JP2016008040A - Boundary layer control device of aircraft - Google Patents

Boundary layer control device of aircraft Download PDF

Info

Publication number
JP2016008040A
JP2016008040A JP2014141789A JP2014141789A JP2016008040A JP 2016008040 A JP2016008040 A JP 2016008040A JP 2014141789 A JP2014141789 A JP 2014141789A JP 2014141789 A JP2014141789 A JP 2014141789A JP 2016008040 A JP2016008040 A JP 2016008040A
Authority
JP
Japan
Prior art keywords
valve
intake
aircraft
valve body
intake port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014141789A
Other languages
Japanese (ja)
Inventor
井上 冨士夫
Fujio Inoue
冨士夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014141789A priority Critical patent/JP2016008040A/en
Publication of JP2016008040A publication Critical patent/JP2016008040A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a boundary layer control device of an aircraft which suppresses boundary layer separation and, thereby, highly contributes to stable flight of the aircraft even upon landing and taking-off of the aircraft in which the separation is easy to occur on a main wing upper surface part, because an intake port opened to the main wing upper surface part and a discharge port opened to a suction side inner circumferential surface on a propulsion engine are communicated by a communication path.SOLUTION: A single or a plurality of intake ports 3 for taking-in air of a main wing upper surface part 2 are opened and provided on the main wing upper surface part 2 of an aircraft 1, a first opening and closing valve 4 which is controlled by an operation system of the aircraft 1 and opens and closes the intake ports 3 is provided on the intake port 3, a single or a plurality of ejection holes 7 for ejecting air taken-in by the intake port 3 are opened and provided on a suction side inner circumferential surface 6 on a propulsion engine 5 of the aircraft 1, and a second opening and closing valve 8 which is controlled by the operation system of the aircraft 1 and opens and closes the ejection holes 7 is provided on the ejection holes 7. Therein, when the first opening and closing valve 4 and the second opening and closing valve 8 are controlled by the operation system of the aircraft 1 and get to an open state, a communication path 9 for communicating the intake ports 3 and the ejection holes 7 to each other are provided between the intake ports 3 and the ejection holes 7.

Description

本発明は、航空機における揚力を生み出す主翼や、離着陸時に揚力を高めるフラップ等の境界層を制御する境界層制御装置に関する。  The present invention relates to a boundary layer control apparatus that controls a boundary layer such as a main wing that generates lift in an aircraft and a flap that increases lift during take-off and landing.

一般に、物体が流体の中を動くときにはその動きを止めようする抗力が作用するが、航空機の翼を始めフラップ等には、その動きと直角の方向に動きを止めようする抗力よりもはるかに大きな揚力が生じるように翼の迎え角や翼の断面形状等が工夫されている。そして、航空機は、空中を航行するために、推進機関によって常に翼に空気流を作り出し、航空機の重量に等しい揚力を確保している。  In general, when an object moves in a fluid, a drag force that stops its movement is applied, but it is much larger than a drag force that stops movement in a direction perpendicular to the movement of an aircraft wing, flap, etc. The angle of attack of the wings and the cross-sectional shape of the wings are devised to generate lift. In order to navigate in the air, the aircraft always creates an air flow in the wing by the propulsion engine to ensure a lift equal to the weight of the aircraft.

発明が解決しようとしている課題Problems to be solved by the invention

しかし、航空機は、離着陸時において、大きな迎え角をとると失速に至る場合がある。航空機の翼は、翼上面の気流が迎え角が小さい範囲ではコアンダ効果によって引き寄せられて沿って流れ圧力が低下し揚力に寄与するが、迎え角を次第に大きくしていくと境界層剥離と呼ばれる現象によって気流が翼上面に沿って流れなくなり、さらに迎え角が大きくなると剥離領域が拡大し最悪の場合には失速に至る。特に、航空機の離陸時においては飛行速度が低く、また、着陸時においては飛行速度を下げなければならず、離陸時と同様に飛行速度が低くなる。さらに、離着陸時においては、高度も低いために失速の対処が間に合わず墜落に至る可能性も高まる。  However, when an aircraft takes a large angle of attack during takeoff and landing, the aircraft may stall. Aircraft wings are attracted by the Coanda effect in the range where the airflow at the top of the wing is small, and the flow pressure decreases along the airflow and contributes to lift.However, as the angle of attack gradually increases, a phenomenon called boundary layer separation occurs. As a result, the air flow stops flowing along the upper surface of the blade, and when the angle of attack is further increased, the separation region is enlarged, and in the worst case, stall is caused. In particular, the flying speed is low at the time of take-off of the aircraft, and the flying speed has to be lowered at the time of landing, so that the flying speed becomes low as at the time of take-off. Furthermore, at the time of takeoff and landing, since the altitude is low, the possibility of falling short of dealing with the stall is likely to increase.

本発明は、このような課題に鑑みてなされたもので、航空機が迎え角を大きくしていった場合に発生する剥離を制御することによって揚力を確保し、失速や墜落に至る可能性を可能な限り回避することをその目的とする。  The present invention has been made in view of such a problem, and by controlling the separation that occurs when the aircraft increases the angle of attack, it is possible to secure lift and possibly cause a stall or crash The purpose is to avoid as much as possible.

課題を解決するための手段Means for solving the problem

上記課題を解決するために、本発明の航空機の境界層制御装置は、航空機の主翼上面部に前記主翼上面部の空気を取込む取込み口を単数箇所又は複数箇所開口させて設け、前記取込み口に前記航空機の操縦系統に制御され前記取込み口を開閉する第一開閉弁を備え、前記航空機の推進機関における吸気側内周面に前記取込み口が取り込んだ空気を放出する放出孔を単数箇所又は複数箇所開口させて設け、前記放出孔に前記航空機の操縦系統に制御され前記放出孔を開閉する第二開閉弁を備え、前記第一開閉弁及び第二開閉弁が前記航空機の操縦系統に制御されて開状態となったときに前記取込み口と前記放出孔間を連通させる連通路を前記取込み口と前記放出孔間に設けて構成されている。  In order to solve the above-described problem, an aircraft boundary layer control apparatus according to the present invention is provided with a single or a plurality of intake ports for taking in air on the upper surface of the main wing on the upper surface of the main wing of the aircraft. A first on-off valve that is controlled by the aircraft control system to open and close the intake port, and has a single release hole for releasing the air taken in by the intake port on the intake side inner peripheral surface of the aircraft propulsion engine or A plurality of openings are provided, and the discharge hole is provided with a second on-off valve that is controlled by the aircraft control system to open and close the discharge hole, and the first on-off valve and the second on-off valve are controlled by the aircraft control system. A communication path is provided between the intake port and the discharge hole to communicate between the intake port and the discharge hole when the intake port is opened.

また、上記課題を解決するために、本発明の航空機の境界層制御装置における取込み口は、航空機の主翼における揚力の発生が大きい翼根側上面部後方の桁方向又は略桁方向にそれぞれ分列して開口し前方取込み口群、中央取込み口群、後方取込み口群を構成し、前記後方取込み口群の配列位置は後縁フラップが取り付けられた翼根側後縁部前方に設定され、前記中央取込み口群の配列位置は前記後方取込み口群の配列位置前方に設定され、前記前方取込み口群の配列位置は前記中央取込み口群の配列位置前方に設定され、前記各取込み口群は並列状又は略並列状に分列されていることとしてもよい。  Further, in order to solve the above problems, the intake port in the boundary layer control apparatus for aircraft according to the present invention is divided into a spar in the spar direction or a nearly spar direction at the back of the upper surface of the wing root side where generation of lift in the main wing of the aircraft is large. The front intake group, the central intake group, and the rear intake group are opened, and the arrangement position of the rear intake group is set in front of the blade root side rear edge portion to which the trailing edge flap is attached, The arrangement position of the central intake group is set in front of the arrangement position of the rear intake group, the arrangement position of the front intake group is set in front of the arrangement position of the central intake group, and the intake groups are arranged in parallel. It is good also as being arranged in the shape or the substantially parallel form.

また、上記課題を解決するために、本発明の航空機の境界層制御装置における第二開閉弁は、弁体が、前記弁体の底部両側より立ち上がった両側壁部と、前記底部前側より立ち上がった前側壁部と、によって略コの字型状の側壁部を形成するとともに前記底部と一体化され前記側壁部の上面部及び後面部が開放されたバケット型を構成し、前記弁体における前側壁部がジェットエンジンの基部に設けられた軸受け部に回転軸を介して支承され、前記弁体がジェットエンジンの回転中心線方向に扇状に作動することによって前記弁体における後面部のみをジェットエンジンの圧縮部前面に向かい合わせて前記放出孔を開き、前記弁体がジェットエンジンの回転中心線方向と反対側に扇状に作動することによって前記放出孔を塞いで閉じる往復式開閉弁をジェットエンジンの吸気側内周面に単数箇所又は複数箇所開口させて設けた前記放出孔に備えたこととしてもよい。  In order to solve the above-mentioned problem, in the second on-off valve in the boundary layer control device for an aircraft of the present invention, the valve body rises from both side wall portions that rise from both sides of the bottom portion of the valve body and from the front side of the bottom portion. The front side wall portion forms a substantially U-shaped side wall portion and forms a bucket shape that is integrated with the bottom portion and has an upper surface portion and a rear surface portion opened. Is supported by a bearing provided at the base of the jet engine via a rotating shaft, and the valve body operates in a fan shape in the direction of the rotation center line of the jet engine so that only the rear surface portion of the valve body is A reciprocating type that opens the discharge hole facing the front surface of the compression section and closes the discharge hole by closing the valve body in a fan shape on the side opposite to the rotation center line direction of the jet engine. Closing the may be provided in the discharge hole provided by single point or a plurality of locations opened in the intake side inner peripheral surface of the jet engine.

また、上記課題を解決するために、本発明の航空機の境界層制御装置における第二開閉弁は、両辺が後方に行くに従い幅を狭めるテーパー形状に成形された弁体を備えた往復式開閉弁で、前記往復式開閉弁がジェットエンジンの吸気側内周面に複数箇所開口させて設けられたそれぞれの前記放出孔に備えられ、それぞれの前記往復式開閉弁における弁体が前記弁体の前端部をジェットエンジンの基部に設けられた軸受け部に回転軸を介して支承され、すべての前記弁体がジェットエンジンの回転中心線方向に扇状に作動することによってジェットエンジンの吸気側内周面に開口するすべての前記放出孔を開くとともにジェットエンジンの吸気側内周面の内側に後方に向かって縮径された円錐台形状の筒を形造り、すべての弁体がジェットエンジンの回転中心線方向と反対側に扇状に作動することによってジェットエンジンの吸気側内周面に開口するすべての前記放出孔を塞いで閉じることとしてもよい。  In order to solve the above-mentioned problem, the second on-off valve in the aircraft boundary layer control apparatus of the present invention is a reciprocating on-off valve having a valve body formed in a tapered shape whose width decreases as both sides go backward. The reciprocating on-off valve is provided in each of the discharge holes provided at a plurality of locations on the intake-side inner peripheral surface of the jet engine, and the valve body in each of the reciprocating on-off valves is a front end of the valve body. Is supported by a bearing provided at the base of the jet engine via a rotating shaft, and all the valve bodies operate in a fan shape in the direction of the rotation center line of the jet engine, thereby forming an intake side inner peripheral surface of the jet engine. A cylinder with a truncated cone shape that opens all the above-mentioned discharge holes and is reduced in diameter toward the rear inside the intake-side inner peripheral surface of the jet engine is formed. May closed by closing all of said discharge hole opened into the intake side inner peripheral surface of the jet engine by operating the fan to the rotational center line direction of the down opposite.

また、上記課題を解決するために、本発明の航空機の境界層制御装置は、航空機の主翼上面部に前記主翼上面部の空気を取込む取込み口を単数箇所又は複数箇所開口させて設け、前記航空機の推進機関における吸気側内周面に前記取込み口が取り込んだ空気を放出する放出孔を単数箇所又は複数箇所開口させて設け、前記取込み口と前記放出孔間を連通する連通路を前記取込み口と前記放出孔間に設け、前記航空機の操縦系統に制御されて前記取込み口と前記放出孔間の連通を開閉する開閉弁を前記取込み口又は前記放出孔又は前記連通路のいずれか一箇所に備えた。  In order to solve the above-described problem, the aircraft boundary layer control device according to the present invention is provided with a single or a plurality of intake openings for taking in air on the upper surface of the main wing on the upper surface of the main wing of the aircraft, A single or a plurality of discharge holes for releasing the air taken in by the intake port are provided on the intake-side inner peripheral surface of an aircraft propulsion engine, and the communication passage that communicates between the intake port and the discharge hole is provided. An opening / closing valve that is provided between the opening and the discharge hole and is controlled by a control system of the aircraft to open and close the communication between the intake port and the discharge hole, either one of the intake port, the discharge hole, or the communication path. Prepared for.

また、上記課題を解決するために、本発明の航空機の境界層制御装置は、航空機の主翼上面部に前記主翼上面部の空気を取込む取込み口を単数箇所又は複数箇所開口させて設け、前記航空機の推進機関における吸気側内周面に前記取込み口が取り込んだ空気を放出する放出孔を単数箇所又は複数箇所開口させて設け、前記取込み口と前記放出孔間を連通する連通路を前記取込み口と前記放出孔間に設け、前記取込み口と前記放出孔間が前記連通路によって常時連通されている。  In order to solve the above-described problem, the aircraft boundary layer control device according to the present invention is provided with a single or a plurality of intake openings for taking in air on the upper surface of the main wing on the upper surface of the main wing of the aircraft, A single or a plurality of discharge holes for releasing the air taken in by the intake port are provided on the intake-side inner peripheral surface of an aircraft propulsion engine, and the communication passage that communicates between the intake port and the discharge hole is provided. It is provided between the opening and the discharge hole, and the intake port and the discharge hole are always in communication with each other by the communication path.

また、上記課題を解決するために、本発明の航空機の後縁フラップは、後縁フラップにおける後縁の前方上面部左右方向に開口し前記後縁フラップの上面の空気を取込む取込み口を列状に一列又は分列させて取込み口群を構成し、インダクションボックス兼第一連通路を前記後縁フラップの本体を構成する外板材や桁部材や小骨部材等の各部材によって前記後縁フラップの本体内部後方に設けた。  In order to solve the above-mentioned problem, the rear edge flap of the aircraft according to the present invention is arranged in the left and right direction in the front upper surface portion of the rear edge of the rear edge flap, and the intake ports for taking in air on the upper surface of the rear edge flap are arranged in a row. The intake port group is formed in a row or in a line, and the induction box / first series passage is formed by the members of the outer plate material, the spar member, the small bone member, etc. constituting the main body of the trailing edge flap. It was provided inside the main body.

また、上記課題を解決するために、本発明の航空機のスロッテッド・フラップは、主翼側の第二連通路端部とスロッテッド・フラップ側の第一連通路端部間に、前記スロッテッド・フラップの伸長時に前記スロッテッド・フラップ側の第一連通路端部が前記主翼側の第二連通路端部と連通状態を維持し続ける伸縮連通装置を備えた。  In order to solve the above-described problem, the slotted flap of the aircraft according to the present invention is an extension of the slotted flap between the second communication path end on the main wing side and the first series path end on the slotted flap side. In some cases, an expansion / contraction communication device is provided in which the end of the first series passage on the slotted flap side continues to maintain communication with the end of the second communication passage on the main wing side.

また、上記課題を解決するために、本発明の航空機の境界層制御装置における第一開閉弁は、弁体の回転中心線上の両端部に回転軸が設けられ、前記弁体における第一母線と第二母線間の前記弁体の回転中心線方向に閉塞された第一平面部が形成され、第三母線と第四母線間の前記弁体の回転中心線方向に第二平面部が形成されているとともに前記第二平面部に前記弁体の回転中心線を挟んだ反対側に貫通する複数の連通孔が前記弁体の回転中心線方向に列状に複数ヶ所開口されて設けられ、第五母線と第六母線間の前記弁体の回転中心線方向に主翼上面に乱流を生み出す突起部が設けられ、前記第五母線側から前記突起部間の内方に向けて窪みが形成され前記突起部から前記第六母線間の内方に向けて窪みが形成されて構成されている前記弁体を内部に組み合わせた回転式開閉弁を採用したこととしてもよい。  In order to solve the above problems, the first on-off valve in the aircraft boundary layer control device of the present invention is provided with rotation shafts at both ends on the rotation center line of the valve body, and the first busbar in the valve body A first plane portion closed in the direction of the rotation center line of the valve body between the second bus bars is formed, and a second plane portion is formed in the direction of the rotation center line of the valve body between the third bus bar and the fourth bus bar. And a plurality of communication holes penetrating on the opposite side across the rotation center line of the valve body are provided in the second plane portion and are opened in a plurality of rows in the direction of the rotation center line of the valve body. A protrusion is formed on the upper surface of the main wing in the direction of the rotation center line of the valve body between the fifth bus and the sixth bus, and a recess is formed from the fifth bus toward the inside of the protrusion. The indentation is formed from the protrusions toward the inside between the sixth bus bars. Body may be the adopting rotary-off valve in combination therein.

また、上記課題を解決するために、本発明の航空機の境界層制御装置における第一開閉弁は、弁体の回転中心線上の両端部に回転軸が設けられ、前記弁体における第一母線と第二母線間の前記弁体の回転中心線方向に閉塞された第一平面部が形成され、第三母線と第四母線間の前記弁体の回転中心線方向に第二平面部が形成されているとともに前記第二平面部に前記弁体の回転中心線を挟んだ反対側に貫通する複数の連通孔が前記弁体の回転中心線方向に列状に複数ヶ所開口されて設けられて構成されている前記弁体を内部に組み合わせた回転式開閉弁を採用したこととしてもよい。  In order to solve the above problems, the first on-off valve in the aircraft boundary layer control device of the present invention is provided with rotation shafts at both ends on the rotation center line of the valve body, and the first busbar in the valve body A first plane portion closed in the direction of the rotation center line of the valve body between the second bus bars is formed, and a second plane portion is formed in the direction of the rotation center line of the valve body between the third bus bar and the fourth bus bar. And a plurality of communication holes penetrating the second plane portion on the opposite side across the rotation center line of the valve body are provided in a row in the direction of the rotation center line of the valve body. It is good also as having employ | adopted the rotary on-off valve which combined the said valve body currently carried out inside.

発明の効果Effect of the invention

本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。  Since the present invention is configured as described above, the following effects can be obtained.

主翼上面部の剥離が発生しやすい航空機の離着陸時において、前記第一開閉弁及び第二開閉弁を航空機の操縦系統によって開くと前記取込み口と前記放出孔間が連通路によって連通され、航空機の推進機関における吸気側内周面に発生する吸引力の作用によって前記取込み口が開口する主翼上面部の空気が吸引され、主翼上面部の気圧が低下することによって主翼上面部を流れる空気流が主翼上面側に引き寄せられて沿って流れ、主翼上面部の境界層剥離現象を抑制することができる。また、前記取込み口の開口位置を主翼上面部後方に設定すると、さらに効果的に主翼上面部の境界層剥離現象を抑制することができる。  When taking off and landing of an aircraft in which the upper surface of the main wing is likely to peel off, when the first on-off valve and the second on-off valve are opened by an aircraft control system, the intake port and the discharge hole are communicated with each other through a communication path. Air of the upper surface of the main wing opening the intake port is sucked by the action of the suction force generated on the inner peripheral surface of the intake side in the propulsion engine, and the air flow flowing through the upper surface of the main wing is reduced by reducing the pressure of the upper surface of the main wing. The boundary layer peeling phenomenon of the upper surface of the main wing can be suppressed by flowing along the upper surface. Moreover, when the opening position of the intake port is set behind the main wing upper surface, the boundary layer peeling phenomenon of the main wing upper surface can be more effectively suppressed.

同時に、主翼上面部の空気が吸引され主翼上面部の気圧が低下することによって、主翼上面部を主翼前縁側から主翼後縁方向に沿って流れる空気流は、気圧が低下した取込み口の開口領域に向かって吸引されるように流速度を速め、主翼上面部の空気流がコアンダ効果によって引き寄せられて主翼上面部に沿って流れ、その結果、主翼上面部の圧力が低下し揚力を向上させることができる。また、前記取込み口の開口位置を主翼上面部後方に設定すると、さらに効果的に揚力を向上させることができる。  At the same time, the air flow flowing along the main wing leading edge side from the main wing leading edge to the main wing trailing edge due to the suction of the air on the main wing upper surface and the lowering of the air pressure on the main wing upper surface causes The air velocity at the top surface of the main wing is drawn by the Coanda effect and flows along the top surface of the main wing. As a result, the pressure at the top surface of the main wing is reduced and lift is improved. Can do. Moreover, if the opening position of the intake port is set behind the upper surface of the main wing, lift can be improved more effectively.

