JP2016007176A - Method for amplifying and detecting nucleic acid - Google Patents

Method for amplifying and detecting nucleic acid Download PDF

Info

Publication number
JP2016007176A
JP2016007176A JP2014130594A JP2014130594A JP2016007176A JP 2016007176 A JP2016007176 A JP 2016007176A JP 2014130594 A JP2014130594 A JP 2014130594A JP 2014130594 A JP2014130594 A JP 2014130594A JP 2016007176 A JP2016007176 A JP 2016007176A
Authority
JP
Japan
Prior art keywords
dna
rna
nucleic acid
enzyme
target nucleic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014130594A
Other languages
Japanese (ja)
Inventor
友理子 牧野
Yuriko Makino
友理子 牧野
佐藤 寛
Hiroshi Sato
佐藤  寛
惇 野口
Atsushi Noguchi
惇 野口
睦 中西
Mutsumi Nakanishi
睦 中西
井出 輝彦
Teruhiko Ide
輝彦 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014130594A priority Critical patent/JP2016007176A/en
Publication of JP2016007176A publication Critical patent/JP2016007176A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method which can highly specifically, highly sensitively, rapidly, and conveniently amplify a target nucleic acid contained in a sample regardless of the kind of nucleic acid (DNA/RNA), in a method for amplifying RNA at a constant temperature.SOLUTION: The subject is solved by synthesizing homologous or complementary DNA to a target nucleic acid from the complementary strand or homologous strand of the target nucleic acid using a primer having a sequence homologous or complementary to a part of the target nucleic acid to which a promoter sequence of the enzyme having RNA polymerase activity at the 5' terminal side is added, and an enzyme having RNA-dependent or DNA-dependent DNA polymerase activity; and subsequently increasing the temperature to make a single-stranded nucleic acid from the synthesized DNA.

Description

本発明は、試料に含まれる標的核酸を特異的に増幅し、検出する方法に関する。   The present invention relates to a method for specifically amplifying and detecting a target nucleic acid contained in a sample.

ウイルス感染症の検査において、試料中に含まれるウイルス核酸を検出する方法を採用する場合、一般に前記試料中に含まれるウイルス核酸が極微量であることから、前記ウイルス核酸を増幅し検出する方法が用いられる。   In the case of adopting a method for detecting a viral nucleic acid contained in a sample in the inspection of a viral infection, since the amount of the viral nucleic acid contained in the sample is generally extremely small, there is a method for amplifying and detecting the viral nucleic acid. Used.

核酸を増幅する方法として、ポリメラーゼ連鎖反応法(PCR法)が広く知られている。この方法は、標的DNA中の特定塩基配列の一部と相補的または相同的な配列を有する一組のプライマーと耐熱性DNAポリメラーゼ存在下で、熱変性−プライマーアニール−伸長反応からなるサイクルを繰り返し行なうことによってDNAを増幅する方法である。また標的核酸がRNAの場合、逆転写酵素によって一旦cDNAを合成してからPCR法を行なう、いわゆるRT−PCR法が知られている。しかし、PCR法およびRT−PCR法は急激に何度も反応温度を昇降させる必要があり、自動化の際の反応装置の省力化や低コスト化のための障壁となっていた。   As a method for amplifying a nucleic acid, a polymerase chain reaction method (PCR method) is widely known. This method repeats a cycle consisting of heat denaturation-primer annealing-extension reaction in the presence of a pair of primers having a sequence complementary to or homologous to a part of a specific base sequence in the target DNA and a thermostable DNA polymerase. It is a method of amplifying DNA by performing. In addition, when the target nucleic acid is RNA, a so-called RT-PCR method is known in which a PCR method is performed after cDNA is once synthesized by reverse transcriptase. However, the PCR method and the RT-PCR method need to raise and lower the reaction temperature a number of times rapidly, which has been a barrier for labor saving and cost reduction of the reaction apparatus at the time of automation.

一方、RNAを標的として一定温度で核酸を増幅する方法としてNASBA法(特許文献1および2)、TMA法(特許文献3)、TRC法(特許文献4および非特許文献1)といった方法が知られている。これらの方法は、反応温度を昇降させることなく一定温度で核酸が増幅するため、簡便に核酸を増幅することができる。そのため自動化の際の反応装置の省力化や低コスト化ができる点で好ましい方法といえる。しかしながら標的核酸がDNAの場合、これらの方法による核酸増幅は困難であった。   On the other hand, methods such as NASBA method (Patent Documents 1 and 2), TMA method (Patent Document 3), and TRC method (Patent Document 4 and Non-Patent Document 1) are known as methods for amplifying nucleic acids at a constant temperature using RNA as a target. ing. In these methods, the nucleic acid is amplified at a constant temperature without raising or lowering the reaction temperature, so that the nucleic acid can be easily amplified. Therefore, it can be said that it is a preferable method from the point that labor saving and cost reduction of the reaction apparatus at the time of automation can be achieved. However, when the target nucleic acid is DNA, nucleic acid amplification by these methods has been difficult.

特許文献5では、トリ骨髄芽球腫ウイルス(AMV)逆転写酵素が有する鎖置換活性を用いることで、NASBA法によるDNAの増幅および検出を実現している。しかしながら操作が煩雑(37℃で2時間保温後、−20℃に凍結し、その後ELOSA(Enzyme Linked OligoSorbent Assay)法で検出)であり、最小検出感度も10コピー/テストと不十分であった。 In Patent Document 5, amplification and detection of DNA by the NASBA method are realized by using the strand displacement activity of avian myeloblastoma virus (AMV) reverse transcriptase. However, the operation was complicated (freeze to -20 ° C after incubation at 37 ° C for 2 hours, and then detected by ELISA (Enzyme Linked Oligosorbent Assay) method), and the minimum detection sensitivity was 10 6 copies / test and insufficient. .

特許第2650159号公報Japanese Patent No. 2650159 特許第3152927号公報Japanese Patent No. 3152927 特許第3241717号公報Japanese Patent No. 3241717 特開2000−014400号公報JP 2000-014400 A 特許第3002259号公報Japanese Patent No. 3002259

Ishiguro,T.et al,Analytical Biochemistry,314,77−86(2003)Ishiguro, T .; et al, Analytical Biochemistry, 314, 77-86 (2003).

本発明の課題は、NASBA法、TMA法、TRC法といった一定温度でRNAを増幅する方法において、試料中に含まれる標的核酸を、核酸の種類(DNA/RNA)を問わず、高特異的、高感度、迅速、簡便に増幅可能な方法を提供することにある。   The subject of the present invention is a method for amplifying RNA at a constant temperature such as NASBA method, TMA method, TRC method, etc., the target nucleic acid contained in the sample is highly specific regardless of the type of nucleic acid (DNA / RNA), It is an object of the present invention to provide a method capable of amplifying with high sensitivity, speed, and simplicity.

本発明者らは上記課題を解決するべく鋭意検討を重ねた結果、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相同的または相補的な配列を有するプライマー、およびRNA依存性またはDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的核酸の相補鎖または相同鎖から、標的核酸に相同的または相補的なDNAを合成する工程の後、温度を上昇させて、前記合成したDNAを一本鎖核酸とする工程を行なうことで、核酸の種類(DNA/RNA)を問わず、かつ高特異的、高感度、迅速、簡便に増幅することができることを見出し、本発明の完成に至った。   As a result of intensive studies to solve the above problems, the present inventors have a sequence that is homologous or complementary to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side. The temperature is increased after the step of synthesizing DNA homologous or complementary to the target nucleic acid from the complementary or homologous strand of the target nucleic acid using a primer and an enzyme having RNA-dependent or DNA-dependent DNA polymerase activity. In addition, by performing the step of converting the synthesized DNA into a single-stranded nucleic acid, the nucleic acid can be amplified with high specificity, high sensitivity, quickness, and simpleness regardless of the type of nucleic acid (DNA / RNA). The headline, the present invention has been completed.

