JP2016006506A - Three-dimensional drive device - Google Patents

Three-dimensional drive device Download PDF

Info

Publication number
JP2016006506A
JP2016006506A JP2015107779A JP2015107779A JP2016006506A JP 2016006506 A JP2016006506 A JP 2016006506A JP 2015107779 A JP2015107779 A JP 2015107779A JP 2015107779 A JP2015107779 A JP 2015107779A JP 2016006506 A JP2016006506 A JP 2016006506A
Authority
JP
Japan
Prior art keywords
hollow shaft
spur gear
drive device
light
dimensional drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015107779A
Other languages
Japanese (ja)
Other versions
JP6105673B2 (en
Inventor
裕明 杉原
Hiroaki Sugihara
裕明 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinano Kenshi Co Ltd
Original Assignee
Shinano Kenshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Co Ltd filed Critical Shinano Kenshi Co Ltd
Priority to JP2015107779A priority Critical patent/JP6105673B2/en
Priority to PCT/JP2015/065423 priority patent/WO2015182710A1/en
Publication of JP2016006506A publication Critical patent/JP2016006506A/en
Application granted granted Critical
Publication of JP6105673B2 publication Critical patent/JP6105673B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data

Abstract

PROBLEM TO BE SOLVED: To irradiate a wide range of a three-dimensional space with light with a simple structure.SOLUTION: A three-dimensional drive device 1 comprises: a hollow shaft 10; a motor for rotating the hollow shaft 10 in a peripheral direction; a spur gear 12 having a central axis common to a central axis 11 of the hollow shaft 10 and disposed on a central part of the hollow shaft 10; a bevel gear 13 engaged with the spur gear 12 and disposed in the hollow shaft 10; and a spur gear 15 engaged with the bevel gear 13, disposed in the hollow shaft 10, and having a rotation axis 14 orthogonal to the central axis 11 of the hollow shaft 10. The spur gear 12 is immovable regardless of rotation of the hollow shaft 10, and the bevel gear 13 and the spur gear 15 move in the peripheral direction of the hollow shaft 10 with rotation of the hollow shaft 10 and rotate, and the central axis 11 of the hollow shaft 10 and the rotation axis 14 of the spur gear 15 are orthogonal to each other.

Description

本発明は、三次元駆動装置に関する。   The present invention relates to a three-dimensional drive device.

防犯用エリアセンサや建築土木用の三次元測距などの用途で、三次元光走査装置が提案されている。   Three-dimensional optical scanning devices have been proposed for applications such as security area sensors and three-dimensional distance measurement for architectural civil engineering.

たとえば、特許文献1には、ミラーを有する共振型ガルバノスキャナを、その回転軸と垂直かつ交差する回転軸を有するガルバノスキャナで支持した光走査装置が開示されている。また、特許文献2には、投光部と受光部とを有する三次元測距装置が開示されている。   For example, Patent Document 1 discloses an optical scanning device in which a resonance type galvano scanner having a mirror is supported by a galvano scanner having a rotation axis perpendicular to and intersecting with the rotation axis. Patent Document 2 discloses a three-dimensional distance measuring device having a light projecting unit and a light receiving unit.

特開2003−344797号公報JP 2003-344797 A 特開2009−236774号公報JP 2009-236774 A

しかし、特許文献1に開示された光走査装置を用いて三次元空間に照射する場合、光源を別体で、他の位置に設置する必要があり、装置構成が複雑になってしまう。また、特許文献2に開示された三次元測距装置は、投光部が鏡の上部にあるため、垂直方向の走査において、自装置の真上まで走査することはできない。さらに、上部にある投光部を支持するための支柱部分が水平方向の360度の走査を妨げている。   However, when irradiating a three-dimensional space using the optical scanning device disclosed in Patent Document 1, it is necessary to install the light source separately and at another position, which complicates the device configuration. In addition, since the three-dimensional distance measuring device disclosed in Patent Document 2 has a light projecting unit at the upper part of the mirror, it cannot scan up to directly above the device itself in vertical scanning. In addition, a column portion for supporting the light projecting unit at the top prevents 360-degree scanning in the horizontal direction.

本発明は、このような背景の下に行われたものであって、簡単な構成によって三次元空間の広範囲に光を照射することができる三次元駆動装置を提供することを目的とする。   The present invention has been made under such a background, and an object of the present invention is to provide a three-dimensional drive device that can irradiate light over a wide range of a three-dimensional space with a simple configuration.

本発明は、中空軸と、中空軸を周方向に回転させるモータと、中空軸の中心軸と共通の中心軸を有し、中空軸の中心部に配置される第一の平歯車と、第一の平歯車と噛合い、中空軸内に配置される傘歯車と、傘歯車と噛合い、中空軸内に配置され、中空軸の中心軸と直交する回転軸を有する第二の平歯車と、を有し、第一の平歯車は、中空軸の回転に係らず不動であり、傘歯車および第二の平歯車は、中空軸の回転と共に中空軸の周方向に移動して回動し、中空軸の中心軸と第二の平歯車の回転軸とは互いに直交することを特徴とする三次元駆動装置である。   The present invention includes a hollow shaft, a motor that rotates the hollow shaft in the circumferential direction, a first spur gear that has a central axis common to the central axis of the hollow shaft, and is arranged at the center of the hollow shaft, A bevel gear that meshes with one spur gear and is disposed within the hollow shaft; a second spur gear that meshes with the bevel gear and is disposed within the hollow shaft and has a rotation axis that is orthogonal to the central axis of the hollow shaft; The first spur gear is immovable regardless of the rotation of the hollow shaft, and the bevel gear and the second spur gear rotate and rotate in the circumferential direction of the hollow shaft with the rotation of the hollow shaft. The three-dimensional drive device is characterized in that the central axis of the hollow shaft and the rotation axis of the second spur gear are orthogonal to each other.