そして、迎え角を大きくとって主翼上面部の剥離領域が次第に拡大していくと予想されたときに、取込み口は、航空機の主翼における揚力の発生が大きい翼根側上面部後方の桁方向又は略桁方向にそれぞれ分列して開口し前方取込み口群、中央取込み口群、後方取込み口群を構成し、前記後方取込み口群の配列位置は後縁フラップが取り付けられた翼根側後縁部前方に設定され、前記中央取込み口群の配列位置は前記後方取込み口群の配列位置前方に設定され、前記前方取込み口群の配列位置は前記中央取込み口群の配列位置前方に設定され、前記各取込み口群は並列状又は略並列状に分列されていることにより、前記後方取込み口群の前方に位置する中央取込み口群を開閉する往復式開閉弁や、前記中央取込み口群の前方に位置する前方取込み口群を開閉する往復式開閉弁を状況に応じて順次開いていくと、前記後方取込み口群に加えて、中央取込み口群や前方取込み口群の開口領域の空気が吸引され、翼根側上面部を流れる空気流が引き寄せられて沿って流れるために翼根側上面部の境界層剥離現象を細かく抑制することができる。その結果、失速を抑制して揚力を確保し、航空機の離着陸時における安定飛行に大きく寄与することができる。  When the angle of attack is increased and the separation region of the upper surface of the main wing is expected to gradually expand, the intake port is arranged in the spar direction behind the upper surface of the blade root side where the generation of lift in the main wing of the aircraft is large. The front intake port group, the central intake port group, and the rear intake port group are configured to be divided and opened in a substantially girder direction, and the rear intake port group is arranged at the blade root side trailing edge to which the trailing edge flap is attached. Set in front of the unit, the arrangement position of the central intake group is set in front of the arrangement position of the rear intake group, the arrangement position of the front intake group is set in front of the arrangement position of the central intake group, The intake groups are arranged in parallel or substantially in parallel, so that a reciprocating on-off valve that opens and closes the central intake group located in front of the rear intake group, and the central intake group Front take located in front When the reciprocating on-off valve that opens and closes the mouth group is sequentially opened according to the situation, in addition to the rear inlet group, air in the opening area of the central inlet group and the front inlet group is sucked, and the blade root Since the airflow flowing through the side upper surface portion is drawn and flows along, the boundary layer peeling phenomenon of the blade root side upper surface portion can be finely suppressed. As a result, it is possible to suppress the stall and secure the lift, which can greatly contribute to the stable flight at the time of takeoff and landing of the aircraft.

また、バケット型の弁体を備えた往復式開閉弁は、前記往復式開閉弁が開状態のときに、前記弁体の底部両側より立ち上がった両側壁部と、前記底部前側より立ち上がった前側壁部と、によって略コの字型状の側壁部を形成するとともに前記底部と一体化されたバケット部が隔壁となって、ジェットエンジンの圧縮部が吸引することによって放出孔から流入した空気流と、ジェットエンジンの圧縮部が吸引することによってジェットエンジンの吸気側内周面前方より流入した空気流との混流を可能な限り防ぐことができ、翼根側上面部の空気を確実に取り込むことができる。さらに、前記放出孔を吸気側内周面に複数箇所開口させると、前記各放出孔から充分な空気流を取り込むことができる。  The reciprocating on-off valve provided with a bucket-type valve body includes a side wall that rises from both sides of the bottom of the valve body and a front wall that rises from the front of the bottom when the reciprocating on-off valve is open. And a bucket portion integrated with the bottom portion to form a partition wall, and the air flow flowing in from the discharge hole by suction of the jet engine compression portion. In addition, when the compression part of the jet engine sucks, it is possible to prevent as much as possible the mixed flow with the air flow flowing in from the front side of the inner peripheral surface of the jet engine, and the air at the blade root side upper surface part can be reliably taken in. it can. Furthermore, if the discharge holes are opened at a plurality of locations on the inner peripheral surface of the intake side, a sufficient air flow can be taken from the discharge holes.

さらに、バケット型の弁体における側壁部の各外壁面がジェットエンジンの回転中心線を含む平面とそれぞれ平行面状に形成されているために、各外壁面と吸気側内周面間の隙間をバケット型の弁体の開ける角度に関係なく常に一定に保つことができ、よって、バケット型の弁体を必要に応じた開度で開けることができる。  Furthermore, since each outer wall surface of the side wall portion of the bucket-type valve body is formed in a plane parallel to the plane including the rotation center line of the jet engine, there is a gap between each outer wall surface and the intake side inner circumferential surface. Regardless of the opening angle of the bucket type valve element, the bucket type valve element can always be kept constant, so that the bucket type valve element can be opened at an opening degree as required.

そして、テーパー形状に成形された弁体を備えた往復式開閉弁は、前記往復式開閉弁が開状態のときに、テーパー形状に成形されたすべての前記弁体によって形造る円錐台形状の筒が隔壁となって、ジェットエンジンの圧縮部が吸引することによって各放出孔から流入した空気流と、ジェットエンジンの圧縮部が吸引することによってジェットエンジンの吸気側内周面前方より流入した空気流との混流を可能な限り防ぎ、翼根側上面部の空気を確実に取り込み、また、充分な量の空気流を取り込むことができる。  A reciprocating on-off valve having a valve body formed into a tapered shape is a truncated cone-shaped cylinder formed by all the valve bodies formed into a tapered shape when the reciprocating on-off valve is open. Becomes a partition wall, and the air flow that flows in from each discharge hole when the jet engine's compression part sucks and the air flow that flows from the front side of the inner surface of the jet engine when the jet engine's compression part sucks As much as possible, the air on the blade root side upper surface portion can be reliably taken in, and a sufficient amount of air flow can be taken in.

また、前記往復式開閉弁が開状態のときに、すべての前記弁体によって形造る円錐台形状の筒がジェットエンジンの圧縮部前面を全周に亘って内側と外側に区分けしているために、ジェットエンジンの圧縮部を構成するローターとステーターにおいてもジェットエンジンの回転中に全周に亘って常に等しい負荷が加わり、負荷の変化による振動等を防ぐことができる。  In addition, when the reciprocating on-off valve is in the open state, the truncated cone-shaped cylinder formed by all the valve bodies divides the front surface of the compression part of the jet engine into the inner side and the outer side over the entire circumference. Even in the rotor and stator constituting the compression section of the jet engine, an equal load is always applied over the entire circumference during the rotation of the jet engine, and vibrations due to a change in the load can be prevented.

そして、航空機の主翼上面部に前記主翼上面部の空気を取込む取込み口を単数箇所又は複数箇所開口させて設け、前記航空機の推進機関における吸気側内周面に前記取込み口が取り込んだ空気を放出する放出孔を単数箇所又は複数箇所開口させて設け、前記取込み口と前記放出孔間を連通する連通路を前記取込み口と前記放出孔間に設け、前記航空機の操縦系統に制御されて前記取込み口と前記放出孔間の連通を開閉する開閉弁を前記取込み口又は前記放出孔又は前記連通路のいずれか一箇所に備えた境界層制御装置は、境階層制御装置の簡素化を図れ、安価に境階層制御装置を提供することができ、航空機の安定飛行に大きく寄与することができる。また、前記取込み口の開口位置を主翼上面部後方に設定すると、さらに効果的に主翼上面部の境界層剥離現象を抑制するとともに、揚力を向上させることができる。  And the intake port which takes in the air of the above-mentioned main wing upper surface part in the main wing upper surface part of an aircraft is provided by opening one or more places, and the air taken in by the intake port on the intake side inner peripheral surface of the propulsion engine of the aircraft The discharge hole to be discharged is provided at one or a plurality of positions, and a communication path communicating between the intake port and the discharge hole is provided between the intake port and the discharge hole, and is controlled by the control system of the aircraft. The boundary layer control device provided with an opening / closing valve that opens and closes communication between the intake port and the discharge hole at any one of the intake port, the discharge hole, or the communication path can simplify the boundary layer control device, The boundary level control device can be provided at low cost, and can greatly contribute to stable flight of the aircraft. Moreover, when the opening position of the intake port is set behind the main wing upper surface, the boundary layer separation phenomenon of the main wing upper surface can be more effectively suppressed and the lift can be improved.

そして、航空機の主翼上面部に前記主翼上面部の空気を取込む取込み口を単数箇所又は複数箇所開口させて設け、前記航空機の推進機関における吸気側内周面に前記取込み口が取り込んだ空気を放出する放出孔を単数箇所又は複数箇所開口させて設け、前記取込み口と前記放出孔間を連通する連通路を前記取込み口と前記放出孔間に設け、前記取込み口と前記放出孔間が前記連通路によって常時連通されている境界層制御装置は、境階層制御装置のさらなる簡素化を図れ、安価に境階層制御装置を提供することができる。また、飛行中常に高い揚力を確保することができるので失速を軽減するとともに、航空機の安定飛行に大きく寄与することができる。また、前記取込み口の開口位置を主翼上面部後方に設定すると、さらに効果的に主翼上面部の境界層剥離現象を抑制するとともに、揚力を向上させることができる。  And the intake port which takes in the air of the above-mentioned main wing upper surface part in the main wing upper surface part of an aircraft is provided by opening one or more places, and the air taken in by the intake port on the intake side inner peripheral surface of the propulsion engine of the aircraft A discharge hole to be discharged is provided at one or a plurality of positions, and a communication path communicating between the intake port and the discharge hole is provided between the intake port and the discharge hole, and the gap between the intake port and the discharge hole is The boundary layer control device that is always in communication by the communication path can further simplify the boundary layer control device, and can provide the boundary layer control device at low cost. In addition, since a high lift force can always be ensured during the flight, the stall can be reduced and the aircraft can greatly contribute to stable flight. Moreover, when the opening position of the intake port is set behind the main wing upper surface, the boundary layer separation phenomenon of the main wing upper surface can be more effectively suppressed and the lift can be improved.

そして、本発明による後縁フラップは、後縁フラップにおける後縁の前方上面部左右方向に開口し前記後縁フラップの上面の空気を取込む取込み口を列状に一列又は分列させて取込み口群を構成したことにより、後縁フラップ作動時に、後縁フラップ上面を流れる空気流を吸引して気圧を低下させ境界層剥離を抑制することができる。さらに、気圧が低下した前記後縁フラップの後縁前方上面部の開口領域に向かって空気流が吸引されて流速度を速めるために、後縁フラップ上面部の空気流がコアンダ効果によって引き寄せられて後縁フラップ上面部に沿って流れ、前記後縁フラップ上面部の圧力が低下し揚力を向上させることができる。  The trailing edge flap according to the present invention opens in the left-right direction on the front upper surface of the trailing edge of the trailing edge flap, and the inlets for taking in air on the upper surface of the trailing edge flap are arranged in a row or in a line. By configuring the group, when the trailing edge flap is operated, the air flow flowing on the upper surface of the trailing edge flap is sucked to reduce the atmospheric pressure and to suppress boundary layer separation. Furthermore, in order to increase the flow speed by sucking the air flow toward the opening area of the front upper surface of the trailing edge of the trailing edge flap where the atmospheric pressure has decreased, the air flow of the upper surface of the trailing edge flap is attracted by the Coanda effect. It flows along the upper surface of the trailing edge flap, and the pressure on the upper surface of the trailing edge flap can be reduced to improve the lift force.

また、インダクションボックス兼第一連通路を前記後縁フラップの本体を構成する外板材や桁部材や小骨部材等の各部材によって前記後縁フラップの本体内部後方に設けたことにより、前記後縁フラップ本体の軽量化と製造コスト低減を図ることができる。  In addition, the trailing edge flap is provided by providing an induction box / first series passage on the rear side of the trailing edge flap body by a member such as an outer plate material, a spar member, or a small bone member constituting the body of the trailing edge flap. The weight of the main body can be reduced and the manufacturing cost can be reduced.

そして、主翼側の第二連通路端部とスロッテッド・フラップ側の第一連通路端部間に、前記スロッテッド・フラップの伸長時に前記スロッテッド・フラップ側の第一連通路端部が前記主翼側の第二連通路端部と連通状態を維持し続ける伸縮連通装置を備えたことにより、スロッテッド・フラップ作動時に、主翼下面を流れてきた空気流を、前記スロッテッド・フラップの伸長により主翼とスロッテッド・フラップ間にできた隙間からスロッテッド・フラップ上面側に流すことができるとともに、スロッテッド・フラップにおける後縁前方上面部に前記スロッテッド・フラップ上面の空気を取込む取込み口群が列状に一列又は複数列開口させて設けられていることにより、スロッテッド・フラップ上面部を流れる空気流を吸引して気圧を低下させ境界層の剥離現象を抑制し、同時に、気圧が低下したスロッテッド・フラップの開口領域に向かって空気流が吸引されて流速度を速めるために、スロッテッド・フラップ上面部の空気流がコアンダ効果によって引き寄せられてスロッテッド・フラップ上面部に沿って流れ、スロッテッド・フラップ上面部の圧力が低下しスロッテッド・フラップにおける揚力を向上させることができる。  And, between the second communicating passage end on the main wing side and the first series passage end on the slotted flap side, when the slotted flap is extended, the first series passage end on the slotted flap side is on the main wing side. By providing an expansion and contraction communication device that keeps communicating with the end of the second communication path, the air flow that has flowed on the lower surface of the main wing during the operation of the slotted flap can be reduced by the extension of the slotted flap. It is possible to flow from the gap formed between the slotted flaps to the upper surface of the slotted flap, and the inlets for taking in the air on the upper surface of the slotted flaps in the upper surface of the rear edge of the slotted flap are arranged in a row or in a row. The air pressure flowing through the upper surface of the slotted flap is sucked to lower the atmospheric pressure. In order to suppress the boundary layer separation phenomenon and at the same time, the air flow is drawn toward the open area of the slotted flap where the air pressure has decreased, and the flow velocity is increased, so that the air flow on the top surface of the slotted flap is attracted by the Coanda effect. Thus, it flows along the upper surface portion of the slotted flap, the pressure on the upper surface portion of the slotted flap is lowered, and the lift force in the slotted flap can be improved.

そして、主翼上面部に開口する取込み口群を開閉する第一開閉弁に、弁体の回転中心線上の両端部に回転軸が設けられ、前記弁体における第一母線と第二母線間に閉塞された第一平面部が形成され、第三母線と第四母線間に第二平面部が形成されているとともに前記第二平面部に前記弁体の回転中心線を挟んだ反対側に貫通する複数の連通孔が前記弁体の回転中心線方向に列状に複数ヶ所開口されて設けられ、さらに、第五母線と第六母線間に主翼上面に乱流を生み出す突起部と、前記第五母線側から前記突起部間の内方に向けて窪みが形成され前記突起部から前記第六母線間の内方に向けて窪みが形成されて構成されている前記弁体を内部に組み合わせた回転式開閉弁を採用したことにより、閉塞された第一平面部と、連通孔が開口する第二平面部によって主翼上面部に開口する取込み口群の開閉を行うとともに、前記突起部を主翼上面部に突起させることにより、突起部後方の主翼上面部に乱流を生み出し、境界層内外の空気を混ぜ合わせて主翼上面部を乱流境界層に保ち剥離を抑制し、主翼上面部の揚力を高めることができる。  The first on-off valve that opens and closes the intake port group that opens to the upper surface of the main wing is provided with a rotation shaft at both ends on the rotation center line of the valve body, and is closed between the first bus line and the second bus line in the valve body. The first flat surface portion is formed, the second flat surface portion is formed between the third bus bar and the fourth bus bar, and the second flat surface portion penetrates the opposite side of the rotation center line of the valve body. A plurality of communication holes are provided in a plurality of openings in a row in the direction of the rotation center line of the valve body, and further, a protrusion that generates turbulence on the upper surface of the main wing between the fifth bus and the sixth bus, and the fifth Rotation in which the valve body is formed in which a recess is formed inwardly between the protrusions from the busbar side, and a recess is formed inwardly between the protrusions from the protrusion to the sixth busbar. By adopting the type on-off valve, the closed first flat surface portion and the first opening through which the communication hole opens Opening and closing the intake port group that opens to the upper surface of the main wing by the flat surface, and by causing the protrusion to protrude from the upper surface of the main wing, turbulence is created in the upper surface of the main wing behind the protrusion, and air inside and outside the boundary layer By mixing them together, the upper surface of the main wing can be kept in a turbulent boundary layer to suppress separation, and the lift of the upper surface of the main wing can be increased.

特に、後縁フラップ前縁前方の主翼側に配置した後方インダクションボックスに、閉塞された第一平面部と、連通孔が開口する第二平面部と、突起部及び前記突起部の前後に窪みを設けた弁体を組み合わせたことにより、主翼後縁に取り付けられた後縁フラップの作動時に、前記突起部を主翼上面の後方に突起させたことによって後縁フラップ上面に乱流を生み出し、境界層内外の空気を混ぜ合わせて後縁フラップ上面を乱流境界層に保ち剥離を抑制することによって後縁フラップ及び主翼側の揚力を高めることができる。さらに、巡航飛行に移行したときには、突起部に替えて閉塞された前記第一平面部を主翼上面部と同一面に位置させることによって、突起部の抗力を減らすことができる。  In particular, in the rear induction box arranged on the main wing side in front of the front edge of the trailing edge flap, the closed first plane part, the second plane part where the communication hole opens, and the depressions before and after the projection part and the projection part are formed. By combining the provided valve bodies, when operating the trailing edge flap attached to the trailing edge of the main wing, the projection protrudes behind the upper surface of the main wing, thereby creating a turbulent flow on the upper surface of the trailing edge flap, and the boundary layer The lift of the trailing edge flap and the main wing side can be increased by mixing the air inside and outside to keep the upper surface of the trailing edge flap in the turbulent boundary layer and suppress the separation. Furthermore, when shifting to cruise flight, the drag of the protrusion can be reduced by positioning the closed first flat surface portion in place of the protrusion portion on the same plane as the main wing upper surface portion.

さらに、突起部及び前記突起部前後の窪みを設けず、閉塞された第一平面部と、連通孔が開口する第二平面部を設けた弁体においては、例えば、翼根側上面部に並列状又は略並列状に配列されている前方取込み口群、中央取込み口群、後方取込み口群の内、前方取込み口群及び中央取込み口群と組み合わせ、後方取込み口群に突起部及び前記突起部前後に窪みを設けた弁体を組み合わせた実施例も考えられ、様々な組み合わせ方によって主翼上面部の境界層をさらにきめ細かく制御することができる。  Further, in the valve body provided with the closed first flat surface portion and the second flat surface portion where the communication hole is opened without providing the protrusion portion and the depressions before and after the protrusion portion, for example, parallel to the blade root side upper surface portion. Of the front intake group, the central intake group, and the rear intake group that are arranged in a shape or substantially in parallel, in combination with the front intake group and the central intake group. An embodiment in which valve bodies provided with recesses in the front and rear are combined is also conceivable, and the boundary layer on the upper surface of the main wing can be more finely controlled by various combinations.

本発明を適用した航空機の一実施例を示す模式的側面図。  1 is a schematic side view showing an embodiment of an aircraft to which the present invention is applied. 本発明を適用した航空機の主翼における翼根側上面部及び翼端方向上面部の一実施例を示す概略平面図。  The schematic plan view which shows one Example of the blade root side upper surface part and wing-tip direction upper surface part in the main wing of the aircraft to which this invention is applied. 図2における前方取込み口13a群のCa−Ca断面部を示す概略縦断面図。  The schematic longitudinal cross-sectional view which shows the Ca-Ca cross section of the front intake port 13a group in FIG. 第一連通路とインダクションボックスを一体化した実施例を示す概略縦断面図。  The schematic longitudinal cross-sectional view which shows the Example which integrated the 1st series channel | path and the induction box. ジェットエンジンの一部切欠概略縦断面図。  1 is a partially cutaway schematic longitudinal sectional view of a jet engine. バケット型の弁体の斜視図。  The perspective view of a bucket-type valve body. ジェットエンジンの一部切欠概略縦断面図。  1 is a partially cutaway schematic longitudinal sectional view of a jet engine. ジェットエンジンの吸気側内周面を前後方向の一線で切り開き一平面に伸ばした概略展開図。  FIG. 2 is a schematic development view in which an intake side inner peripheral surface of a jet engine is cut along a line in the front-rear direction and extended to a flat surface. 往復式開閉弁における弁体裏面の概略平面図。  The schematic plan view of the valve body back surface in a reciprocating on-off valve. 往復式開閉弁における弁体裏面の斜視図。  The perspective view of the valve body back surface in a reciprocating on-off valve. 後縁フラップの構成を示す概略平面図。  The schematic plan view which shows the structure of a trailing edge flap. 図11における後縁フラップのD−D断面部の構成を示す概略縦断面図。  The schematic longitudinal cross-sectional view which shows the structure of the DD cross-section part of the trailing edge flap in FIG. 伸長対応型連通装置と、前記伸長対応型連通装置を備えた主翼側下面とスロッテッド・フラップ下面を下方より見た概略下面図。  The expansion | extension corresponding | compatible communication apparatus, and the general | schematic bottom view which looked at the main wing side lower surface provided with the said expansion | extension corresponding | compatible communication apparatus, and the slotted flap lower surface from the downward direction. 弁体の回転軸方向と直交する断面を示す回転式開閉弁の概略縦断面図。  The schematic longitudinal cross-sectional view of the rotary on-off valve which shows the cross section orthogonal to the rotating shaft direction of a valve body. 突起部付き回転体の回転軸方向と直交する断面を示す前記突起部付き回転体及びホルダーの概略縦断面図。  The schematic longitudinal cross-sectional view of the said rotary body with a projection part and a holder which show the cross section orthogonal to the rotating shaft direction of the rotary body with a projection part. ジェットエンジンの吸気側内周面内方に備えた回転式開閉弁の概略部分縦断面図。  1 is a schematic partial longitudinal sectional view of a rotary on-off valve provided on the inner side of an intake side of a jet engine. 図16におけるジェットエンジンのJ−J断面部を示す概略部分縦断面図。  The schematic partial longitudinal cross-sectional view which shows the JJ cross section of the jet engine in FIG. ジェットエンジンに摺動式開閉弁を実施した構成を示す概略部分縦断面図。  The schematic fragmentary longitudinal cross-section which shows the structure which implemented the sliding on-off valve in the jet engine. ジェットエンジンに環状式開閉弁を実施し、前記ジェットエンジンにおける環状通路と環状弁体が重なる部分をジェットエンジンの回転軸方向と直交する断面を示す概略縦断面図で、吸気側内周面奥の圧縮部は省略している。  An annular on-off valve is implemented in a jet engine, and is a schematic longitudinal sectional view showing a cross section perpendicular to the rotational axis direction of the jet engine at a portion where the annular passage and the annular valve body overlap in the jet engine. The compression unit is omitted.

