JP2016006431A - Normal temperature nuclear fusion reaction method and device - Google Patents

Normal temperature nuclear fusion reaction method and device Download PDF

Info

Publication number
JP2016006431A
JP2016006431A JP2015160521A JP2015160521A JP2016006431A JP 2016006431 A JP2016006431 A JP 2016006431A JP 2015160521 A JP2015160521 A JP 2015160521A JP 2015160521 A JP2015160521 A JP 2015160521A JP 2016006431 A JP2016006431 A JP 2016006431A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrolysis
reaction
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015160521A
Other languages
Japanese (ja)
Inventor
雄造 川村
Yuzo Kawamura
雄造 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDEA RES KK
IDEA RESEARCH KK
Original Assignee
IDEA RES KK
IDEA RESEARCH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDEA RES KK, IDEA RESEARCH KK filed Critical IDEA RES KK
Priority to JP2015160521A priority Critical patent/JP2016006431A/en
Publication of JP2016006431A publication Critical patent/JP2016006431A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PROBLEM TO BE SOLVED: To provide a normal temperature nuclear fusion reaction method and device for achieving the reduction of facility costs and the stabilization of an operation by extracting electric energy as an output in a normal temperature nuclear fusion reaction state.SOLUTION: A positive electrode 22C for acceleration and a negative electrode 24C for acceleration are installed in electrolytic solution in a reaction container 13C, and a positive electrode (positive electrode 210 for reference) for power collection and a negative electrode (negative electrode 214 for reference) for power collection are arranged in the neighborhood of the positive electrode 22C for acceleration and the negative electrode 24C for acceleration, and a normal temperature nuclear fusion state is generated between the positive electrode 22C for acceleration and the negative electrode 24C for acceleration by applying a reaction voltage to the positive electrode 22C for acceleration and the negative electrode 24C for acceleration, and electric energy in the normal temperature nuclear fusion state is extracted by the positive electrode 210 for power collection and the negative electrode 214 for power collection, and fed to a power load 232 and consumed.

Description

本発明は、常温で核融合反応を行う常温核融合反応方法及び装置に関する。   The present invention relates to a cold fusion reaction method and apparatus for performing a fusion reaction at normal temperature.

一般に、太陽では核融合反応が行われ、地球は、この核融合によるエネルギーを受けていることは知られている(例えば、非特許文献1参照)。また、この核融合反応を常温で行う方法として、反応容器内の電解液中に正電極及び負電極を配置し、正電極及び負電極間に反応電圧を印加して高電圧電気分解を利用して行う方法が知られている(例えば、非特許文献2)。   Generally, it is known that a fusion reaction is performed in the sun, and that the earth receives energy from this fusion (for example, see Non-Patent Document 1). In addition, as a method of performing this fusion reaction at room temperature, a positive electrode and a negative electrode are arranged in an electrolyte solution in a reaction vessel, and a reaction voltage is applied between the positive electrode and the negative electrode to utilize high voltage electrolysis. The method to perform is known (for example, nonpatent literature 2).

「太陽エネルギー入門」:ソル・ウィーダー著、押出勇雄監修(特に、第8頁「放射エネルギー流」)“Introduction to Solar Energy”: Sol Weeder, supervised by Yusuke Extrusion (especially, page 8 “Radiation energy flow”) 「固体内核反応研究NO.1」:工学社(特に、第159頁第7章「金属軽水電解系での核変換反応」:大森唯義、第219頁第9章「液中放電電解による熱と生成物」:水野忠彦)“Intra-solid nuclear reaction research No. 1”: Engineering Co., Ltd. (especially, page 159, chapter 7 “Transmutation reaction in light metal water electrolysis system”: Yuiyoshi Omori, page 219, chapter 9 “Heat caused by submerged discharge electrolysis” Product: Tadahiko Mizuno)

しかしながら、このような常温核融合反応方法では、反応条件が明確に規定し難く、また常温核融合反応の制御が困難であり、このことに起因して、常温核融合反応装置の設計が定まらず、装置を大型化することができない状況にあった。   However, in such a cold fusion reaction method, it is difficult to clearly define the reaction conditions and it is difficult to control the cold fusion reaction, and as a result, the design of the cold fusion reaction device has not been determined. The device could not be enlarged.

本発明の目的は、常温核融合反応状態において電気エネルギーを出力として取り出すことにより、設備費用の低減化及び稼働の安定化を図ることができる常温核融合反応方法及び装置を提供することである。   An object of the present invention is to provide a cold fusion reaction method and apparatus capable of reducing equipment costs and stabilizing operation by taking out electrical energy as an output in the cold fusion reaction state.

本発明の請求項1に記載の常温核融合反応方法は、反応容器内の電解液中に加速用正電極及び加速用負電極を設置するとともに、前記加速用正電極及び前記加速用負電極の近傍に集電するための集電用正電極及び集電用負電極を配置し、前記加速用正電極及び前記加速用負電極に反応電圧を印加して前記加速用正電極及び前記加速用負電極間に常温核融合状態を発生させ、この常温核融合状態における電気エネルギーを前記集電用正電極及び前記集電用負電極により取り出して電力負荷に送給することを特徴とする。   In the cold fusion reaction method according to claim 1 of the present invention, an accelerating positive electrode and an accelerating negative electrode are installed in an electrolytic solution in a reaction vessel, and the accelerating positive electrode and the accelerating negative electrode are A positive electrode for collecting current and a negative electrode for collecting current are arranged in the vicinity, and a reaction voltage is applied to the positive electrode for acceleration and the negative electrode for acceleration so that the positive electrode for acceleration and the negative electrode for acceleration are arranged. A cold fusion state is generated between the electrodes, and electric energy in the cold fusion state is taken out by the current collecting positive electrode and the current collecting negative electrode and supplied to an electric power load.

また、本発明の請求項2に記載の常温核融合反応方法では、前記反応容器内に電解用正電極及び電解用負電極を設置し、前記電解用正電極及び前記電解用負電極間に電解電圧を印加して電解液中で予備電解を行い、その後前記加速用正電極及び前記加速用負電極の間の反応電圧を印加して前記加速用正電極及び前記加速用負電極間に常温各融合状態を発生させることを特徴とする。   In the cold fusion reaction method according to claim 2 of the present invention, an electrolysis positive electrode and an electrolysis negative electrode are installed in the reaction vessel, and electrolysis is performed between the electrolysis positive electrode and the electrolysis negative electrode. A voltage is applied to perform preliminary electrolysis in an electrolytic solution, and then a reaction voltage between the accelerating positive electrode and the accelerating negative electrode is applied to each room temperature between the accelerating positive electrode and the accelerating negative electrode. It is characterized by generating a fusion state.

また、本発明の請求項3に記載の常温核融合反応方法では、前記加速用正電極に対応して前記電解用正電極を配設し、前記加速用正電極と前記電解用正電極との間に電解電圧を印加して前記加速用正電極を前記電解用負電極として機能させることを特徴とする。   In the cold fusion reaction method according to claim 3 of the present invention, the positive electrode for electrolysis is disposed corresponding to the positive electrode for acceleration, and the positive electrode for acceleration and the positive electrode for electrolysis are provided. Electrolytic voltage is applied in between, and the positive electrode for acceleration functions as the negative electrode for electrolysis.