さらに、本発明の三次元駆動装置は、モータは、中空軸にロータが結合した中空モータであることができる。   Furthermore, in the three-dimensional drive device of the present invention, the motor can be a hollow motor in which a rotor is coupled to a hollow shaft.

また、第一の平歯車の中心軸側は、中空構造であり、中心軸の軸方向に光を照射する光源と、第二の平歯車の回転軸に取り付けられ、第二の平歯車の回転によって反射面の角度が変更され、光源から照射される光を反射する鏡と、を有することができる。   Also, the central shaft side of the first spur gear has a hollow structure, and is attached to the light source that irradiates light in the axial direction of the central shaft and the rotation shaft of the second spur gear, and the second spur gear rotates. The angle of the reflecting surface can be changed by the mirror, and the mirror can reflect the light emitted from the light source.

また、このときには、中空軸の外壁の一部は、鏡による反射光の進路を妨げないように切欠きが設けられることが好ましい。   In this case, it is preferable that a part of the outer wall of the hollow shaft is provided with a notch so as not to obstruct the path of reflected light by the mirror.

また、光源と共に設けられ、光源から照射された光の回帰光を受光する受光部と、光源から照射された光が外部に放射された方向および光源から照射された光と受光部で受光された回帰光との比較結果により外部の状況を検出する外部状況検出部と、を有するようにしてもよい。   In addition, a light receiving unit that is provided together with the light source and receives the return light of the light emitted from the light source, and a direction in which the light emitted from the light source is radiated to the outside and the light emitted from the light source and the light receiving unit You may make it have an external condition detection part which detects an external condition from the comparison result with return light.

さらに、中空軸の外周に沿い、周方向の位置に応じて高さが変化する壁面を有するようにしてもよい。   Furthermore, you may make it have a wall surface in which height changes along the outer periphery of a hollow shaft according to the position of the circumferential direction.

本発明によれば、簡単な構成によって三次元空間の広範囲に光を照射することができる。   According to the present invention, it is possible to irradiate light over a wide range of a three-dimensional space with a simple configuration.

本発明の第一の実施の形態に係る三次元駆動装置の要部構成を示す図である。It is a figure which shows the principal part structure of the three-dimensional drive device which concerns on 1st embodiment of this invention. 図1の三次元駆動装置の第一の平歯車、傘歯車、第二の平歯車、鏡、および光源の配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the 1st spur gear of a three-dimensional drive device of FIG. 1, a bevel gear, a 2nd spur gear, a mirror, and a light source. 図1の三次元駆動装置の斜視図である。It is a perspective view of the three-dimensional drive device of FIG. 本発明の第二の実施の形態に係る三次元駆動装置の要部構成を示す図である。It is a figure which shows the principal part structure of the three-dimensional drive device which concerns on 2nd embodiment of this invention. 図4の壁面の高さと走査方向との関係を示す図である。It is a figure which shows the relationship between the height of the wall surface of FIG. 4, and a scanning direction.

(第一の実施の形態)
本発明の第一の実施の形態に係る三次元駆動装置1を図1〜図3を参照しながら説明する。なお、図3では、図1に示す歯車の図示は省略してある。
(First embodiment)
A three-dimensional drive device 1 according to a first embodiment of the present invention will be described with reference to FIGS. In FIG. 3, the illustration of the gear shown in FIG. 1 is omitted.

三次元駆動装置1は、図1および図3に示すように、中空軸10と、中空軸10を周方向に回転させる中空モータMと、中空軸10の中心軸11と共通の中心軸を有し、中空軸10の中心部に配置される第一の平歯車12と、平歯車12と噛合い、中空軸10内に配置される傘歯車13と、傘歯車13と噛合い、中空軸10内に配置され、中空軸10の中心軸11と直交する回転軸14を有する第二の平歯車15と、を有し、平歯車12は、中空軸10の回転に係らず不動であり、傘歯車13および平歯車15は、中空軸10の回転と共に中空軸10の周方向に移動して回動し、中空軸10の中心軸11と平歯車15の回転軸14とは互いに直交する。   As shown in FIGS. 1 and 3, the three-dimensional drive device 1 has a hollow shaft 10, a hollow motor M that rotates the hollow shaft 10 in the circumferential direction, and a central shaft that is common to the central shaft 11 of the hollow shaft 10. The first spur gear 12 disposed at the center of the hollow shaft 10 and the spur gear 12 mesh with the bevel gear 13 and the bevel gear 13 disposed within the hollow shaft 10. And a second spur gear 15 having a rotation shaft 14 orthogonal to the central axis 11 of the hollow shaft 10, and the spur gear 12 is immovable regardless of the rotation of the hollow shaft 10. The gear 13 and the spur gear 15 move and rotate in the circumferential direction of the hollow shaft 10 as the hollow shaft 10 rotates, and the central axis 11 of the hollow shaft 10 and the rotation shaft 14 of the spur gear 15 are orthogonal to each other.