2、 主翼上面部
3、13 取り込み口
6、28、111、131、141 吸気側内周面
7、27、49、113、144、148 放出孔
9 連通路
12、92 翼根側上面部
14、50 後縁フラップ
16 インダクションボックス
17 補強版
18、30、41、55 往復式開閉弁
19、31、42、56、81、101、115 弁体
22 第二連通路
23、97 第一連通路
25、110、130、140 ジェット・エンジン
29、40、112 環状通路
45 円錐台形状の筒
52 インダクションボックス兼第一連通路
80、114 回転式開閉弁
89、123 連通孔
93、104 突起部
94、105 窪み
98 インダクションボックス
106 ハウジング
119 第一平面部
122 第二平面部
133 環状弁体
134 摺動式開閉弁
143、147 閉鎖部
150 環状式開閉弁
2, main wing upper surface 3, 13 intake port 6, 28, 111, 131, 141 intake side inner peripheral surface 7, 27, 49, 113, 144, 148 discharge hole 9 communication path 12, 92 blade root upper surface 14, 50 Trailing edge flap 16 Induction box 17 Reinforcing plate 18, 30, 41, 55 Reciprocating on-off valve 19, 31, 42, 56, 81, 101, 115 Valve body 22 Second communication passage 23, 97 First series passage 25, 110, 130, 140 Jet engine 29, 40, 112 Annular passage 45 Frustum-shaped cylinder 52 Induction box / first series passage 80, 114 Rotary on-off valve 89, 123 Communication hole 93, 104 Protrusion 94, 105 Recess 98 induction box 106 housing 119 first flat surface portion 122 second flat surface portion 133 annular valve body 134 sliding on-off valves 143 and 147 Closure 150 Annular open / close valve

発明の実施の形態を図面に基づいて説明する。かかる実施形態に示す相対的な寸法や構造等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能及び構成を有する要素については、同一の符号を付することにより重複説明を簡素化又は省略し、また、本発明に直接関係のない要素は図示を省略する。  Embodiments of the present invention will be described with reference to the drawings. The relative dimensions, structures, and the like shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same functions and configurations are denoted by the same reference numerals, and redundant description is simplified or omitted, and elements that are not directly related to the present invention. The illustration is omitted.

図1は、本発明に係る航空機の主翼及び推進機関に境界層制御装置を実施した模式説明図で、航空機を左側面より見た基本的構成を示す。また図示を省略するが、本発明に係る航空機の主翼及び推進機関を右側面より見た基本的構成も左側面より見た基本的構成と同様な構造及び構成を有している。  FIG. 1 is a schematic explanatory diagram in which a boundary layer control device is implemented in a main wing and a propulsion engine of an aircraft according to the present invention, and shows a basic configuration when the aircraft is viewed from the left side. Although not shown, the basic configuration of the aircraft main wing and the propulsion engine according to the present invention viewed from the right side also has the same structure and configuration as the basic configuration viewed from the left side.

図1に示される実施例では、航空機1の主翼上面部2に前記主翼上面部2の空気を取込む取込み口3を単数箇所又は複数箇所開口させて設け、前記取込み口3に前記航空機1の操縦系統に制御され前記取込み口3を開閉する第一開閉弁4を備え、また、前記航空機1の推進機関5における吸気側内周面6に前記取込み口3が取り込んだ空気を放出する放出孔7を単数箇所又は複数箇所開口させて設け、前記放出孔7に前記航空機1の操縦系統に制御され前記放出孔7を開閉する第二開閉弁8を備えている。そして、前記第一開閉弁4及び第二開閉弁8が前記航空機1の操縦系統に制御され、図1のように開かれたとき、前記取込み口3と前記放出孔7間を連通させる連通路9を前記取込み口と前記放出孔間に設けて構成されている。前記第一開閉弁4及び第二開閉弁8は、特に主翼上面部に剥離が発生しやすい航空機の離着陸時において航空機の操縦系統により制御されて開かれ、前記取込み口3と前記放出孔7間を前記連通路9によって連通させる。  In the embodiment shown in FIG. 1, a single or a plurality of intake ports 3 for taking in air from the main wing upper surface portion 2 are provided in the main wing upper surface portion 2 of the aircraft 1. A first on-off valve 4 that is controlled by a control system and opens and closes the intake port 3 is provided, and a discharge hole that discharges air taken in by the intake port 3 to the intake-side inner peripheral surface 6 of the propulsion engine 5 of the aircraft 1. 7 is provided with an opening at a single location or at multiple locations, and a second on-off valve 8 that opens and closes the discharge hole 7 under the control of the control system of the aircraft 1 is provided in the discharge hole 7. Then, when the first on-off valve 4 and the second on-off valve 8 are controlled by the control system of the aircraft 1 and are opened as shown in FIG. 1, the communication path for communicating between the intake 3 and the discharge hole 7. 9 is provided between the intake port and the discharge hole. The first on-off valve 4 and the second on-off valve 8 are opened by being controlled by an aircraft control system, particularly during take-off and landing of an aircraft in which peeling is likely to occur on the upper surface of the main wing, and between the intake port 3 and the discharge hole 7. Are communicated by the communication passage 9.

また、前記取込み口3の開口位置は、航空機1の主翼上面部2の後方に設定すると、前記主翼上面部2後方の空気を取込むことにより、より効果的に主翼上面部2における境界層を制御することができる。  Further, when the opening position of the intake port 3 is set behind the main wing upper surface portion 2 of the aircraft 1, the boundary layer on the main wing upper surface portion 2 can be more effectively formed by taking in air behind the main wing upper surface portion 2. Can be controlled.

図2に示される実施例は、航空機の主翼左側を上から見た概略平面図で、また、図示を省略するが、航空機の主翼右側においても図2の主翼左側と対照的な構造及び構成を有し、そして、主翼左右が胴体部に左右対称形に配置されて一体構造化されている。  The embodiment shown in FIG. 2 is a schematic plan view of the left side of the main wing of the aircraft as viewed from above. Although not shown, the right side of the main wing of the aircraft has a structure and configuration that is in contrast to the left side of the main wing of FIG. And the left and right main wings are arranged symmetrically on the fuselage and are integrated.

図2に示される実施例では、複数の前記取込み口13a、13b、13cは、航空機10の主翼11における揚力の発生が大きい翼根側上面部12〔主に図2における点線で囲った部分〕後方の桁方向又は略桁方向にそれぞれ分列して開口し前方取込み口13a群、中央取込み口13b群、後方取込み口13c群を構成し、そして、前記後方取込み口13c群の配列位置は後縁フラップ14が取り付けられている翼根側後縁部15の前方に設定され、また、前記中央取込み口13b群の配列位置は前記後方取込み口13c群の配列位置前方に設定され、さらに、前記前方取込み口13a群の配列位置は前記中央取込み口13b群の配列位置前方に設定され、前記前方取込み口13a群、中央取込み口13b群、後方取込み口13c群は並列状又は略並列状に分列されている。  In the embodiment shown in FIG. 2, the plurality of intakes 13 a, 13 b, 13 c are the blade root side upper surface portion 12 (mainly the portion surrounded by the dotted line in FIG. 2) that generates a large lift in the main wing 11 of the aircraft 10. The front intake port 13a group, the central intake port 13b group, and the rear intake port 13c group are configured by being divided and opened in the rear girder direction or the substantially girder direction, respectively. The front side of the blade root side rear edge 15 to which the edge flap 14 is attached is set, and the arrangement position of the central intake port 13b group is set in front of the arrangement position of the rear intake port 13c group. The arrangement position of the front intake port 13a group is set in front of the arrangement position of the central intake port 13b group, and the front intake port 13a group, the central intake port 13b group, and the rear intake port 13c group are arranged in parallel. Is segment sequence substantially parallel shape.

そして、図2の前方取込み口13a群におけるCa−Ca断面部と、中央取込み口13b群におけるCb−Cb断面部と、後方取込み口13c群におけるCc−Cc断面部は、それぞれ実質的に同一の構造及び機能を有して構成されている。よって、図2における前方取込み口13a群のCa−Ca断面部を示す図3を例に説明する。  The Ca—Ca cross section in the front intake port 13a group in FIG. 2, the Cb—Cb cross section in the central intake port 13b group, and the Cc—Cc cross section in the rear intake port 13c group are substantially the same. It has a structure and a function. Therefore, FIG. 3 which shows the Ca-Ca cross-section part of the front intake port 13a group in FIG. 2 is demonstrated to an example.

図3に示される実施例では、翼根側上面部12内方に前方インダクションボックス16aが配置固定され、その前方インダクションボックス16aにおける翼根側上面部12と同一面に前述した前方取込み口13a群が列状に開口して設けられている。また、主翼上面部の空気を取込む取込み口群を翼根側上面部外板に直接列状に開口した実施形態も考えられ、前記前方取込み口群が開口している翼根側上面部外板の内方に前方インダクションボックスが配置固定され、前記前方インダクションボックスに前記前方取込み口群を開閉する第一開閉弁が備えられていることとしてもよい。  In the embodiment shown in FIG. 3, the front induction box 16a is disposed and fixed inside the blade root side upper surface portion 12, and the front intake port 13a group described above is flush with the blade root side upper surface portion 12 in the front induction box 16a. Are provided in a row. In addition, an embodiment in which intake groups for taking in air on the upper surface of the main wing are directly opened in a row on the blade root upper surface outer plate is also conceivable, and the outer side of the blade root upper surface where the front intake group is open is also conceivable. A front induction box may be disposed and fixed inside the plate, and the front induction box may be provided with a first on-off valve that opens and closes the front intake port group.

そして、前記前方インダクションボックス16aの本体内部には、前述した列状に開口した前方取込み口13a群の各取込み口を下方より開閉する第一開閉弁が前記各取込み口それぞれに配置され、前記第一開閉弁は前方取込み口13a群を同時に開閉する。また、第一開閉弁には様々な型式の開閉弁の採用が考えられるが、前記第一開閉弁が閉じられているときに、翼根側上面部12と連続した曲面形状を形成しやすい往復式の開閉弁18aが採用されている。  And inside the main body of the front induction box 16a, a first on-off valve that opens and closes each intake port of the front intake port 13a group that is opened in the above-described row shape is disposed at each intake port. One open / close valve simultaneously opens and closes the front intake port 13a group. Further, various types of on-off valves may be used as the first on-off valve, but when the first on-off valve is closed, it is easy to form a curved surface continuous with the blade root side upper surface portion 12. A type on-off valve 18a is employed.

また、前記前方インダクションボックス16a本体内部には、前方インダクションボックス16a本体における前方部分と後方部分間を一体化する補強板17が数ヶ所設けられ、前方インダクションボックス16a本体の剛性を確保している。さらに剛性を確保するために、前方インダクションボックス16aの翼根側上面部12における前方部分と後方部分間を橋渡しする補強材で一体化することとしてもよい。補強材で一体化する場合には、前記補強材上面が翼根側上面部12と同一面を構成するように組み付けると翼根側上面部12の抗力の増加を防ぐことができる。また、簡略に剛性を確保する方法として、抗力は増加するが、前方インダクションボックス16a本体における前方部分と後方部分間を航空機の翼根側上面部12の前後方向で橋渡しする補強材で一体化する構成も考えられる。  In addition, several reinforcing plates 17 are provided in the front induction box 16a main body to integrate the front portion and the rear portion of the front induction box 16a main body, thereby ensuring the rigidity of the front induction box 16a main body. Furthermore, in order to ensure rigidity, it is good also as integrating with the reinforcing material which bridges between the front part and back part in the blade root side upper surface part 12 of the front induction box 16a. In the case of integrating with a reinforcing material, if the reinforcing material upper surface is assembled so as to constitute the same surface as the blade root side upper surface portion 12, an increase in the drag of the blade root side upper surface portion 12 can be prevented. In addition, as a method of simply securing rigidity, the drag increases, but the front portion and the rear portion in the front induction box 16a main body are integrated with a reinforcing material that bridges the aircraft blade root upper surface portion 12 in the front-rear direction. Configuration is also conceivable.

さらに、前述した前方インダクションボックス16a本体の前方部分と後方部分間を橋渡しする補強材で一体化する場合には、前記各取込み口の形と、前記各取込み口を開閉する前記往復式開閉弁18aにおける弁体の形を平行四辺形や少なくとも一組の対辺を平行とした形に設定し、平行にした一組の対辺を航空機の前後方向と同方向に設定すると、橋渡しする補強材も航空機の前後方向に組み付けやすくなる。また、円形や楕円形に設定することとしてもよい。  Further, when the above-described front induction box 16a main body is integrated with a reinforcing material that bridges the front portion and the rear portion, the shape of each intake port and the reciprocating on-off valve 18a that opens and closes each intake port. If the shape of the valve body is set to a parallelogram or at least one pair of opposite sides parallel to each other, and the set of parallel opposite sides is set in the same direction as the longitudinal direction of the aircraft, the reinforcing material to be bridged will also be Easy assembly in the front-rear direction. Further, it may be set to a circle or an ellipse.

前記補強板17によって区分された前方インダクションボックス16a本体内部には、往復式開閉弁18aにおける弁体19aがそれぞれ数個ずつ配置され、さらに、前記弁体19aは、前記補強板17や前方インダクションボックス16a両側面部に設けられた各軸受け部に支承されている回転軸20に固定されている。前述した実施形態では、補強板17によって区分された前方インダクションボックス16a本体内部に配置する弁体19aは複数個ずつ配置されているが、複数個分を一体構造化して回転軸20に固定することとしてもよい。また、すべての弁体19aを一体構造化して前方インダクションボックス16a本体内部に組み込むこととしてもよい。  Several valve bodies 19a of the reciprocating on-off valve 18a are arranged inside the front induction box 16a main body divided by the reinforcing plate 17, and the valve body 19a further includes the reinforcing plate 17 and the front induction box. It is being fixed to the rotating shaft 20 supported by each bearing part provided in 16a both sides. In the above-described embodiment, a plurality of valve bodies 19a arranged in the main body of the front induction box 16a divided by the reinforcing plate 17 are arranged, but a plurality of the valve bodies 19a are integrally structured and fixed to the rotary shaft 20. It is good. Alternatively, all the valve bodies 19a may be integrated and incorporated into the front induction box 16a main body.

そして、前記往復式開閉弁18aは、航空機の操縦系統によって制御され、弁体19aが、回転軸20を回転中心にワイパーブレードのように扇状に往復作動することによって列状に開口する前方取り入れ口13a群を下方より開閉する。本実施例では、前記前方取り入れ口13a群における内周面が弁体19aにおける外周側面の弁座となる形状に成形され、前記往復式開閉弁18aが閉じられたときに、両者間が面接触して前記前方取り入れ口13a群を閉じている。尚、前記第一開閉弁及び後述する第二開閉弁に対する駆動方法に関しては後述することとする。  The reciprocating on-off valve 18a is controlled by an aircraft control system, and the valve body 19a is opened forward in a row by reciprocating like a wiper blade around the rotating shaft 20 as a wiper blade. The group 13a is opened and closed from below. In this embodiment, the inner peripheral surface of the front intake port 13a group is formed into a shape that serves as a valve seat on the outer peripheral side surface of the valve body 19a, and when the reciprocating on-off valve 18a is closed, the two are in surface contact. Thus, the front intake port 13a group is closed. A driving method for the first on-off valve and the second on-off valve described later will be described later.

また、前記弁体19aの弁表面21は、往復式開閉弁18aが閉じられたときに翼根側上面部12の摩擦抗力を極力軽減できるように、前記翼根側上面部12と連続した曲面形状に成形されている。  Further, the valve surface 21 of the valve body 19a is a curved surface continuous with the blade root upper surface portion 12 so that the frictional drag of the blade root upper surface portion 12 can be reduced as much as possible when the reciprocating on-off valve 18a is closed. It is molded into a shape.

そして、前記前方インダクションボックス16aの本体内部後方には、前方取込み口13a群が翼根側上面部12に開口し、また、図5に示すように、後述する放出孔27がジェットエンジン25の吸気側内周面28に開口し、前記前方取込み口13a群と放出孔27間が連通したときに、前記前方取込み口13a群がジェットエンジン25の圧縮部39の吸引力によって取り込んだ空気流を集合させる第一連通路23aが主翼の桁方向、又は略桁方向に形成され内設されている。前記第一連通路23aの形成位置を前方インダクションボックス16aの内部後方とした理由は、前記取込み口群が取り込んだ空気流が第一連通路23a側へ流入しやすいように、また、第一連通路に必要な容積を確保するためでもあるが、第一連通路23aの形成位置は限定されるものではない。さらに前記第一連通路23aは、図5に示すジェットエンジン25を支持するパイロン26内部に配管されている第二連通路22に連通されている。  A front intake port 13a group opens to the blade root side upper surface portion 12 at the rear side inside the main body of the front induction box 16a, and a discharge hole 27, which will be described later, serves as an intake of the jet engine 25 as shown in FIG. When the front intake port 13a group and the discharge hole 27 communicate with each other, the front intake port 13a group collects the air flow taken in by the suction force of the compression portion 39 of the jet engine 25. A first series passage 23a is formed and provided in the spar direction of the main wing or substantially in the spar direction. The reason why the formation position of the first series passage 23a is set to the rear side of the front induction box 16a is that the air flow taken in by the intake port group easily flows into the first series passage 23a side, Although it is also for securing the volume required for the passage, the formation position of the first series passage 23a is not limited. Further, the first series passage 23a communicates with a second communication passage 22 that is piped inside the pylon 26 that supports the jet engine 25 shown in FIG.

また、図4に示す実施例のように、弁体24が最大に開いたときの位置を、図3における弁体の最大に開いたときの位置よりもさらに拡げ、第一連通路とインダクションボックスを一体化することとしてもよい。  Further, as in the embodiment shown in FIG. 4, the position when the valve body 24 is opened to the maximum is further expanded than the position when the valve body is opened to the maximum in FIG. It is good also as integrating.

そして、前記第一連通路23aは、往復式開閉弁18aが開いた状態で降雨時の場合には、取込み口13a群より雨水が浸水する。その対策として、第一連通路23aと後述する第一連通路23b及び第一連通路23cを連通管によって連通し、前記連通管又は前記各第一連通路23a、23b、23cの一番低い位置〔駐機中〕に外部へ放水する機能を有す水抜き装置を備えておくとよい。また、前記水抜き装置は、外部へ一方向のみの流通とするとよい。さらに、前記第一連通路23aと後記第一連通路23b及び第一連通路23cを連通させずに、それぞれ専用の水抜き装置を備えることとしてもよい。  In the first series passage 23a, when it is raining with the reciprocating on-off valve 18a opened, rainwater is infiltrated from the intake port 13a group. As a countermeasure, the first series passage 23a communicates with a first series passage 23b and a first series passage 23c, which will be described later, by a communication pipe, and the lowest position of the communication pipe or each of the first series passages 23a, 23b, 23c. It is advisable to provide a water draining device having a function of discharging water to the outside during parking. Further, the water draining device may be circulated only in one direction to the outside. Furthermore, it is good also as providing each exclusive draining device, without making the said 1st series passage 23a and postscript 1st series passage 23b, and the 1st series passage 23c connect.

さらに、低温時や降雪時においても前記往復式開閉弁18aがスムースに開閉作動が可能なように、前方インダクションボックス16a本体に電熱ヒーターの貼り付けや、取り付け等を施し、その電熱ヒーターの発熱によって前方インダクションボックス16a本体を始め、往復式開閉弁18aや弁体19a、その往復式開閉弁18a周辺部、さらに、前記水抜き用装置等を暖めるようにしておくとよい。また、エンジン抽気によって加熱することも考えられる。  Further, an electric heater is attached to or attached to the front induction box 16a so that the reciprocating on-off valve 18a can be smoothly opened and closed even at low temperatures and during snowfall. In addition to the front induction box 16a body, the reciprocating on-off valve 18a and the valve body 19a, the periphery of the reciprocating on-off valve 18a, and the water draining device may be warmed. Heating by engine bleed is also conceivable.

そして、前述した前方インダクションボックス16aと、並列状、又は略並列状に分列された中央インダクションボックス16b及び後方インダクションボックス16cにおいても実質的に同一の機能及び構成を有しており、航空機の操縦系統によって前記中央インダクションボックス16b本体内部に備えられた往復式開閉弁18bにおける各弁体19bが中央取込み口13b群を開閉し、さらに、前記後方インダクションボックス16c本体内部に備えられた往復式開閉弁18cにおける各弁体19cが後方取込み口13c群を開閉する。  The above-described front induction box 16a and the central induction box 16b and the rear induction box 16c which are arranged in parallel or substantially in parallel also have substantially the same function and configuration, and are used for aircraft control. Each valve element 19b in the reciprocating on-off valve 18b provided inside the central induction box 16b main body opens and closes the central intake port 13b group, and the reciprocating on-off valve provided inside the rear induction box 16c. Each valve element 19c in 18c opens and closes the rear intake port 13c group.

そして、前記中央インダクションボックス16b及び後方インダクションボックス16cにおいても各本体内部後方に、前記中央取込み口13b群や後方取込み口13c群がジェットエンジン25の圧縮部39の吸引力によって取り込んだ空気流を集合させる第一連通路23bと第一連通路23cを主翼11の桁方向、又は略桁方向に形成して内設されている。また、前記第一連通路23bと第一連通路23cは、前述した第一連通路23aと集合してジェットエンジン25を支持するパイロン26内部に配管されている第二連通路22に連通されている。  In the central induction box 16b and the rear induction box 16c, the air flow taken in by the suction force of the compression portion 39 of the jet engine 25 is gathered in the rear of each main body at the central intake port 13b group and the rear intake port 13c group. A first series passage 23b and a first series passage 23c are formed in the spar direction of the main wing 11 or substantially in the spar direction. Further, the first series passage 23b and the first series passage 23c are connected to the second communication path 22 that is piped inside the pylon 26 that supports the jet engine 25 together with the first series passage 23a. Yes.