すなわち本発明の第一の態様は、以下の(1)から(7)の工程を含む、標的核酸の増幅方法である。
(1)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相同的な配列を有する第一のプライマー、およびRNA依存性またはDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的核酸の相補鎖から、標的核酸に相同的なDNAを合成する工程
(2)温度を上昇させることで、前記(1)で合成したDNAを一本鎖DNAとする工程
(3)標的核酸の一部と相補的な配列を有する第二のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(2)で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(5)第二のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(4)のRNA転写産物から、標的核酸に相補的なcDNAを合成する工程、
(6)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(7)前記(6)で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
また本発明の第二の態様は、以下の(1)から(7)の工程を含む、標的核酸の増幅方法である。
(1)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相補的な配列を有する第二のプライマー、およびRNA依存性またはDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的核酸から、標的核酸に相補的なDNAを合成する工程
(2)温度を上昇させることで、前記(1)で合成したDNAを一本鎖DNAとする工程
(3)標的核酸の一部と相同的な配列を有する第一のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(2)で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(5)第一のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(4)のRNA転写産物から、標的核酸に相同的なcDNAを合成する工程、
(6)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(7)前記(6)で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
また本発明の第三の態様は、以下の(1)から(9)の工程を含む、標的核酸の増幅方法である。
(1)標的核酸の一部と相補的な配列を有する第二のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的RNAから、標的核酸に相補的なcDNAを合成する工程
(2)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(3)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相同的な配列を有する第一のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(2)で得られた一本鎖DNAから、二本鎖DNAを合成する工程
(4)温度を上昇させることで、前記(3)で合成した5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加したDNAを一本鎖DNAとする工程
(5)第二のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(4)で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(6)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(5)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(7)第二のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(6)のRNA転写産物から、標的核酸に相補的なcDNAを合成する工程、
(8)RNase H活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(9)前記(8)で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
また本発明の第四の態様は、標的核酸が二本鎖核酸であり、かつ(1)の工程の前に、温度を上昇させることで前記標的核酸を一本鎖核酸とする工程を行なう、前記第一から第三の態様のいずれかに記載の増幅方法である。
That is, the first aspect of the present invention is a method for amplifying a target nucleic acid, comprising the following steps (1) to (7).
(1) a first primer having a sequence homologous to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side, and RNA-dependent or DNA-dependent DNA polymerase activity A step of synthesizing DNA homologous to the target nucleic acid from the complementary strand of the target nucleic acid using an enzyme (2) A step of increasing the temperature to convert the DNA synthesized in (1) above into a single-stranded DNA ( 3) From the single-stranded DNA obtained in (2) above, using a second primer having a sequence complementary to a part of the target nucleic acid and an enzyme having DNA-dependent DNA polymerase activity, the 5 ′ end A step of synthesizing a double-stranded DNA to which a promoter sequence of an enzyme having RNA polymerase activity is added (4) RNA polymerase activity corresponding to the promoter sequence Step (5) of synthesizing an RNA transcript from the double-stranded DNA obtained in (3) above, using the second primer and the enzyme having RNA-dependent DNA polymerase activity, Synthesizing cDNA complementary to the target nucleic acid from the RNA transcript of (4),
(6) Step of degrading RNA-DNA double-stranded RNA using an enzyme having ribonuclease H (RNase H) activity (generation of single-stranded DNA)
(7) A step of synthesizing an RNA transcript in a chain manner using the single-stranded DNA obtained in (6) as a template. The second aspect of the present invention includes the following steps (1) to (7): A method for amplifying a target nucleic acid.
(1) a second primer having a sequence complementary to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side, and RNA-dependent or DNA-dependent DNA polymerase activity Step of synthesizing DNA complementary to target nucleic acid from target nucleic acid using enzyme (2) Step of increasing temperature to make DNA synthesized in (1) above as single-stranded DNA (3) Target Using a first primer having a sequence homologous to a part of the nucleic acid and an enzyme having a DNA-dependent DNA polymerase activity, RNA on the 5 ′ end side from the single-stranded DNA obtained in the above (2) A step of synthesizing double-stranded DNA to which a promoter sequence of an enzyme having polymerase activity is added (4) an enzyme having RNA polymerase activity corresponding to the promoter sequence; (5) step of synthesizing an RNA transcript from the double-stranded DNA obtained in (3) above, using the first primer and an enzyme having RNA-dependent DNA polymerase activity (4) ) Synthesizing cDNA homologous to the target nucleic acid from the RNA transcript of
(6) Step of degrading RNA-DNA double-stranded RNA using an enzyme having ribonuclease H (RNase H) activity (generation of single-stranded DNA)
(7) A step of synthesizing an RNA transcript in a chain manner using the single-stranded DNA obtained in (6) as a template. The third aspect of the present invention includes the following steps (1) to (9): A method for amplifying a target nucleic acid.
(1) A step of synthesizing cDNA complementary to the target nucleic acid from the target RNA using a second primer having a sequence complementary to a part of the target nucleic acid and an enzyme having RNA-dependent DNA polymerase activity ( 2) Step of degrading RNA-DNA double-stranded RNA using an enzyme having ribonuclease H (RNase H) activity (generation of single-stranded DNA)
(3) Using a first primer having a sequence homologous to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side, and an enzyme having DNA-dependent DNA polymerase activity The step of synthesizing double-stranded DNA from the single-stranded DNA obtained in the above (2) (4) By raising the temperature, it has RNA polymerase activity on the 5 ′ end side synthesized in the above (3) Step of converting DNA added with enzyme promoter sequence into single-stranded DNA (5) Single-stranded DNA obtained in (4) above using second primer and enzyme having DNA-dependent DNA polymerase activity A step of synthesizing double-stranded DNA to which a promoter sequence of an enzyme having RNA polymerase activity is added at the 5 ′ end side (6) RN corresponding to the promoter sequence Step (7) of synthesizing an RNA transcript from the double-stranded DNA obtained in (5) above using an enzyme having polymerase activity (7) Using a second primer and an enzyme having RNA-dependent DNA polymerase activity A step of synthesizing cDNA complementary to the target nucleic acid from the RNA transcript of (6),
(8) Degrading RNA-DNA double-stranded RNA using an enzyme having RNase H activity (generation of single-stranded DNA)
(9) A step of synthesizing an RNA transcript in a chain manner using the single-stranded DNA obtained in (8) as a template. In the fourth aspect of the present invention, the target nucleic acid is a double-stranded nucleic acid, and ( The amplification method according to any one of the first to third aspects, wherein the step of converting the target nucleic acid into a single-stranded nucleic acid by increasing the temperature is performed before the step 1).

また本発明の第五の態様は、RNA依存性DNAポリメラーゼ活性を有する酵素と、DNA依存性DNAポリメラーゼ活性を有する酵素と、RNase H活性を有する酵素とが、AMV逆転写酵素である、前記第一から第四の態様のいずれかに記載の増幅方法である。   According to a fifth aspect of the present invention, the enzyme having RNA-dependent DNA polymerase activity, the enzyme having DNA-dependent DNA polymerase activity, and the enzyme having RNase H activity are AMV reverse transcriptases. The amplification method according to any one of the first to fourth aspects.

さらに本発明の第六の態様は、RNA転写産物の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブを用いて検出する工程を、前記第一から第五の態様のいずれかに記載の増幅方法にさらに含んでなる、標的核酸の検出方法である。   Furthermore, in the sixth aspect of the present invention, from the first step, the step of detecting using an oligonucleotide probe that changes in fluorescence characteristics as compared to before formation when a complementary double strand is formed with a part of the RNA transcript. A method for detecting a target nucleic acid, further comprising the amplification method according to any one of the fifth aspect.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明における標的核酸とは、試料中に含まれる一本鎖もしくは二本鎖DNAまたはRNAのうち、本発明の増幅方法により増幅される領域のことをいう。   The target nucleic acid in the present invention refers to a region of a single-stranded or double-stranded DNA or RNA contained in a sample that is amplified by the amplification method of the present invention.

本発明において、相補的な配列を有するとは、標的核酸に対してストリンジェントな条件でハイブリダイズ可能な配列を有することをいい、相同的な配列を有するとは、標的核酸の相補鎖に対してストリンジェントな条件でハイブリダイズ可能な配列を有することをいう。ここでいうストリンジェントな条件とは、既知の条件から選定可能で、特に限定されるものではないが、例えば、42℃において、50%(v/v)のホルムアミド、0.1%のウシ血清アルブミン、0.1%のフィコール(商品名)、0.1%のポリビニルピロリドン、50mMのリン酸ナトリウムバッファー(pH6.5)、150mMの塩化ナトリウム、75mMのクエン酸ナトリウムが共存する条件や、本明細書の実施例に記載の核酸増幅条件下でハイブリダイズ可能な条件があげられる。   In the present invention, having a complementary sequence means having a sequence capable of hybridizing to a target nucleic acid under stringent conditions, and having a homologous sequence means having a sequence complementary to the target nucleic acid. Having a sequence that can hybridize under stringent conditions. The stringent conditions mentioned here can be selected from known conditions and are not particularly limited. For example, at 42 ° C., 50% (v / v) formamide, 0.1% bovine serum The conditions under which albumin, 0.1% Ficoll (trade name), 0.1% polyvinylpyrrolidone, 50 mM sodium phosphate buffer (pH 6.5), 150 mM sodium chloride, 75 mM sodium citrate coexist, Examples include conditions that allow hybridization under the nucleic acid amplification conditions described in the Examples of the specification.

本発明で用いるRNAポリメラーゼ活性を有する酵素としては、分子生物学的実験などで汎用されているバクテリオファージ由来のT7 RNAポリメラーゼ、T3 RNAポリメラーゼ、SP6 RNAポリメラーゼまたはこれらの誘導体が例示できる。なお第一または第二のプライマーに付加するRNAポリメラーゼ活性を有する酵素のプロモータ配列は、本発明で用いるRNAポリメラーゼ活性を有する酵素に対応した配列を用いればよく、RNAポリメラーゼ活性を有する酵素としてT7 RNAポリメラーゼを用いる場合の一例として、配列番号11に記載の配列からなるT7プロモータがあげられる。   Examples of the enzyme having RNA polymerase activity used in the present invention include bacteriophage-derived T7 RNA polymerase, T3 RNA polymerase, SP6 RNA polymerase or derivatives thereof widely used in molecular biological experiments. The promoter sequence of the enzyme having RNA polymerase activity to be added to the first or second primer may be a sequence corresponding to the enzyme having RNA polymerase activity used in the present invention, and T7 RNA is used as the enzyme having RNA polymerase activity. An example of using a polymerase is a T7 promoter consisting of the sequence shown in SEQ ID NO: 11.

本発明ではRNAポリメラーゼ活性を有する酵素の他に、少なくともRNA依存性DNAポリメラーゼ活性を有する酵素と、DNA依存性DNAポリメラーゼ活性を有する酵素と、リボヌクレアーゼH(RNase H)活性を有する酵素も用いる。RNA依存性DNAポリメラーゼ活性を有する酵素、DNA依存性DNAポリメラーゼ活性を有する酵素、およびRNase H活性を有する酵素は、いくつかの活性を合わせ持つ酵素を使用してもよく、それぞれの活性を持つ複数の酵素を使用してもよい。AMV逆転写酵素、MMLV逆転写酵素、HIV逆転写酵素またはこれらの誘導体は、前述した三つの酵素活性の全てを有しているため好ましく、中でもAMV逆転写酵素またはその誘導体が好ましい。   In the present invention, in addition to the enzyme having RNA polymerase activity, an enzyme having at least RNA-dependent DNA polymerase activity, an enzyme having DNA-dependent DNA polymerase activity, and an enzyme having ribonuclease H (RNase H) activity are also used. As the enzyme having RNA-dependent DNA polymerase activity, the enzyme having DNA-dependent DNA polymerase activity, and the enzyme having RNase H activity, an enzyme having several activities may be used. These enzymes may be used. AMV reverse transcriptase, MMLV reverse transcriptase, HIV reverse transcriptase or a derivative thereof is preferable because it has all of the above three enzyme activities, and among them, AMV reverse transcriptase or a derivative thereof is preferable.