さらに、三次元駆動装置1は、図1に示すように、平歯車12の中心軸11側は、中空構造16であり、平歯車12の中心軸11の軸方向に光を照射する光源17と、平歯車15の回転軸14に取り付けられ、平歯車15の回転に伴い反射面の角度が変更され、光源17から照射される光を反射する鏡18と、を有する。なお、光源17は、中空モータMの中空構造内やモータの外部に設けられており、LED(発光ダイオード)やレーザである。また、鏡18は、回転軸14に取り付けられると説明したが、実際には、平歯車15の回転軸14を含むシャフト20に取り付けられる。シャフト20への鏡18の取り付け方法としては、たとえば、鏡18の表裏2枚の反射板で、シャフト20を挟み込むようにして取り付けることができる。   Further, as shown in FIG. 1, the three-dimensional drive device 1 has a hollow structure 16 on the central shaft 11 side of the spur gear 12, and a light source 17 that irradiates light in the axial direction of the central shaft 11 of the spur gear 12. The mirror 18 is attached to the rotary shaft 14 of the spur gear 15, and the angle of the reflecting surface is changed with the rotation of the spur gear 15 to reflect the light emitted from the light source 17. The light source 17 is provided in the hollow structure of the hollow motor M or outside the motor, and is an LED (light emitting diode) or a laser. In addition, the mirror 18 has been described as being attached to the rotating shaft 14, but actually, the mirror 18 is attached to the shaft 20 including the rotating shaft 14 of the spur gear 15. As a method for attaching the mirror 18 to the shaft 20, for example, the mirror 20 can be attached by sandwiching the shaft 20 with two reflectors on the front and back of the mirror 18.

平歯車12、傘歯車13、平歯車15、光源17、鏡18、およびシャフト20の配置関係を図1とは垂直方向に90度異なる方向から見ると図2に示すようになる。平歯車12の配置方向と平歯車15の配置方向は、互いに90度異なる。   FIG. 2 shows the positional relationship among the spur gear 12, the bevel gear 13, the spur gear 15, the light source 17, the mirror 18, and the shaft 20 when viewed from a direction different from FIG. 1 by 90 degrees in the vertical direction. The arrangement direction of the spur gear 12 and the arrangement direction of the spur gear 15 are different from each other by 90 degrees.

三次元駆動装置1は、たとえば、図3に示すように、中空モータMのロータ(不図示)に、中空軸10を載置し、中空モータMを駆動することで、中空軸10を回転させることができる。光源17は、たとえば、中空モータMの中空構造21に配置することができる。これによれば、中空軸10を1つの中空モータMによって回転させることで、平歯車15が回転軸14を中心にして回転し、傘歯車13を介して平歯車12を中心にして回転する。こうして中心軸11と回転軸14とが互いに直交する異なる2つの回転運動を発生させることができる。   For example, as shown in FIG. 3, the three-dimensional drive device 1 places the hollow shaft 10 on a rotor (not shown) of the hollow motor M and drives the hollow motor M to rotate the hollow shaft 10. be able to. The light source 17 can be disposed in the hollow structure 21 of the hollow motor M, for example. According to this, when the hollow shaft 10 is rotated by one hollow motor M, the spur gear 15 rotates about the rotating shaft 14 and rotates about the spur gear 12 via the bevel gear 13. In this way, two different rotational motions in which the central shaft 11 and the rotating shaft 14 are orthogonal to each other can be generated.

このように、中空軸10が回転することで、シャフト20の軸方向を水平方向とし、鏡18の回転方向(シャフト20の軸の回転方向)を鏡18の垂直方向とするとき、鏡18の水平方向の向きが変更され、平歯車15が回転することで、鏡18の垂直方向の向きが変更される。このとき、光源17から鏡18に向けて照射される光は、水平方向および垂直方向に同時に向きが変更され、三次元空間に照射される。   Thus, when the hollow shaft 10 is rotated, the axial direction of the shaft 20 is set to the horizontal direction, and when the rotating direction of the mirror 18 (the rotating direction of the shaft of the shaft 20) is set to the vertical direction of the mirror 18, The horizontal direction is changed, and the spur gear 15 rotates, whereby the vertical direction of the mirror 18 is changed. At this time, the direction of the light emitted from the light source 17 toward the mirror 18 is simultaneously changed in the horizontal direction and the vertical direction, and is applied to the three-dimensional space.

なお、平歯車12と平歯車15のギア比を適宜変更することにより、鏡18が水平方向に1回転する間に、鏡18が垂直方向に何回転するかを変更することができる。たとえば、平歯車12と平歯車15のギア比を2:1とすれば、鏡18が水平方向に1回転する間に、鏡18は垂直方向に半回転する。また、平歯車12と平歯車15のギア比を1:1とすれば、鏡18が水平方向に1回転する間に、鏡18は垂直方向に1回転する。あるいは、平歯車12と平歯車15のギア比を1:2とすれば、鏡18が水平方向に1回転する間に、鏡18は垂直方向に2回転する。   Note that by appropriately changing the gear ratio between the spur gear 12 and the spur gear 15, it is possible to change how many times the mirror 18 rotates in the vertical direction while the mirror 18 rotates once in the horizontal direction. For example, if the gear ratio between the spur gear 12 and the spur gear 15 is 2: 1, the mirror 18 is rotated halfway in the vertical direction while the mirror 18 is rotated once in the horizontal direction. If the gear ratio between the spur gear 12 and the spur gear 15 is 1: 1, the mirror 18 rotates once in the vertical direction while the mirror 18 rotates once in the horizontal direction. Alternatively, if the gear ratio between the spur gear 12 and the spur gear 15 is 1: 2, the mirror 18 rotates twice in the vertical direction while the mirror 18 rotates once in the horizontal direction.