また、本発明の請求項4に記載の常温核融合反応装置は、電解液を収容する反応容器と、前記反応容器内の電解液中に浸漬された加速用正電極及び加速用負電極と、前記加速用正電極及び前記加速用負電極の近傍に配設された集電用正電極及び集電用負電極と、前記加速用正電極及び前記加速用負電極に反応電圧を印加するための第1電源装置と、電力を消費するための電力負荷とを備え、前記第1電源装置からの反応電圧が前記加速用正電極及び前記加速用負電極間に印加されて前記反応容器内で常温核融合状態が発生し、この常温核融合状態における電気エネルギーが前記集電用正電極及び前記集電用負電極により集電されて取り出され、取り出された電気エネルギーが前記電力負荷で消費されることを特徴とする。   Moreover, the cold fusion reactor according to claim 4 of the present invention is a reaction vessel containing an electrolytic solution, an accelerating positive electrode and an accelerating negative electrode immersed in the electrolytic solution in the reaction vessel, For applying a reaction voltage to the positive electrode for current collection and the negative electrode for current collection disposed in the vicinity of the positive electrode for acceleration and the negative electrode for acceleration, and the positive electrode for acceleration and the negative electrode for acceleration A first power supply device and a power load for consuming electric power, and a reaction voltage from the first power supply device is applied between the accelerating positive electrode and the accelerating negative electrode so that the room temperature is within the reaction vessel. A fusion state occurs, and the electric energy in the cold fusion state is collected and extracted by the current collecting positive electrode and the current collecting negative electrode, and the extracted electric energy is consumed by the power load. It is characterized by that.

更に、本発明の請求項5に記載の常温核融合反応装置では、前記反応容器内には、電解液中に浸漬されるように電解用正電極及び電解用負電極が設置され、更に、前記電解用正電極及び前記電解用負電極間に電解電圧を印加するための第2電源装置が設けられ、常温核融合反応を行うに際し、前記電解用正電極及び前記電解用負電極間に前記第2電源装置からの電解電圧が印加されて電解液中で予備電解が行われ、その後前記加速用正電極及び前記加速用負電極の間に前記第1電源装置からの反応電圧が印加されて前記加速用正電極及び前記加速用負電極間に常温各融合状態が発生することを特徴とする。   Furthermore, in the cold fusion reactor according to claim 5 of the present invention, a positive electrode for electrolysis and a negative electrode for electrolysis are installed in the reaction vessel so as to be immersed in the electrolytic solution, A second power supply device for applying an electrolytic voltage between the positive electrode for electrolysis and the negative electrode for electrolysis is provided, and when performing a cold fusion reaction, the second power supply device is provided between the positive electrode for electrolysis and the negative electrode for electrolysis. The electrolytic voltage from the two power supply devices is applied and preliminary electrolysis is performed in the electrolytic solution, and then the reaction voltage from the first power supply device is applied between the accelerating positive electrode and the accelerating negative electrode. Each fusion state occurs at normal temperature between the positive electrode for acceleration and the negative electrode for acceleration.

本発明の請求項1に記載の常温核融合反応方法及び請求項4に記載の常温核融合反応装置によれば、電解液中に設置した加速用正電極及び加速用負電極に反応電力を印加してグロウ放電発光させているので、このグロウ放電発光の領域で常温核融合反応状態を生じさせることができる。また、加速用正電極及び加速用負電極の近傍に集電用正電極及び集電用負電極を配設しているので、常温核融合状態における電気エネルギーを集電用正電極及び集電用負電極を通して取り出すことができ、この取り出した電気エネルギー(集電した電力)を電力として電力負荷に送給して消費することができる。   According to the cold fusion reaction method according to claim 1 of the present invention and the cold fusion reaction device according to claim 4, the reaction power is applied to the accelerating positive electrode and the accelerating negative electrode installed in the electrolyte. Since glow discharge is emitted, a cold fusion reaction state can be generated in this glow discharge region. Moreover, since the positive electrode for current collection and the negative electrode for current collection are arranged in the vicinity of the positive electrode for acceleration and the negative electrode for acceleration, the electric energy in the normal temperature fusion state is used for the positive electrode for current collection and for current collection. It can be taken out through the negative electrode, and the taken-out electric energy (collected power) can be sent to the power load as electric power for consumption.

また、本発明の請求項2に記載の常温核融合反応方法及び請求項5に記載の常温核融合反応装置によれば、反応容器内に電解用正電極及び電解用負電極を設置し、電解用正電極及び電解用負電極間に電解電圧を印加して電解液中で予備電解を行い、その後加速用正電極及び加速用負電極の間の反応電圧を印加して常温核融合反応させるので、比較的短時間に常温各融合状態に移行させることができる。   Moreover, according to the cold fusion reaction method according to claim 2 of the present invention and the cold fusion reaction device according to claim 5, the positive electrode for electrolysis and the negative electrode for electrolysis are installed in the reaction vessel, and electrolysis is performed. Since the electrolysis voltage is applied between the positive electrode for electrolysis and the negative electrode for electrolysis, preliminary electrolysis is performed in the electrolyte, and then the reaction voltage between the positive electrode for acceleration and the negative electrode for acceleration is applied to cause cold fusion reaction. In a relatively short time, it can be transferred to each fusion state at room temperature.

更に、本発明の請求項3に記載の常温核融合反応方法では、加速用正電極に対応して電解用正電極を配設し、加速用正電極と電解用正電極との間に電解電圧を印加して加速用正電極を電解用負電極としても機能させるので、電解用負電極を省略して電極構造の簡略化を図ることができる。   Furthermore, in the cold fusion reaction method according to claim 3 of the present invention, an electrolysis positive electrode is disposed corresponding to the acceleration positive electrode, and an electrolytic voltage is provided between the acceleration positive electrode and the electrolysis positive electrode. Is applied to cause the positive electrode for acceleration to function as a negative electrode for electrolysis, so that the electrode structure can be simplified by omitting the negative electrode for electrolysis.

太陽と地球との関係を模式的に示す図。The figure which shows the relationship between the sun and the earth typically. 太陽と地球の距離を10mとして置き換えたときの関係を模式的に示す図。The figure which shows typically the relationship when the distance of the sun and the earth is replaced as 10m. 常温核融合反応装置の第1の実施形態を簡略的に示す断面図。Sectional drawing which shows 1st Embodiment of a cold fusion reaction apparatus simply. 常温核融合反応装置の第2の実施形態を簡略的に示す断面図。Sectional drawing which shows 2nd Embodiment of a cold fusion reaction apparatus simply. 図4に示す常温核融合反応装置の負電極の一例を示す図であって、図5(a)はその平面図、図5(b)はその正面図、図5(c)はその側面図。It is a figure which shows an example of the negative electrode of the cold fusion reactor shown in FIG. 4, Comprising: Fig.5 (a) is the top view, FIG.5 (b) is the front view, FIG.5 (c) is the side view. . 常温核融合反応装置を熱利用システムに適用した一例を簡略的に示す断面図。Sectional drawing which shows simply an example which applied the normal temperature fusion reaction apparatus to the heat utilization system. 常温核融合反応装置の第3の実施形態を簡略的に示す断面図。Sectional drawing which shows 3rd Embodiment of a cold fusion reactor simply.