本発明の核酸増幅方法は、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相同的または相補的な配列を有するプライマー、およびRNA依存性またはDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的核酸の相補鎖または相同鎖から、標的核酸に相同的または相補的なDNAを合成する工程の後、温度を上昇させて、前記合成したDNAを一本鎖核酸とする工程を行なうことを特徴としている。温度を上昇させる条件は、二本鎖核酸を解離可能な温度条件とすればよく、二本鎖核酸が二本鎖DNAの場合は60℃以上とすればよいが、80℃以上とすると好ましく、85℃以上とするとさらに好ましい。温度を上昇させる操作に特に限定はなく、例えばヒートブロックを用いた温度上昇があげられる。また温度を上昇させる操作を行なう際、さらにジメチルスルホキシド(DMSO)といった溶媒の極性を下げる薬剤などを添加することで、二本鎖核酸の解離を促進してもよい。前記薬剤を添加した場合の温度条件は、40℃以上であればよく、45℃以上(例えば46℃)であればさらによい。なお二本鎖核酸の解離は、二本鎖核酸の長さ、二本鎖核酸のGC含量、溶媒中の塩濃度などによって影響を受けることが知られており、これらを最適化することで二本鎖核酸の解離を促進してもよい。二本鎖核酸が解離する条件の例として、本明細書の実施例に記載の条件があげられる。   The nucleic acid amplification method of the present invention comprises a primer having a sequence homologous to or complementary to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added at the 5 ′ end, and RNA-dependent or DNA-dependent After the step of synthesizing DNA homologous or complementary to the target nucleic acid from the complementary strand or homologous strand of the target nucleic acid using an enzyme having DNA polymerase activity, the temperature is increased and one of the synthesized DNAs It is characterized by performing a step of forming a chain nucleic acid. The condition for raising the temperature may be a temperature condition at which the double-stranded nucleic acid can be dissociated. If the double-stranded nucleic acid is a double-stranded DNA, it may be 60 ° C. or higher, preferably 80 ° C. or higher, More preferably, it is 85 ° C. or higher. There is no particular limitation on the operation for raising the temperature, and for example, a temperature rise using a heat block can be mentioned. Further, when performing the operation of increasing the temperature, the dissociation of the double-stranded nucleic acid may be promoted by adding an agent that lowers the polarity of the solvent, such as dimethyl sulfoxide (DMSO). The temperature condition when the chemical is added may be 40 ° C. or higher, and more preferably 45 ° C. or higher (eg, 46 ° C.). The dissociation of double-stranded nucleic acid is known to be affected by the length of double-stranded nucleic acid, the GC content of double-stranded nucleic acid, the salt concentration in the solvent, etc. Dissociation of the double-stranded nucleic acid may be promoted. Examples of conditions for dissociating double-stranded nucleic acids include the conditions described in the examples of the present specification.

温度を上昇させたままの状態を維持すると、プライマーと一本鎖核酸とがアニールせず、標的核酸の増幅が進まないため、一本鎖核酸とする工程を行なった後は、プライマーと一本鎖核酸とがアニールする条件まで温度まで下降させる。温度を下降させる操作に特に限定はなく、例えば反応容器を氷水につける操作や、等温増幅法を実施する温度に保温したヒートブロックに反応容器を載置する操作があげられる。なおプライマーと一本鎖核酸とのアニールは、反応温度、溶媒の極性、プライマーの長さ、プライマーのGC含量、溶媒中の塩濃度などによって影響を受けることが知られており、これらを最適化することでアニールを促進してもよい。   If the temperature is kept elevated, the primer and the single-stranded nucleic acid will not anneal, and the amplification of the target nucleic acid will not proceed. The temperature is lowered to a temperature at which the strand nucleic acid is annealed. The operation for lowering the temperature is not particularly limited, and examples thereof include an operation for placing the reaction vessel on ice water and an operation for placing the reaction vessel on a heat block kept at a temperature at which the isothermal amplification method is performed. It is known that annealing of primer and single-stranded nucleic acid is affected by reaction temperature, solvent polarity, primer length, primer GC content, salt concentration in the solvent, etc. By doing so, annealing may be promoted.

本発明の増幅方法は、鋳型核酸の形態により異なる。鋳型核酸が標的核酸の相補鎖である場合の増幅方法の一例としては、
(A−1)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相同的な配列を有する第一のプライマー、およびRNA依存性またはDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的核酸の相補鎖から、標的核酸に相同的なDNAを合成する工程
(A−2)温度を上昇させることで、前記(A−1)で合成したDNAを一本鎖DNAとする工程
(A−3)標的核酸の一部と相補的な配列を有する第二のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(A−2)で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(A−4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(A−3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(A−5)第二のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(A−4)のRNA転写産物から、標的核酸に相補的なcDNAを合成する工程、
(A−6)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(A−7)前記(A−6)で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
を含む方法があげられる。鋳型核酸が標的核酸の相同鎖である場合の増幅方法の一例としては、
(B−1)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相補的な配列を有する第二のプライマー、およびRNA依存性またはDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的核酸から、標的核酸に相補的なDNAを合成する工程
(B−2)温度を上昇させることで、前記(B−1)で合成したDNAを一本鎖DNAとする工程
(B−3)標的核酸の一部と相同的な配列を有する第一のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(B−2)で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(B−4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(B−3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(B−5)第一のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(B−4)のRNA転写産物から、標的核酸に相同的なcDNAを合成する工程、
(B−6)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(B−7)前記(B−6)で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
を含む方法があげられる。鋳型核酸が一本鎖RNAの相同鎖である場合の増幅方法の一例としては、
(C−1)標的核酸の一部と相補的な配列を有する第二のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的RNAから、標的核酸に相補的なcDNAを合成する工程
(C−2)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(C−3)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相同的な配列を有する第一のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(C−2)で得られた一本鎖DNAから、二本鎖DNAを合成する工程
(C−4)温度を上昇させることで、前記(C−3)で合成した5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加したDNAを一本鎖DNAとする工程
(C−5)第二のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(C−4)で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(C−6)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(C−5)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(C−7)第二のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(C−6)のRNA転写産物から、標的核酸に相補的なcDNAを合成する工程、
(C−8)RNase H活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(C−9)前記(C−8)で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
を含む方法があげられる。
The amplification method of the present invention varies depending on the form of the template nucleic acid. As an example of the amplification method when the template nucleic acid is a complementary strand of the target nucleic acid,
(A-1) a first primer having a sequence homologous to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side, and RNA-dependent or DNA-dependent DNA polymerase activity A step of synthesizing DNA homologous to the target nucleic acid from the complementary strand of the target nucleic acid using an enzyme having the above (A-2) By increasing the temperature, one DNA synthesized in the above (A-1) Step (A-3) obtained by the step (A-2) using a second primer having a sequence complementary to a part of the target nucleic acid and an enzyme having DNA-dependent DNA polymerase activity A step of synthesizing double-stranded DNA in which a promoter sequence of an enzyme having RNA polymerase activity is added to the 5 ′ end side from the single-stranded DNA (A-4) Step of synthesizing an RNA transcript from the double-stranded DNA obtained in (A-3) above using an enzyme having NA polymerase activity (A-5) Second primer and RNA-dependent DNA polymerase activity A step of synthesizing cDNA complementary to the target nucleic acid from the RNA transcript of (A-4) using an enzyme having
(A-6) Step of degrading RNA-DNA double-stranded RNA using an enzyme having ribonuclease H (RNase H) activity (generation of single-stranded DNA)
(A-7) A method including a step of synthesizing an RNA transcript in a chain manner using the single-stranded DNA obtained in (A-6) as a template. As an example of the amplification method when the template nucleic acid is a homologous strand of the target nucleic acid,
(B-1) a second primer having a sequence complementary to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side, and RNA-dependent or DNA-dependent DNA polymerase activity Step (B-2) of synthesizing DNA complementary to the target nucleic acid from the target nucleic acid using the enzyme having the above: (B-2) By raising the temperature, the DNA synthesized in the above (B-1) (B-3) one obtained in (B-2) above using a first primer having a sequence homologous to a part of the target nucleic acid and an enzyme having DNA-dependent DNA polymerase activity Step (B-4) of synthesizing double-stranded DNA having a promoter sequence of an enzyme having RNA polymerase activity on the 5 ′ end side from the strand DNA (B-4) A step of synthesizing an RNA transcript from the double-stranded DNA obtained in (B-3) above using an enzyme having a merase activity (B-5) a first primer and an RNA-dependent DNA polymerase activity A step of synthesizing cDNA homologous to the target nucleic acid from the RNA transcript of (B-4) using an enzyme having
(B-6) Step of degrading RNA-DNA double-stranded RNA using an enzyme having ribonuclease H (RNase H) activity (generation of single-stranded DNA)
(B-7) A method including a step of synthesizing an RNA transcript in a chain manner using the single-stranded DNA obtained in (B-6) as a template. As an example of the amplification method when the template nucleic acid is a homologous strand of single-stranded RNA,
(C-1) Using a second primer having a sequence complementary to a part of the target nucleic acid and an enzyme having RNA-dependent DNA polymerase activity, cDNA complementary to the target nucleic acid is synthesized from the target RNA. Step (C-2) Step of degrading RNA-DNA double-stranded RNA using an enzyme having ribonuclease H (RNase H) activity (generation of single-stranded DNA)
(C-3) a first primer having a sequence homologous to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side, and an enzyme having DNA-dependent DNA polymerase activity Using the single-stranded DNA obtained in (C-2) above, the step of synthesizing double-stranded DNA (C-4) by increasing the temperature, the 5 ′ synthesized in (C-3) The step of converting the DNA having the promoter sequence of the enzyme having RNA polymerase activity on the terminal side into single-stranded DNA (C-5), using the second primer and the enzyme having DNA-dependent DNA polymerase activity, A step of synthesizing double-stranded DNA to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side from the single-stranded DNA obtained in C-4) (C-6) Step of synthesizing an RNA transcript from the double-stranded DNA obtained in (C-5) above using an enzyme having RNA polymerase activity corresponding to the promoter sequence (C-7) Second primer, and RNA A step of synthesizing cDNA complementary to the target nucleic acid from the RNA transcript of (C-6) using an enzyme having dependent DNA polymerase activity;
(C-8) Step of degrading RNA-DNA double-stranded RNA using an enzyme having RNase H activity (generation of single-stranded DNA)
(C-9) A method comprising a step of synthesizing an RNA transcript in a chain manner using the single-stranded DNA obtained in (C-8) as a template.