また、上記では説明の簡便さのために、水平方向と垂直方向のギア比として2:1や1:2などの単純なものを用いたが、目的によっては異なる数値を採用可能である。たとえば、三次元空間に対して一定の空間密度で光の照射を行うためにはギア比として8:7や30:29のようなギア比を用いることもできる。このような最小公倍数の大きいギア比を用いると空間に対しての光線の照射が細かい網目状とすることが可能となる。歯車を用いる限りギア比は整数比となるが、歯車の代わりに摩擦変速機(図示せず)を用いる場合にはギア比を無理数など任意の値とすることもできる。また、ギア比を100:1や500:1にように大きく異ならせてもよい。これは、中空モータMは比較的高い回転速度で常用できることに対して鏡18は耐久性や精度を考慮して比較的低い回転速度で常用することが好ましいからである。このようにギア比が極端に異なる場合には歯車の代わりにウォームギヤ(図示せず)を用いてもよい。   Further, in the above, for simplicity of explanation, a simple gear ratio of 2: 1 or 1: 2 is used as the gear ratio in the horizontal direction and the vertical direction, but different numerical values can be adopted depending on purposes. For example, a gear ratio such as 8: 7 or 30:29 can be used to irradiate light with a constant spatial density to a three-dimensional space. When such a gear ratio having a large least common multiple is used, it becomes possible to make the light irradiation to the space a fine mesh. As long as the gear is used, the gear ratio is an integer ratio. However, when a friction transmission (not shown) is used instead of the gear, the gear ratio can be an arbitrary value such as an irrational number. Further, the gear ratio may be greatly varied such as 100: 1 or 500: 1. This is because the hollow motor M can be normally used at a relatively high rotation speed, whereas the mirror 18 is preferably used at a relatively low rotation speed in consideration of durability and accuracy. When the gear ratio is extremely different as described above, a worm gear (not shown) may be used instead of the gear.

さらに、中空軸10の外壁の一部は、鏡18による反射光の進路を妨げないように切欠き19が設けられる。   Furthermore, a part of the outer wall of the hollow shaft 10 is provided with a notch 19 so as not to obstruct the path of reflected light by the mirror 18.

以上説明したように、三次元駆動装置1によれば、中空軸10と、中空軸10の中心軸11と共通の中心軸を有し、中空軸10の中心部に配置される平歯車12と、平歯車12と噛合い、中空軸10内に配置される傘歯車13と、傘歯車13と噛合い、中空軸10内に配置され、中空軸10の中心軸11と直交する回転軸14を有する平歯車15と、を有するので、簡単な構成によって三次元空間の広範囲に光を照射することができる。特に、1つの動力によって、水平方向および垂直方向に照射することができる。また、光源17が平歯車12の中空構造16に設けられているので、垂直方向の走査については、自装置の真上までも走査可能であり、また、水平方向の走査については、自装置の全周方向(360度方向)の走査が可能である。   As described above, according to the three-dimensional drive device 1, the hollow shaft 10, the spur gear 12 having a central axis common to the central axis 11 of the hollow shaft 10 and disposed at the center of the hollow shaft 10, The bevel gear 13 that meshes with the spur gear 12 and is disposed within the hollow shaft 10, and the rotation shaft 14 that meshes with the bevel gear 13 and is disposed within the hollow shaft 10 and orthogonal to the central axis 11 of the hollow shaft 10. Since it has the spur gear 15 which has, it can irradiate light to the wide range of three-dimensional space by simple structure. In particular, it can irradiate in the horizontal and vertical directions with a single power. Further, since the light source 17 is provided in the hollow structure 16 of the spur gear 12, the vertical scanning can be performed up to the own device, and the horizontal scanning is performed by the own device. Scanning in the entire circumferential direction (360-degree direction) is possible.

なお、シャフト20は、中心軸11と直交しているので中心軸11に沿って照射される光は鏡18が立直した状態において真上に到達できない。この問題に対応するため、シャフト20が中心軸11と直交する箇所に鏡18が立直した際に光が透過可能な孔(図示せず)を設けたり、シャフト20の該当箇所や全体を光が透過可能な部材で構成してもよい。   Since the shaft 20 is orthogonal to the central axis 11, the light irradiated along the central axis 11 cannot reach directly above when the mirror 18 is upright. In order to cope with this problem, a hole (not shown) through which light can be transmitted when the mirror 18 is upright is provided at a position where the shaft 20 is orthogonal to the central axis 11, or light is transmitted through the corresponding part or the whole of the shaft 20. You may comprise with the member which can permeate | transmit.

以上の説明では、モータMは、そのロータが中空軸と結合して周方向に回転させる中空モータとしたが、中空ではないモータで中空軸10を回転駆動させるものでもよい。たとえば、中空軸10の外周をベルト等で結合して回転させる構造でもよい。   In the above description, the motor M is a hollow motor whose rotor is coupled to the hollow shaft and rotates in the circumferential direction. However, the motor M may be driven to rotate by a non-hollow motor. For example, the structure which couple | bonds the outer periphery of the hollow shaft 10 with a belt etc. and rotates may be sufficient.