以下、添付図面を参照して更に詳述する。まず、放射エネルギーと核反応について説明する。一般的に、電気溶接時の放電アークの温度は、6,000K(絶対温度)程度であり、この温度は太陽の表面輻射温度に近い温度である。シュテハン・ボルツマンの法則によれば、黒体の表面から輻射される熱量(電磁波のエネルギー)は、その黒体の絶対温度(熱力学的温度)の4乗に比例するとされ、6,000Kの黒体から輻射される熱量(電磁波のエネルギー)は、70,000kW/m程度となる。一般的に、太陽は、5,800K(絶対温度)とされ、この太陽から輻射される熱量(電磁波のエネルギー)は、64,000kW/m程度である。 Hereinafter, further details will be described with reference to the accompanying drawings. First, radiant energy and nuclear reaction will be described. Generally, the temperature of the discharge arc during electric welding is about 6,000 K (absolute temperature), and this temperature is close to the surface radiation temperature of the sun. According to Stehan-Boltzmann's law, the amount of heat (electromagnetic wave energy) radiated from the surface of a black body is proportional to the fourth power of the black body's absolute temperature (thermodynamic temperature). The amount of heat (electromagnetic wave energy) radiated from the body is about 70,000 kW / m 2 . Generally, the sun is set to 5,800 K (absolute temperature), and the amount of heat (electromagnetic wave energy) radiated from the sun is about 64,000 kW / m 2 .

また、図1に模式的に示すように、太陽Sは地球Eから1.5億km程度離れた位置に位置しているが、その大きさが巨大である故に、地球E上の受光地点Pでの1mにおける太陽の視角度αは、0.53度程度である。 In addition, as schematically shown in FIG. 1, the sun S is located at a position about 150 million km away from the earth E. However, since the size of the sun S is huge, the light receiving point P on the earth E is shown. The viewing angle α of the sun at 1 m 2 is about 0.53 degrees.

地球E上の受光地点Pと太陽Sの距離をL=10mに置き換えて模式的に示すと、この視角度をα=0.53°として考えると太陽の直径はD=92.5mm程度に近似することができる。即ち、受光面2の受光部位4から距離L=10mの位置に、直径D=92.5mmで5,800K(絶対温度)の放射源6を置くことに近似する。また、この放射源6の面積は約677mmであり、1mに対する比率は約148.9分の1(1/148.9)であるので、この位置に面積1mで429.8kWの放射源6を置くことに近似する。また、このことは、10mの位置に置かれた太陽電池が太陽常数1kW/mの太陽光に対して、200W/mの電気出力を発生させることに相当する。このことは、エネルギーを輻射する5,800Kの放射源6からの64,000kW/mに対する試験電極グロウ放電発光の出力と太陽電池の電気出力(発電出力)との対応を表し、このような対応関係を用い、グロウ放電発光のエネルギーを太陽電池により受光してその発電出力を監視することにより、この核融合反応状態を想定することができる。 When the distance between the light receiving point P on the earth E and the sun S is schematically replaced by L = 10 m, the diameter of the sun approximates to D = 92.5 mm when this viewing angle is considered as α = 0.53 °. can do. That is, it approximates to placing the radiation source 6 with a diameter D = 92.5 mm and 5,800 K (absolute temperature) at a distance L = 10 m from the light receiving portion 4 of the light receiving surface 2. Further, since the area of the radiation source 6 is about 677 mm 2 and the ratio to 1 m 2 is about 148.9 (1 / 148.9), the radiation of 429.8 kW is emitted at this position with an area of 1 m 2. Approximate placing source 6. This also corresponds to the fact that a solar cell placed at a position of 10 m generates an electric output of 200 W / m 2 for sunlight with a solar constant of 1 kW / m 2 . This represents the correspondence between the output of the test electrode glow discharge light emission from the radiation source 6 of 5,800 K radiating energy to 64,000 kW / m 2 and the electric output (power generation output) of the solar cell. This fusion reaction state can be assumed by using the correspondence relationship and receiving the energy of glow discharge luminescence with a solar cell and monitoring the power generation output.

次に、図3を参照して、常温核融合反応装置の一実施形態について説明する。図3において、この常温核融合反応装置12は、密封された反応容器13を備えている。この反応容器13は、上面が開放された円筒状の容器本体14及び蓋部材16から構成され、この容器本体14の開口部が蓋部材16により密封され、このようにして反応容器13内に密封空間18が規定される。容器本体14は、例えば透明な石英ガラスから形成され、その肉厚が例えば3mm程度に形成される。また、蓋部材16は、例えば耐熱性プラスチックから形成される。   Next, with reference to FIG. 3, one embodiment of a cold fusion reaction apparatus will be described. In FIG. 3, the cold fusion reactor 12 includes a sealed reaction vessel 13. The reaction vessel 13 is composed of a cylindrical vessel body 14 having an open upper surface and a lid member 16, and the opening of the vessel body 14 is sealed by the lid member 16, and thus sealed in the reaction vessel 13. A space 18 is defined. The container body 14 is made of, for example, transparent quartz glass, and has a thickness of, for example, about 3 mm. The lid member 16 is made of, for example, a heat resistant plastic.

この反応容器13内には電解液20が充填され、電解液としては、例えば、蒸留水(例えば、95%)と重水(例えば、5%)を混合した水に電解物質(例えば、炭酸ソーダ:NaCO)を溶解させたものを用いることができる。 The reaction vessel 13 is filled with an electrolytic solution 20. As the electrolytic solution, for example, an electrolytic substance (for example, sodium carbonate: water mixed with distilled water (for example, 95%) and heavy water (for example, 5%) is used. Na 2 CO 3) can be used to dissolve the.

この容器本体14の電解液20中に、所定の間隔を置いて相互に対向するように正電極22(加速用正電極)及び負電極24(加速用負電極)が配設される。正電極22の端子部26は、電源装置(図示せず)の正端子側に電気的に接続され、負電極24の端子部28は、電源装置の負端子側に電気的に接続され、電源装置からの電圧(反応電圧)が正電極22及び負電極24間に印加される。この形態では、負電極24の電極面が輻射面30として機能し、後述するグロウ放電発光の光がこの輻射面30から輻射される。   A positive electrode 22 (acceleration positive electrode) and a negative electrode 24 (acceleration negative electrode) are disposed in the electrolytic solution 20 of the container body 14 so as to face each other at a predetermined interval. The terminal portion 26 of the positive electrode 22 is electrically connected to the positive terminal side of a power supply device (not shown), and the terminal portion 28 of the negative electrode 24 is electrically connected to the negative terminal side of the power supply device. A voltage (reaction voltage) from the apparatus is applied between the positive electrode 22 and the negative electrode 24. In this embodiment, the electrode surface of the negative electrode 24 functions as the radiation surface 30, and glow discharge light that will be described later is radiated from the radiation surface 30.