なお標的核酸が二本鎖核酸の場合は、前記二本鎖核酸を含む溶液の温度を上昇させて、一本鎖核酸とする工程を行なった後、当該一本鎖核酸の態様に応じて、前記(A−1)、前記(B−1)、前記(C−1)のいずれかの工程を行なえばよい。なお前記工程は、例えば、試料からの標的核酸の抽出工程といった予備操作における最終工程で、標的核酸を含む溶液をヒートブロック上で加温させることで行なってよい。   In addition, when the target nucleic acid is a double-stranded nucleic acid, after increasing the temperature of the solution containing the double-stranded nucleic acid to form a single-stranded nucleic acid, according to the embodiment of the single-stranded nucleic acid, Any one of the steps (A-1), (B-1), and (C-1) may be performed. In addition, you may perform the said process by heating the solution containing a target nucleic acid on a heat block at the last process in preliminary operations, such as the extraction process of the target nucleic acid from a sample, for example.

本発明の増幅方法で増幅した標的核酸(RNA転写産物)を検出することで、試料中に含まれる標的核酸の有無を検出することができるが、増幅した標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブをあらかじめ添加し、当該蛍光特性の変化を蛍光分光光度計で経時的に測定すると、試料中に含まれる標的核酸の増幅と検出を一段階かつ密閉容器内で行なえるため、好ましい。   By detecting the target nucleic acid (RNA transcript) amplified by the amplification method of the present invention, the presence or absence of the target nucleic acid contained in the sample can be detected, but two complementary to the amplified target nucleic acid. When an oligonucleotide probe whose fluorescence characteristics change compared to before formation is added when a strand is formed and the change in fluorescence characteristics is measured over time with a fluorescence spectrophotometer, amplification and detection of the target nucleic acid contained in the sample Can be carried out in one step and in a closed container.

本発明の増幅方法は、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相同的または相補的な配列を有するプライマー、およびRNA依存性またはDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的核酸の相補鎖または相同鎖から、標的核酸に相同的または相補的なDNAを合成する工程の後、温度を上昇させて、前記合成したDNAを一本鎖核酸とする工程を行なうことを特徴としている。本発明により、NASBA法、TMA法、TRC法といった一定温度でRNAを増幅する方法であっても、標的核酸の種類(DNA/RNA)を問わず、高特異的、高感度、迅速、簡便に標的核酸を増幅することができる。   The amplification method of the present invention comprises a primer having a sequence homologous or complementary to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side, and an RNA-dependent or DNA-dependent DNA After the step of synthesizing DNA homologous or complementary to the target nucleic acid from the complementary strand or homologous strand of the target nucleic acid using an enzyme having polymerase activity, the temperature is increased and the synthesized DNA is single-stranded. It is characterized by performing a step of making a nucleic acid. According to the present invention, even in a method of amplifying RNA at a constant temperature such as NASBA method, TMA method, TRC method, regardless of the type of target nucleic acid (DNA / RNA), it is highly specific, highly sensitive, quick and simple. The target nucleic acid can be amplified.

B型肝炎ウイルス(HBV)ゲノムDNAの塩基配列(GenBank No.AB014370)と、実施例で使用したプライマー/プローブの塩基配列との関係を示した図である。図中、F−1は配列番号1、Probe1は配列番号9の相補鎖、R−1は配列番号7の相補鎖、F−2−1は配列番号3、F−2−2は配列番号5、Probe2は配列番号10の相補鎖、R−2は配列番号8の相補鎖である。なお便宜上、第一のプライマーまたは第二のプライマーに付加される、RNAポリメラーゼのプロモーター配列を除く。It is the figure which showed the relationship between the base sequence (GenBank No. AB014370) of hepatitis B virus (HBV) genomic DNA, and the base sequence of the primer / probe used in the Example. In the figure, F-1 is SEQ ID NO: 1, Probe 1 is the complementary strand of SEQ ID NO: 9, R-1 is the complementary strand of SEQ ID NO: 7, F-2-1 is SEQ ID NO: 3, F-2-2 is SEQ ID NO: 5. , Probe2 is the complementary strand of SEQ ID NO: 10, and R-2 is the complementary strand of SEQ ID NO: 8. For convenience, the RNA polymerase promoter sequence added to the first primer or the second primer is excluded. 実施例2で作製したインターカレーター性蛍光色素標識核酸プローブの構造。B、B、B、Bは塩基を示す。なお3’末端側−OHからの伸長反応を防止するために3’末端側−OHはグリコール酸修飾がなされている。The structure of the intercalating fluorescent dye-labeled nucleic acid probe produced in Example 2. B 1 , B 2 , B 3 and B 4 represent bases. In addition, in order to prevent the elongation reaction from the 3 ′ terminal side —OH, the 3 ′ terminal side —OH is modified with glycolic acid.

以下、本発明の実施の形態について、実施例を用いて詳細に説明するが、本実施例は本発明の実施の一形態を説明するためのものであり、本発明を限定するものではない。なお本実施例で使用したプライマー/プローブの、B型肝炎ウイルス(HBV)DNA(GenBank No.AB014370)における位置関係を図1に示す。   Hereinafter, although an embodiment of the present invention is described in detail using an example, this example is for explaining an embodiment of the present invention and does not limit the present invention. The positional relationship of the primers / probes used in this example in hepatitis B virus (HBV) DNA (GenBank No. AB014370) is shown in FIG.

実施例1 B型肝炎ウイルス(HBV)のゲノムDNAの調製
ZeptoMetrix社より購入した不活化ウイルスより、QIAamp DNA Blood Mini Kit(QIAGEN社製)を用いて、当該キットのマニュアルに従い抽出することで、HBV DNA溶液を得た。以降、抽出試料中に含まれるHBV DNAのコピー数は、抽出効率を100%とし、1IUを約6コピーとして計算した。
Example 1 Preparation of Hepatitis B Virus (HBV) Genomic DNA HBV was extracted from an inactivated virus purchased from ZeptoMetrix using QIAamp DNA Blood Mini Kit (manufactured by QIAGEN) according to the manual of the kit. A DNA solution was obtained. Thereafter, the copy number of HBV DNA contained in the extracted sample was calculated assuming that the extraction efficiency was 100% and 1 IU was about 6 copies.

実施例2 インターカレーター性蛍光色素標識核酸プローブの作製
Ishiguroらの方法(Ishiguro,T.et al,Nucleic Acids Res.,24,4992−4997(1996))により、配列番号9に記載の配列の5’末端から17番目のGと18番目のAの間、および配列番号10に記載の配列の5’末端から5番目のTと6番目のAの間に、それぞれリンカーを介してオキサゾールイエローを結合させた、オキサゾールイエロー標識核酸プローブを調製した(図2)。
Example 2 Production of Intercalating Fluorescent Dye-Labeled Nucleic Acid Probe 5 of the sequence described in SEQ ID NO: 9 by the method of Ishiguro et al. (Ishiguro, T. et al, Nucleic Acids Res., 24, 4992-4997 (1996)). Oxazole yellow is bonded via a linker between the 17th G and the 18th A from the end and between the 5th T and the 6th A from the 5 ′ end of the sequence shown in SEQ ID NO: 10. An oxazole yellow labeled nucleic acid probe was prepared (FIG. 2).