また、以上の説明では、光源17から三次元空間に光を照射する例を説明したが、図3に示すように、光源17から照射した光の反射光を受光する受光部31を設け、距離算出部36で、照射した光が反射して回帰する時間により到達距離を算出する距離算出部36を設けることで、レーダ装置や測距装置とすることができる。また、図3では、照射光路と反射光路を併記したが、照射系と反射系を同一光軸とし、ハーフミラーで照射光と反射光を分離する光学系を設けることで、光源と受光部とを分離して設けることができる。   In the above description, the example in which light is emitted from the light source 17 to the three-dimensional space has been described. However, as illustrated in FIG. 3, the light receiving unit 31 that receives the reflected light of the light emitted from the light source 17 is provided. By providing the distance calculation unit 36 that calculates the reach distance based on the time when the irradiated light is reflected and returned by the calculation unit 36, a radar device or a distance measuring device can be obtained. In FIG. 3, the irradiation light path and the reflection light path are shown together. However, the light source and the light receiving unit are provided by providing an optical system in which the irradiation system and the reflection system have the same optical axis and a half mirror separates the irradiation light and the reflected light. Can be provided separately.

(第二の実施の形態)
本発明の第二の実施の形態に係る三次元駆動装置1aを図4および図5を参照しながら説明する。三次元駆動装置1aは、三次元駆動装置1と一部が異なる。よって、三次元駆動装置1と同一または同一系の部材には、三次元駆動装置1と同一または同一系の符号を付すこととする。
(Second embodiment)
A three-dimensional drive device 1a according to a second embodiment of the present invention will be described with reference to FIGS. The three-dimensional drive device 1a is partially different from the three-dimensional drive device 1. Therefore, the same or the same system members as those of the three-dimensional drive device 1 are denoted by the same or same reference numerals as those of the three-dimensional drive device 1.

三次元駆動装置1aは、三次元駆動装置1の中空軸10の外周に沿い、周方向の位置に応じて高さが変化する壁面30をさらに有する構成である。また、三次元駆動装置1aは、三次元駆動装置1の光源17の他に、受光部31を有する。さらに、光源17から照射された光が外部に放射された方向(すなわち、走査方向)および光源17から照射された光と受光部31で受光された回帰光との比較結果により外部の状況を検出する外部状況検出部32を有する。これにより、三次元駆動装置1aは、レーダ装置または測距装置としての機能を有することができる。上述の比較結果の一例としては、光源17から照射された光が回帰光となり受光部31で受光されるまでの経過時間(時間差)などである。   The three-dimensional drive device 1a is configured to further include a wall surface 30 whose height changes along the outer periphery of the hollow shaft 10 of the three-dimensional drive device 1 according to the position in the circumferential direction. In addition to the light source 17 of the three-dimensional drive device 1, the three-dimensional drive device 1 a includes a light receiving unit 31. Further, the external situation is detected based on the direction in which the light emitted from the light source 17 is radiated to the outside (that is, the scanning direction) and the comparison result between the light emitted from the light source 17 and the return light received by the light receiving unit 31. The external situation detection unit 32 that performs Thereby, the three-dimensional drive device 1a can have a function as a radar device or a distance measuring device. As an example of the comparison result described above, there is an elapsed time (time difference) until the light emitted from the light source 17 becomes recursive light and is received by the light receiving unit 31.

このような三次元駆動装置1aにおける壁面30の利用方法について、以下に説明する。   A method of using the wall surface 30 in such a three-dimensional drive device 1a will be described below.

レーダ装置または測距装置としての三次元駆動装置1aを周囲の状況を観測したい部屋などの空間の所定の位置に載置し、レーダ装置または測距装置としての機能を稼働させる。このとき、中空軸10が1回転する間に、平歯車15が少なくとも2回転するようなギア比とすると、鏡18の表裏を合わせて4回、壁面30の内周面の走査が実施される。これにより外部状況検出部32には、中空軸10の直近にある壁面30の状況が検出される。すなわち、外部状況検出部32には、たとえば光源17の配置位置などの所定の測定基準点から壁面30の内周面までの距離が検出される。そのときに、壁面30の高さ(壁面30の上縁)は、垂直方向において測定距離が急に変化する(長くなる)位置として容易に検出が可能である。このとき壁面30の高さは、周方向において、変化するようになっている。したがって、壁面30の高さを調べることで、その高さを有する周方向の壁面30の箇所を特定することができる。   The three-dimensional driving device 1a as a radar device or a distance measuring device is placed at a predetermined position in a space such as a room where the surrounding situation is to be observed, and the function as the radar device or the distance measuring device is operated. At this time, if the gear ratio is such that the spur gear 15 rotates at least twice while the hollow shaft 10 rotates once, the inner peripheral surface of the wall surface 30 is scanned four times in total, including the front and back of the mirror 18. . As a result, the external state detection unit 32 detects the state of the wall surface 30 immediately adjacent to the hollow shaft 10. That is, the external condition detection unit 32 detects the distance from a predetermined measurement reference point such as the arrangement position of the light source 17 to the inner peripheral surface of the wall surface 30. At that time, the height of the wall surface 30 (the upper edge of the wall surface 30) can be easily detected as a position where the measurement distance suddenly changes (becomes longer) in the vertical direction. At this time, the height of the wall surface 30 changes in the circumferential direction. Therefore, by examining the height of the wall surface 30, the location of the circumferential wall surface 30 having that height can be specified.