この負電極24に関連して、電極冷却体32が設けられている。この電極冷却体32は、例えば耐熱性プラスチックから形成される電極支持部材34を備え、この電極支持部材34の一面に(図3において左面)に負電極24が取り付けられ、この負電極24は電極支持部材34の一部を通して端子部28に電気的に接続されている。この電極支持部材34内には冷却管36が内蔵され、その流入側48が冷却液供給源(図示せず)に連通され、冷却液供給源からの冷却液は、この流入側48から流入し、冷却管36を通して流れた後にその流出側50から流出し、このように冷却液が流れることによって、負電極24が冷却される。   In association with the negative electrode 24, an electrode cooling body 32 is provided. The electrode cooling body 32 includes an electrode support member 34 formed of, for example, a heat-resistant plastic, and a negative electrode 24 is attached to one surface of the electrode support member 34 (left surface in FIG. 3). The terminal member 28 is electrically connected through a part of the support member 34. A cooling pipe 36 is built in the electrode support member 34, and an inflow side 48 thereof communicates with a coolant supply source (not shown), and the coolant from the coolant supply source flows in from the inflow side 48. Then, after flowing through the cooling pipe 36, it flows out from the outflow side 50, and the cooling liquid flows in this way, whereby the negative electrode 24 is cooled.

この形態では、正電極22(加速用正電極)と負電極24(加速用負電極)との間に分離膜54が配設され、この分離膜54は、蓋部材16に取り付けられた上端から容器本体14内の中間部まで下方に延び、この容器本体14内の密封空間18を第1室56(即ち、正電極22が位置する空間)と第2室58(即ち、負電極24が位置する空間)とに仕切っている。    In this embodiment, the separation membrane 54 is disposed between the positive electrode 22 (acceleration positive electrode) and the negative electrode 24 (acceleration negative electrode), and the separation membrane 54 extends from the upper end attached to the lid member 16. The container 18 extends downward to an intermediate portion in the container body 14, and the sealed space 18 in the container body 14 is divided into a first chamber 56 (that is, a space where the positive electrode 22 is located) and a second chamber 58 (that is, the negative electrode 24 is located). Space).

後述するグロウ放電発光状態(即ち、常温核融合状態)のときには、正電極22側には水素イオン(二重水素、三重水素)が発生するが、発生した水素イオンは第1室56に連通する第1排出管60を通して外部に排出される。また、負電極24側には酸素イオンが発生するが、発生した酸素イオンは第2室58に連通する第2排出管62を通して外部に排出される。   In a glow discharge emission state (that is, a cold fusion state) described later, hydrogen ions (double hydrogen and tritium) are generated on the positive electrode 22 side, but the generated hydrogen ions communicate with the first chamber 56. It is discharged to the outside through the first discharge pipe 60. Further, oxygen ions are generated on the negative electrode 24 side, but the generated oxygen ions are discharged to the outside through the second discharge pipe 62 communicating with the second chamber 58.

また、電解液を供給するための電解液供給管64が設けられ、この電解液供給管64の一端側は蓋部材16を貫通して容器本体14内に連通し、その他端側は電解液供給源(図示せず)に連通され、電解液供給源からの電解液が電解液供給管64を通して反応容器13内に供給される。容器本体14内には、上レベルセンサ66及び下レベルセンサ68が設けられ、反応容器13内の電解液20の液面が下レベルセンサ68まで低下すると、電解液供給管64を通しての電解液の供給が行われ、その液面が上レベルセンサ66まで上昇すると、この電解液20の供給が停止され、このようにして電解液20の液面が所定レベル範囲に維持される。   In addition, an electrolyte supply pipe 64 for supplying an electrolyte is provided. One end of the electrolyte supply pipe 64 passes through the lid member 16 and communicates with the inside of the container body 14, and the other end is supplied with the electrolyte. The electrolytic solution is communicated with a source (not shown), and the electrolytic solution from the electrolytic solution supply source is supplied into the reaction vessel 13 through the electrolytic solution supply pipe 64. An upper level sensor 66 and a lower level sensor 68 are provided in the container body 14, and when the liquid level of the electrolytic solution 20 in the reaction container 13 is lowered to the lower level sensor 68, the electrolytic solution through the electrolytic solution supply pipe 64 is reduced. When supply is performed and the liquid level rises to the upper level sensor 66, the supply of the electrolytic solution 20 is stopped, and thus the liquid level of the electrolytic solution 20 is maintained in a predetermined level range.

この形態では、反応容器13に関連して、受光手段68が設けられる。この受光手段68は、例えば太陽電池70から構成され、太陽電池70の発電出力を利用して正電極22及び負電極24間に印加される電圧、即ち反応電圧が後述するように調整される。   In this embodiment, the light receiving means 68 is provided in association with the reaction vessel 13. The light receiving means 68 is composed of, for example, a solar cell 70, and the voltage applied between the positive electrode 22 and the negative electrode 24, that is, the reaction voltage is adjusted using the power generation output of the solar cell 70 as described later.

この常温核融合反応装置12による常温核融合反応は、次のように行われる。電源装置(図示せず)を作動させ、作動スイッチ(図示せず)をオンにして正電極22(加速用正電極)及び負電極24(加速用負電極)間に反応電圧(100〜300V程度の電圧であって、例えば250V)を印加する。このように反応電圧を印加すると、電解液の電解反応からプラズマ状態に移行し、正電極22及び負電極24間にグロウ放電発光状態が生じ、反応容器14内の正電極22及び負電極24間が常温核融合反応状態となる。   The cold fusion reaction by the cold fusion reaction device 12 is performed as follows. A power supply device (not shown) is operated, an operation switch (not shown) is turned on, and a reaction voltage (about 100 to 300 V) between the positive electrode 22 (acceleration positive electrode) and the negative electrode 24 (acceleration negative electrode). For example, 250V). When the reaction voltage is applied in this manner, the electrolytic reaction of the electrolytic solution shifts to a plasma state, a glow discharge light emission state is generated between the positive electrode 22 and the negative electrode 24, and between the positive electrode 22 and the negative electrode 24 in the reaction vessel 14. Becomes a cold fusion reaction state.

このとき、正電極22側に発生する水素イオンは、第1排出管60を通して反応容器14外に排出され、負電極24側にて発生する酸素イオンは、第2排出管62を通して反応容器14外に排出される。また、この常温核融合状態のエネルギーによって電解液20が減少すると、下レベルセンサ68の液面検知信号に基づいて、水供給源(図示せず)からの水が水供給管64を通して反応容器14内に供給され、この水供給によって電解液20が増えると、上レベルセンサ66の液面検知信号に基づいて、水供給源(図示せず)からの水の供給が停止する。   At this time, hydrogen ions generated on the positive electrode 22 side are discharged out of the reaction vessel 14 through the first discharge pipe 60, and oxygen ions generated on the negative electrode 24 side are out of the reaction vessel 14 through the second discharge pipe 62. To be discharged. Further, when the electrolyte 20 is reduced by the energy in the cold fusion state, water from a water supply source (not shown) passes through the water supply pipe 64 based on the liquid level detection signal of the lower level sensor 68. When the electrolytic solution 20 is increased by this water supply, the supply of water from a water supply source (not shown) is stopped based on the liquid level detection signal of the upper level sensor 66.