実施例3 等温増幅法によるHBV DNAの検出
下記に示す、第一のプライマー、第二のプライマーおよびインターカレーター性蛍光色素標識核酸プローブの組合せ(以下、オリゴヌクレオチド組合せという)を用いて、等温増幅法によるHBV DNAの検出を試みた。
(1)実施例1で調製したB型肝炎ウイルスDNAを、注射用水を用いて167IU/5μL、16.7IU/5μL、1.67IU/5μLまたは0.167IU/5μLとなるよう希釈し、これらをウイルスDNA試料として用いた。
(2)以下の組成の反応液20μLを0.5mL容量PCR用チューブ(GeneAmp Thin−Walled Reaction Tubes、パーキンエルマー製)に分注し、これに前記ウイルスDNA溶液5μLを添加した。なおオリゴヌクレオチド組合せとして、以下の(A)から(C)に示す組合せを使用した。
[反応液の組成:濃度は酵素液添加後の反応液(30μL)における最終濃度]
60mM Tris−HCl(pH8.6)
19mM 塩化マグネシウム
61.7mM 塩化カリウム
各0.3mM dATP、dCTP、dGTP、dTTP
各3mM ATP、CTP、UTP、GTP
3.4mM ITP
1μM 第一のプライマー
1μM 第二のプライマー
36nM インターカレーター性蛍光色素標識核酸プローブ(実施例2で調製)
10.5% DMSO
[オリゴヌクレオチド組合せ]
(A)第一のプライマー:配列番号2(配列番号1の5’末端側にT7プロモータ配列(配列番号11)を付加したもの)、第二のプライマー:配列番号7、インターカレーター性蛍光色素標識核酸プローブ:配列番号9
(B)第一のプライマー:配列番号4(配列番号3の5’末端側にT7プロモータ配列(配列番号11)を付加したもの)、第二のプライマー:配列番号8、インターカレーター性蛍光色素標識核酸プローブ:配列番号10
(C)第一のプライマー:配列番号6(配列番号5の5’末端側にT7プロモータ配列(配列番号11)を付加したもの)、第二のプライマー:配列番号8、インターカレーター性蛍光色素標識核酸プローブ:配列番号10
(3)上記の反応液を46℃で5分間保温後、あらかじめ46℃で2分間保温した、下記の組成からなる酵素液5μLを添加した。
[酵素液の組成]
25wt% グリセロール
400mM トレハロース
200mM 塩化カリウム
6.4U AMV逆転写酵素
142U 耐熱性T7 RNAポリメラーゼ(WO2010/016621号)
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、46℃の一定温度で反応させると同時に反応溶液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に測定した。酵素添加時を0分として、反応液の蛍光強度比が1.2を超えた場合を(+)判定とし、そのときの時間を検出時間とした。
Example 3 Detection of HBV DNA by Isothermal Amplification Method Isothermal amplification method using a combination of a first primer, a second primer and an intercalating fluorescent dye-labeled nucleic acid probe (hereinafter referred to as an oligonucleotide combination) shown below. Attempted to detect HBV DNA by.
(1) Hepatitis B virus DNA prepared in Example 1 is diluted with water for injection to 167 IU / 5 μL, 16.7 IU / 5 μL, 1.67 IU / 5 μL, or 0.167 IU / 5 μL. Used as a viral DNA sample.
(2) 20 μL of the reaction solution having the following composition was dispensed into a 0.5 mL capacity PCR tube (GeneAmp Thin-Walled Reaction Tubes, manufactured by PerkinElmer), and 5 μL of the viral DNA solution was added thereto. The following combinations (A) to (C) were used as oligonucleotide combinations.
[Composition of reaction solution: concentration is final concentration in reaction solution (30 μL) after addition of enzyme solution]
60 mM Tris-HCl (pH 8.6)
19 mM Magnesium chloride 61.7 mM Potassium chloride 0.3 mM each dATP, dCTP, dGTP, dTTP
Each 3 mM ATP, CTP, UTP, GTP
3.4 mM ITP
1 μM first primer 1 μM second primer 36 nM intercalator fluorescent dye-labeled nucleic acid probe (prepared in Example 2)
10.5% DMSO
[Oligonucleotide combination]
(A) First primer: SEQ ID NO: 2 (added with T7 promoter sequence (SEQ ID NO: 11) on the 5 ′ end side of SEQ ID NO: 1), second primer: SEQ ID NO: 7, intercalator fluorescent dye label Nucleic acid probe: SEQ ID NO: 9
(B) First primer: SEQ ID NO: 4 (added with T7 promoter sequence (SEQ ID NO: 11) on the 5 ′ end side of SEQ ID NO: 3), second primer: SEQ ID NO: 8, intercalator fluorescent dye label Nucleic acid probe: SEQ ID NO: 10
(C) First primer: SEQ ID NO: 6 (with T7 promoter sequence (SEQ ID NO: 11) added to the 5 ′ end of SEQ ID NO: 5), second primer: SEQ ID NO: 8, intercalating fluorescent dye label Nucleic acid probe: SEQ ID NO: 10
(3) After the above reaction solution was kept at 46 ° C. for 5 minutes, 5 μL of enzyme solution having the following composition, which was kept at 46 ° C. for 2 minutes in advance, was added.
[Composition of enzyme solution]
25 wt% glycerol 400 mM trehalose 200 mM potassium chloride 6.4 U AMV reverse transcriptase 142 U thermostable T7 RNA polymerase (WO 2010/016621)
(4) Subsequently, using a fluorescence spectrophotometer with a temperature control function capable of directly measuring the PCR tube, the reaction solution is reacted at a constant temperature of 46 ° C. and simultaneously the fluorescence intensity (excitation wavelength: 470 nm, fluorescence wavelength: 520 nm) of the reaction solution is changed over time. It was measured. The time when the enzyme was added was defined as 0 minute, and the case where the fluorescence intensity ratio of the reaction solution exceeded 1.2 was defined as (+) determination, and the time at that time was defined as detection time.

結果を表1に示す。等温増幅法により、前記(A)の組合せでは167IU/テスト(1000コピー/テストに相当)までのHBV DNAを、前記(B)および(C)の組合せでは16.7IU/テスト(100コピー/テストに相当)までのHBV DNAを、それぞれ20分以内に検出することができた。   The results are shown in Table 1. By isothermal amplification, HBV DNA up to 167 IU / test (corresponding to 1000 copies / test) in the combination (A), 16.7 IU / test (100 copies / test) in the combination (B) and (C) HBV DNA can be detected within 20 minutes.

Figure 2016007176
Figure 2016007176

実施例4 本発明の増幅方法によるHBV DNAの検出(その1)
実施例3において等温増幅法によりHBV DNAの検出が確認できた、前記(A)から(C)のオリゴヌクレオチド組合せを用いて、PCR法と等温増幅法とを組み合わせたHBV DNAの検出を試みた。
(1)1.0μMの第一のプライマーと1.0μMの第二のプライマーと0.75UのTaq DNAポリメラーゼとを含む15μLのPCR溶液に、実施例3(1)で調製したウイルスDNA試料5μLを添加後、94℃で10秒−55℃で30秒−72℃で20秒からなるPCRを1サイクルまたは2サイクル実施した。
(2)以下の組成となるよう反応液20μLを0.5mL容量PCR用チューブ(Gene Amp Thin−Walled Reaction Tubes、パーキンエルマー製)に分注し、これに(1)の反応液5μLを添加した。
[反応液の組成:濃度は酵素液添加後の反応液(30μL)における最終濃度]
60mM Tris−HCl(pH8.65)
19mM 塩化マグネシウム
95mM 塩化カリウム
各0.43mM dATP、dCTP、dGTP、dTTP
各3mM ATP、CTP、UTP、GTP
3.4mM ITP
1.2μM 第一のプライマー
1.2μM 第二のプライマー
36nM インターカレーター性蛍光色素標識核酸プローブ(実施例2で調製)
10.5% DMSO
(3)(2)の反応液を、46℃で5分間保温後、あらかじめ46℃で2分間保温した、実施例3(3)に記載の組成からなる酵素液5μLを添加した。
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、46℃の一定温度で反応させると同時に反応溶液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に測定した。酵素添加時を0分として、反応液の蛍光強度比が1.2を超えた場合を(+)判定とし、そのときの時間を検出時間とした。
Example 4 Detection of HBV DNA by the amplification method of the present invention (Part 1)
In Example 3, detection of HBV DNA was confirmed by the isothermal amplification method. Using the oligonucleotide combinations (A) to (C), an attempt was made to detect HBV DNA by combining the PCR method and the isothermal amplification method. .
(1) Into a 15 μL PCR solution containing 1.0 μM first primer, 1.0 μM second primer and 0.75 U Taq DNA polymerase, 5 μL of the viral DNA sample prepared in Example 3 (1) After the addition of PCR, PCR consisting of 94 ° C. for 10 seconds to 55 ° C. for 30 seconds to 72 ° C. for 20 seconds was performed for 1 cycle or 2 cycles.
(2) 20 μL of the reaction solution was dispensed into a 0.5 mL PCR tube (Gene Amp Thin-Walled Reaction Tubes, manufactured by PerkinElmer) so that the following composition was obtained, and 5 μL of the reaction solution of (1) was added thereto. .
[Composition of reaction solution: concentration is final concentration in reaction solution (30 μL) after addition of enzyme solution]
60 mM Tris-HCl (pH 8.65)
19 mM magnesium chloride 95 mM potassium chloride 0.43 mM each dATP, dCTP, dGTP, dTTP
Each 3 mM ATP, CTP, UTP, GTP
3.4 mM ITP
1.2 μM first primer 1.2 μM second primer 36 nM intercalator fluorescent dye-labeled nucleic acid probe (prepared in Example 2)
10.5% DMSO
(3) After the reaction solution of (2) was kept at 46 ° C. for 5 minutes, 5 μL of an enzyme solution having the composition described in Example 3 (3), which was kept warm at 46 ° C. for 2 minutes in advance, was added.
(4) Subsequently, using a fluorescence spectrophotometer with a temperature control function capable of directly measuring the PCR tube, the reaction solution is reacted at a constant temperature of 46 ° C. and simultaneously the fluorescence intensity (excitation wavelength: 470 nm, fluorescence wavelength: 520 nm) of the reaction solution is changed over time. It was measured. The time when the enzyme was added was defined as 0 minute, and the case where the fluorescence intensity ratio of the reaction solution exceeded 1.2 was defined as (+) determination, and the time at that time was defined as detection time.

結果を表2に示す。前記(A)から(C)の組合せを用いて、PCRを1サイクル以上行ない、その後等温増幅を行なうことで、1.67IU/テスト(10コピー/テストに相当)までのHBV DNAを10分以内に検出することができた。すなわち等温増幅を行なう前に温度を上昇させる操作を行なうことで、非常に高感度な検出系を構築できることがわかる。   The results are shown in Table 2. Using the combination of (A) to (C), PCR is performed for 1 cycle or more, and then isothermal amplification is performed, so that HBV DNA up to 1.67 IU / test (corresponding to 10 copies / test) is within 10 minutes. Could be detected. That is, it can be seen that a highly sensitive detection system can be constructed by performing an operation of increasing the temperature before performing isothermal amplification.