このようにして検出した壁面30の高さの検出結果を図5に示す。図5は、横軸に走査方向をとり、縦軸に壁面30の高さをとる。図5の例では、壁面30が最も低い位置(図5では20mm)を走査方向が0度(=360度)であるとし、壁面30が最も高い位置(図5では40mm)を走査方向が180度であるとする。このようにすることで、0度〜180度または180度〜360度の間の壁面30の高さに対する走査方向を特定することができる。さらに、壁面30の検出結果が時間の経過と共に漸増しているか漸減しているかを調べることで、0度〜180度の間にあるか180度〜360度の間にあるかを調べることができる。   FIG. 5 shows the detection result of the height of the wall surface 30 thus detected. In FIG. 5, the horizontal axis represents the scanning direction, and the vertical axis represents the height of the wall surface 30. In the example of FIG. 5, the scanning direction is 0 degree (= 360 degrees) at the lowest position (20 mm in FIG. 5) of the wall surface 30, and the scanning direction is 180 at the highest position (40 mm in FIG. 5). Suppose that it is degree. By doing in this way, the scanning direction with respect to the height of the wall surface 30 between 0 degree | times -180 degree | times or 180 degree | times -360 degree | times can be specified. Further, by checking whether the detection result of the wall surface 30 is gradually increasing or decreasing with the passage of time, it can be determined whether it is between 0 degree and 180 degrees or between 180 degrees and 360 degrees. .

たとえば、図5に示すように、壁面30の高さが30mmのときの走査方向は70度または290度であると特定できる。ここで、壁面30の高さの検出結果が時間の経過と共に漸増していれば70度であり、漸減していれば290度である。   For example, as shown in FIG. 5, the scanning direction when the height of the wall surface 30 is 30 mm can be specified as 70 degrees or 290 degrees. Here, if the detection result of the height of the wall surface 30 is gradually increased with time, it is 70 degrees, and if it is gradually decreased, it is 290 degrees.

さらに、たとえば、三次元駆動装置1aの筐体に記されている方位指標33,34をそれぞれ北と南に一致させることにより、レーダ装置または測距装置の走査方向が東西南北のいずれの方向であるかも併せて特定することができる。これによれば、壁面30の高さが最小となる位置がそのまま磁極の北(0度)になり、壁面30の高さが最大となる位置がそのまま磁極の南(180度)になる。   Further, for example, by making the orientation indices 33 and 34 marked on the housing of the three-dimensional drive device 1a coincide with north and south, respectively, the scanning direction of the radar device or the distance measuring device is any direction of east, west, south, and north. It can be specified together. According to this, the position where the height of the wall surface 30 is the minimum is directly north of the magnetic pole (0 degree), and the position where the height of the wall surface 30 is maximum is the south of the magnetic pole (180 degrees).

なお、壁面30の高さの最小値は、たとえば、切欠き19の下縁の高さに合わせることが好ましい。これによれば、壁面30の上縁が切欠き19の下縁に隠れて検出できなくなることを避けることができる。また、壁面30の高さの最大値は、図5の例では、最小値(20mm)の2倍(40mm)としたが、光源17からの照射光を妨げないためには、壁面30の高さの最大値と最小値との差分は、小さい方が好ましい。したがって、外部状況検出部32の分解能に応じて、壁面30の高さの最大値と最小値との差分は、なるべく小さくすることがよい。   In addition, it is preferable to match the minimum value of the height of the wall surface 30 with the height of the lower edge of the notch 19, for example. According to this, it can avoid that the upper edge of the wall surface 30 is hidden behind the notch 19 and cannot be detected. In the example of FIG. 5, the maximum value of the height of the wall surface 30 is twice (40 mm) the minimum value (20 mm). The difference between the maximum value and the minimum value is preferably small. Therefore, the difference between the maximum value and the minimum value of the height of the wall surface 30 is preferably made as small as possible according to the resolution of the external situation detection unit 32.

このようにして、外部状況検出部32は、壁面30の高さの検出結果から走査方向を特定することができる。これにより、外部状況検出部32は、走査方向および光源17から照射された光が回帰光となり受光部31で受光されるまでの経過時間(時間差)等から外部の状況を検出することができる。   In this way, the external situation detection unit 32 can specify the scanning direction from the detection result of the height of the wall surface 30. As a result, the external situation detection unit 32 can detect the external situation from the scanning direction and the elapsed time (time difference) until the light emitted from the light source 17 becomes the return light and is received by the light receiving unit 31.

従来は、レーダ装置または測距装置の走査方向を知るには、光の照射方向を検出するためのロータリエンコーダ等の装置を別途用意しなければならなかった。これに対し、三次元駆動装置1aによれば、簡単な壁面30を有することで、ロータリエンコーダ等の高価な装置を装備することなく、レーダ装置または測距装置の走査方向を知ることができる。   Conventionally, in order to know the scanning direction of the radar device or the distance measuring device, a device such as a rotary encoder for detecting the light irradiation direction has to be prepared separately. On the other hand, according to the three-dimensional drive device 1a, by having the simple wall surface 30, it is possible to know the scanning direction of the radar device or the distance measuring device without providing an expensive device such as a rotary encoder.