また、この常温核融合状態のエネルギーは、負電極24の輻射面30から輻射され、受光手段68は、この輻射面30からの光を受光して受光出力を出力する。この負電極24の輻射面30からの出力は、紫外線、可視光線及び赤外線として放射され、このような出力エネルギーは、受光手段68としての太陽電池70により電力に変換される。   Further, the energy in the cold fusion state is radiated from the radiation surface 30 of the negative electrode 24, and the light receiving means 68 receives the light from the radiation surface 30 and outputs a light reception output. The output from the radiation surface 30 of the negative electrode 24 is emitted as ultraviolet rays, visible rays, and infrared rays, and such output energy is converted into electric power by a solar cell 70 as the light receiving means 68.

そして、この受光手段68の受光出力、即ち太陽電池70の電力出力に基づいて電源装置(図示せず)から正電極22(加速用正電極)及び負電極24(加速用負電極)に印加される反応電力が制御される。グロウ放電発光、即ち常温核融合反応の活性状態が強く(又は弱く)なると、受光手段68の受光出力が大きく(又は小さく)なるが、このような場合、電源装置(図示せず)から正電極22及び負電極24に印加される反応電力が低くなる(又は高くなる)ように制御され、このように制御することによって、グロウ放電発光状態(即ち、常温核融合状態)の活性が弱まり(又は強まり)、かくして、グロウ放電発光状態、即ち常温核融合反応状態を安定させて継続的に稼働させることができる。   Then, based on the light reception output of the light receiving means 68, that is, the power output of the solar cell 70, it is applied to the positive electrode 22 (acceleration positive electrode) and the negative electrode 24 (acceleration negative electrode) from a power supply device (not shown). The reaction power is controlled. When the glow discharge emission, that is, the active state of the cold fusion reaction becomes strong (or weak), the light receiving output of the light receiving means 68 becomes large (or small). In such a case, the positive electrode is supplied from the power supply device (not shown). 22 and the reaction power applied to the negative electrode 24 is controlled to be low (or high), and by controlling in this way, the activity of the glow discharge luminescence state (that is, the cold fusion state) is weakened (or Thus, the glow discharge light emission state, that is, the cold fusion reaction state can be stabilized and continuously operated.

このような反応容器13内の電解液中の放電反応による核融合反応は、燃料自体の自立反応ではなく、外部よりのエネルギー投入によりトリガされる反応であり、このような核融合反応は、エネルギー投入が無くなれば直ちに反応が停止し、従って、作動スイッチ(図示せず)をオフすることにより核融合反応が停止し、このように簡単に停止させることができるために極めて安全性の高い。   The fusion reaction by the discharge reaction in the electrolyte solution in the reaction vessel 13 is not a self-sustained reaction of the fuel itself but a reaction triggered by the input of energy from the outside. The reaction stops as soon as there is no charge. Therefore, the fusion reaction is stopped by turning off the operation switch (not shown), and can be easily stopped in this way, which is extremely safe.

次に、図4を参照して、常温核融合反応装置の第2実施形態について説明する。第2の実施形態においては、受光手段を反応容器に組み込んでいるとともに、幾分具体的に示している。尚、図3に示す実施形態と実質上同一の部材には同一の参照番号を付し、その説明を省略する。   Next, a second embodiment of the cold fusion reaction device will be described with reference to FIG. In the second embodiment, the light receiving means is incorporated in the reaction vessel and is shown more specifically. In addition, the same reference number is attached | subjected to the member substantially the same as embodiment shown in FIG. 3, and the description is abbreviate | omitted.

図4において、この実施形態の常温核融合反応装置12Aでは、電源装置102は、直流電源104と、この直流電源104からの電圧を調整するための電圧調整手段106とを備え、この電圧調整手段106からの正出力端子側が正電極22(加速用正電極)の端子部26に電気的に接続され、その負出力端子側が負電極24(加速用負電極)に電気的に接続されている。   In FIG. 4, in the cold fusion reactor 12 </ b> A of this embodiment, the power supply device 102 includes a DC power supply 104 and a voltage adjusting means 106 for adjusting the voltage from the DC power supply 104. The positive output terminal side from 106 is electrically connected to the terminal portion 26 of the positive electrode 22 (acceleration positive electrode), and the negative output terminal side is electrically connected to the negative electrode 24 (acceleration negative electrode).

この形態では、反応容器13Aの容器本体14Aは金属製容器から構成され、この金属製容器の内面全域に耐熱電気絶縁性被覆が施されている。また、蓋部材16Aも耐熱電気絶縁性材料、例えば耐熱性プラスチックから形成されており、このような容器本体14A及び蓋部材16Aから構成することによって、反応容器13Aを大容量化し、常温核融合反応装置12Aの大出力化を図ることができる。   In this embodiment, the container main body 14A of the reaction container 13A is composed of a metal container, and a heat-resistant and electrically insulating coating is applied to the entire inner surface of the metal container. The lid member 16A is also made of a heat-resistant electrical insulating material, for example, a heat-resistant plastic. By configuring the container body 14A and the lid member 16A, the capacity of the reaction vessel 13A is increased, and the room temperature fusion reaction is performed. The output of the device 12A can be increased.

この形態では、受光手段68A(この形態では、太陽電池70A)が反応容器13Aに組み込まれている。蓋部材16Aの一部に開口108が設けられ、この開口108を密封するように透明な閉塞部材110が設けられている。また、閉塞部材110を覆うように、下面が開放されたボックス状部材112が取り付けられ、閉塞部材110及びボックス状部材112が密閉された耐圧室114を規定する。受光手段68A(太陽電池70A)は、ボックス状部材112内の耐圧室114に配設され、この受光手段68Aからの受光信号が電源装置102の電圧調整手段106に送給され、この受光信号に基づいて電源装置102から正電極22及び負電極24に印加される反応電圧(具体的には、電圧調整手段106の出力電圧)が調整される。   In this embodiment, the light receiving means 68A (in this embodiment, the solar cell 70A) is incorporated in the reaction vessel 13A. An opening 108 is provided in a part of the lid member 16A, and a transparent closing member 110 is provided so as to seal the opening 108. Further, a box-shaped member 112 having an open lower surface is attached so as to cover the closing member 110, and the pressure-resistant chamber 114 in which the closing member 110 and the box-shaped member 112 are sealed is defined. The light receiving means 68A (solar cell 70A) is disposed in the pressure-resistant chamber 114 in the box-shaped member 112, and the light receiving signal from the light receiving means 68A is sent to the voltage adjusting means 106 of the power supply device 102, Based on this, the reaction voltage applied to the positive electrode 22 and the negative electrode 24 from the power supply device 102 (specifically, the output voltage of the voltage adjusting means 106) is adjusted.