前方取込み口13a群、中央取込み口13b群、後方取込み口13c群の開閉順番は、後方取込み口13c群から開き始め、次いで中央取込み口13b群、前方取込み口13a群と順次開いていき、また、閉じるときには、前方取込み口13a群から閉じ始め、中央取込み口13b群、前方取込み口13a群と順次閉じていく。ただし限定することなく、前方取込み口13a群、中央取込み口13b群、後方取込み口13c群を同時に開閉することとしてもよい。  The opening / closing order of the front intake port 13a group, the central intake port 13b group, and the rear intake port 13c group starts to open from the rear intake port 13c group, and then sequentially opens with the central intake port 13b group and the front intake port 13a group, When closing, it starts to close from the front intake port 13a group, and is sequentially closed with the central intake port 13b group and the front intake port 13a group. However, without limitation, the front intake port 13a group, the central intake port 13b group, and the rear intake port 13c group may be simultaneously opened and closed.

各取込み口群を始め、各往復式開閉弁における弁体を支持する各インダクションボックス等の配置位置は、主翼における翼厚比が同数値か、又は同数値付近の位置に設定すると、各取り込み口群を始め、往復式開閉弁の構造や生産工程の簡素化を図ることができる。  The position of each induction box, etc. that supports the valve element in each reciprocating on-off valve, including each intake port group, is set to a position where the blade thickness ratio in the main wing is the same value or a position near the same value. It is possible to simplify the structure and production process of the reciprocating on-off valve as well as the group.

前記第二連通路22は、図5に示すようにジェットエンジン25の吸気側内周面28における周方向内方に設けられた環状通路29と連通し、さらに、吸気側内周面28の周方向に複数箇所開口して設けられている各放出孔27が前記環状通路29と連通している。そして、前記各放出孔27には、それぞれ第二開閉弁が備えられ、前記第二開閉弁は、特に主翼上面部に剥離が発生しやすい航空機の離着陸時に航空機の操縦系統によって制御され前記各放出孔27を開閉する。  As shown in FIG. 5, the second communication passage 22 communicates with an annular passage 29 provided in the circumferential inner side of the intake side inner peripheral surface 28 of the jet engine 25, and further, Each discharge hole 27 provided with a plurality of openings in the direction communicates with the annular passage 29. Each discharge hole 27 is provided with a second on-off valve, and the second on-off valve is controlled by an aircraft control system, particularly during take-off and landing of the aircraft that is liable to peel off on the upper surface of the main wing. The hole 27 is opened and closed.

第二開閉弁には様々な型式の開閉弁の採用が考えられるが、図5及び図6に示される実施例では、第一開閉弁と同様に往復式の開閉弁30を採用し、図7〜図9に示される実施例では、型式の異なる往復式の開閉弁41を採用している。  Various types of on-off valves can be used as the second on-off valve. In the embodiment shown in FIGS. 5 and 6, a reciprocating on-off valve 30 is adopted as in the case of the first on-off valve. The embodiment shown in FIG. 9 employs a reciprocating on-off valve 41 of a different type.

図5に示される実施例では、前記各放出孔27それぞれに往復式開閉弁30を採用し、さらに、バケット型の弁体31を採用して構成されている。  In the embodiment shown in FIG. 5, a reciprocating on-off valve 30 is adopted for each of the discharge holes 27, and a bucket-type valve element 31 is further adopted.

第二開閉弁である前記往復式開閉弁30は、図6に示される実施例のように、往復式開閉弁30における弁体31が、前記弁体31の底部34両側より立ち上がった側壁部35a、35bと、前記底部34前側より立ち上がった前側壁部32と、によって略コの字型状の側壁部を形成するとともに前記底部34と一体化され、略コの字型状の前記側壁部の上面部36及び後面部37が開放されたバケット型を構成している。  As in the embodiment shown in FIG. 6, the reciprocating on-off valve 30 serving as the second on-off valve has a side wall portion 35a in which the valve body 31 of the reciprocating on-off valve 30 rises from both sides of the bottom 34 of the valve body 31. , 35b and the front side wall portion 32 rising from the front side of the bottom portion 34 form a substantially U-shaped side wall portion and are integrated with the bottom portion 34, so that the substantially U-shaped side wall portion of the side wall portion is formed. The upper surface part 36 and the rear surface part 37 comprise the bucket type | mold which was open | released.

そして、図5に示されるように、前記弁体31における前側壁部32がジェットエンジン25の基部に設けられた軸受け部に回転軸33を介して支承され、前記弁体31がジェットエンジン25の回転中心線方向に扇状に作動することによって前記弁体31における開放された後面部37のみをジェットエンジン25の圧縮部39前面に向かい合わせて前記放出孔27を開き、また、前記弁体31がジェットエンジン25の回転中心線方向と反対側に扇状に作動することによって前記放出孔27を塞いで閉じる往復式開閉弁30が前記放出孔27に備えられている。前記回転軸33の回転中心線A−Aは、ジェットエンジン25の回転中心線を中心とした円周上の接線に一致させて設定されている。  As shown in FIG. 5, the front side wall portion 32 of the valve body 31 is supported by a bearing portion provided at the base portion of the jet engine 25 via a rotating shaft 33, and the valve body 31 is attached to the jet engine 25. By operating like a fan in the direction of the rotation center line, only the opened rear surface portion 37 of the valve body 31 faces the front surface of the compression portion 39 of the jet engine 25 to open the discharge hole 27, and the valve body 31 is The discharge hole 27 is provided with a reciprocating on-off valve 30 that closes and closes the discharge hole 27 by operating in a fan shape on the side opposite to the rotation center line direction of the jet engine 25. The rotation center line AA of the rotation shaft 33 is set to coincide with a tangent on the circumference centering on the rotation center line of the jet engine 25.

さらに、前記側壁部35a、35bにおける各外壁面は、ジェットエンジン25の回転中心線を含む平面とそれぞれ平行面状に形成され、また、各外壁面と吸気側内周面28間は可能な限り狭めた隙間に設定されている。よって、弁体31の開閉作動時及び開閉作動前後時において、各外壁面と吸気側内周面28間を非接触シール状に保つことができる。  Further, the outer wall surfaces of the side wall portions 35a and 35b are formed in parallel planes with the plane including the rotation center line of the jet engine 25, and the space between each outer wall surface and the intake side inner peripheral surface 28 is as much as possible. It is set to a narrow gap. Therefore, it is possible to maintain a contactless seal between each outer wall surface and the intake-side inner peripheral surface 28 during the opening / closing operation of the valve body 31 and before and after the opening / closing operation.

そして、図5に示すように、前記往復式開閉弁30の開時に、弁体31における開放された後面部37をジェットエンジン25における圧縮部39前面と向かい合わせたとき、前記弁体31における底部34を始め、側壁部35a、35b及び前側壁部32が隔壁となって環状通路29と吸気側内周面28間を間仕切り、ジェットエンジン25の圧縮部39が吸引することによってジェットエンジン25の吸気側内周面28前方より流入した空気流と、ジェットエンジン25の圧縮部39が吸引することによって各放出孔27から流入した空気流と、の混流を可能な限り防ぎ、ジェットエンジン25の圧縮部39の吸引力によって各放出孔27から流入した空気流を確実に吸引して主翼付け根側上面部12の空気を確実に取り込んでいる。  As shown in FIG. 5, when the reciprocating on-off valve 30 is opened, when the opened rear surface portion 37 of the valve body 31 faces the front surface of the compression portion 39 of the jet engine 25, the bottom portion of the valve body 31 34, the side wall portions 35a and 35b and the front side wall portion 32 serve as partition walls to partition the annular passage 29 and the intake side inner peripheral surface 28, and the compression portion 39 of the jet engine 25 sucks in the intake air of the jet engine 25. The air flow flowing in from the front of the side inner peripheral surface 28 and the air flow flowing in from the discharge holes 27 by the suction of the compression unit 39 of the jet engine 25 are prevented as much as possible, and the compression unit of the jet engine 25 is prevented. The air flow flowing in from the discharge holes 27 is surely sucked by the suction force of 39, so that the air in the main wing root side upper surface portion 12 is taken in reliably.

また、各弁体31における底部34反対側の弁表面部38は、前記各往復式開閉弁30の閉時にジェットエンジン25の吸気側内周面28と同一曲面形状を構成するように成形されているために、各往復式開閉弁30の閉時において、ジェットエンジン25の圧縮部39が吸引した空気流がスムースに吸気側内周面28を通過することができる。  Further, the valve surface portion 38 on the opposite side of the bottom 34 in each valve body 31 is formed so as to form the same curved surface shape as the intake-side inner peripheral surface 28 of the jet engine 25 when the reciprocating on-off valves 30 are closed. Therefore, when each reciprocating on-off valve 30 is closed, the air flow sucked by the compression unit 39 of the jet engine 25 can smoothly pass through the intake side inner peripheral surface 28.

次に、前述した往復式開閉弁30と型式の異なる往復式開閉弁を第二開閉弁に採用した実施形態を図面に基づいて説明する。  Next, an embodiment in which a reciprocating on-off valve having a different type from the above-described reciprocating on-off valve 30 is adopted as the second on-off valve will be described with reference to the drawings.

図7に示される実施例では、ジェットエンジン25の吸気側内周面28における周方向内方に、ジェットエンジン25を支持するパイロン26内部に配管されている第二連通路22と連通する環状通路40を設け、その環状通路40と連通する複数の放出孔49を前記吸気側内周面28の周方向に開口して設けている。さらに、前記複数の放出孔49には、第二開閉弁である往復式開閉弁41がそれぞれ備えられている。  In the embodiment shown in FIG. 7, an annular passage that communicates with the second communication passage 22 that is piped inside the pylon 26 that supports the jet engine 25 on the inner circumferential surface 28 of the intake side of the jet engine 25. 40, and a plurality of discharge holes 49 communicating with the annular passage 40 are provided in the circumferential direction of the intake side inner peripheral surface 28. Further, the plurality of discharge holes 49 are respectively provided with reciprocating on-off valves 41 which are second on-off valves.

尚、図7に示される実施例では、各放出孔49を図示していないが、前記各放出孔49が開口するジェットエンジン25の吸気側内周面28を前後方向の一線で切り開き一平面に伸ばした図8の展開図によって前記複数の放出孔49の一開口部分を図示している。さらに、図8の展開図を円筒状に戻した吸気側内周面28は、図8におけるイの位置が図7のイの位置の重なり、また、ロの位置が図7のロの位置の重なり、さらに、ハの位置が図7のハの位置の重なる。また、図8のイの位置とロの位置間の前方の吸気側内周面28と、ロの位置後方の吸気側内周面28は同一内周面を形成している。  In the embodiment shown in FIG. 7, each discharge hole 49 is not shown, but the intake-side inner peripheral surface 28 of the jet engine 25 in which each discharge hole 49 is opened is cut along a line in the front-rear direction to form a flat surface. One opening portion of the plurality of discharge holes 49 is illustrated by the expanded view of FIG. Further, the intake side inner peripheral surface 28 obtained by returning the developed view of FIG. 8 to the cylindrical shape has the position of A in FIG. 8 overlapped with the position of A in FIG. 7, and the position of B is the position of B in FIG. Furthermore, the position of C overlaps with the position of C in FIG. Further, the front intake side inner peripheral surface 28 between the position A and the position B in FIG. 8 and the intake side inner peripheral surface 28 behind the position B form the same inner peripheral surface.

そして、第二開閉弁である前記往復式開閉弁41は、図9及び図10に示される実施例のように、両辺44a、44bが後方に行くに従い幅を狭めるテーパー形状に成形された弁体42を備えた往復式の開閉弁で、図7に示すように、前記往復式開閉弁41がジェットエンジンの吸気側内周面28に複数箇所開口させて設けられたそれぞれの前記放出孔49に備えられ、それぞれの前記往復式開閉弁41における弁体42が、前記弁体42の前端部をジェットエンジン25の基部に設けられた軸受け部に回転軸43を介して支承され、すべての前記弁体42がジェットエンジン25の回転中心線方向に扇状に作動することによって、ジェットエンジン25の吸気側内周面28に開口するすべての前記放出孔49を開くとともに、ジェットエンジン25の吸気側内周面28の内側に後方に向かって縮径された円錐台形状の筒45を形造る。また、すべての弁体42がジェットエンジン25の回転中心線方向と反対側に扇状に作動することによって、ジェットエンジン25の吸気側内周面28に開口するすべての前記放出孔49を塞いで閉じている。前記各回転軸43の回転中心線B−Bは、ジェットエンジン25の回転中心線を中心とした円周上の接線上にそれぞれ設定されている。  The reciprocating on-off valve 41, which is the second on-off valve, is a valve body formed into a tapered shape whose width is reduced as both sides 44a and 44b go rearward as in the embodiment shown in FIGS. As shown in FIG. 7, the reciprocating on-off valve 41 is provided in each discharge hole 49 provided at a plurality of locations on the intake-side inner peripheral surface 28 of the jet engine. And a valve body 42 in each of the reciprocating on-off valves 41 is supported at a front end portion of the valve body 42 at a bearing portion provided at a base portion of the jet engine 25 via a rotary shaft 43, When the body 42 operates in a fan shape in the direction of the rotation center line of the jet engine 25, all the discharge holes 49 opened in the intake side inner peripheral surface 28 of the jet engine 25 are opened and the jet engine 25 is opened. The frustoconical shape of the cylinder 45 which is reduced in diameter toward the rear inside of the intake-side inner circumferential surface 28 of the emission 25 made forms. Further, all the valve bodies 42 operate in a fan shape on the side opposite to the rotation center line direction of the jet engine 25, thereby closing and closing all the discharge holes 49 opened in the intake side inner peripheral surface 28 of the jet engine 25. ing. The rotation center line BB of each rotation shaft 43 is set on a tangent line on the circumference centering on the rotation center line of the jet engine 25.

前述した構成によって、各往復式開閉弁41の開時においては、すべての弁体42によって形造られた円錐台形状の筒45が隔壁となって、ジェットエンジン25の圧縮部39が吸引することによって環状通路40に開口する各放出孔49から流入した空気流と、ジェットエンジン25の圧縮部39が吸引することによってジェットエンジン25の吸気側内周面28前方より流入した空気流と、の混流を可能な限り防ぎ、主翼付け根側上面12の空気を確実に取り込むことができる。  With the above-described configuration, when each reciprocating on-off valve 41 is opened, the truncated cone-shaped cylinder 45 formed by all the valve bodies 42 serves as a partition, and the compression portion 39 of the jet engine 25 sucks. The air flow that flows in from each discharge hole 49 that opens in the annular passage 40 by the air flow and the air flow that flows in from the front side of the intake side inner peripheral surface 28 of the jet engine 25 due to the suction of the compression portion 39 of the jet engine 25. Can be prevented as much as possible, and the air on the main wing root side upper surface 12 can be taken in reliably.

また、すべての弁体42は、各往復式開閉弁41が閉じたときには、ジェットエンジン25の吸気側内周面28と同一面となる位置に収納されるとともに、収納後における各弁体42の弁表面46が吸気側内周面28と同一曲面を構成するように成形されている。  Further, all the valve bodies 42 are housed in a position that is flush with the intake-side inner peripheral surface 28 of the jet engine 25 when each reciprocating on-off valve 41 is closed, and each valve body 42 after the housing is housed. The valve surface 46 is shaped so as to form the same curved surface as the intake side inner peripheral surface 28.

前述したように、各往復式開閉弁41が閉じたときに、すべての弁体42の弁表面46がジェットエンジン25の吸気側内周面28と同一曲面を構成する位置及び形状に成形されているために、各往復式開閉弁41が開いているとき、すべての弁体42の弁表面46で形造る円錐台形状の筒45の内周面は正確には円錐台形を形造らないが、航空機の離着陸時に比べその割合が大きい巡航中においては、各往復式開閉弁41が閉じられ、すべての弁体42の弁表面46が吸気側内周面28と同一曲面を構成することによって、ジェットエンジン25の圧縮部39が吸引する空気流が乱れずにスムースに吸気側内周面28を通過することができる。  As described above, when each reciprocating on-off valve 41 is closed, the valve surfaces 46 of all the valve bodies 42 are formed in positions and shapes that form the same curved surface as the intake-side inner peripheral surface 28 of the jet engine 25. Therefore, when each reciprocating on-off valve 41 is open, the inner peripheral surface of the truncated cone-shaped cylinder 45 formed by the valve surfaces 46 of all the valve bodies 42 does not accurately form the truncated cone shape. During cruising, the ratio of which is larger than when the aircraft is taking off and landing, each reciprocating on-off valve 41 is closed, and the valve surfaces 46 of all the valve bodies 42 form the same curved surface as the intake side inner peripheral surface 28, The air flow sucked by the compression unit 39 of the engine 25 can pass smoothly through the intake side inner peripheral surface 28 without being disturbed.

そして、前記弁表面46の裏面47側においてもすべての弁体42が開いているときに、吸気側内周面28に開口する各放出孔49から流入した空気流が、ジェットエンジン26の圧縮部39側にスムースに流れ去るように、前記裏面47側は成形されるとともに、図9及び図10に示すように、放出孔49から流入した空気流を整流するリブ48が設けられ、前記リブ48を設けたことによって弁体42の剛性の向上も図れる。  When all the valve bodies 42 are also open on the back surface 47 side of the valve surface 46, the air flow flowing in from the discharge holes 49 opened in the intake side inner peripheral surface 28 is converted into the compression portion of the jet engine 26. The back surface 47 side is shaped so as to flow smoothly to the 39 side, and as shown in FIGS. 9 and 10, ribs 48 for rectifying the air flow flowing from the discharge holes 49 are provided. By providing this, the rigidity of the valve body 42 can be improved.

以上、第一開閉弁及び第二開閉弁に、往復式の開閉弁を採用した場合について説明をしてきた。さらに、前述した往復式開閉弁に限らず、他の形式の開閉弁を第一開閉弁、第二開閉弁に採用することも充分に考えられ、後述することとする。  In the above, the case where the reciprocating on-off valve is adopted as the first on-off valve and the second on-off valve has been described. Furthermore, not only the above-described reciprocating on-off valve but also other types of on-off valves can be considered as the first on-off valve and the second on-off valve, which will be described later.

また、前述した第一開閉弁及び第二開閉弁に対する駆動方法に関しては、詳細な説明は省略したが、後述する第一開閉弁及び第二開閉弁も含め、既存の航空機における各部操縦翼面と同様に、手動で駆動するか、又は機体側に取り付けられた各種センサーから受け取った情報をコンピューター等で処理した上で最適な飛行が行われるように、油圧式や、電動式、圧縮空気式等の各種駆動力によって前述した第一開閉弁及び第二開閉弁が駆動されている。そして、前記駆動力は、航空機における各操縦系統によって制御されている。  Further, although the detailed description of the driving method for the first on-off valve and the second on-off valve described above is omitted, the control blade surface of each part in the existing aircraft, including the first on-off valve and the second on-off valve described later, and Similarly, hydraulic, electric, compressed air, etc. so that optimal flight can be performed after manually driving or processing information received from various sensors attached to the aircraft side with a computer etc. The first on-off valve and the second on-off valve are driven by the various driving forces. The driving force is controlled by each control system in the aircraft.

次に、上記実施例の作用を説明する。
航空機の主翼は、迎え角が小さい範囲においては主翼上面の気流がコアンダ効果によって主翼上面側に引き寄せられて沿って流れ、圧力が低下し揚力向上に寄与するが、迎え角が大きくなるに従い、境界層剥離現象により空気流が主翼上面に沿って流れにくくなり、揚力が低下し航空機は失速しやすい状態に陥る。特に、航空機の離陸時においては飛行速度が低く、また、着陸時においては飛行速度を下げなければならず、離陸時と同様に飛行速度が低くなる。
Next, the operation of the above embodiment will be described.
The main wing of an aircraft, in the range where the angle of attack is small, the airflow on the upper surface of the main wing is drawn to the upper surface of the main wing due to the Coanda effect and flows along, and the pressure decreases and contributes to lift. The delamination phenomenon makes it difficult for the air flow to flow along the upper surface of the main wing, and the lift is reduced, causing the aircraft to easily stall. In particular, the flying speed is low at the time of take-off of the aircraft, and the flying speed has to be lowered at the time of landing, so that the flying speed becomes low as at the time of take-off.

本発明による境界層制御装置は、航空機が離着陸時において迎え角を大きくとっていったときに、航空機1の主翼上面部2に生じる剥離領域の拡大を制御するために、図1において、前記主翼上面部2の空気を取込む取込み口3に備えた第一開閉弁4を前記航空機の操縦系統によって開き前記取込み口3を主翼上面部2に開口させ、また、前記航空機1の推進機関5における吸気側内周面6に開口し、前記取込み口3が取り込んだ空気を放出する放出孔7に備えた第二開閉弁8を前記航空機の操縦系統によって開くことにより、前記取込み口3と前記放出孔7間が連通路9によって連通し、前記航空機1の推進機関における空気取入れ口6に発生する吸引力により前記取込み口3が開口する主翼上面部2の空気が吸引され、主翼上面部2の気圧を低下させ主翼上面部2の境界層剥離現象を抑制するように作用する。  The boundary layer control apparatus according to the present invention is configured to control the enlargement of the separation area generated on the upper surface 2 of the main wing of the aircraft 1 when the aircraft has a large angle of attack during takeoff and landing in FIG. The first on-off valve 4 provided in the intake port 3 for taking in air from the upper surface portion 2 is opened by the aircraft control system so that the intake port 3 is opened in the main wing upper surface portion 2, and the propulsion engine 5 of the aircraft 1 The intake port 3 and the discharge port are opened by opening the second opening / closing valve 8 provided in the discharge hole 7 that opens to the inner peripheral surface 6 of the intake side and discharges the air taken in by the intake port 3 by the control system of the aircraft. The holes 7 communicate with each other through the communication passage 9, and the air at the upper surface 2 of the main wing where the intake 3 opens is sucked by the suction force generated at the air intake 6 in the propulsion engine of the aircraft 1. Care Reducing the act to inhibit boundary layer separation phenomenon of wing upper surface 2.