(その他の実施の形態)
上述の実施の形態では、光源17または受光部31をモータMの中空構造16内あるいは中心軸11の軸方向に配置した。このような光源17または受光部31の配置は、装置の製作コストや製作工数の点から有利であるが、製作コストや製作工数を考慮しなければ、配置位置は他の位置であってもよい。たとえば、中空軸10の上部に支柱を設け、鏡18の上部に光源17または受光部31を配置してもよい。この場合、光源17または受光部31への給電は、回転体に電力を供給するスリップリングを介して行うことができる。
また、光源17、受光部31の配置は、モータMの中空軸の下部の延長上でモータMの外部(図面下部)でもよい。さらに、照射光や回帰光が平歯車12の中空構造中を通過すればよいので、45°ミラーやハーフミラー等で光学的に光路を折り曲げた位置に光源17、受光部31を設けることも可能である。
このような構造とすることで、中空軸10が短くなり構造的に堅牢化し高速回転が可能となる。さらには光源17、受光部31を複数組用意して用途に応じて切換えたり取替えたりするなどの機能を付与することができ、汎用化が可能となる。
(Other embodiments)
In the above-described embodiment, the light source 17 or the light receiving unit 31 is arranged in the hollow structure 16 of the motor M or in the axial direction of the central shaft 11. Such an arrangement of the light source 17 or the light receiving unit 31 is advantageous in terms of the manufacturing cost and manufacturing man-hour of the apparatus, but the arrangement position may be another position if the manufacturing cost and the manufacturing man-hour are not taken into consideration. . For example, a support column may be provided on the upper portion of the hollow shaft 10 and the light source 17 or the light receiving unit 31 may be disposed on the upper portion of the mirror 18. In this case, power can be supplied to the light source 17 or the light receiving unit 31 via a slip ring that supplies power to the rotating body.
Further, the arrangement of the light source 17 and the light receiving unit 31 may be outside the motor M (lower part of the drawing) on the extension of the lower part of the hollow shaft of the motor M. Furthermore, since the irradiation light and the return light only need to pass through the hollow structure of the spur gear 12, the light source 17 and the light receiving unit 31 can be provided at a position where the optical path is optically bent by a 45 ° mirror, a half mirror, or the like. It is.
By adopting such a structure, the hollow shaft 10 is shortened to be structurally robust and capable of high speed rotation. Furthermore, a plurality of sets of the light source 17 and the light receiving unit 31 can be prepared, and functions such as switching and replacement according to the application can be given, and generalization is possible.

1…三次元駆動装置、10…中空軸、11…中心軸(中空軸の中心軸、第一の平歯車の中心軸)、12…平歯車(第一の平歯車)、13…傘歯車、14…中心軸(第二の平歯車の中心軸)、15…平歯車(第二の平歯車)、16,21…中空構造、17…光源、18…鏡、19…切欠き、20…シャフト、30…壁面、31…受光部、32…外部状況検出部、33…方位指標、34…方位指標、36…距離算出部、M…中空モータ DESCRIPTION OF SYMBOLS 1 ... Three-dimensional drive device, 10 ... Hollow shaft, 11 ... Center axis (Center axis of a hollow shaft, the center axis of a 1st spur gear), 12 ... Spur gear (1st spur gear), 13 ... Bevel gear, DESCRIPTION OF SYMBOLS 14 ... Center axis (center axis of 2nd spur gear), 15 ... Spur gear (2nd spur gear), 16, 21 ... Hollow structure, 17 ... Light source, 18 ... Mirror, 19 ... Notch, 20 ... Shaft , 30 ... Wall surface, 31 ... Light receiving part, 32 ... External condition detection part, 33 ... Direction index, 34 ... Direction index, 36 ... Distance calculation part, M ... Hollow motor

Claims (6)