また、負電極24を冷却するための電極冷却体32に関連して、冷却液116を収容する冷却液タンク118が設けられ、電極冷却体32に内蔵された冷却管36の流入側48が供給管120(供給ライン)を介して冷却液タンク118の底部に連通され、この供給管120に循環ポンプ122が配設されている。また、この冷却管36の流出側50が戻り管124(戻りライン)を介して冷却液タンク118の上端部に連通され、この戻り管124に冷却液を冷却するためのラジエタ126が配設されている。このように構成されているので、循環ポンプ122及びラジエタ126が作動されると、冷却液タンク118内の冷却液116が供給管120を通して電極冷却体32の冷却管36に供給され、この供給管36を通して流れる間に負電極24を冷却する。冷却管36を流れた冷却液116は、戻り管124及びラジエタ126を通して冷却液タンク118に戻され、このラジエタ126を流れる間に冷却液116が冷却される。   Further, a cooling liquid tank 118 for storing a cooling liquid 116 is provided in association with the electrode cooling body 32 for cooling the negative electrode 24, and an inflow side 48 of the cooling pipe 36 built in the electrode cooling body 32 is supplied. It communicates with the bottom of the coolant tank 118 through a pipe 120 (supply line), and a circulation pump 122 is disposed in the supply pipe 120. The outflow side 50 of the cooling pipe 36 communicates with the upper end of the coolant tank 118 through a return pipe 124 (return line), and a radiator 126 for cooling the coolant is disposed in the return pipe 124. ing. With this configuration, when the circulation pump 122 and the radiator 126 are operated, the cooling liquid 116 in the cooling liquid tank 118 is supplied to the cooling pipe 36 of the electrode cooling body 32 through the supply pipe 120, and this supply pipe The negative electrode 24 is cooled while flowing through 36. The coolant 116 flowing through the cooling pipe 36 is returned to the coolant tank 118 through the return pipe 124 and the radiator 126, and the coolant 116 is cooled while flowing through the radiator 126.

更に、第1排出管60は、第1排出ライン128を介して第1回収タンク130に連通され、反応容器13A内の正電極22側にて発生する酸素は第1排出ライン128を通して第1回収タンク130に回収される。第2排出管62は、第2排出ライン132を介して第2回収タンク134に連通され、反応容器13A内の負電極24側にて発生する水素(二重水素、三重水素を含む)は、第2排出ライン132を通して第2回収タンク134に回収される。また、電解液供給管64は電解液供給ライン136を介して電解液供給タンク138(電解液供給源)に接続され、この電解液供給ライン136に供給ポンプ140が配設されている。従って、供給ポンプ138が作動すると、電解液タンク138内の電解液が電解液供給ライン136を通して反応容器A内に供給される。この実施形態の常温核融合反応装置12Aのその他の構成は、図3に示す形態のものと実質上同一である。   Further, the first discharge pipe 60 is communicated with the first recovery tank 130 via the first discharge line 128, and oxygen generated on the positive electrode 22 side in the reaction vessel 13A is first recovered through the first discharge line 128. It is collected in the tank 130. The second discharge pipe 62 communicates with the second recovery tank 134 via the second discharge line 132, and hydrogen (including double hydrogen and tritium) generated on the negative electrode 24 side in the reaction vessel 13A is It is collected in the second collection tank 134 through the second discharge line 132. The electrolyte solution supply pipe 64 is connected to an electrolyte solution supply tank 138 (electrolyte solution supply source) via an electrolyte solution supply line 136, and a supply pump 140 is disposed in the electrolyte solution supply line 136. Therefore, when the supply pump 138 is operated, the electrolytic solution in the electrolytic solution tank 138 is supplied into the reaction vessel A through the electrolytic solution supply line 136. The other configuration of the cold fusion reaction device 12A of this embodiment is substantially the same as that of the embodiment shown in FIG.

この形態の常温核融合反応装置12Aにおいても、その基本的構成が上述したものと実質上同一である故に、上述したと同様の作用効果を奏し、受光手段68A(太陽電池70A)の受光出力に基づいて電源装置102(具体的には、電圧調整手段106)から正電極22及び負電極24に印加される反応電力を制御することによって、グロウ放電発光状態、即ち常温核融合反応状態を安定させて継続的に稼働させることができる。   Also in this form of cold fusion reaction device 12A, the basic configuration is substantially the same as that described above, so that the same operational effects as described above can be obtained, and the light receiving output of light receiving means 68A (solar cell 70A) can be obtained. Based on this, by controlling the reaction power applied to the positive electrode 22 and the negative electrode 24 from the power supply device 102 (specifically, the voltage adjusting means 106), the glow discharge light emission state, that is, the cold fusion reaction state is stabilized. Can be operated continuously.

負電極24及びこれに関連する構成については、例えば、図5に示すように構成することができる。電極支持体32Aの電極支持部材34Aは、密閉された中空箱状部材から構成され、このような電極支持部材34Aは、例えば耐熱性プラスチックから形成される。図5(b)に示すように、冷却液116が流入する流入側は流入管48Aから構成され、この流入管48Aの先端側は電極支持部材34A内の底部まで延び、また冷却液116が流出する流出側が流出管50Aから構成され、この流出管50Aの先端側は電極支持部材34A内の上端部に位置している。このように構成されているので、冷却液タンク118からの冷却液116は流入管48Aを通して電極支持部材34A内の底部に流入し、かく流入した冷却液116は、電極支持部材34A内を広がりながら上方に流れ、そして、電極支持部材34A内の上端部から流出管50Aを通して冷却液タンク118に流れる。   About the negative electrode 24 and the structure relevant to this, it can comprise, for example as shown in FIG. The electrode support member 34A of the electrode support 32A is formed of a sealed hollow box-shaped member, and such an electrode support member 34A is formed of, for example, a heat resistant plastic. As shown in FIG. 5 (b), the inflow side into which the cooling liquid 116 flows is composed of an inflow pipe 48A, the leading end side of the inflow pipe 48A extends to the bottom in the electrode support member 34A, and the cooling liquid 116 flows out. The outflow side is composed of an outflow pipe 50A, and the distal end side of the outflow pipe 50A is located at the upper end in the electrode support member 34A. With this configuration, the cooling liquid 116 from the cooling liquid tank 118 flows into the bottom portion of the electrode support member 34A through the inflow pipe 48A, and the thus-flowed cooling liquid 116 spreads in the electrode support member 34A. It flows upward and then flows from the upper end in the electrode support member 34A to the coolant tank 118 through the outflow pipe 50A.