さらに図2において、航空機10の主翼11における揚力の発生が大きい翼根側上面部12後方の桁方向又は略桁方向にそれぞれ列状に開口し配列された前方取込み口13a群、中央取込み口13b群、後方取込み口13c群の内、一番後方に配列する前記後方取込み口13c群を開閉する往復式開閉弁18c〔第一開閉弁〕を開くことによって前記後方取込み口13c群が翼根側上面部12後方に開口し、また図5において、ジェットエンジン25の吸気側内周面28に複数ヶ所開口させて設けられた各放出孔27を開閉する各往復式開閉弁30〔第二開閉弁〕を開くことによって前記各放出孔27が吸気側内周面28に開口し、第一連通路23cと、前記第一連通路23cと連通する第二連通路22及び前記第二連通路22と連通する環状通路29によって前記後方取込み口13c群と前記放出孔27間が連通され、ジェットエンジン25の圧縮部39に発生する吸引力により前記後方取込み口13c群が開口する翼根側上面部12における後方の空気が吸引され、翼根側上面部12後方の気圧を低下させ翼根側上面部12の境界層剥離現象を抑制するように作用する。  Further, in FIG. 2, a front intake port 13 a group and a central intake port 13 b that are opened and arranged in a row in the spar direction or substantially the spar direction at the rear of the wing root-side upper surface portion 12 where the lift of the main wing 11 of the aircraft 10 is large. By opening a reciprocating on-off valve 18c (first on-off valve) that opens and closes the rear intake port 13c group arranged rearmost among the group, rear intake port 13c group, the rear intake port 13c group becomes the blade root side. Reciprocating on-off valves 30 [second on-off valves] that open to the rear of the upper surface portion 12 and open and close the discharge holes 27 provided at a plurality of locations on the intake-side inner peripheral surface 28 of the jet engine 25 in FIG. ], Each of the discharge holes 27 is opened in the intake side inner peripheral surface 28, and the first communication passage 23c, the second communication passage 22 communicating with the first communication passage 23c, and the second communication passage 22 Communicating ring The rear intake port 13c group and the discharge hole 27 are communicated with each other by a passage 29. The rear intake port 13c group opens by the suction force generated in the compression portion 39 of the jet engine 25, and the rear upper surface portion 12 of the blade root side opens. Air is sucked in, and acts to reduce the air pressure behind the blade root side upper surface portion 12 and suppress the boundary layer peeling phenomenon of the blade root upper surface portion 12.

また、前記後方取込み口13c群の開口位置は、翼根側後縁部15の前方に設定されているために、翼根側前縁部から翼根側後縁部15方向へ翼根側上面部12に沿って流れる空気流は、気圧が低下した後方取込み口13c群の開口領域に向かって吸引されるように流速度を速め、その結果、翼根側上面部12の空気流がコアンダ効果によって引き寄せられ沿って流れ、翼根側上面部12の圧力が低下し揚力を向上させるように作用する。  Further, since the opening position of the rear intake port 13c group is set in front of the blade root side rear edge portion 15, the blade root side upper surface from the blade root side front edge portion toward the blade root side rear edge portion 15 is set. The air flow flowing along the portion 12 increases the flow velocity so that the air flow is sucked toward the opening area of the rear intake port 13c group in which the atmospheric pressure is reduced, and as a result, the air flow on the blade root side upper surface portion 12 becomes the Coanda effect. It acts so that the pressure of the blade root side upper surface portion 12 is lowered and lift is improved.

さらに、航空機が迎え角を大きくとっていき、翼根側上面部12の剥離領域が前方に拡大していくと予想されたとき、前記後方取込み口13c群の前方に配列する中央取込み口13b群に備えた往復式開閉弁18b〔第一開閉弁〕や、前記中央取込み口13b群の前方に配列する前方取込み口13a群に備えた往復式開閉弁18a〔第一開閉弁〕を順次開いていくと、翼根側上面部12における中央取込み口13b群及び前方取込み口13a群の開口領域の空気がジェットエンジン25の圧縮部39に発生する吸引力によって吸引され、結果的に、翼根側上面部12の境界層剥離現象をきめ細かく抑制することができ、境界層剥離現象を制御することによって特に離着陸時における航空機の安定飛行に寄与するように作用する。  Further, when the aircraft takes a larger angle of attack and the separation area of the blade root side upper surface portion 12 is expected to expand forward, the central intake port 13b group arranged in front of the rear intake port 13c group. The reciprocating on-off valve 18b [first on-off valve] provided in the front intake port 13a group arranged in front of the central intake port 13b group and the reciprocating on-off valve 18a [first on-off valve] arranged in front of the central intake port 13b group are sequentially opened. As a result, air in the opening area of the central intake port 13b group and the front intake port 13a group in the blade root side upper surface portion 12 is sucked by the suction force generated in the compression portion 39 of the jet engine 25, and as a result, the blade root side The boundary layer separation phenomenon of the upper surface portion 12 can be finely suppressed, and the boundary layer separation phenomenon is controlled to act to contribute to stable flight of the aircraft particularly during takeoff and landing.

次に、航空機が迎え角を次第に減らし巡航飛行に移行すると、今度は逆に、各放出孔27を開閉する往復式開閉弁30〔第二開閉弁〕を閉じ、前方取込み口13a群を開閉する往復式開閉弁18a〔第一開閉弁〕と、中央取込み口13b群を開閉する往復式開閉弁18b〔第一開閉弁〕と、後方取込み口13c群を開閉する往復式開閉弁18c〔第一開閉弁〕と、を順次閉じることによって、ジェットエンジン25の吸気側内周面28前方から吸入した空気流すべてをジェットエンジン25の圧縮部39側へ流し、さらに、前記各往復式開閉弁18a、18b、18c〔第一開閉弁〕を閉じることによって、翼根側上面部12の抗力を減らす。  Next, when the aircraft gradually reduces the angle of attack and shifts to cruise flight, on the contrary, the reciprocating on-off valve 30 (second on-off valve) that opens and closes each discharge hole 27 is closed and the front intake port 13a group is opened and closed. A reciprocating on-off valve 18a [first on-off valve], a reciprocating on-off valve 18b [first on-off valve] for opening and closing the central intake port 13b group, and a reciprocating on-off valve 18c [first valve] for opening and closing the rear intake port 13c group Are sequentially closed to flow all of the air flow sucked from the front side of the intake side inner peripheral surface 28 of the jet engine 25 to the compression unit 39 side of the jet engine 25, and the reciprocating on-off valves 18a, By closing 18b, 18c [first on-off valve], the drag of the blade root side upper surface portion 12 is reduced.

また、図6のバケット型の弁体や、両辺が後方に行くに従い幅を狭める図9及び図10のテーパー形状に成形された弁体は、往復式開閉弁が開いているときに、バケット型の弁体におけるバケット部外壁面や、テーパー形状に成形された弁体すべてによって形造る円錐台形状の筒が隔壁となって、ジェットエンジンの圧縮部が吸引することによって各放出孔から流入した空気流と、ジェットエンジンの圧縮機が吸引することによってジェットエンジンの吸気側内周面前方より流入した空気流と、の混流を可能な限り防ぐように作用する。  Further, the bucket-type valve body of FIG. 6 and the valve body formed in the tapered shape of FIGS. 9 and 10 whose width decreases as both sides go rearward are the bucket-type valve body when the reciprocating on-off valve is open. The air flowed into each discharge hole when the jet engine's compression part sucks in the outer wall surface of the bucket part of the valve body and the truncated cone-shaped cylinder formed by all of the tapered valve body. It acts to prevent as much as possible the mixed flow of the air flow and the air flow that flows in from the front side of the inner surface of the intake side of the jet engine by the suction of the jet engine compressor.

次に、他の実施例を図面に基づいて説明する。
前述した図2に示される実施例では、前方取込み口13a群、中央取込み口13b群、後方取込み口13c群の各開口位置を、翼根側上面部12における桁方向又は略桁方向に並列状又は略並列状に配列したが、この位置に限らず、各取込み口群の開口位置を前記位置から翼端方向へ配列範囲を拡げることとしてもよい。
Next, another embodiment will be described with reference to the drawings.
In the embodiment shown in FIG. 2 described above, the opening positions of the front intake port 13a group, the central intake port 13b group, and the rear intake port 13c group are arranged in parallel in the girder direction or substantially girder direction in the blade root side upper surface portion 12. Alternatively, the arrangement range is not limited to this position, but the opening range of each intake port group may be expanded from the position to the blade tip direction.

また、図2に示される実施例では、前方、中央、後方と取り入れ口群を三列分列したが、各種航空機に対応するために、三列以上、又は三列以下分列することとしてもよい。さらに、主翼翼端方向の揚力を確保するために、前方取込み口13a群、中央取込み口13b群、後方取込み口13c群に加えて、図2における主翼翼端方向の後縁前方部に桁方向又は略桁方向に列状に複数ヶ所開口する取込み口13d群を設けたこととしてもよい。そして、前記取込み口13d群が開口するインダクションボックスには、前記取込み口13d群を開閉する第一開閉弁を備え、前記取込み口13d群より取り込んだ空気流を集合する第一連通路を内設するとともに、前記第一連通路が第二連通路22と連通されている。  In the embodiment shown in FIG. 2, the front, center, rear and intake groups are divided into three rows. However, in order to correspond to various aircraft, three or more rows or less than three rows may be divided. Good. In addition to the front intake port 13a, the central intake port 13b, and the rear intake port 13c, in addition to the front intake port 13a group, the central intake port 13b group, and the rear intake port 13c group, in order to ensure lift in the main wing blade tip direction Alternatively, a group of intake ports 13d that are opened in a plurality of rows in a substantially digit direction may be provided. The induction box having the intake port 13d group is provided with a first on-off valve for opening and closing the intake port 13d group, and a first series passage for collecting the air flow taken in from the intake port 13d group is provided in the induction box. In addition, the first series passage is communicated with the second communication passage 22.

なお、前述した取込み口13d群を始め、前記取込み口13d群が開口するインダクションボックス、また、前記取込み口13d群を開閉する第一開閉弁、さらに、前記取込み口13d群より取り込んだ空気流を集合する第一連通路等は、前述した前方取込み口13a群を始め、前記前方取込み口13a群が開口する前方インダクションボックス16a、また、前記前方取込み口13a群を開閉する往復式開閉弁18a〔第一開閉弁〕、さらに、前記前方取込み口13a群より取り込んだ空気流を集合する第一連通路23aと実質的に略同一の機能及び構成を有している。  The intake port 13d group, the induction box in which the intake port 13d group opens, the first on-off valve that opens and closes the intake port 13d group, and the air flow taken in from the intake port 13d group are provided. The first series of passages and the like that gather include the front intake port 13a group described above, the front induction box 16a in which the front intake port 13a group opens, and the reciprocating on-off valve 18a for opening and closing the front intake port 13a [ The first on-off valve] has substantially the same function and configuration as the first series passage 23a for collecting the air flow taken in from the front intake port 13a group.

そして、図1に示される実施例では、取込み口3に第一開閉弁4を備え、放出孔7に第二開閉弁8を備えているが、境界層制御装置の簡素化を図るために、航空機の主翼上面部に単数箇所又は複数箇所開口する取込み口を設け、また、航空機の推進機関における吸気側内周面に前記取込み口が取り込んだ空気を放出する放出孔を単数箇所又は複数箇所開口させて設け、さらに、前記取込み口と前記放出孔間を連通する連通路を前記取込み口と前記放出孔間に設け、そして、前記取込み口又は放出孔又は連通路のいずれか一箇所に、航空機の操縦系統に制御され前記取込み口と前記放出孔間の連通を開閉する開閉弁を備えた境界層制御装置も考えられる。  In the embodiment shown in FIG. 1, the intake port 3 is provided with the first on-off valve 4 and the discharge hole 7 is provided with the second on-off valve 8, but in order to simplify the boundary layer control device, A single or multiple intake openings are provided in the upper surface of the main wing of the aircraft, and a single or multiple discharge holes are provided on the intake side inner peripheral surface of the aircraft propulsion engine to release the air taken in by the intake. Furthermore, a communication path communicating between the intake port and the discharge hole is provided between the intake port and the discharge hole, and an aircraft is provided at any one of the intake port, the discharge hole, or the communication path. A boundary layer control device including an on-off valve that is controlled by the control system and opens and closes communication between the intake port and the discharge hole is also conceivable.

前述した境界層制御装置では、前記取込み口又は前記放出孔又は前記取込み口と放出孔間を連通させる連通路のいずれか一箇所に備えた開閉弁を開いたとき、前記取込み口と放出孔間を連通させている。  In the boundary layer control device described above, when the on-off valve provided at any one of the intake port, the discharge hole, or the communication path for communicating between the intake port and the discharge hole is opened, the gap between the intake port and the discharge hole Is in communication.

さらに、常に高い揚力を確保するために、航空機の主翼上面部に単数箇所又は複数箇所開口する取込み口を設け、また、航空機の推進機関における吸気側内周面に前記取込み口が取り込んだ空気を放出する放出孔を単数箇所又は複数箇所開口させて設け、そして、前記取込み口と前記放出孔間を連通する連通路を前記取込み口と前記放出孔間に設け、前記取込み口と前記放出孔間が前記連通路によって常時連通している境界層制御装置も考えられる。  Furthermore, in order to ensure a high lift at all times, a single or a plurality of intake openings are provided on the upper surface of the main wing of the aircraft, and the intake air is taken into the intake side inner peripheral surface of the aircraft propulsion engine. A discharge hole to be discharged is provided at one or a plurality of positions, and a communication path communicating between the intake port and the discharge hole is provided between the intake port and the discharge hole, and between the intake port and the discharge hole. However, a boundary layer control device that is always in communication with the communication path is also conceivable.

前述した境界層制御装置では、開閉弁を特に備えないために、取込み口と放出孔間が常時連通されている。  In the boundary layer control device described above, since the on-off valve is not particularly provided, the intake port and the discharge hole are always in communication.

次に、航空機の主翼後端に取り付けられたフラップやスロッテッド・フラップに本発明を実施した実施例を図面に基づいて説明する。  Next, an embodiment in which the present invention is applied to a flap or a slotted flap attached to the rear end of the main wing of an aircraft will be described with reference to the drawings.

図11に示される実施例では、後縁フラップ50における後縁51の前方上面部左右方向に開口し前記後縁フラップ50上面の空気を取込む取込み口13eを列状に一列〔又は分列〕開口させて取込み口13e群を構成している。そして、インダクションボックスと第一連通路を兼ねるインダクションボックス兼第一連通路52〔図11における矢印によって連通されている部分〕を、前記後縁フラップ50本体を構成する外板材や、桁部材、小骨部材等の各部材によって前記後縁フラップ50本体内部に設けている。  In the embodiment shown in FIG. 11, the intake ports 13 e that open in the left-right direction of the front upper surface portion of the rear edge 51 in the rear edge flap 50 and take in air on the upper surface of the rear edge flap 50 are arranged in a row (or divided). A group of intake ports 13e is formed by opening. Then, the induction box and first series passage 52 (the portion communicated by the arrow in FIG. 11) that serves both as the induction box and the first series passage are connected to the outer plate material, the girder member, and the small bone that constitute the main body of the trailing edge flap 50. Each member such as a member is provided inside the trailing edge flap 50 main body.

また、図11に示される実施例では、後縁フラップ50本体内部にインダクションボックス兼第一連通路52を後縁フラップ50本体を構成する外板材や、桁部材、小骨部材等の各部材によって設けているが、これに限らず、後縁フラップ50における後縁51前方の内方に配置固定したインダクションボックスの上面部の左右方向に取込み口群を列状に開口して設け、前記インダクションボックスに第一連通路を内設することとしてもよい。  Further, in the embodiment shown in FIG. 11, an induction box / first series passage 52 is provided inside the trailing edge flap 50 main body by an outer plate material, a spar member, a small bone member or the like constituting the trailing edge flap 50 main body. However, the present invention is not limited to this, and a group of intake openings are provided in the left-right direction of the upper surface of the induction box disposed and fixed in front of the rear edge 51 in the rear edge flap 50 so as to be arranged in a row. A first series passage may be provided.

後縁フラップ50本体を構成する各部材によって後縁フラップ50本体内部にインダクションボックス兼第一連通路52を形作った場合には、取込み口13e群から取り込んだ空気流が図11に示す矢印方向に流れるように、後縁フラップ50本体を構成する桁部材や小骨部材等の各部材における矢印部分それぞれに開口部が設けられて連通されている。そして、前記インダクションボックス兼第一連通路52の内壁面には、表面部を保護する材質や、表面部を保護する物質を塗布する等、対処策を施しておくとよい。さらに、降雨時の前記取込み口13e群の開口時には、取込み口13e群から雨水が浸水するが、前記後縁フラップ50を下げた状態で前記取込み口13e群の後端から後縁フラップ50内に溜まった水が排水されるように前記取込み口13e群の後端部を設定しておくとよい。  When the induction box / first series passage 52 is formed inside the trailing edge flap 50 main body by the members constituting the trailing edge flap 50 main body, the air flow taken in from the intake port 13e group is in the direction of the arrow shown in FIG. In order to flow, an opening is provided in each arrow portion of each member such as a girder member and a small bone member constituting the rear edge flap 50 main body and communicated therewith. Further, it is preferable to take countermeasures such as applying a material for protecting the surface portion or a material for protecting the surface portion to the inner wall surface of the induction box / first series passage 52. Further, when the intake port 13e group is opened during rain, rainwater is submerged from the intake port 13e group. However, the rear edge flap 50 is lowered to enter the rear edge flap 50 from the rear end of the intake port 13e group. A rear end portion of the intake port 13e group may be set so that the accumulated water is drained.

そして、前記インダクションボックス兼第一連通路52は、回転軸を回転中心に扇状に作動する後縁フラップ50内部に設けられている。よって、主翼62側の第二連通路22と連通させる場合、前記第二連通路22に対して、後縁フラップ50が扇状に作動してもインダクションボックス兼第一連通路52が連通可能な状態で連結され続ける必要がある。そこで、図11に示される実施例では、主翼62側の円筒状に成形された第二連通路22の端部と、円筒状に成形されたインダクションボックス兼第一連通路52の端部と、を後縁フラップ50が扇状に作動する回転中心線C−C上で対向させるとともに、前記両端部それぞれがシール付すべり軸受け部53aの外周面又は内周面のいずれか一方に嵌合して連結し、円筒状に成形された主翼62側の第二連通路22側の端部に対して、円筒状に成形されたインダクションボックス兼第一連通路52側の端部が回転可能な状態で連結されている。  The induction box / first series passage 52 is provided inside the trailing edge flap 50 which operates in a fan shape around the rotation axis. Therefore, when communicating with the second communication path 22 on the main wing 62 side, the induction box / first series path 52 can communicate with the second communication path 22 even if the trailing edge flap 50 operates in a fan shape. Need to continue to be linked. Therefore, in the embodiment shown in FIG. 11, the end of the second communication passage 22 formed into a cylindrical shape on the main wing 62 side, the end of the induction box and first series passage 52 formed into a cylindrical shape, Are opposed to each other on the rotation center line C-C where the trailing edge flap 50 operates in a fan shape, and both end portions are fitted and connected to either the outer peripheral surface or the inner peripheral surface of the sliding bearing portion 53a with seal. In addition, the end portion on the second communication path 22 side on the main wing 62 side formed in the cylindrical shape is connected in a state where the end portion on the induction box / first series path 52 side formed in the cylindrical shape is rotatable. Has been.

そして、前記後縁フラップ50は、後縁フラップ50内に一体化されたインダクションボックス兼第一連通路52における円筒状の端部が、シール付すべり軸受け部53aにおける外周面又は内周面のいずれか一方に嵌合して連結して支承され〔図11では内周面に嵌合されている〕、また、後縁フラップ50における前記シール付すべり軸受け部53aの配置位置反対側のシール付すべり軸受け部53bが主翼62側に支承され、前記後縁フラップ50が回転中心線C−Cを扇状に作動する。前記後縁フラップ50は、大型機においては主翼下面部から後縁フラップ下面部を支持し扇状に後縁フラップを作動させる後縁フラップ作動装置の採用も当然考えられる。  Further, the trailing edge flap 50 has either a cylindrical end portion of the induction box / first series passage 52 integrated in the trailing edge flap 50, which is either the outer peripheral surface or the inner peripheral surface of the sliding bearing portion 53 a with seal. It is fitted and connected to one of them (supported on the inner peripheral surface in FIG. 11), and the sliding with seal on the opposite side to the arrangement position of the sliding bearing portion 53a with seal in the rear edge flap 50. The bearing portion 53b is supported on the main wing 62 side, and the trailing edge flap 50 operates in a fan shape on the rotation center line CC. As for the trailing edge flap 50, in a large machine, it is naturally possible to adopt a trailing edge flap operating device that supports the trailing edge flap lower surface portion from the main wing lower surface portion and operates the trailing edge flap in a fan shape.