Figure 2016007176
Figure 2016007176

実施例5 本発明の増幅方法によるHBV DNAの検出(その2)
実施例4ではPCR法(温度サイクル)と等温増幅法とを組み合わせることで、HBV DNAを高感度に検出することを実現したが、温度サイクルの代わりに一定温度で加熱してもHBV DNAを高感度に検出できるか検討した。なおオリゴヌクレオチド組合せとして、前記(A)から(C)の組合せを用いた。
(1)1.0μMの第一のプライマーと1.0μMの第二のプライマーと0.75UのTaq DNAポリメラーゼとを含む15μLのPCR溶液に、実施例3(1)で調製したウイルスDNA試料5μLを添加後、ヒートブロックを用いて94℃で2分間加熱した。
(2)実施例3(2)に記載の組成となるよう反応液20μLを0.5mL容量PCR用チューブ(Gene Amp Thin−Walled Reaction Tubes、パーキンエルマー製)に分注し、これに(1)の反応液5μLを添加した。
(3)(2)の反応液を、46℃で5分間保温後、あらかじめ46℃で2分間保温した、実施例3(3)に記載の組成からなる酵素液5μLを添加した。
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、46℃の一定温度で反応させると同時に反応溶液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に測定した。酵素添加時を0分として、反応液の蛍光強度比が1.2を超えた場合を(+)判定とし、そのときの時間を検出時間とした。
Example 5 Detection of HBV DNA by the amplification method of the present invention (Part 2)
In Example 4, by combining the PCR method (temperature cycle) and the isothermal amplification method, it was possible to detect HBV DNA with high sensitivity. However, the HBV DNA can be increased even when heated at a constant temperature instead of the temperature cycle. We examined whether it could be detected by sensitivity. The oligonucleotide combinations (A) to (C) were used.
(1) Into a 15 μL PCR solution containing 1.0 μM first primer, 1.0 μM second primer and 0.75 U Taq DNA polymerase, 5 μL of the viral DNA sample prepared in Example 3 (1) After adding, the mixture was heated at 94 ° C. for 2 minutes using a heat block.
(2) Dispense 20 μL of the reaction solution into a 0.5 mL capacity PCR tube (Gene Amp Thin-Walled Reaction Tubes, manufactured by PerkinElmer) so as to have the composition described in Example 3 (2). 5 μL of the reaction solution was added.
(3) After the reaction solution of (2) was kept at 46 ° C. for 5 minutes, 5 μL of an enzyme solution having the composition described in Example 3 (3), which was kept warm at 46 ° C. for 2 minutes in advance, was added.
(4) Subsequently, using a fluorescence spectrophotometer with a temperature control function capable of directly measuring the PCR tube, the reaction solution is reacted at a constant temperature of 46 ° C. and simultaneously the fluorescence intensity (excitation wavelength: 470 nm, fluorescence wavelength: 520 nm) of the reaction solution is changed over time. It was measured. The time when the enzyme was added was defined as 0 minute, and the case where the fluorescence intensity ratio of the reaction solution exceeded 1.2 was defined as (+) determination, and the time at that time was defined as detection time.

結果を表3に示す。前記(A)から(C)の組合せを用いて、94℃で加熱し、その後等温増幅を行なうことで、1.67IU/テスト(10コピー/テストに相当)までのHBV DNAを10分以内に検出することができた。すなわち温度サイクルの代わりに一定温度で加熱しても、非常に高感度な検出系を構築できることがわかる。   The results are shown in Table 3. By using the combination of (A) to (C) above, heating at 94 ° C., followed by isothermal amplification, the HBV DNA up to 1.67 IU / test (equivalent to 10 copies / test) can be obtained within 10 minutes. I was able to detect it. That is, it can be seen that a highly sensitive detection system can be constructed even if heating is performed at a constant temperature instead of a temperature cycle.

Figure 2016007176
Figure 2016007176

実施例6 本発明の増幅方法によるHBV DNAの検出(その3)
実施例5では等温増幅を行なう前に一定温度で加熱する操作を行なうことで、HBV DNAを高感度に検出することを実現したが、前記操作における好ましい加熱温度の範囲を検討した。なおオリゴヌクレオチド組合せとして、前記(B)の組合せを用いた。
(1)1.0μMの第一のプライマー(配列番号4)と1.0μMの第二のプライマー(配列番号8)と0.75UのTaq DNAポリメラーゼとを含む10μLのPCR溶液に、実施例3(1)で調製したウイルスDNA試料5μLを添加後、ヒートブロックを用いて94℃、90℃、85℃、80℃または46℃で2分間加熱した。
(2)以下の組成となるよう反応液20μLを0.5mL容量PCR用チューブ(Gene Amp Thin−Walled Reaction Tubes、パーキンエルマー製)に分注し、これに(1)の反応液5μLを添加した。
[反応液の組成:濃度は酵素液添加後(30μL中)の最終濃度]
60mM Tris−HCl(pH8.65)
19mM 塩化マグネシウム
95mM 塩化カリウム
各0.43mM dATP、dCTP、dGTP、dTTP
各3mM ATP、CTP、UTP、GTP
3.4mM ITP
1.2μM 第一のプライマー(配列番号4)
1.2μM 第二のプライマー(配列番号8)
36nM インターカレーター性蛍光色素標識核酸プローブ(実施例2で調製)(
配列番号10)
10.5% DMSO
(3)(2)の反応液を、あらかじめ46℃で2分間保温した、実施例3(3)に記載の組成からなる酵素液5μLを添加した。
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、46℃の一定温度で反応させると同時に反応溶液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に測定した。酵素添加時を0分として、反応液の蛍光強度比が1.2を超えた場合を(+)判定とし、そのときの時間を検出時間とした。
Example 6 Detection of HBV DNA by the amplification method of the present invention (part 3)
In Example 5, it was possible to detect HBV DNA with high sensitivity by performing an operation of heating at a constant temperature before performing isothermal amplification. However, a preferable range of heating temperature in the above operation was examined. As the oligonucleotide combination, the combination (B) was used.
(1) Into a 10 μL PCR solution containing 1.0 μM first primer (SEQ ID NO: 4), 1.0 μM second primer (SEQ ID NO: 8) and 0.75 U Taq DNA polymerase, Example 3 After adding 5 μL of the viral DNA sample prepared in (1), it was heated at 94 ° C., 90 ° C., 85 ° C., 80 ° C. or 46 ° C. for 2 minutes using a heat block.
(2) 20 μL of the reaction solution was dispensed into a 0.5 mL PCR tube (Gene Amp Thin-Walled Reaction Tubes, manufactured by PerkinElmer) so that the following composition was obtained, and 5 μL of the reaction solution of (1) was added thereto. .
[Composition of reaction solution: concentration is final concentration after addition of enzyme solution (in 30 μL)]
60 mM Tris-HCl (pH 8.65)
19 mM magnesium chloride 95 mM potassium chloride 0.43 mM each dATP, dCTP, dGTP, dTTP
Each 3 mM ATP, CTP, UTP, GTP
3.4 mM ITP
1.2 μM first primer (SEQ ID NO: 4)
1.2 μM second primer (SEQ ID NO: 8)
36 nM intercalating fluorescent dye-labeled nucleic acid probe (prepared in Example 2) (
SEQ ID NO: 10)
10.5% DMSO
(3) 5 μL of an enzyme solution having the composition described in Example 3 (3), which was previously incubated at 46 ° C. for 2 minutes, was added to the reaction solution of (2).
(4) Subsequently, using a fluorescence spectrophotometer with a temperature control function capable of directly measuring the PCR tube, the reaction solution is reacted at a constant temperature of 46 ° C. and simultaneously the fluorescence intensity (excitation wavelength: 470 nm, fluorescence wavelength: 520 nm) of the reaction solution is changed over time. It was measured. The time when the enzyme was added was defined as 0 minute, and the case where the fluorescence intensity ratio of the reaction solution exceeded 1.2 was defined as (+) determination, and the time at that time was defined as detection time.

結果を表4に示す。85℃以上で加熱すれば、1.67IU/テスト(10コピー/テストに相当)までのHBV DNAを検出できることがわかる。   The results are shown in Table 4. It can be seen that when heated above 85 ° C., HBV DNA up to 1.67 IU / test (equivalent to 10 copies / test) can be detected.

Figure 2016007176
Figure 2016007176

実施例7 本発明の増幅方法によるHBV DNAの検出(その4)
実施例4から6では二本鎖DNAの合成にTaq DNAポリメラーゼを用いたが、本実施例ではAMV逆転写酵素が有するDNA依存性DNAポリメラーゼ活性を用いて二本鎖DNAの合成を行なった後、等温増幅法を適用させた。なおオリゴヌクレオチド組合せとして、前記(B)の組合せを用いた。
(1)以下の組成となるよう反応液19μLを0.5mL容量PCR用チューブ(Gene Amp Thin−Walled Reaction Tubes、パーキンエルマー製)に分注し、実施例3(1)で調製したウイルスDNA試料5μLを添加した。
[反応液の組成:濃度は酵素液添加後(30μL中)の最終濃度]
60mM Tris−HCl(pH8.65)
19mM 塩化マグネシウム
95mM 塩化カリウム
各0.3mM dATP、dCTP、dGTP、dTTP
各3mM ATP、CTP、UTP、GTP
3.4mM ITP
1μM 第一のプライマー(配列番号4)
1μM 第二のプライマー(配列番号8)
36nM インターカレーター性蛍光色素標識核酸プローブ(実施例2で調製)(
配列番号10)
10.5% DMSO
(2)(1)の反応液を、46℃で5分間保温後、あらかじめ46℃で2分間保温した、以下の組成の第一酵素液4μLを添加した。
[第一酵素液の組成]
25wt% グリセロール
400mM トレハロース
200mM 塩化カリウム
6.4U AMV逆転写酵素
(3)94℃で2分間加熱し、46℃に温度を下げてから2分後、以下の組成の第二酵素液2μLを添加した。
[第二酵素液の組成]
6.4U AMV逆転写酵素
142U 耐熱性T7 RNAポリメラーゼ(WO2010/016621号)
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、46℃の一定温度で反応させると同時に反応溶液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に測定した。酵素添加時を0分として、反応液の蛍光強度比が1.2を超えた場合を(+)判定とし、そのときの時間を検出時間とした。
Example 7 Detection of HBV DNA by the amplification method of the present invention (Part 4)
In Examples 4 to 6, Taq DNA polymerase was used for double-stranded DNA synthesis. In this example, double-stranded DNA was synthesized using the DNA-dependent DNA polymerase activity of AMV reverse transcriptase. The isothermal amplification method was applied. As the oligonucleotide combination, the combination (B) was used.
(1) Disperse 19 μL of the reaction solution into a 0.5 mL PCR tube (Gene Amp Thin-Walled Reaction Tubes, manufactured by PerkinElmer) so as to have the following composition, and then prepare a viral DNA sample prepared in Example 3 (1). 5 μL was added.
[Composition of reaction solution: concentration is final concentration after addition of enzyme solution (in 30 μL)]
60 mM Tris-HCl (pH 8.65)
19 mM Magnesium chloride 95 mM Potassium chloride 0.3 mM each dATP, dCTP, dGTP, dTTP
Each 3 mM ATP, CTP, UTP, GTP
3.4 mM ITP
1 μM first primer (SEQ ID NO: 4)
1 μM second primer (SEQ ID NO: 8)
36 nM intercalating fluorescent dye-labeled nucleic acid probe (prepared in Example 2) (
SEQ ID NO: 10)
10.5% DMSO
(2) After the reaction solution of (1) was kept at 46 ° C. for 5 minutes, 4 μL of the first enzyme solution having the following composition, which was kept warm at 46 ° C. for 2 minutes in advance, was added.
[Composition of the first enzyme solution]
25 wt% Glycerol 400 mM Trehalose 200 mM Potassium chloride 6.4 U AMV reverse transcriptase (3) Heated at 94 ° C. for 2 minutes, lowered to 46 ° C. and 2 minutes later, 2 μL of the second enzyme solution having the following composition was added. .
[Composition of the second enzyme solution]
6.4 U AMV reverse transcriptase 142 U thermostable T7 RNA polymerase (WO2010 / 016621)
(4) Subsequently, using a fluorescence spectrophotometer with a temperature control function capable of directly measuring the PCR tube, the reaction solution is reacted at a constant temperature of 46 ° C. and simultaneously the fluorescence intensity (excitation wavelength: 470 nm, fluorescence wavelength: 520 nm) of the reaction solution is changed over time. It was measured. The time when the enzyme was added was defined as 0 minute, and the case where the fluorescence intensity ratio of the reaction solution exceeded 1.2 was defined as (+) determination, and the time at that time was defined as detection time.

結果を表5に示す。本発明の増幅方法において、二本鎖DNAの合成酵素(DNA依存性DNAポリメラーゼ)としてAMV逆転写酵素を用いても、1.67IU/テスト(10コピー/テストに相当)までのHBV DNAを15分以内に検出できることがわかる。   The results are shown in Table 5. In the amplification method of the present invention, even when AMV reverse transcriptase is used as a double-stranded DNA synthase (DNA-dependent DNA polymerase), 15 HBV DNA up to 1.67 IU / test (corresponding to 10 copies / test) can be obtained. It can be detected within minutes.

Figure 2016007176
Figure 2016007176

実施例8 本発明の増幅方法によるHBV DNAの検出(その5)
実施例7では二本鎖DNAの合成後、AMV逆転写酵素とRNAポリメラーゼを添加して等温増幅させたが、本実施例では、等温増幅させる前にAMV逆転写酵素をさらに添加した。なおオリゴヌクレオチド組合せとして、前記(B)の組合せを用いた。
(1)以下の組成となるよう反応液17μLを0.5mL容量PCR用チューブ(Gene Amp Thin−Walled Reaction Tubes、パーキンエルマー製)に分注し、実施例3(1)で調製したウイルスDNA試料5μLを添加した。
(反応液の組成:濃度は酵素液添加後(30μL中)の最終濃度)
60mM Tris−HCl(pH8.65)
19mM 塩化マグネシウム
95mM 塩化カリウム
各0.3mM dATP、dCTP、dGTP、dTTP
各3mM ATP、CTP、UTP、GTP
3.4mM ITP
1μM 第一のプライマー(配列番号4)
1μM 第二のプライマー(配列番号8)
36nM インターカレーター性蛍光色素標識核酸プローブ(実施例2で調製)(
配列番号10)
10.5% DMSO
(2)(1)の反応液を、46℃で5分間保温後、あらかじめ46℃で2分間保温した、実施例7(2)に記載の組成からなる第一酵素液4μLを添加した。
(3)94℃で2分間加熱後、46℃で2分間保温し、6.4UのAMV逆転写酵素を含む酵素液2μLを添加して15分反応させ、さらに実施例7(3)に記載の組成からなる第二酵素液2μLを添加した。
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、46℃の一定温度で反応させると同時に反応溶液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に測定した。酵素添加時を0分として、反応液の蛍光強度比が1.2を超えた場合を(+)判定とし、そのときの時間を検出時間とした。
Example 8 Detection of HBV DNA by the amplification method of the present invention (No. 5)
In Example 7, after synthesizing double-stranded DNA, AMV reverse transcriptase and RNA polymerase were added for isothermal amplification, but in this example, AMV reverse transcriptase was further added before isothermal amplification. As the oligonucleotide combination, the combination (B) was used.
(1) Disperse 17 μL of the reaction solution into a 0.5 mL PCR tube (Gene Amp Thin-Walled Reaction Tubes, manufactured by PerkinElmer) so as to have the following composition, and then prepare a viral DNA sample prepared in Example 3 (1). 5 μL was added.
(Composition of reaction solution: concentration is final concentration after addition of enzyme solution (in 30 μL))
60 mM Tris-HCl (pH 8.65)
19 mM Magnesium chloride 95 mM Potassium chloride 0.3 mM each dATP, dCTP, dGTP, dTTP
Each 3 mM ATP, CTP, UTP, GTP
3.4 mM ITP
1 μM first primer (SEQ ID NO: 4)
1 μM second primer (SEQ ID NO: 8)
36 nM intercalating fluorescent dye-labeled nucleic acid probe (prepared in Example 2) (
SEQ ID NO: 10)
10.5% DMSO
(2) After the reaction solution of (1) was kept at 46 ° C. for 5 minutes, 4 μL of the first enzyme solution having the composition described in Example 7 (2), which was kept warm at 46 ° C. for 2 minutes in advance, was added.
(3) After heating at 94 ° C. for 2 minutes, incubating at 46 ° C. for 2 minutes, adding 2 μL of an enzyme solution containing 6.4 U of AMV reverse transcriptase and reacting for 15 minutes, further described in Example 7 (3) 2 μL of the second enzyme solution having the composition was added.
(4) Subsequently, using a fluorescence spectrophotometer with a temperature control function capable of directly measuring the PCR tube, the reaction solution is reacted at a constant temperature of 46 ° C. and simultaneously the fluorescence intensity (excitation wavelength: 470 nm, fluorescence wavelength: 520 nm) of the reaction solution is changed over time. It was measured. The time when the enzyme was added was defined as 0 minute, and the case where the fluorescence intensity ratio of the reaction solution exceeded 1.2 was defined as (+) determination, and the time at that time was defined as detection time.

結果を表6に示す。本発明の増幅方法において、等温増幅させる前にAMV逆転写酵素
をさらに添加することで、最小検出感度が0.167IU/テスト(1コピー/テストに相当)と、これまでの実施例と比較し向上した。また1.67IU/テスト(10コピー/テストに相当)の検出時間も、AMV逆転写酵素を等温増幅前に添加しない実施例7(11.1分)(表5)と比較し、向上(6.2分)していることがわかる。
The results are shown in Table 6. In the amplification method of the present invention, by further adding AMV reverse transcriptase before isothermal amplification, the minimum detection sensitivity is 0.167 IU / test (corresponding to 1 copy / test), compared with the previous examples. Improved. In addition, the detection time of 1.67 IU / test (corresponding to 10 copies / test) was also improved compared to Example 7 (11.1 minutes) (Table 5) in which AMV reverse transcriptase was not added before isothermal amplification (Table 5). .2 minutes).