また、負電極24は、輻射面として作用するように、例えば40メッシュ程度のステンレス製金網140(図5(a)及び(b)において図示するが、図5(b)において省略して示す)を用いることができる。このステンレス製金網140は熱膨張を抑えるために、次のように取り付けるのが望ましい。即ち、電極支持部材34Aの表面には、横方向(図5(a)及び(b)において左右方向、図5(c)において紙面に垂直な方向)に間隔をおいて複数の突出部142が設けられ、これら突出部142は、電極支持部材34Aの上端から下端まで直線状に延びている。ステンレス製金網140は、これら突出部142の表面側に配置され、複数の止め具144により突出部142に固定されている。尚、複数の突出部142は、電極支持部材34Aの表面に上下方向に間隔をおいて設けるようにしてもよい。   Further, the negative electrode 24 is made of, for example, a stainless steel mesh 140 of about 40 mesh so as to act as a radiation surface (illustrated in FIGS. 5A and 5B but omitted in FIG. 5B). Can be used. The stainless steel wire mesh 140 is preferably attached as follows in order to suppress thermal expansion. That is, on the surface of the electrode support member 34A, a plurality of protrusions 142 are spaced apart in the lateral direction (the left-right direction in FIGS. 5A and 5B and the direction perpendicular to the paper surface in FIG. 5C). These protrusions 142 are linearly extended from the upper end to the lower end of the electrode support member 34A. The stainless steel wire mesh 140 is disposed on the surface side of these protrusions 142 and is fixed to the protrusions 142 by a plurality of stoppers 144. The plurality of protrusions 142 may be provided on the surface of the electrode support member 34A at intervals in the vertical direction.

このステンレス製金網140の表面には、酸化マグネシウム粉末、カーボン繊維及び少量のバインダを混合した混合物でもって被覆するようにし、このようにすることによって、この混合物が負電極24の放電面(輻射面)として作用する。尚、ステンレス製金網140については、輻射面以外の各面、即ちその側面、裏面及び上下面は、電気絶縁性の耐熱被覆層で覆うようにするのが望ましい。   The surface of the stainless steel wire mesh 140 is covered with a mixture of magnesium oxide powder, carbon fiber, and a small amount of a binder, whereby the mixture is discharged to the discharge surface (radiation surface) of the negative electrode 24. ). In addition, about the stainless steel metal mesh 140, it is desirable to cover each surface other than the radiation surface, that is, the side surface, the back surface, and the top and bottom surfaces with an electrically insulating heat-resistant coating layer.

図4に示す実施形態では、正電極22(加速用正電極)側にて発生する酸素を第1回収タンク130に回収し、また負電極24(加速用負電極)側にて発生する水素を第2回収タンク134に回収しているが、このような構成に代えて、図6に示すように、酸素及び水素を燃焼させて熱エネルギーとして取り出すようにすることもできる。   In the embodiment shown in FIG. 4, oxygen generated on the positive electrode 22 (acceleration positive electrode) side is recovered in the first recovery tank 130, and hydrogen generated on the negative electrode 24 (acceleration negative electrode) side is recovered. Although it collect | recovers in the 2nd collection | recovery tank 134, it can replace with such a structure and can take out oxygen and hydrogen as thermal energy, as shown in FIG.

図6において、この形態の常温核融合反応装置12Bでは、反応容器13Aに関連して、混合器152、逆火防止器154、燃焼器156、燃焼ガス冷却器158及びガス分離器160が設けられている。常温核融合反応装置12Bの反応容器13Aの第1室56(正電極22側の室)の上部が第1排出管60(第1排出ライン)を介して混合器152に接続され、また、この反応容器13Aの第2室(負電極24側の室)の上部が第2排出管62(第2排出ライン)を介して混合器152に接続されている。   In FIG. 6, the cold fusion reactor 12B of this embodiment is provided with a mixer 152, a backfire preventer 154, a combustor 156, a combustion gas cooler 158, and a gas separator 160 in relation to the reaction vessel 13A. ing. The upper part of the first chamber 56 (the chamber on the positive electrode 22 side) of the reaction vessel 13A of the cold fusion reactor 12B is connected to the mixer 152 via the first discharge pipe 60 (first discharge line). The upper part of the second chamber (the chamber on the negative electrode 24 side) of the reaction vessel 13A is connected to the mixer 152 via the second discharge pipe 62 (second discharge line).

混合機152は、第1排出管60を通して排出される酸素と第2排出管62を通して排出される水素とを混合し、混合器152にて混合された混合気体は逆火防止器154に送給される。逆火防止器154は、この混合気の発火を防止するために発火温度以下に冷却し、かく冷却された混合気は、混合機送給管162(混合気送給ライン)を通して燃焼器156に送給される。   The mixer 152 mixes oxygen discharged through the first discharge pipe 60 and hydrogen discharged through the second discharge pipe 62, and the mixed gas mixed in the mixer 152 is sent to the backfire preventer 154. Is done. The backfire preventer 154 cools below the ignition temperature in order to prevent the ignition of the air-fuel mixture, and the air-cooled air-fuel mixture is supplied to the combustor 156 through the mixer feed pipe 162 (air mixture feed line). Be sent.

燃焼器156は燃焼室164を備え、この燃焼室164の上流端部に燃焼バーナ164が設けられ、逆火防止器154からの混合気は燃焼バーナ164により燃焼される。燃焼器156の燃焼室164の周囲には熱交換室168(熱利用手段の一部を構成する)が配設され、その流入部170から流入した熱媒体(例えば、空気の如き気体又は水の如き液体)は、熱交換室168内を流れて流出部172から流出し、この熱媒体は、熱交換室168内を流れる間に燃焼室164内を流れる燃焼ガスによって加熱される。この熱媒体は、熱利用手段の一例としての貯湯タンク(図示せず)などに貯湯することによって、温水として、或いは暖房用の循環媒体として利用することができる。このように正電極22側にて発生した酸素及び負電極24側にて発生した水素を燃焼させることによって、熱エネルギーとして利用することができ、熱出力を得ることができる。   The combustor 156 includes a combustion chamber 164, and a combustion burner 164 is provided at the upstream end of the combustion chamber 164, and the air-fuel mixture from the backfire preventer 154 is combusted by the combustion burner 164. Around the combustion chamber 164 of the combustor 156, a heat exchange chamber 168 (which constitutes a part of the heat utilization means) is disposed, and a heat medium (for example, a gas such as air or water) flowing in from the inflow portion 170 is disposed. Such a liquid) flows in the heat exchange chamber 168 and flows out from the outflow portion 172, and this heat medium is heated by the combustion gas flowing in the combustion chamber 164 while flowing in the heat exchange chamber 168. This heat medium can be used as hot water or as a circulating medium for heating by storing hot water in a hot water storage tank (not shown) as an example of heat utilization means. Thus, by burning the oxygen generated on the positive electrode 22 side and the hydrogen generated on the negative electrode 24 side, it can be used as thermal energy, and a heat output can be obtained.

燃焼器156からの燃焼ガスは燃焼ガス冷却器158に送給される。燃焼ガス冷却器158は、燃焼ガスが流れる燃焼ガス室174と、この燃焼ガス室174の周囲に配設された冷却循環室176とを有している。水の如き冷却媒体は、流入部178から流入して冷却循環室176を通して流れた後に流出部180から流出する。一方、燃焼器156の燃焼室164からの燃焼ガスは燃焼ガス室174を通して流れ、この燃焼ガス室174を通して流れる間に冷却循環室176を流れる冷却媒体により冷却される。   Combustion gas from the combustor 156 is supplied to the combustion gas cooler 158. The combustion gas cooler 158 has a combustion gas chamber 174 through which the combustion gas flows, and a cooling circulation chamber 176 disposed around the combustion gas chamber 174. A cooling medium such as water flows from the inflow portion 178, flows through the cooling circulation chamber 176, and then flows out from the outflow portion 180. On the other hand, the combustion gas from the combustion chamber 164 of the combustor 156 flows through the combustion gas chamber 174 and is cooled by the cooling medium flowing through the cooling circulation chamber 176 while flowing through the combustion gas chamber 174.