前記後縁フラップ50における後縁51前方の上面部左右方向に、直接列状に一列〔分列でも可〕開口させた取込み口13e群を開閉する第一開閉弁には、様々な型式の開閉弁の採用が考えられるが、図12に示される実施例では、往復式開閉弁を採用している〔図11では図示せず〕。図11に示す前記インダクションボックス兼第一連通路52における断面部D−Dを図示する図12に示す実施例のように、往復式開閉弁55を採用すると、前記インダクションボックス兼第一連通路52に必要な容積を確保しやすくなる。  Various types of opening / closing valves are used for the first on-off valve that opens and closes the intake ports 13e that are opened in a direct line (or may be divided) in the horizontal direction of the upper surface of the rear edge flap 50 in front of the rear edge 51. Although the use of a valve is conceivable, the embodiment shown in FIG. 12 employs a reciprocating on-off valve (not shown in FIG. 11). When the reciprocating on-off valve 55 is employed as in the embodiment shown in FIG. 12 illustrating the cross-section DD in the induction box / first series passage 52 shown in FIG. 11, the induction box / first series passage 52 is used. It is easy to secure the necessary volume.

また、前記往復式開閉弁55における弁体56の開閉においても様々な方法が考えられるが、図12では、前記弁体56後端が前記後縁フラップ50内部後方の基部に設けられた軸受け部に回転軸57を介して支承され、また、前記弁体56前端部に固定されたピン58がリンク機構59におけるリンクAの一方端部の溝60に連係され、さらに、前記リンクAの他方端部が駆動力源であるモーター61の回転軸に固定されている。  Various methods are also conceivable for opening and closing the valve body 56 in the reciprocating on-off valve 55. In FIG. 12, a bearing portion in which the rear end of the valve body 56 is provided at a base portion inside the rear edge flap 50 is provided. And a pin 58 fixed to the front end portion of the valve body 56 is linked to a groove 60 at one end portion of the link A in the link mechanism 59, and further, the other end of the link A The part is fixed to the rotating shaft of the motor 61 as a driving force source.

そして、モーター61を回転させることによって、リンク機構59を介して弁体56が取込み口13e群を開閉し、往復式開閉弁55が開状態のとき、インダクションボックス兼第一連通路52と主翼側の第二連通路22間が連通される。  When the motor 61 is rotated, the valve body 56 opens and closes the intake port 13e group via the link mechanism 59, and when the reciprocating on-off valve 55 is open, the induction box / first series passage 52 and the main wing side The second communication passages 22 communicate with each other.

前記往復式開閉弁55における開閉弁本体56の駆動には、例えば、前述したモーター61を始め、電磁弁等の駆動力源を採用すると電気的な配線によって駆動力源を可動させることが可能で、配線は、第二連通路22内部に配線され、さらにインダクションボックス兼第一連通路52内部を経て、後縁フラップ50本体内部に配置されている駆動力源であるモーター61に配電するとよい。  For driving the on-off valve body 56 in the reciprocating on-off valve 55, for example, when a driving force source such as the above-described motor 61 or an electromagnetic valve is employed, the driving force source can be moved by electrical wiring. The wiring is preferably distributed inside the second communication path 22 and further distributed through the induction box / first series path 52 to the motor 61 which is a driving force source disposed inside the main body of the trailing edge flap 50.

前述した後縁フラップは、前記後縁フラップにおける後縁の前方上面部左右方向に前記後縁フラップの上面の空気を取込む取込み口を列状に一列又は分列開口させて取込み口群を構成しているために、前記取込み口群を開閉する開閉弁を開くことによって、前記取込み口群と放出孔間を連通させ、後縁フラップ上面の空気を取込み、後縁フラップ上面の境界層剥離現象を抑制し、後縁フラップの揚力を高めるように作用する。  The trailing edge flap described above constitutes a group of inlets by opening the inlets for taking in the air on the upper surface of the trailing edge flap in a row or in a row in the left-right direction of the front upper surface of the trailing edge in the trailing edge flap. Therefore, by opening an on-off valve that opens and closes the intake port group, the intake port group and the discharge hole communicate with each other, the air on the upper surface of the trailing edge flap is taken in, and the boundary layer peeling phenomenon on the upper surface of the trailing edge flap It suppresses and acts to increase the lift of the trailing edge flap.

次に、主翼後縁のスロッテッド・フラップに本発明を実施した実施例を図面に基づいて説明する。  Next, an embodiment in which the present invention is applied to a slotted flap on the trailing edge of the main wing will be described with reference to the drawings.

スロッテッド・フラップにおける本体は、前述した後縁フラップ50と略同様な構造を採用するが、スロッテッド・フラップは、作動時において主翼後下方向にスロッテッド・フラップが引き出されて主翼とスロッテッド・フラップ間に隙間をつくり、主翼下面を流れてきた空気流をその隙間からスロッテッド・フラップ上面に流すことを主な目的としている。  The main body of the slotted flap employs a structure that is substantially the same as the trailing edge flap 50 described above, but the slotted flap is pulled between the main wing and the slotted flap by pulling the slotted flap downward in the main wing after operation. The main purpose is to create a gap and let the air flow that has flowed on the lower surface of the main wing flow from the gap to the upper surface of the slotted flap.

よって、図13に示される実施例では、主翼側の第二連通路端部とスロッテッド・フラップ側の第一連通路端部間に、前記スロッテッド・フラップが主翼後下方向に伸長したとき両端部間の連通状態を維持し続ける伸縮連通装置が備えられている。図13では、その伸縮連通装置と、前記伸縮連通装置を備えた主翼下面及び主翼後縁に取り付けられたスロッテッド・フラップ下面を下方より見た概略下面図である。  Therefore, in the embodiment shown in FIG. 13, when the slotted flap extends downward from the main wing side between the second communicating passage end on the main wing side and the first series passage end on the slotted flap side, both end portions A telescopic communication device is provided that keeps the communication state therebetween. FIG. 13 is a schematic bottom view of the telescopic communication device and the lower surface of the main wing provided with the telescopic communication device and the lower surface of the slotted flap attached to the trailing edge of the main wing.

図13に示される実施例では、外筒71の他方端部内側に溝部72を設けてその溝部72にOリング等のシール材を装着し、また、内筒73の一方端部外側に溝部74を設けその溝部74にOリング等のシール材を装着し、前記外筒71の内側を前記内筒73が摺動する構成で両者が組み立てられている。そして、前記外筒71の一方端部と、主翼側に固定され、前記主翼側下面76に露出する第二連通路22端部間にシール付すべり軸受け部53cを介して両者間を連通した状態で連結し、さらに、前記内筒73の他方端部と、スロッテッド・フラップ50a側に固定され、前記スロッテッド・フラップ50a側下面に露出するインダクションボックス兼第一連通路75端部間にシール付すべり軸受け部53dを介して両者間を連通した状態で連結して構成された伸縮連通装置が主翼下面76及び主翼後縁に取り付けられたスロッテッド・フラップ50a下面間に備えられている。  In the embodiment shown in FIG. 13, a groove 72 is provided inside the other end of the outer cylinder 71, and a sealing material such as an O-ring is attached to the groove 72, and a groove 74 is provided outside the one end of the inner cylinder 73. Both are assembled in such a manner that a sealing material such as an O-ring is attached to the groove 74 and the inner cylinder 73 slides inside the outer cylinder 71. A state where the one end portion of the outer cylinder 71 is fixed to the main wing side and the second communication passage 22 end portion exposed to the main wing side lower surface 76 is communicated with each other through a sliding bearing portion 53c with a seal. Further, the sliding is performed between the other end portion of the inner cylinder 73 and the end portion of the induction box and first series passage 75 which is fixed to the slotted flap 50a side and exposed to the lower surface of the slotted flap 50a side. An expansion / contraction communication device constructed by connecting the two in a state of being communicated with each other via a bearing 53d is provided between the lower surface of the main wing lower surface 76 and the lower surface of the slotted flap 50a attached to the rear edge of the main wing.

前記伸縮連通装置は、伸縮連通装置における伸長方向中心線を機体の前後方向と同方向に設定して主翼下面76とスロッテッド・フラップ50a下面間に配置され、スロッテッド・フラップ50aを作動させる作動装置〔図示せず〕に近設されて、前記作動装置と一緒にフェアリング〔図示せず〕されている。  The telescopic communication device is disposed between the main wing lower surface 76 and the lower surface of the slotted flap 50a with the center line in the extension direction of the telescopic communication device set in the same direction as the front-rear direction of the fuselage, and an operating device for operating the slotted flap 50a. Close to (not shown) and faired (not shown) together with the actuating device.

上記構成により、スロッテッド・フラップ50a側が主翼後下方向に引き出されると同時に前記外筒71内部に組み込まれた内筒73が同方向に伸長し、主翼側の第二連通路22端部と、スロッテッド・フラップ50a側のインダクションボックス兼第一連通路75端部間が、両端部間の連通状態を維持し続けながらスロッテッド・フラップ50aが伸長する。  With the above configuration, the slotted flap 50a side is pulled out in the rearward downward direction of the main wing, and at the same time, the inner cylinder 73 incorporated in the outer cylinder 71 extends in the same direction, and the end of the second communication passage 22 on the main wing side and the slotted The slotted flap 50a extends while maintaining the state of communication between both ends of the induction box / first series passage 75 on the flap 50a side.

さらに、前述した伸縮連通装置におけるシール付すべり軸受け部53cの回転中心線E−E及びシール付すべり軸受け部53dの回転中心線F−Fは、スロッテッド・フラップ50aが扇状に作動する回転中心線G−Gと平行線上に設定されているので、外筒71は、シール付すべり軸受け部53bの回転中心線E−Eを中心に扇状に作動し、前記外筒71内部に組み立てられた内筒73は、シール付すべり軸受け部53cの回転中心線F−Fを中心に扇状に作動し、前記シール付すべり軸受け部53c、53dによって、主翼に対するスロッテッド・フラップ50aの位置変化を吸収している。  Furthermore, the rotation center line EE of the sliding bearing portion 53c with seal and the rotation center line FF of the sliding bearing portion 53d with seal in the telescopic communication device described above are the rotation center line G where the slotted flap 50a operates in a fan shape. Since the outer cylinder 71 is set on a line parallel to -G, the outer cylinder 71 operates in a fan shape around the rotation center line EE of the sliding bearing portion 53b with seal, and the inner cylinder 73 assembled inside the outer cylinder 71. Operates in a fan shape around the rotation center line FF of the sliding bearing portion 53c with seal, and the sliding bearing portions 53c and 53d with seal absorb changes in the position of the slotted flap 50a with respect to the main wing.

前述したスロッテッド・フラップは、前記スロッテッド・フラップの伸長時に前記スロッテッド・フラップ側の第一連通路端部と主翼側の第二連通路端部間の連通状態を維持し続ける伸縮連通装置を備えているために、スロッテッド・フラップ作動時に前記スロッテッド・フラップが主翼後下方向に引き出され伸長しても、前記伸縮連通装置における外筒の内側を内筒が摺動するため、前記伸縮連通装置は、前記スロッテッド・フラップ側の第一連通路端部と主翼側の第二連通路端部間の連通状態を維持し続けるように作用する。  The slotted flap described above includes an expansion and contraction communication device that continues to maintain the communication state between the first series passage end on the slotted flap side and the second communication passage end on the main wing side when the slotted flap extends. Therefore, even when the slotted flap is pulled out and extended downward in the main wing during the operation of the slotted flap, the inner cylinder slides inside the outer cylinder in the expansion / contraction communication apparatus. It acts so as to continue maintaining the communication state between the first series passage end on the slotted flap side and the second communication passage end on the main wing side.

次に、第一開閉弁及び第二開閉弁に、前述した往復式開閉弁と型式の異なる開閉弁を採用した実施例を図面に基づいて説明する。  Next, an embodiment in which an opening / closing valve having a different type from the above-described reciprocating opening / closing valve is employed as the first opening / closing valve and the second opening / closing valve will be described with reference to the drawings.

第一開閉弁 回転式開閉弁
図14は、第一開閉弁に採用した回転式の開閉弁で、前記回転式開閉弁の弁体における回転軸方向と直交する方向から見た概略断面図である。
First Open / Close Valve Rotary Open / Close Valve FIG. 14 is a rotary open / close valve employed in the first open / close valve, and is a schematic cross-sectional view seen from a direction orthogonal to the rotational axis direction of the valve body of the rotary open / close valve. .


図14に示される実施例では、前記回転式開閉弁80は、回転式開閉弁80における弁体81の回転中心線上の両端部に回転軸82a、82bが設けられている。そして、前記弁体81における第一母線83と第二母線84間の弁体81の回転中心線方向に閉塞された第一平面部85が形成され、第三母線86と第四母線87間の弁体81の回転中心線方向に第二平面部88が形成されているとともに、前記第二平面部88に、弁体81の回転中心線を挟んだ反対側に貫通する複数の連通孔89が弁体81の回転中心線力向に列状に複数ヶ所開口されて設けられている。さらに、第五母線90と第六母線91間の弁体81の回転中心線方向に突起部93が設けられ、また、前記第五母線90側から突起部93間の内方に向けて窪み94aが形成され、前記突起部93から第六母線91間の内方に向けて窪み94bが形成されて弁体81は構成されている。
,
In the embodiment shown in FIG. 14, the rotary on-off valve 80 is provided with rotary shafts 82 a and 82 b at both ends on the rotation center line of the valve body 81 in the rotary on-off valve 80. And the 1st plane part 85 obstruct | occluded in the rotation center line direction of the valve body 81 between the 1st bus-line 83 in the said valve body 81 and the 2nd bus-bar 84 is formed, Between the 3rd bus-line 86 and the 4th bus-line 87 A second plane portion 88 is formed in the rotation center line direction of the valve body 81, and a plurality of communication holes 89 penetrating on the opposite side across the rotation center line of the valve body 81 are formed in the second plane portion 88. A plurality of openings are provided in a row in the direction of the rotational center line force of the valve body 81. Further, a protrusion 93 is provided in the direction of the rotation center line of the valve body 81 between the fifth bus 90 and the sixth bus 91, and a recess 94a is formed inwardly between the protrusion 93 from the fifth bus 90 side. Is formed, and a recess 94b is formed inwardly from the protrusion 93 to the sixth bus 91 so that the valve body 81 is configured.

前記突起部93は、弁体81の回転中心線方向に突起部の頂が線状をなす実施形態と、弁体81の回転中心線方向に突起部をブロック化して点線状をなす実施形態とが考えられる。後者の場合には、突起部後方の乱流をさらに生み出すように、ブロック化した突起部と突起部間における前方の窪み94aと後方の窪み94b間が、図14に点線で示す窪み94cに一体化され形成されている。  The protrusion 93 includes an embodiment in which the top of the protrusion is linear in the direction of the rotation center line of the valve body 81, and an embodiment in which the protrusion is blocked in the direction of the rotation center line of the valve body 81 to form a dotted line. Can be considered. In the latter case, in order to further generate a turbulent flow behind the projection, the gap between the front projection 94a and the rear projection 94b between the projection and the projection is integrated with a depression 94c indicated by a dotted line in FIG. Is formed.

前記突起部93頂の高さは、第一母線83から時計回りに第八母線95まで各母線によって構成される円柱の外周面を限度として設定されている。また、第二母線84と第三母線86間、第四母線87と第五母線90間、第六母線91と第七母線96間、第八母線95と第一母線83間それぞれで構成される各曲面は、正円柱の開閉弁本体81における各表面部分を形成している。  The height of the top of the projection 93 is set with the outer peripheral surface of a cylinder constituted by the respective bus bars from the first bus 83 to the eighth bus 95 in the clockwise direction as a limit. Further, it is constituted between the second bus 84 and the third bus 86, between the fourth bus 87 and the fifth bus 90, between the sixth bus 91 and the seventh bus 96, and between the eighth bus 95 and the first bus 83. Each curved surface forms each surface portion in the open / close valve body 81 of a regular cylinder.

そして、前記回転式開閉弁80は、回転式開閉弁80における弁体81の閉塞された第一平面部85が翼根側上面部92と同一面に位置しているときが閉じられときで、また、図14に示されるように、弁体81における第二平面部88が翼根側上面部92と同一面に位置しているときが開いているときで、前記第二平面部88に列状に複数ヶ所開口する連通孔89が翼根側上面部92に開口することによって翼根側上面部92と後記第一連通路97間が連通される。さらに、前記弁体81を回転させ突起部93を翼根側上面部92に突起させているときが突起部93後方の翼根側上面部92を層流から乱流に遷移させ、突起部93後方の翼根側上面92に乱流境界層をつくりだす。  The rotary on-off valve 80 is closed when the closed first flat surface portion 85 of the valve element 81 in the rotary on-off valve 80 is located on the same plane as the blade root side upper surface portion 92. Further, as shown in FIG. 14, when the second flat portion 88 of the valve body 81 is located on the same plane as the blade root side upper surface portion 92, the second flat portion 88 is aligned with the second flat portion 88. A plurality of communication holes 89 that are open at a plurality of positions open in the blade root side upper surface portion 92, whereby the blade root side upper surface portion 92 and the later-described first series passage 97 communicate with each other. Further, when the valve body 81 is rotated and the projection 93 is projected on the blade root side upper surface portion 92, the blade root side upper surface portion 92 behind the projection 93 is changed from laminar flow to turbulent flow, and the projection 93 A turbulent boundary layer is created on the rear blade root side upper surface 92.

前記弁体81は、翼根側上面部92内方に配置固定され、翼根側上面部92側が開口するインダクションボックス98の両側面部に設けられた軸受け部99a、99bに弁体81の両回転軸82a、82bが支承され、僅かな間隔を持ってインダクションボックス98内部に配置され組み付けられている。そして、前記インダクションボックス98内部には、翼根側上面92と弁体81回転中心線を挟んだ反対側の位置に第一連通路97が形成され、前記第一連通路97は、ジェットエンジン25を支持するパイロン26内部に配管されている第二連通路22と連通している。  The valve body 81 is arranged and fixed inside the blade root side upper surface portion 92, and both rotations of the valve body 81 on bearings 99a and 99b provided on both side surfaces of the induction box 98 opened on the blade root side upper surface portion 92 side. The shafts 82a and 82b are supported, and are arranged and assembled in the induction box 98 with a slight gap. In the induction box 98, a first series passage 97 is formed at a position on the opposite side of the blade root side upper surface 92 and the valve body 81 rotation center line, and the first series passage 97 is formed in the jet engine 25. It communicates with the second communication path 22 piped inside the pylon 26 that supports the pylon 26.

前述した弁体81においては、閉塞された第一平面部85と、複数の連通孔89が開口する第二平面部88と、突起部93と、前記突起部93前後に窪み94a及び窪み94bを設けて構成されているが、前記弁体81に対して、前記突起部93と、前記突起部93前後の窪み94a及び窪み94bを特に設けず、閉塞された第一平面部85と、複数の連通孔89が開口する第二平面部88から構成された弁体100も考えられる。  In the valve body 81 described above, the closed first flat surface portion 85, the second flat surface portion 88 in which the plurality of communication holes 89 are opened, the protruding portion 93, and the recesses 94a and 94b before and after the protruding portion 93 are provided. Although not provided with the protrusion 93 and the depressions 94a and 94b before and after the protrusion 93 with respect to the valve body 81, the closed first plane part 85, a plurality of The valve body 100 comprised from the 2nd plane part 88 in which the communicating hole 89 opens is also considered.

前記弁体100は、例えば、図2における前方インダクションボックス16a及び中央インダクションボックス16bには、突起部を設けない弁体100を組み合わせ、後方インダクションボックス16cに、突起部93を始め、突起部93前後の窪み94a及び窪み94bを設けて構成された弁体81を組み合わせた実施形態が考えられる。そして、前記後方インダクションボックス16c後方に位置する後縁フラップ14の作動時において、前記突起部93を翼根側上面部92後方に突起させることにより、後縁フラップ14上面に乱流を生み出し境界層内外の空気を混ぜ合わせて後縁フラップ14上面を乱流境界層に保ち、剥離を抑制することによって後縁フラップ14における揚力を高めることができる。  2, for example, the front induction box 16a and the central induction box 16b in FIG. 2 are combined with the valve body 100 that is not provided with a protrusion, and the rear induction box 16c is provided with a protrusion 93 and a front and rear of the protrusion 93. Embodiment which combined the valve body 81 provided with the hollow 94a and the hollow 94b of this can be considered. When the trailing edge flap 14 located behind the rear induction box 16c is operated, the projection 93 is projected rearward of the blade root side upper surface 92, thereby creating a turbulent flow on the upper surface of the trailing edge flap 14 and creating a boundary layer. The lift of the trailing edge flap 14 can be increased by mixing the air inside and outside to keep the upper surface of the trailing edge flap 14 in the turbulent boundary layer and suppressing separation.

また、後縁フラップ14の作動時においては、突起部93を突起させたことによる抗力は増加するが、後縁フラップ14の作動を停止して巡航飛行に移行した後には、閉塞された第一平面部85を翼根側上面部92と同一面に位置させることによって、増加した抗力は減じられる。  Further, when the trailing edge flap 14 is actuated, the drag force caused by projecting the protrusion 93 increases, but after the trailing edge flap 14 is deactivated and shifted to cruise flight, By causing the flat surface portion 85 to be flush with the blade root-side upper surface portion 92, the increased drag is reduced.

さらに、後縁フラップ前縁後方の内方にインダクションボックスを配置固定し、そのインダクションボックス内に、前記弁体81を組み合わせた実施形態も考えられ、構造は複雑になるが、後縁フラップ14上面に効率よく乱流境界層を生み出すことができる。  Furthermore, an embodiment in which an induction box is disposed and fixed inwardly behind the rear edge of the trailing edge flap and the valve body 81 is combined in the induction box is considered. The structure is complicated, but the upper surface of the trailing edge flap 14 A turbulent boundary layer can be generated efficiently.