中空軸と、
前記中空軸を周方向に回転させるモータと、
前記中空軸の中心軸と共通の中心軸を有し、前記中空軸の中心部に配置される第一の平歯車と、
前記第一の平歯車と噛合い、前記中空軸内に配置される傘歯車と、
前記傘歯車と噛合い、前記中空軸内に配置され、前記中空軸の中心軸と直交する回転軸を有する第二の平歯車と、
を有し、
前記第一の平歯車は、前記中空軸の回転に係らず不動であり、
前記傘歯車および前記第二の平歯車は、前記中空軸の回転と共に前記中空軸の周方向に移動して回動し、
前記中空軸の中心軸と前記第二の平歯車の回転軸とは互いに直交する、
ことを特徴とする三次元駆動装置。
A hollow shaft;
A motor for rotating the hollow shaft in the circumferential direction;
A first spur gear having a central axis in common with the central axis of the hollow shaft and disposed in a central portion of the hollow shaft;
Meshing with the first spur gear, and a bevel gear disposed in the hollow shaft;
A second spur gear meshing with the bevel gear and disposed within the hollow shaft and having a rotation axis orthogonal to the central axis of the hollow shaft;
Have
The first spur gear is immovable regardless of the rotation of the hollow shaft,
The bevel gear and the second spur gear move and rotate in the circumferential direction of the hollow shaft together with the rotation of the hollow shaft,
The center axis of the hollow shaft and the rotation axis of the second spur gear are orthogonal to each other,
A three-dimensional drive device characterized by that.
請求項1記載の三次元駆動装置において、
前記モータは、前記中空軸にロータが結合した中空モータである
ことを特徴とする三次元駆動装置。
The three-dimensional drive device according to claim 1,
The motor is a hollow motor in which a rotor is coupled to the hollow shaft.
請求項1または2記載の三次元駆動装置において、
前記第一の平歯車の中心軸側は、中空構造であり、
前記中心軸の軸方向に光を照射する光源と、
前記第二の平歯車の回転軸に取り付けられ、前記第二の平歯車の回転によって反射面の角度が変更され、前記光源から照射される光を反射する鏡と、
を有する、
ことを特徴とする三次元駆動装置。
The three-dimensional drive device according to claim 1 or 2,
The central shaft side of the first spur gear has a hollow structure,
A light source that emits light in the axial direction of the central axis;
A mirror that is attached to the rotation shaft of the second spur gear, the angle of the reflecting surface is changed by the rotation of the second spur gear, and reflects the light emitted from the light source;
Having
A three-dimensional drive device characterized by that.
請求項3記載の三次元駆動装置において、
前記中空軸の外壁の一部は、前記鏡による反射光の進路を妨げないように切欠きが設けられる、
ことを特徴とする三次元駆動装置。
The three-dimensional drive device according to claim 3, wherein
A part of the outer wall of the hollow shaft is notched so as not to obstruct the path of reflected light by the mirror.
A three-dimensional drive device characterized by that.
請求項3または4記載の三次元駆動装置において、
前記光源と共に設けられ、前記光源から照射された光の回帰光を受光する受光部と、
前記光源から照射された光が外部に放射された方向および前記光源から照射された光と前記受光部で受光された回帰光との比較結果により外部の状況を検出する外部状況検出部と、
を有する、
ことを特徴とする三次元駆動装置。
The three-dimensional drive device according to claim 3 or 4,
A light receiving unit that is provided together with the light source and receives the return light of the light emitted from the light source;
An external situation detection unit that detects an external situation based on a direction in which light emitted from the light source is emitted to the outside and a comparison result between the light emitted from the light source and the return light received by the light receiving unit;
Having
A three-dimensional drive device characterized by that.
請求項5記載の三次元駆動装置において、
前記中空軸の外周に沿い、周方向の位置に応じて高さが変化する壁面を有する、
ことを特徴とする三次元駆動装置。
The three-dimensional drive device according to claim 5, wherein
Along the outer periphery of the hollow shaft, it has a wall surface whose height changes according to the position in the circumferential direction.
A three-dimensional drive device characterized by that.
JP2015107779A 2014-05-30 2015-05-27 3D drive Expired - Fee Related JP6105673B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015107779A JP6105673B2 (en) 2014-05-30 2015-05-27 3D drive
PCT/JP2015/065423 WO2015182710A1 (en) 2014-05-30 2015-05-28 Three-dimensional drive device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014112774 2014-05-30
JP2014112774 2014-05-30
JP2015107779A JP6105673B2 (en) 2014-05-30 2015-05-27 3D drive

Publications (2)

Publication Number Publication Date
JP2016006506A true JP2016006506A (en) 2016-01-14
JP6105673B2 JP6105673B2 (en) 2017-03-29

Family

ID=54699033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107779A Expired - Fee Related JP6105673B2 (en) 2014-05-30 2015-05-27 3D drive

Country Status (2)

Country Link
JP (1) JP6105673B2 (en)
WO (1) WO2015182710A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117269942B (en) * 2023-11-22 2024-02-02 成都量芯集成科技有限公司 Distance calibration device and method for laser range finder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205880A (en) * 1982-05-27 1983-11-30 Aoki Kensetsu:Kk Laser deflector
JPS6456411A (en) * 1987-05-18 1989-03-03 Shimadzu Corp Optical scanner
JP2008082707A (en) * 2006-09-25 2008-04-10 Topcon Corp Survey method, survey system, and survey data processing program
JP2010048897A (en) * 2008-08-19 2010-03-04 Seiko Epson Corp Optical scanner and image forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205880A (en) * 1982-05-27 1983-11-30 Aoki Kensetsu:Kk Laser deflector
JPS6456411A (en) * 1987-05-18 1989-03-03 Shimadzu Corp Optical scanner
JP2008082707A (en) * 2006-09-25 2008-04-10 Topcon Corp Survey method, survey system, and survey data processing program
JP2010048897A (en) * 2008-08-19 2010-03-04 Seiko Epson Corp Optical scanner and image forming apparatus

Also Published As

Publication number Publication date
WO2015182710A1 (en) 2015-12-03
JP6105673B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6771994B2 (en) Measurement method and laser scanner
JP6541365B2 (en) Posture detection device and data acquisition device
JP6817097B2 (en) Surveying system
JP4059911B1 (en) 3D ranging device
JP5626770B2 (en) Laser distance measuring device
JP2018173346A (en) Laser scanner
JP6867734B2 (en) Shaft support structure, laser beam irradiation unit and surveying device
JP2016109679A (en) Photoelectronic sensor and article detecting method
EP2818827A1 (en) Laser surveying device
KR101486146B1 (en) 3-demensional laser scanner
US11789151B2 (en) Target unit
JP2017223489A (en) Survey system
WO2021205948A1 (en) Tilt sensor and data acquring device
JP6105518B2 (en) 3D drive
JP6105673B2 (en) 3D drive
JP2022015633A (en) Surveying device
JP6028050B2 (en) Photoelectric sensor and method for detecting object in monitoring area
KR20210037951A (en) Lidar three-dimension scanning apparatus
WO2017130942A1 (en) Optical scanner
JP6761715B2 (en) Surveying device
JP2017223608A (en) Surveying device
JP6883738B2 (en) Optical scanning device
JP2019203772A (en) Multi-rotational absolute rotational angle detector and gear
KR100857608B1 (en) Laser scanner with rotational multi head
WO2017065049A1 (en) Optical-scanning-type object detection device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170302

R150 Certificate of patent or registration of utility model

Ref document number: 6105673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees