、すぐさまPBS(リン酸緩衝生理食塩水)を細胞診断チップに導入し、細胞診断チップ内のポリ−L−リジンを洗浄することで、微細孔内へ細胞を静電気的に結合することができた。なお、ポリ−L−リジンの作用により、白血球細胞、およびPC−9細胞は微細孔内に静電気的に結合しているため、洗浄により微細孔から脱離することはない。 While applying an alternating voltage to the cytodiagnosis chip on which the cells are fixed, a 300 mM mannitol aqueous solution containing 0.01% poly-L-lysine is introduced, and after standing for 2 minutes, the application of the alternating voltage is stopped, The solution in the cytodiagnostic chip is aspirated and removed. Immediately, PBS (phosphate buffered saline) is introduced into the cytodiagnostic chip, and the poly-L-lysine in the cytodiagnostic chip is washed, so that the cells enter the micropores. Could be electrostatically coupled. In addition, since leukocytes and PC-9 cells are electrostatically bound in the micropores by the action of poly-L-lysine, they are not detached from the micropores by washing.
続いて、細胞診断チップ内の溶液を吸引除去し、5μMの化合物3、または化合物5を含むPBS(リン酸緩衝生理食塩水)を導入した。細胞診断チップの蛍光画像を、倒立型リサーチ顕微鏡(IX71、オリンパス社製)を通じてEM−CCDカメラで0分、15分、30分、60分、120分経過時に撮像した(化合物3:図13A、化合物5:図13B)。なお、抗CD45抗体(APC標識)由来の蛍光像は励起波長600−650nm、蛍光波長670−720nmの条件で撮像し、またHoechst33342由来の蛍光像は励起波長360−370nm、蛍光波長420−460nmの条件で撮像し、また化合物3及び化合物5由来の蛍光像は励起波長470−495nm、蛍光波長510−550nmの条件で撮像した。以上の条件で撮像すると、全ての有核細胞はHoechst3342によりその細胞核が蛍光染色され、また白血球細胞は抗CD45(APC標識)により蛍光染色されることが分かる。従って、Hoechst33342により蛍光染色され、抗CD45抗体(APC標識)により蛍光染色される細胞が白血球細胞であり、またHoechst33342により蛍光染色され、かつ抗CD45抗体(APC標識)により蛍光染色されない細胞はPC−9細胞であることが分かる。
Subsequently, the solution in the cytodiagnostic chip was removed by suction, and PBS (phosphate buffered saline) containing 5
(b)結果
その結果、時間経過に伴い、PC−9細胞が発する化合物3及び化合物5由来の蛍光強度が増大した。一方、白血球細胞が発する化合物3及び化合物5由来の蛍光強度は僅かであり、PC−9細胞と白血球細胞とを蛍光強度の違いから、細胞診断チップに固定した白血球細胞の集団の中から癌細胞を特異的に検出することが可能であることが分かった。
(B) Result As a result, the fluorescence intensity derived from
1:下部電極基板
2:上部電極基板
3:微細孔
4:絶縁体
5:遮光部材
6:スペーサー
7:導入口
8:排出口
9:保持部
10:信号発生器
11:導線
12:生体試料固定装置(細胞診断チップ)
13:電気力線
14:誘電泳動力
15:生体試料
1: Lower electrode substrate 2: Upper electrode substrate 3: Micro hole 4: Insulator 5: Light shielding member 6: Spacer 7: Inlet 8: Outlet 9: Holding portion 10: Signal generator 11: Conductor 12: Biological sample fixation Equipment (cell diagnostic chip)
13: Electric field line 14: Dielectrophoretic force 15: Biological sample
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014128262A JP2016008179A (en) | 2014-06-23 | 2014-06-23 | 4h-chromone derivative, method of producing the same and cancer cell detecting method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014128262A JP2016008179A (en) | 2014-06-23 | 2014-06-23 | 4h-chromone derivative, method of producing the same and cancer cell detecting method using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016008179A true JP2016008179A (en) | 2016-01-18 |
Family
ID=55225991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014128262A Pending JP2016008179A (en) | 2014-06-23 | 2014-06-23 | 4h-chromone derivative, method of producing the same and cancer cell detecting method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016008179A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9840488B2 (en) | 2015-01-26 | 2017-12-12 | Utah State University | Carbon monoxide releasing molecules and associated methods |
CN113943261A (en) * | 2021-09-15 | 2022-01-18 | 中国科学院长春应用化学研究所 | N-carboxyanhydride, preparation method and application thereof |
-
2014
- 2014-06-23 JP JP2014128262A patent/JP2016008179A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9840488B2 (en) | 2015-01-26 | 2017-12-12 | Utah State University | Carbon monoxide releasing molecules and associated methods |
CN113943261A (en) * | 2021-09-15 | 2022-01-18 | 中国科学院长春应用化学研究所 | N-carboxyanhydride, preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gui et al. | AIE-active theranostic system: selective staining and killing of cancer cells | |
CN108822019B (en) | Polar fluorescence probe of a kind of detection fat drips and its preparation method and application | |
EP1957453B1 (en) | Fluorescent membrane intercalating probes and methods for their use | |
CN101983194B (en) | Fluorophore compounds | |
US10280307B2 (en) | Class of stable heptamethine cyanine fluorophores and biomedical applications thereof | |
US9610366B2 (en) | Method for diagnosing cancer | |
JP6463005B2 (en) | Macrophage discrimination agent, discrimination method using the macrophage discrimination agent, sorting method, evaluation method, screening method, and kit | |
JP7140398B2 (en) | Nitrobenzene derivative or salt thereof and uses thereof | |
US11591359B2 (en) | Enzyme-specific intracellularly-retained red fluorescent probe | |
JP2015203015A (en) | Fluorescence probe | |
JP2017222609A (en) | Xanthene derivative, production method thereof, and method of detecting cancer cells using the derivative | |
Gurram et al. | Near-infrared fluorescent probe for fast track of cyclooxygenase-2 in Golgi apparatus in cancer cells | |
WO2023087169A1 (en) | Two prostate-specific membrane antigen-targeting fluorescent probes, method for preparing same and application thereof | |
US8916137B2 (en) | Monofunctional carbocyanine dyes for in vivo and in vitro imaging | |
CN104031055B (en) | A kind of compound that can be used as Wnt signal pathway activator and preparation and application thereof | |
JP2016008179A (en) | 4h-chromone derivative, method of producing the same and cancer cell detecting method using the same | |
CN104034856B (en) | Affect screening technique and the application thereof of the medicine of canonical Wnt signal pathway | |
Lu et al. | Log P analyzation-based discovery of GSH activated biotin-tagged fluorescence probe for selective colorectal cancer imaging | |
US20200207989A1 (en) | Fluorescent probe for aldh3a1 detection | |
CN109354586A (en) | Bcl-2 protein process in a kind of preparation of imines acridine fluorescence probe and label Dental clinic | |
US20230052551A1 (en) | Fluorescent probe for detection of enpp activity | |
EP3831888B1 (en) | Drug that reacts with acrolein, use thereof and novel compound | |
JP2016193897A (en) | Ph dependent fluorescence compound | |
Zou et al. | Photocaged probes for spatiotemporal imaging | |
CN112082976A (en) | In-vitro drug sensitivity detection method based on drug probe and tissue slice |