また、前述した後縁フラップ14と同様に、スロッテッド・フラップにおける前縁後方の内方にインダクションボックスを配置固定し、そのインダクションボックス内に前記弁体81を組み合わせた実施形態では、スロッテッド・フラップ作動時に、翼根側下面を流れてきた空気流を主翼とスロッテッド・フラップ間にできた隙間からスロッテッド・フラップ上面に流すとともに、翼根側上面部を流れてきた空気流もスロッテッド・フラップ上面を流れ、スロッテッド・フラップ上面に突起部93を突起させることによって、その合わせた空気流に乱流を生み出し境界層内外の空気を混ぜ合わせて剥離を抑制し、スロッテッド・フラップにおける揚力を高めることができる。  Similarly to the rear edge flap 14 described above, in the embodiment in which an induction box is disposed and fixed inwardly behind the front edge of the slotted flap and the valve body 81 is combined in the induction box, the slotted flap operation is performed. Occasionally, the air flow that has flowed on the blade root lower surface flows from the gap between the main wing and the slotted flap to the upper surface of the slotted flap, and the air flow that has flowed on the blade root upper surface also flows on the upper surface of the slotted flap By projecting the protrusion 93 on the upper surface of the slotted flap, turbulence is generated in the combined air flow, and the air inside and outside the boundary layer is mixed to suppress separation, thereby increasing the lift force in the slotted flap.

さらに、図15に示す実施例では、回転体101が、前記回転体101の回転中心線上の両端部に回転軸102a、102bを設けるとともに、回転体101の回転中心線方向に閉塞された平面部103と、その平面部103反対側に突起部104及び前記突起部104両側に窪み105a及び窪み105bを設けて構成されている。そして、前記回転体101が、翼根側上面側が開口するケーシング106の両側面に設けられた軸受け部に回転体101両端部の回転軸102a、102bが支承されている。  Further, in the embodiment shown in FIG. 15, the rotating body 101 is provided with rotating shafts 102 a and 102 b at both ends on the rotating center line of the rotating body 101, and is a flat portion closed in the rotating center line direction of the rotating body 101. 103, and a projection 104 on the opposite side of the flat portion 103, and depressions 105a and 105b on both sides of the projection 104. The rotating body 101 has rotating shafts 102a and 102b supported at both ends of the rotating body 101 on bearings provided on both side surfaces of the casing 106 having an opening on the blade root side upper surface side.

そして、例えば、図2に示す翼根側上面部12における前縁後方の内方に前記回転体101を備えたケーシング106を配置固定すると、前記回転体101における突起部104を翼根側上面部12に突起させることによって、突起部104後方の翼根側上面部12に乱流を生み出し、境界層内外の空気を混ぜ合わせ乱流境界層に保つことにより剥離を抑制し、翼根側上面部12における揚力を高め、さらに、巡航飛行に移行した後には、前記突起部104に替えて閉塞された平面部103を翼根側上面部12と同一面に位置させることにより翼根側上面部12の抗力は減じられる。  Then, for example, when the casing 106 having the rotating body 101 is disposed and fixed inside the blade root side upper surface portion 12 shown in FIG. 2, the protrusion 104 of the rotating body 101 is fixed to the blade root upper surface portion. 12, a turbulent flow is generated in the blade root side upper surface portion 12 behind the protrusion 104, and the air inside and outside the boundary layer is mixed and kept in the turbulent boundary layer to suppress separation, and the blade root side upper surface portion After the lift in 12 is increased, and after the transition to cruise flight, the blade-side upper surface portion 12 is positioned by placing the closed flat portion 103 in place of the protrusion 104 on the same plane as the blade-root-side upper surface portion 12. The drag of is reduced.

また、前記回転体101は、ジェットエンジンの圧縮部に発生する吸引力を利用しないために、前述した境界層制御装置のように、取込み口や放出孔、また、前記取込み口と放出孔間を連通する連通路、さらに開閉弁等を設けず、前記突起部104を主翼上面部12に突起させることによって突起部104後方の翼根側上面部12に乱流を生み出し、境界層内外の空気を混ぜ合わせて乱流境界層に保つことにより剥離を抑制し、翼根側上面部12における揚力を高めることができる。  In addition, since the rotating body 101 does not use the suction force generated in the compression part of the jet engine, the intake port and the discharge hole, and between the intake port and the discharge hole, as in the boundary layer control device described above. Without providing a communication path, an open / close valve or the like, the protrusion 104 is protruded from the upper surface 12 of the main wing, thereby creating a turbulent flow on the blade root upper surface 12 behind the protrusion 104 and allowing air inside and outside the boundary layer to flow. By mixing and maintaining the turbulent boundary layer, separation can be suppressed and the lift at the blade root side upper surface portion 12 can be increased.

前述した突起部を有す回転体81や突起部無しの弁体100、さらに、突起部と閉塞された平面部で構成された前記回転体101との組み合わせ方や、組み合わせた各開閉弁の開閉時期の設定等に関しては、航空機の機種や用途等を考慮した上、適宜選択することとする。  How to combine the rotary body 81 having the protrusions described above, the valve body 100 without the protrusions, and the rotary body 101 composed of the protrusions and the closed flat portions, and opening / closing of the combined on-off valves The timing setting etc. will be selected as appropriate in consideration of the aircraft model and application.

そして、前述した回転式の弁体81、100や回転体101が、前記弁体や回転体の回転中心線方向に長くなるに従い、前記弁体81、100を内部に配置するインダクションボックス98や、前記回転体101を内部に配置するケーシング106の主翼上面部も細長く開口し、その開口部を挟んだ翼根側上面部の前方部分と後方部分間の強度不足が生じることも考えられる。  Then, as the rotary valve bodies 81 and 100 and the rotary body 101 described above become longer in the direction of the rotation center line of the valve body and the rotary body, an induction box 98 in which the valve bodies 81 and 100 are disposed, It is also conceivable that the upper surface portion of the main wing of the casing 106 in which the rotating body 101 is disposed is elongated and the strength between the front portion and the rear portion of the blade root side upper surface portion sandwiching the opening portion is insufficient.

そこで、前記弁体81、100や回転体101、さらにインダクションボックス98やケーシング106においても、図3に示される往復式の開閉弁で採用した方法と同様に、弁体や回転体のブロック分けを図ったり、また、インダクションボックスやケーシング側においても、ブロック分けされた前記弁体や回転体に対応するように、インダクションボックスやケーシングにおける弁体や回転体の回転中心線方向を間仕切り板によって仕切りさらに、ブロック化された弁体や回転体のブロック間を連結する回転軸の軸受け部を間仕切り板に設け、前記各軸受け部と、前記インダクションボックスやケーシング両側に設けられた両軸受け部によって前記弁体や回転体を支承することとしてもよい。  Therefore, in the valve bodies 81 and 100, the rotating body 101, and the induction box 98 and the casing 106, the valve body and the rotating body are divided into blocks in the same manner as the method employed in the reciprocating on-off valve shown in FIG. Also, on the induction box and casing side, the direction of the rotation center line of the valve body and the rotating body in the induction box and casing is partitioned by a partition plate so as to correspond to the valve body and the rotating body divided into blocks. The partition plate is provided with a bearing portion of a rotating shaft that connects between the block valve body and the block of the rotating body, and the valve body is constituted by the bearing portions and both bearing portions provided on both sides of the induction box and the casing. It is good also as supporting a rotary body.

前記間仕切り板を設けることにより、間仕切り板がインダクションボックスやケーシング全体の剛性を高め、さらに、剛性を高めたインダクションボックスやケーシングを翼根側上面内方に配置固定することにより、翼根側上面部における前方部分と後方部分間の剛性を確保することができる。また、インダクションボックス上面部やケーシング上面部における前方部分と後方部分間の数箇所を橋渡しする補強材で繋ぎ結んで一体化することとしてもよい。そして、突起部を有す弁体においては、前記突起部をブロック分けし、そのブロック間を補強材によって橋渡しすると剛性を高めることができる。  By providing the partition plate, the partition plate increases the rigidity of the induction box and the casing as a whole, and by further arranging and fixing the rigidity of the induction box and casing inside the blade root side upper surface, the blade root side upper surface portion The rigidity between the front part and the rear part can be ensured. Moreover, it is good also as connecting and integrating with the reinforcing material which bridges several places between the front part and back part in an induction box upper surface part or a casing upper surface part. And in the valve body which has a projection part, rigidity can be improved if the said projection part is divided into blocks and it bridges between the blocks with a reinforcing material.

さらに、航空機が大型化するに従って翼長も長くなり、合わせて採用する回転式の弁体や回転体も長くなることが考えられる。そこで、前記回転式の弁体や回転体における回転軸方向をいくつかに分割化を図り、短く分割化した弁体や回転体を回転軸を介していくつか連結して大型航空機に対応することも考えられる。例えば、複数の取込み口を大型機の主翼における揚力の発生が大きい翼根側上面部後方の桁方向又は略桁方向にそれぞれ列状に開口して分列し、前方取込み口群、中央取込み口群、後方取込み口群を構成した場合、前記各取込み口群で共通化を図って短く分割化した弁体や回転体を連結して対応することによって、共通化を図って短く分割化した弁体や回転体の製造や供給、そして、組み立てや保管業務等の簡素化を図ることができる。  Furthermore, it is conceivable that as the aircraft becomes larger, the wing length becomes longer, and the rotary valve body and the rotator that are employed together become longer. Therefore, the rotary valve body and the rotary shaft direction of the rotary body are divided into several parts, and a plurality of short-divided valve bodies and rotary bodies are connected via the rotary shaft to cope with a large aircraft. Is also possible. For example, a plurality of intakes are opened in a row in the direction of the spar at the back of the upper surface of the blade root side where large lift is generated in the main wing of a large aircraft, or in the form of a spar, respectively. Group, rear intake port group, by connecting the valve body and the rotating body that are divided into short parts and connecting them in common, the valve is divided into short parts. Manufacture and supply of bodies and rotating bodies, and simplification of assembly and storage operations can be achieved.

さらに、前記インダクションボックスやハウジングは、主翼の構造材として他の主翼構造材に固定する場合と、翼根側の曲げモーメントに対応するために、他の主翼の構造材に対してフローティング式とする場合が考えられるが、航空機の機種や用途等を考慮した上、適宜選択するとよい。  Furthermore, the induction box and the housing are floating with respect to the structural material of the other main wing in order to fix the structural material of the main wing to the other main wing structural material and to cope with the bending moment on the blade root side. The case may be considered, but it may be selected as appropriate in consideration of the aircraft model and application.

次に、第二開閉弁に回転式開閉弁を採用した実施例を図面に基づいて説明する。  Next, the Example which employ | adopted the rotary on-off valve as the 2nd on-off valve is described based on drawing.

以下に説明する回転式開閉弁114は、前述した回転式開閉弁80と比べて弁体115における回転軸方向が短いが、前記回転式開閉弁80と略同様な構造で構成されている。図16及び図17に示される実施例では、ジェットエンジン110の吸気側内周面111後方における周方向の内方に第二連通路22と連通する環状通路112を設け、そして、前記環状通路112と連通し吸気側内周面111の周方向に単数箇所又は複数箇所開口させて設けた放出孔113に前記回転式開閉弁114を備え、前記回転式開閉弁114における弁体115が回転して前記放出孔113を開閉している。また、前記放出孔113を吸気側内周面111の周方向に複数箇所開口させて設ける場合には、環状通路112における開口位置を等間隔に設定するとよい。  The rotary on-off valve 114 described below has a structure similar to that of the rotary on-off valve 80 although the rotational axis direction of the valve body 115 is shorter than that of the rotary on-off valve 80 described above. In the embodiment shown in FIGS. 16 and 17, an annular passage 112 communicating with the second communication passage 22 is provided on the inner side in the circumferential direction behind the intake side inner peripheral surface 111 of the jet engine 110, and the annular passage 112 is provided. The rotary on-off valve 114 is provided in a discharge hole 113 provided at one or more locations in the circumferential direction of the intake-side inner peripheral surface 111, and the valve body 115 in the rotary on-off valve 114 rotates. The discharge hole 113 is opened and closed. Further, when the discharge holes 113 are provided at a plurality of positions in the circumferential direction of the intake side inner peripheral surface 111, the opening positions in the annular passage 112 may be set at equal intervals.

そして、前記回転式開閉弁114は、回転式開閉弁114における弁体115の回転中心線H−H上の両端部に回転軸116a、116bを設け、前記回転軸116a、116bが吸気側内周面111内方の基部に設けられた各軸受け部にそれぞれ支承されている。さらに、図17のように、弁体115における第一母線117と第二母線118間の弁体115の回転中心線方向に閉塞された第一平面部119を設け、第三母線120と第四母線121間の弁体115の回転中心線方向に第二平面部122を設けるとともに、第二平面部122から回転軸中心線を挟んだ反対側へ貫通する連通孔123が開口されて設けられている。  The rotary on-off valve 114 is provided with rotary shafts 116a and 116b at both ends of the rotary on-off valve 114 on the rotation center line HH of the valve body 115, and the rotary shafts 116a and 116b are connected to the intake side inner periphery. The bearings are supported by bearings provided on the inner base of the surface 111. Further, as shown in FIG. 17, a first flat portion 119 that is closed in the direction of the rotation center line of the valve body 115 between the first bus 117 and the second bus 118 in the valve body 115 is provided, and the third bus 120 and the fourth bus The second flat surface portion 122 is provided in the direction of the rotation center line of the valve body 115 between the bus bars 121, and the communication hole 123 penetrating from the second flat surface portion 122 to the opposite side across the rotation axis center line is provided. Yes.

前記回転式開閉弁114は、第一平面部119及び第二平面部122が、ジェットエンジン110における円筒状の吸気側内周面111に露呈したときに、前記吸気側内周面111形状を可能な限り円筒形に近い形状に保つために、弁体115の回転中心線H−Hを、ジェットエンジン110の回転中心線と同方向に設定するとともに、前記連通孔123の開口部における前後方向の寸法を左右方向の寸法に対して長く設定し放出孔113に必要面積を確保している。  The rotary on-off valve 114 can have the shape of the intake side inner peripheral surface 111 when the first flat portion 119 and the second flat portion 122 are exposed to the cylindrical intake side inner peripheral surface 111 of the jet engine 110. In order to keep the shape as close to a cylinder as possible, the rotation center line H-H of the valve body 115 is set in the same direction as the rotation center line of the jet engine 110 and the front-rear direction at the opening of the communication hole 123 is set. The dimension is set longer than the dimension in the left-right direction, and a necessary area is secured in the discharge hole 113.

そして、前記回転式開閉弁114は、図17のように、弁体115における第一平面部119がジェットエンジン110における吸気側内周面111と同一面に位置しているときが閉じているときであり、また、弁体115が図17に示す位置から回転し、連通孔123が開口する第二平面部122が吸気側内周面111と同一面に位置しているときが開いているときで、前記連通孔123によって吸気側内周面111と、第二連通路22と連通する環状通路112間が連通される。  The rotary on-off valve 114 is closed when the first flat portion 119 of the valve body 115 is located on the same plane as the intake side inner peripheral surface 111 of the jet engine 110 as shown in FIG. In addition, when the valve body 115 rotates from the position shown in FIG. 17 and the second flat surface portion 122 where the communication hole 123 opens is located on the same plane as the intake side inner peripheral surface 111, the valve body 115 is open. Thus, the communication hole 123 allows communication between the intake-side inner peripheral surface 111 and the annular passage 112 communicating with the second communication passage 22.

次に、第二開閉弁に前述した往復式開閉弁や回転式開閉弁と異なる摺動式の開閉弁を採用した実施例を図面に基づいて説明する。  Next, an embodiment in which a sliding on-off valve different from the above-described reciprocating on-off valve and rotary on-off valve is adopted as the second on-off valve will be described with reference to the drawings.

図18に示される実施例では、前述した往復式開閉弁や回転式開閉弁と異なり、ジェットエンジン130の吸気側内周面131における周方向の内方に第二連通路22と連通し、吸気側内周面131側に開放された環状の溝132を設け、その開放された前記環状の溝132表面に環状弁体133を備えた摺動式開閉弁134を採用している。前記摺動式開閉弁134は、前記環状弁体133がジェットエンジン130の回転中心線上を前後方向に摺動移動して開放された環状の溝132表面を開閉している。  In the embodiment shown in FIG. 18, unlike the above-described reciprocating on-off valve and rotary on-off valve, the second communication passage 22 communicates with the inner circumferential surface 131 on the intake side inner peripheral surface 131 of the jet engine 130 in the intake direction. An open annular groove 132 is provided on the side inner peripheral surface 131 side, and a sliding on-off valve 134 having an annular valve body 133 on the surface of the opened annular groove 132 is employed. The sliding on-off valve 134 opens and closes the surface of the annular groove 132 that is opened by sliding the annular valve body 133 back and forth on the rotation center line of the jet engine 130.

そして、前記環状弁体133は、ジェットエンジン130の吸気側内周面131と環状弁体133間に設けられた案内機構によってジェットエンジン130の回転中心線上を前後方向に摺動する。前記案内機構には、各諸条件を鑑みて最適な案内機構を採用するとよい。図18に示される実施例では、ジェットエンジン130における吸気側内周面131内方の基部にジェットエンジン130の回転中心線方向に設けた案内溝135a〔図示せず〕及び135bを設け、前記案内溝135a及び135b間を環状弁体133に設けた突起部136が案内されて前記環状弁体133が前後方向に摺動する。  The annular valve body 133 slides in the front-rear direction on the rotational center line of the jet engine 130 by a guide mechanism provided between the intake-side inner peripheral surface 131 of the jet engine 130 and the annular valve body 133. An optimum guide mechanism may be adopted as the guide mechanism in view of various conditions. In the embodiment shown in FIG. 18, guide grooves 135 a (not shown) and 135 b provided in the direction of the rotation center line of the jet engine 130 are provided at the inner base of the intake side inner peripheral surface 131 of the jet engine 130, and the guide A projection 136 provided on the annular valve body 133 is guided between the grooves 135a and 135b, and the annular valve body 133 slides in the front-rear direction.

前記摺動式開閉弁134は、図18に示すように、環状弁体133が、環状の溝132表面を閉じる位置で停止したときが閉じているときで、環状弁体133によって環状の溝132が閉塞されている。そして、前記環状弁体133が、図18における環状弁体133表面の位置から前方方向に摺動移動し、点線で示す環状弁体133の位置で停止しているときが開いているときであり、環状の放出孔132が開放されてジェットエンジン130の吸気側内周面131間と連通される。  As shown in FIG. 18, the sliding on-off valve 134 is closed when the annular valve body 133 is stopped at a position where the surface of the annular groove 132 is closed. Is blocked. When the annular valve body 133 slides forward from the position of the surface of the annular valve body 133 in FIG. 18 and stops at the position of the annular valve body 133 indicated by the dotted line, it is when it is open. The annular discharge hole 132 is opened to communicate with the intake side inner peripheral surface 131 of the jet engine 130.

図19に示される実施例では、ジェットエンジン140における吸気側内周面141の周方向内方に、ジェットエンジン140を支持するパイロン内部に配管されている第二連通路22と連通する環状通路142を設けるとともに、前記環状通路142の周方向表面に、吸気側内周面141側に閉鎖された閉鎖部143と開放された放出孔144とが交互に配列されて設けられている。そして、前記環状通路142の吸気側内周面141側に、案内部に沿って前記環状通路142の周方向表面を周方向に摺動する環状弁体146を備えている。さらに、前記環状弁146側においても、周方向に閉鎖された閉鎖部147と、開放された開放孔148とを交互に配列して設けて環状式開閉弁150が構成されている。また、前記環状弁体146は、図19に示す矢印方向に吸気側内周面141を摺動する。  In the embodiment shown in FIG. 19, an annular passage 142 communicating with the second communication passage 22 piped inside the pylon that supports the jet engine 140 is formed on the inner side in the circumferential direction of the intake-side inner peripheral surface 141 of the jet engine 140. In addition, a closed portion 143 closed to the intake side inner peripheral surface 141 side and an open discharge hole 144 are alternately arranged on the circumferential surface of the annular passage 142. An annular valve body 146 that slides in the circumferential direction on the circumferential surface of the annular passage 142 along the guide portion is provided on the intake side inner peripheral surface 141 side of the annular passage 142. Further, on the annular valve 146 side, an annular on-off valve 150 is configured by alternately arranging the closed portions 147 closed in the circumferential direction and the open holes 148 opened. The annular valve body 146 slides on the intake side inner peripheral surface 141 in the direction of the arrow shown in FIG.

そして、前記環状弁体146における周方向の開放された開放孔148が環状通路142側の閉鎖された閉鎖部143と重なったときが環状通路142が閉鎖され、環状式開閉弁150が閉じられたときで、また、前記環状弁体146の開放された開放孔148が吸気側内周面141を摺動し、環状通路142側の開放された放出孔144と重なったときが環状通路142と吸気側内周面141間が連通され、環状式開閉弁150が開いているときである。  When the opening 148 opened in the circumferential direction in the annular valve body 146 overlaps the closed closing portion 143 on the annular passage 142 side, the annular passage 142 is closed and the annular on-off valve 150 is closed. In some cases, when the open hole 148 of the annular valve body 146 slides on the intake side inner peripheral surface 141 and overlaps the open discharge hole 144 on the annular passage 142 side, This is when the side inner peripheral surface 141 is in communication and the annular on-off valve 150 is open.

また、案内部においては、図示していないが、環状弁体146が、吸気側内周141の周方向内方に設けた環状通路142を周方向に摺動するように、例えば、吸気側内周141の周方向に設けた案内溝に、環状弁146に設けた突起部が組み合わされて構成された案内部が考えられる。  In addition, in the guide portion, although not shown, for example, the annular valve body 146 slides in the circumferential direction on the annular passage 142 provided in the circumferential direction inner side of the intake side inner circumference 141, for example, in the intake side A guide portion configured by combining a guide groove provided in the circumferential direction of the circumference 141 with a projection provided on the annular valve 146 is conceivable.

次に、詳しい説明は省略するが、前述した各種開閉弁より構造は複雑になるが、従来のジェットエンジンにおけるコンバージェンス・ダイバージェンス・ノズルを、ジェットエンジンの空気取入れ口に第二開閉弁として採用した実施例も考えられる。  Next, although detailed explanation is omitted, the structure is more complicated than the above-mentioned various on-off valves, but the convergence / divergence nozzle in the conventional jet engine is adopted as the second on-off valve at the air intake of the jet engine. Examples are also possible.

例えば、ジェットエンジンに採用されているコンバージェンス・ダイバージェンス・ノズルを、ジェットエンジンにおける空気取入れ口の吸気側内周部に第二開閉弁として採用すると、前記ジェットエンジンにおける吸気側内周面に流入した空気流をきめ細かく制御することができ、ジェットエンジンの性能を向上させることができる。  For example, if a convergence divergence nozzle used in a jet engine is used as a second open / close valve in the intake side inner peripheral portion of the air intake port in the jet engine, the air flowing into the intake side inner peripheral surface of the jet engine The flow can be finely controlled, and the performance of the jet engine can be improved.

また、第一開閉弁及び第二開閉弁に、往復式の開閉弁を始め、回転式の開閉弁や摺動式の開閉弁等を採用した場合について説明をしてきたが、前述した形式の各開閉弁に限らず、他の型式の開閉弁を第一開閉弁及び第二開閉弁として採用することも充分に考えられる。  In addition, a case where a reciprocating on-off valve, a rotary on-off valve, a sliding on-off valve, etc. are adopted as the first on-off valve and the second on-off valve has been described. It is sufficiently conceivable to adopt other types of on-off valves as the first on-off valve and the second on-off valve, as well as the on-off valve.

そして、前述した各実施形態では、航空機における主翼と、主翼後縁の後縁フラップやスロッテッド・フラップに本発明を採用した場合について説明してきたが、さらに、後退翼機における胴体後方の上面部や、三角翼機における三角翼後縁の前方部〔胴体後方の上面部を含んでも可〕に単数箇所又は複数箇所開口する取込み口を設け、前記取込み口と、前述した航空機の推進機関における空気取入れ口に開口させて設けた放出孔間を連通路で連通させた実施形態も考えられ、前記取込み口の開口領域の空気が吸引され、航空機上面部を流れる空気流が引き寄せられて沿って流れるために航空機上面部の境界層剥離現象を細かく抑制することができ、また、失速を抑制して揚力を確保し、航空機の飛行中や離着陸時における安定飛行に大きく寄与することができる。  And in each embodiment mentioned above, although the case where the present invention was adopted as the main wing in an aircraft, the trailing edge flap of the main wing trailing edge, and the slotted flap was explained, In the triangular wing aircraft, a single or a plurality of intake openings are provided in front of the trailing edge of the triangular wing (including the upper surface portion behind the fuselage), and the intake and air intake in the aircraft propulsion engine described above are provided. An embodiment in which the discharge holes provided in the mouth are communicated with each other through a communication path is also conceivable, because the air in the opening area of the intake port is sucked and the airflow flowing through the upper surface of the aircraft is drawn and flows along In addition, the boundary layer separation phenomenon on the upper surface of the aircraft can be finely suppressed, and the stall can be suppressed to ensure lift, which greatly improves the stable flight during aircraft flight and takeoff and landing. Azukasuru can.

前述した後退翼機においては、後退翼機の特徴である低速時における揚力不足分を胴体上面部で得た揚力で補うことができ、また、三角翼機においては、三角翼機の特徴である大きな迎え角を取らないと必要な揚力を得られないが、前述した実施形態では必要な揚力を得られる迎え角が少なくて済み、結果的に離着陸時の前方視界を改善することができる。  In the above-described swept wing aircraft, the lack of lift at low speed, which is a feature of swept wing aircraft, can be compensated by the lift obtained at the upper surface of the fuselage, and in the triangular wing aircraft, it is a feature of the triangular wing aircraft. If the large angle of attack is not taken, the necessary lift cannot be obtained. However, in the above-described embodiment, the angle of attack at which the necessary lift can be obtained is small, and as a result, the forward visibility during take-off and landing can be improved.

また、飛行中、背面飛行を行う競技用の飛行機においては、主翼上面部はもとより、主翼下面部においても主翼上面部と同様に、単数箇所又は複数箇所開口する取込み口を設け、主翼上面部の取込み口と主翼下面部の取込み口を必要に応じて切替え、背面飛行時においても必要な揚力を容易に確保できる実施形態も考えられる。  Also, in competition airplanes that perform rear flight during flight, not only the top surface of the main wing, but also the bottom surface of the main wing is provided with intake ports that are open at a single location or multiple locations in the same manner as the top surface of the main wing. An embodiment is also conceivable in which the intake port and the intake port on the lower surface of the main wing are switched as necessary, and the necessary lift force can be easily secured even during rear flight.

以上、添付図面を参照しながら本発明の実施形態について説明したが、本発明は係る実施形態に限定されず、さらに、当業者であれば特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。  The embodiments of the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to the embodiments, and various modifications can be made by those skilled in the art within the scope described in the claims. It is clear that examples or modifications can be conceived, and it is understood that they also belong to the technical scope of the present invention.

Claims (10)

航空機の主翼上面部に前記主翼上面部の空気を取込む取込み口を単数箇所又は複数箇所開口させて設け、前記取込み口に前記航空機の操縦系統に制御され前記取込み口を開閉する第一開閉弁を備え、前記航空機の推進機関における吸気側内周面に前記取込み口が取り込んだ空気を放出する放出孔を単数箇所又は複数箇所開口させて設け、前記放出孔に前記航空機の操縦系統に制御され前記放出孔を開閉する第二開閉弁を備え、前記第一開閉弁及び第二開閉弁が前記航空機の操縦系統に制御されて開状態となったときに前記取込み口と前記放出孔間を連通させる連通路を前記取込み口と前記放出孔間に設けて構成されていることを特徴とする航空機の境界層制御装置。  A first on-off valve for opening and closing the intake port controlled by the aircraft control system at the intake port, provided at the upper surface portion of the aircraft with an intake port for taking in air from the upper surface portion of the main wing. Provided at the intake side inner peripheral surface of the aircraft propulsion engine with a single or a plurality of discharge holes for releasing the air taken in by the intake port, and the discharge hole is controlled by the control system of the aircraft A second on-off valve that opens and closes the discharge hole, and the first on-off valve and the second on-off valve communicate with each other between the intake port and the discharge hole when the open control valve is controlled by the aircraft control system A boundary layer control device for an aircraft, characterized in that a communication path is provided between the intake port and the discharge hole. 前記取込み口は、航空機の主翼における揚力の発生が大きい翼根側上面部後方の桁方向又は略桁方向にそれぞれ分列して開口し前方取込み口群、中央取込み口群、後方取込み口群を構成し、前記後方取込み口群の配列位置は後縁フラップが取り付けられた翼根側後縁部前方に設定され、前記中央取込み口群の配列位置は前記後方取込み口群の配列位置前方に設定され、前記前方取込み口群の配列位置は前記中央取込み口群の配列位置前方に設定され、前記各取込み口群は並列状又は略並列状に分列されていることを特徴とする請求項1記載の航空機の境界層制御装置。  The intakes are divided into openings in the spar or near the spar at the back of the upper surface of the wing root side where the generation of lift in the main wing of the aircraft is large, and the front intake group, the central intake group, and the rear intake group are opened. Configured, the arrangement position of the rear intake group is set in front of the blade root side rear edge portion to which the trailing edge flap is attached, and the arrangement position of the central intake group is set in front of the arrangement position of the rear intake group. The arrangement position of the front intake group is set in front of the arrangement position of the central intake group, and each of the intake groups is arranged in parallel or substantially in parallel. The aircraft boundary layer control device described. 前記第二開閉弁は、弁体が、前記弁体の底部両側より立ち上がった両側壁部と、前記底部前側より立ち上がった前側壁部と、によって略コの字型状の側壁部を形成するとともに前記底部と一体化され前記側壁部の上面部及び後面部が開放されたバケット型を構成し、前記弁体における前側壁部がジェットエンジンの基部に設けられた軸受け部に回転軸を介して支承され、前記弁体がジェットエンジンの回転中心線方向に扇状に作動することによって前記弁体における後面部のみをジェットエンジンの圧縮部前面に向かい合わせて前記放出孔を開き、前記弁体がジェットエンジンの回転中心線方向と反対側に扇状に作動することによって前記放出孔を塞いで閉じる往復式開閉弁をジェットエンジンの吸気側内周面の周方向に単数箇所又は複数箇所開口させて設けた前記放出孔に備えたことを特徴とする請求項1記載の航空機の境界層制御装置。  In the second on-off valve, the valve body forms a substantially U-shaped side wall portion by both side wall portions rising from both sides of the bottom portion of the valve body and a front side wall portion rising from the front side of the bottom portion. It forms a bucket type that is integrated with the bottom and the upper and rear surfaces of the side wall are open, and the front side wall of the valve body is supported by a bearing provided at the base of the jet engine via a rotating shaft. The valve body operates in a fan shape in the direction of the rotation center line of the jet engine, so that only the rear surface portion of the valve body faces the front surface of the compression portion of the jet engine and the discharge hole is opened. A reciprocating on-off valve that closes and closes the discharge hole by operating in a fan shape on the side opposite to the rotation center line direction of the jet engine is provided at one or more points in the circumferential direction of the inner peripheral surface of the intake side of the jet engine. Boundary layer control system of an aircraft according to claim 1, characterized in that provided in the discharge hole provided by opening a. 前記第二開閉弁は、両辺が後方に行くに従い幅を狭めるテーパー形状に成形された弁体を備えた往復式開閉弁で、前記往復式開閉弁がジェットエンジンの吸気側内周面に複数箇所開口させて設けられたそれぞれの前記放出孔に備えられ、それぞれの前記往復式開閉弁における弁体が前記弁体の前端部をジェットエンジンの基部に設けられた軸受け部に回転軸を介して支承され、すべての前記弁体がジェットエンジンの回転中心線方向に扇状に作動することによってジェットエンジンの吸気側内周面に開口するすべての前記放出孔を開くとともにジェットエンジンの吸気側内周面の内側に後方に向かって縮径された円錐台形状の筒を形造り、すべての弁体がジェットエンジンの回転中心線方向と反対側に扇状に作動することによってジェットエンジンの吸気側内周面に開口するすべての前記放出孔を塞いで閉じることを特徴とする請求項1記載の航空機の境界層制御装置。  The second on-off valve is a reciprocating on-off valve having a valve body formed in a taper shape whose width is narrowed as both sides go rearward, and the reciprocating on-off valve is provided at a plurality of locations on the intake-side inner peripheral surface of the jet engine. The valve body of each of the reciprocating on-off valves is provided in each of the discharge holes provided so as to be opened, and the front end portion of the valve body is supported by a bearing portion provided at the base of the jet engine via a rotating shaft. All of the valve bodies operate in a fan shape in the direction of the rotation center line of the jet engine, thereby opening all the discharge holes opened in the intake side inner peripheral surface of the jet engine and the intake side inner peripheral surface of the jet engine. A cylinder with a truncated cone shape that is reduced in diameter toward the rear is formed, and all the valve bodies operate in a fan shape on the side opposite to the direction of the rotation center line of the jet engine. Jin boundary layer control system of the aircraft of all claim 1, wherein characterized in that said closing plug the discharge holes opening to the intake side inner peripheral surface of the. 航空機の主翼上面部に前記主翼上面部の空気を取込む取込み口を単数箇所又は複数箇所開口させて設け、前記航空機の推進機関における吸気側内周面に前記取込み口が取り込んだ空気を放出する放出孔を単数箇所又は複数箇所開口させて設け、前記取込み口と前記放出孔間を連通する連通路を前記取込み口と前記放出孔間に設け、前記航空機の操縦系統に制御されて前記取込み口と前記放出孔間の連通を開閉する開閉弁を前記取込み口又は前記放出孔又は前記連通路のいずれか一箇所に備えたことを特徴とする航空機の境界層制御装置。  A single or a plurality of intake ports for taking in air from the upper surface of the main wing are provided in the upper surface of the main wing of the aircraft, and the air taken in by the intake is released to the intake side inner peripheral surface of the aircraft propulsion engine. A single or multiple discharge holes are provided, and a communication path is provided between the intake and the discharge hole to communicate between the intake and the discharge hole, and the intake is controlled by the aircraft control system. And an opening / closing valve that opens and closes communication between the discharge hole and the discharge hole at any one of the intake port, the discharge hole, and the communication path. 航空機の主翼上面部に前記主翼上面部の空気を取込む取込み口を単数箇所又は複数箇所開口させて設け、前記航空機の推進機関における吸気側内周面に前記取込み口が取り込んだ空気を放出する放出孔を単数箇所又は複数箇所開口させて設け、前記取込み口と前記放出孔間を連通する連通路を前記取込み口と前記放出孔間に設け、前記取込み口と前記放出孔間が前記連通路によって常時連通されていることを特徴とする航空機の境界層制御装置。  A single or a plurality of intake ports for taking in air from the upper surface of the main wing are provided in the upper surface of the main wing of the aircraft, and the air taken in by the intake is released to the intake side inner peripheral surface of the aircraft propulsion engine. Discharge holes are provided at one or a plurality of locations, a communication passage communicating between the intake port and the discharge holes is provided between the intake port and the discharge holes, and the communication passage is between the intake port and the discharge holes. A boundary layer control device for an aircraft, characterized in that the device is always in communication with each other. 後縁フラップにおける後縁の前方上面部左右方向に開口し前記後縁フラップの上面の空気を取込む取込み口を列状に一列又は分列させて取込み口群を構成し、インダクションボックス兼第一連通路を前記後縁フラップの本体を構成する外板材や桁部材や小骨部材等の各部材によって前記後縁フラップの本体内部後方に設けたことを特徴とする後縁フラップ。  An intake box group is formed by opening the front upper surface portion of the rear edge of the rear edge flap in the left-right direction and taking in air on the upper surface of the rear edge flap in a row or in a row to form an intake box group. A trailing edge flap characterized in that a communication path is provided in the rear of the trailing edge flap body by means of an outer plate material, a girder member, a small bone member or the like constituting the body of the trailing edge flap. 主翼側の第二連通路端部とスロッテッド・フラップ側の第一連通路端部間に、前記スロッテッド・フラップの伸長時に前記スロッテッド・フラップ側の第一連通路端部が前記主翼側の第二連通路端部と連通状態を維持し続ける伸縮連通装置を備えたことを特徴とするスロッテッド・フラップ。  Between the second communication passage end on the main wing side and the first series passage end on the slotted flap side, the first passage end on the slotted flap side is the second end on the main wing side when the slotted flap is extended. A slotted flap characterized by comprising an expansion / contraction communication device that keeps communicating with the end of the communication path. 前記第一開閉弁は、弁体の回転中心線上の両端部に回転軸が設けられ、前記弁体における第一母線と第二母線間の前記弁体の回転中心線方向に閉塞された第一平面部が形成され、第三母線と第四母線間の前記弁体の回転中心線方向に第二平面部が形成されているとともに前記第二平面部に前記弁体の回転中心線を挟んだ反対側に貫通する複数の連通孔が前記弁体の回転中心線方向に列状に複数ヶ所開口されて設けられ、第五母線と第六母線間の前記弁体の回転中心線方向に主翼上面に乱流を生み出す突起部が設けられ、前記第五母線側から前記突起部間の内方に向けて窪みが形成され前記突起部から前記第六母線間の内方に向けて窪みが形成されて構成されている前記弁体を内部に組み合わせた回転式開閉弁を採用したことを特徴とする請求項1記載の航空機の境界層制御装置。  The first on-off valve is provided with a rotation shaft at both ends on a rotation center line of the valve body, and is closed in a direction of the rotation center line of the valve body between the first bus line and the second bus line in the valve body. A plane portion is formed, a second plane portion is formed in the rotation center line direction of the valve body between the third bus bar and the fourth bus bar, and the rotation center line of the valve body is sandwiched between the second plane portion A plurality of communication holes penetrating to the opposite side are provided in a plurality of rows in the direction of the rotation center line of the valve body, and the upper surface of the main wing in the direction of the rotation center line of the valve body between the fifth bus bar and the sixth bus bar A protrusion for generating a turbulent flow is formed, a recess is formed inward from the fifth bus side toward the inside of the protrusion, and a recess is formed inward from the protrusion to the sixth bus bar. A rotary on-off valve in which the valve body configured as described above is combined is adopted. 1 boundary layer control system for aircraft as claimed. 前記第一開閉弁は、弁体の回転中心線上の両端部に回転軸が設けられ、前記弁体における第一母線と第二母線間の前記弁体の回転中心線方向に閉塞された第一平面部が形成され、第三母線と第四母線間の前記弁体の回転中心線方向に第二平面部が形成されているとともに前記第二平面部に前記弁体の回転中心線を挟んだ反対側に貫通する複数の連通孔が前記弁体の回転中心線方向に列状に複数ヶ所開口されて設けられて構成されている前記弁体を内部に組み合わせた回転式開閉弁を採用したことを特徴とする請求項1記載の航空機の境界層制御装置。  The first on-off valve is provided with a rotation shaft at both ends on a rotation center line of the valve body, and is closed in a direction of the rotation center line of the valve body between the first bus line and the second bus line in the valve body. A plane portion is formed, a second plane portion is formed in the rotation center line direction of the valve body between the third bus bar and the fourth bus bar, and the rotation center line of the valve body is sandwiched between the second plane portion Adopting a rotary on-off valve in which a plurality of communication holes penetrating to the opposite side are opened in a row in the direction of the rotation center line of the valve body and combined with the valve body. The aircraft boundary layer control device according to claim 1.
JP2014141789A 2014-06-23 2014-06-23 Boundary layer control device of aircraft Pending JP2016008040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141789A JP2016008040A (en) 2014-06-23 2014-06-23 Boundary layer control device of aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141789A JP2016008040A (en) 2014-06-23 2014-06-23 Boundary layer control device of aircraft

Publications (1)

Publication Number Publication Date
JP2016008040A true JP2016008040A (en) 2016-01-18

Family

ID=55225891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141789A Pending JP2016008040A (en) 2014-06-23 2014-06-23 Boundary layer control device of aircraft

Country Status (1)

Country Link
JP (1) JP2016008040A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109050869A (en) * 2018-07-17 2018-12-21 中国航空工业集团公司沈阳飞机设计研究所 A kind of ram-air bleed structure
CN110626512A (en) * 2018-06-22 2019-12-31 空中客车西班牙运营有限责任公司 Air inlet system for aircraft and aircraft
JP7249074B1 (en) 2022-08-24 2023-03-30 株式会社Flight PILOT flying mobile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110626512A (en) * 2018-06-22 2019-12-31 空中客车西班牙运营有限责任公司 Air inlet system for aircraft and aircraft
CN109050869A (en) * 2018-07-17 2018-12-21 中国航空工业集团公司沈阳飞机设计研究所 A kind of ram-air bleed structure
JP7249074B1 (en) 2022-08-24 2023-03-30 株式会社Flight PILOT flying mobile
JP2024030439A (en) * 2022-08-24 2024-03-07 株式会社Flight PILOT flying vehicle

Similar Documents

Publication Publication Date Title
JP6900459B2 (en) Aerodynamically efficient lightweight vertical takeoff and landing aircraft with swivel rotorcraft and contained rotorcraft
US11492099B2 (en) Aircraft nacelle having electric motor and thrust reversing air exhaust flaps
JP3320072B2 (en) Aircraft wing assembly
US10005544B2 (en) System and method for enhancing the high-lift performance of an aircraft
US7918416B2 (en) Ducted fan vehicles particularly useful as VTOL aircraft
US7275712B2 (en) Ducted fan vehicles particularly useful as VTOL aircraft
EP2882642B1 (en) Aircraft wing with system establishing a laminar boundary layer flow
EP3031713B1 (en) Aircraft wing rib
US20070095971A1 (en) Apparatus for generating horizontal forces in aerial vehicles and related method
US9120567B2 (en) High speed compound rotary wing aircraft
JPH0350100A (en) Hybrid laminar flow nacelle
CN109421920A (en) Aircraft propulsion and method
IL257810B (en) Ejector and airfoil configurations
CN102596717B (en) Flow body, in particular for aircraft
EP2886453B1 (en) Boundary layer control system and aircraft having such a boundary layer control system
EP2860113A1 (en) Engine mounted inlet plenum for a rotorcraft
US20190092456A1 (en) Ducts for laminar flow control systems
JP2016008040A (en) Boundary layer control device of aircraft
CN208165247U (en) Unmanned plane based on gas jet technique turning
JP2022054657A (en) Vertical take-off and landing aircraft and airfoil device
US3088694A (en) Wing-fan doors
EP3031720B1 (en) Guide vanes for a pusher propeller for rotary wing aircraft
JP2011527253A (en) Aircraft having at least two propeller drives spaced apart from each other in the span span direction of the wing
EP3141473B1 (en) Drag reduction of high speed aircraft with a coaxial-rotor system
US10829237B2 (en) Tiltrotor aircraft inlet-barrier filter method and apparatus