Figure 2016007176
Figure 2016007176

Claims (6)

以下の(1)から(7)の工程を含む、標的核酸の増幅方法。
(1)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相同的な配列を有する第一のプライマー、およびRNA依存性またはDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的核酸の相補鎖から、標的核酸に相同的なDNAを合成する工程
(2)温度を上昇させることで、前記(1)で合成したDNAを一本鎖DNAとする工程
(3)標的核酸の一部と相補的な配列を有する第二のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(2)で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(5)第二のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(4)のRNA転写産物から、標的核酸に相補的なcDNAを合成する工程、
(6)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(7)前記(6)で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
A method for amplifying a target nucleic acid, comprising the following steps (1) to (7):
(1) a first primer having a sequence homologous to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side, and RNA-dependent or DNA-dependent DNA polymerase activity A step of synthesizing DNA homologous to the target nucleic acid from the complementary strand of the target nucleic acid using an enzyme (2) A step of increasing the temperature to convert the DNA synthesized in (1) above into a single-stranded DNA ( 3) From the single-stranded DNA obtained in (2) above, using a second primer having a sequence complementary to a part of the target nucleic acid and an enzyme having DNA-dependent DNA polymerase activity, the 5 ′ end A step of synthesizing a double-stranded DNA to which a promoter sequence of an enzyme having RNA polymerase activity is added (4) RNA polymerase activity corresponding to the promoter sequence Step (5) of synthesizing an RNA transcript from the double-stranded DNA obtained in (3) above, using the second primer and the enzyme having RNA-dependent DNA polymerase activity, Synthesizing cDNA complementary to the target nucleic acid from the RNA transcript of (4),
(6) Step of degrading RNA-DNA double-stranded RNA using an enzyme having ribonuclease H (RNase H) activity (generation of single-stranded DNA)
(7) A step of synthesizing an RNA transcript in a chain manner using the single-stranded DNA obtained in (6) as a template.
以下の(1)から(7)の工程を含む、標的核酸の増幅方法。
(1)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相補的な配列を有する第二のプライマー、およびRNA依存性またはDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的核酸から、標的核酸に相補的なDNAを合成する工程
(2)温度を上昇させることで、前記(1)で合成したDNAを一本鎖DNAとする工程
(3)標的核酸の一部と相同的な配列を有する第一のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(2)で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(5)第一のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(4)のRNA転写産物から、標的核酸に相同的なcDNAを合成する工程、
(6)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(7)前記(6)で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
A method for amplifying a target nucleic acid, comprising the following steps (1) to (7):
(1) a second primer having a sequence complementary to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side, and RNA-dependent or DNA-dependent DNA polymerase activity Step of synthesizing DNA complementary to target nucleic acid from target nucleic acid using enzyme (2) Step of increasing temperature to make DNA synthesized in (1) above as single-stranded DNA (3) Target Using a first primer having a sequence homologous to a part of the nucleic acid and an enzyme having a DNA-dependent DNA polymerase activity, RNA on the 5 ′ end side from the single-stranded DNA obtained in the above (2) A step of synthesizing double-stranded DNA to which a promoter sequence of an enzyme having polymerase activity is added (4) an enzyme having RNA polymerase activity corresponding to the promoter sequence; (5) step of synthesizing an RNA transcript from the double-stranded DNA obtained in (3) above, using the first primer and an enzyme having RNA-dependent DNA polymerase activity (4) ) Synthesizing cDNA homologous to the target nucleic acid from the RNA transcript of
(6) Step of degrading RNA-DNA double-stranded RNA using an enzyme having ribonuclease H (RNase H) activity (generation of single-stranded DNA)
(7) A step of synthesizing an RNA transcript in a chain manner using the single-stranded DNA obtained in (6) as a template.
以下の(1)から(9)の工程を含む、標的核酸の増幅方法。
(1)標的核酸の一部と相補的な配列を有する第二のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的RNAから、標的核酸に相補的なcDNAを合成する工程
(2)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(3)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相同的な配列を有する第一のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(2)で得られた一本鎖DNAから、二本鎖DNAを合成する工程
(4)温度を上昇させることで、前記(3)で合成した5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加したDNAを一本鎖DNAとする工程
(5)第二のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(4)で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(6)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(5)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(7)第二のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(6)のRNA転写産物から、標的核酸に相補的なcDNAを合成する工程、
(8)RNase H活性を有する酵素を用いて、RNA−DNA二本鎖のRNAを分解する工程(一本鎖DNAの生成)
(9)前記(8)で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
A method for amplifying a target nucleic acid, comprising the following steps (1) to (9):
(1) A step of synthesizing cDNA complementary to the target nucleic acid from the target RNA using a second primer having a sequence complementary to a part of the target nucleic acid and an enzyme having RNA-dependent DNA polymerase activity ( 2) Step of degrading RNA-DNA double-stranded RNA using an enzyme having ribonuclease H (RNase H) activity (generation of single-stranded DNA)
(3) Using a first primer having a sequence homologous to a part of a target nucleic acid to which a promoter sequence of an enzyme having RNA polymerase activity is added on the 5 ′ end side, and an enzyme having DNA-dependent DNA polymerase activity The step of synthesizing double-stranded DNA from the single-stranded DNA obtained in the above (2) (4) By raising the temperature, it has RNA polymerase activity on the 5 ′ end side synthesized in the above (3) Step of converting DNA added with enzyme promoter sequence into single-stranded DNA (5) Single-stranded DNA obtained in (4) above using second primer and enzyme having DNA-dependent DNA polymerase activity A step of synthesizing double-stranded DNA to which a promoter sequence of an enzyme having RNA polymerase activity is added at the 5 ′ end side (6) RN corresponding to the promoter sequence Step (7) of synthesizing an RNA transcript from the double-stranded DNA obtained in (5) above using an enzyme having polymerase activity (7) Using a second primer and an enzyme having RNA-dependent DNA polymerase activity A step of synthesizing cDNA complementary to the target nucleic acid from the RNA transcript of (6),
(8) Degrading RNA-DNA double-stranded RNA using an enzyme having RNase H activity (generation of single-stranded DNA)
(9) A step of synthesizing an RNA transcript in a chain manner using the single-stranded DNA obtained in (8) as a template
標的核酸が二本鎖核酸であり、かつ(1)の工程の前に、温度を上昇させることで前記標的核酸を一本鎖核酸とする工程を行なう、請求項1から3のいずれかに記載の増幅方法。 The target nucleic acid is a double-stranded nucleic acid, and the step of making the target nucleic acid a single-stranded nucleic acid by raising the temperature is performed before the step (1). Amplification method. RNA依存性DNAポリメラーゼ活性を有する酵素と、DNA依存性DNAポリメラーゼ活性を有する酵素と、RNase H活性を有する酵素とが、AMV逆転写酵素である、請求項1から4のいずれかに記載の増幅方法。 The amplification according to any one of claims 1 to 4, wherein the enzyme having RNA-dependent DNA polymerase activity, the enzyme having DNA-dependent DNA polymerase activity, and the enzyme having RNase H activity are AMV reverse transcriptases. Method. RNA転写産物の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブを用いて検出する工程を、請求項1から5のいずれかに記載の増幅方法にさらに含んでなる、標的核酸の検出方法。 The amplification method according to any one of claims 1 to 5, wherein the step of detecting using an oligonucleotide probe that changes in fluorescence characteristics as compared to before formation when forming a complementary double strand with a part of an RNA transcript. A method for detecting a target nucleic acid, further comprising:
JP2014130594A 2014-06-25 2014-06-25 Method for amplifying and detecting nucleic acid Pending JP2016007176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014130594A JP2016007176A (en) 2014-06-25 2014-06-25 Method for amplifying and detecting nucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014130594A JP2016007176A (en) 2014-06-25 2014-06-25 Method for amplifying and detecting nucleic acid

Publications (1)

Publication Number Publication Date
JP2016007176A true JP2016007176A (en) 2016-01-18

Family

ID=55225257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014130594A Pending JP2016007176A (en) 2014-06-25 2014-06-25 Method for amplifying and detecting nucleic acid

Country Status (1)

Country Link
JP (1) JP2016007176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635932A (en) * 2020-06-30 2020-09-08 北京启衡星生物科技有限公司 Application of nucleic acid polymerase activity detection method and kit
JP2020162550A (en) * 2019-03-29 2020-10-08 東ソー株式会社 Amplification reagent and amplification method for single-stranded nucleic acid having complementary region at terminal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162550A (en) * 2019-03-29 2020-10-08 東ソー株式会社 Amplification reagent and amplification method for single-stranded nucleic acid having complementary region at terminal
JP7275767B2 (en) 2019-03-29 2023-05-18 東ソー株式会社 Amplification Reagent and Method for Amplifying Single-Stranded Nucleic Acid Having Complementary Region at Terminal
CN111635932A (en) * 2020-06-30 2020-09-08 北京启衡星生物科技有限公司 Application of nucleic acid polymerase activity detection method and kit
CN111635932B (en) * 2020-06-30 2022-07-08 北京启衡星生物科技有限公司 Application of nucleic acid polymerase activity detection method and kit

Similar Documents

Publication Publication Date Title
WO2018042598A1 (en) Primer set for use in detection of zika virus
JP6451046B2 (en) Nucleic acid amplification method and nucleic acid amplification reagent using the method
JP2016136968A (en) Dengue virus assay
GB2485275A (en) Strand displacement activity of modified polymerases
JP6007652B2 (en) Primers and probes for detecting methicillin-resistant Staphylococcus aureus, and methods for detecting methicillin-resistant Staphylococcus aureus using them
US10047406B2 (en) Compositions and methods for detecting HEV nucleic acid
JP2009131252A (en) Rna detection method
JP2016007176A (en) Method for amplifying and detecting nucleic acid
JP2018078806A (en) Methods for detecting noroviral rna
JP6733215B2 (en) Primer and method for detecting Mycoplasma pneumoniae
JP2012135234A (en) Oligonucleotide probe for detecting bacillus tuberculosis, and detective method using the same
WO2018096496A1 (en) A method, a kit and application thereof
JP2013000093A (en) Identification method of bacterium or virus belonging to same genus
JP2021106618A (en) Methods and Compositions for Detecting Candida Species
JP2014140367A (en) Hepatitis b virus dna amplification primer, and hepatitis b virus dna detection method using the same
JP2011078389A (en) Method and reagent for detecting sapovirus rna
JP2016007175A (en) Method for amplifying nucleic acid, and reagent which amplifies nucleic acid
AU2017278065B2 (en) Compositions and methods for detecting Zika virus nucleic acid
JP2015130801A (en) nucleic acid amplification method
CN111465707A (en) Compositions and methods for detecting C1orf43 nucleic acids
JP2018007580A (en) Nucleic acid amplification method in the presence of nonionic surfactant
JP7472476B2 (en) Primers and method for detecting Bordetella pertussis rRNA
JP6593984B2 (en) RNA amplification method and HIV-1 infection diagnosis method
JP6142524B2 (en) Oligonucleotide probe for detecting Mycobacterium tuberculosis and method for detecting Mycobacterium tuberculosis using the probe
EP4053293A1 (en) Protected isothermal nucleic acid amplification (pina) methods for point-of-need diagnosis of emerging infectious diseases