燃焼ガス室174にて冷却されると、燃焼ガス中の水分は凝縮して水となり、この凝縮水は水戻し管182(水戻しライン)を通して反応容器13A内に戻される。また、燃焼ガス室174にて冷却された燃焼ガス(大部分の水分が除去されたもの)は、燃焼ガス送給管184(燃焼ガス送給ライン)を通してガス分離器160に送給され、このガス分離器160にて各ガス成分に分離して回収される。尚、このガス分離器160に送給される燃焼ガスは、常温核融合反応により生じた希ガス類であり、ガス分離器160にて分離回収することによって、希ガス類が大気中に放散されるのを防止することができる。尚、この実施形態における常温核融合反応装置12Bのその他の構成(反応容器13A及びこれに関連する構成)は、図4に示すものと実質上同一でよい。   When cooled in the combustion gas chamber 174, the water in the combustion gas is condensed into water, and this condensed water is returned to the reaction vessel 13A through the water return pipe 182 (water return line). The combustion gas cooled in the combustion gas chamber 174 (with most of the water removed) is fed to the gas separator 160 through the combustion gas feed pipe 184 (combustion gas feed line). The gas components are separated and recovered by the gas separator 160. Note that the combustion gas supplied to the gas separator 160 is a rare gas generated by the cold fusion reaction, and is separated and recovered by the gas separator 160 to prevent the rare gas from being diffused into the atmosphere. can do. In addition, the other structure (reaction container 13A and the structure relevant to this) of the cold fusion reaction apparatus 12B in this embodiment may be substantially the same as that shown in FIG.

このような常温核融合反応装置12Bでは、反応容器13Aにて生成される酸素及び水素を燃焼させて熱エネルギーとして取り出すことができるとともに、常温核融合反応により生じた希ガス類をガス分離器160により回収して大気中に漏れるのを防止することができ、この常温核融合反応装置12Bを継続的に安全に運転することが可能となる。   In such a cold fusion reactor 12B, oxygen and hydrogen produced in the reaction vessel 13A can be burned and taken out as thermal energy, and rare gases generated by the cold fusion reaction are recovered by the gas separator 160. Thus, leakage into the atmosphere can be prevented, and the cold fusion reaction device 12B can be continuously and safely operated.

次に、図7を参照して、常温核融合反応装置の第3の実施形態について説明する。この第3の実施形態では、常温核融合反応を起こさせるための正電極(加速用正電極)及び負電極(加速用負電極)に加えて、電解液を電解するための電解用正電極及び電解用負電極が設けられているとともに、常温核融合状態(グロウ放電発光状態)における電解液の電圧(参照電圧)を検知するための参照用正電極及び参照用負電極が設けられている。   Next, a third embodiment of the cold fusion reaction device will be described with reference to FIG. In this third embodiment, in addition to a positive electrode (acceleration positive electrode) and a negative electrode (acceleration negative electrode) for causing a cold fusion reaction, an electrolysis positive electrode for electrolyzing an electrolytic solution and A negative electrode for electrolysis is provided, and a positive electrode for reference and a negative electrode for reference are provided for detecting the voltage (reference voltage) of the electrolytic solution in the cold fusion state (glow discharge light emission state).

図7において、この形態の常温核融合反応装置12Cでは、電解液が充填される反応容器13Cは、透明な石英ガラスから形成された容器本体14Cを備えている。この容器本体14Cは中空円筒状であり、その両端は開放されている。この容器本体14Cの片側に第1蓋部材202が設けられ、その他側に第2蓋部材204が設けられ、容器本体14C並びに第1及び第2蓋部材202,204によって密封された密封空間206を規定する。尚、第1及び第2蓋部材202,204は、耐熱性及び電気絶縁性を有するプラスチックなどから形成することができる。   In FIG. 7, in the cold fusion reactor 12 </ b> C of this embodiment, a reaction vessel 13 </ b> C filled with an electrolytic solution includes a vessel body 14 </ b> C formed from transparent quartz glass. The container body 14C has a hollow cylindrical shape, and both ends thereof are open. A first lid member 202 is provided on one side of the container body 14C, a second lid member 204 is provided on the other side, and a sealed space 206 sealed by the container body 14C and the first and second lid members 202, 204 is formed. Stipulate. The first and second lid members 202 and 204 can be formed from a plastic having heat resistance and electrical insulation.

この形態では、容器本体14Cの片側(図7において左側)に正電極22C(加速用正電極)が配設され、その端子部26Cが第1蓋部材202を貫通して外部に延びている。また、容器本体14Cの他側(図7において右側)に負電極24C(加速用負電極)が配設され、その端子部28Cが第2蓋部材204を貫通して外部に延びている。この正電極22Cの端子部26C及び負電極24Cの端子部28Cは、第1電源装置102(加速用電源装置)に接続されている。第1電源装置102は電源104及び電圧調整手段106を有し、第1電源装置102の正出力端子側が第1スイッチ手段208を介して正電極22Cの端子部26Cに電気的に接続され、その負出力端子側が負電極24Cの端子部28Cに電気的に接続されている。   In this embodiment, the positive electrode 22C (acceleration positive electrode) is disposed on one side (left side in FIG. 7) of the container body 14C, and the terminal portion 26C extends through the first lid member 202 to the outside. A negative electrode 24C (acceleration negative electrode) is disposed on the other side (right side in FIG. 7) of the container body 14C, and a terminal portion 28C extends through the second lid member 204 to the outside. The terminal portion 26C of the positive electrode 22C and the terminal portion 28C of the negative electrode 24C are connected to the first power supply device 102 (acceleration power supply device). The first power supply apparatus 102 has a power supply 104 and a voltage adjusting means 106, and the positive output terminal side of the first power supply apparatus 102 is electrically connected to the terminal portion 26C of the positive electrode 22C through the first switch means 208, The negative output terminal side is electrically connected to the terminal portion 28C of the negative electrode 24C.

この正電極22C(加速用正電極)及び負電極24C(加速用負電極)に関連して、正電極22Cの近傍に参照用正電極210が配設され、その端子部212が第1蓋部材202を貫通して外部に延びており、また負電極24Cの近傍に参照用負電極214が配設され、その端子部216が第2蓋部材204を貫通して外部に延びている。参照用正電極210及び参照用負電極214は、電圧検知手段218に電気的に接続され、この電圧検知手段218は参照用正電極210及び参照用負電極214間の電解液の電圧(参照電圧)を検知する。   In relation to the positive electrode 22C (acceleration positive electrode) and the negative electrode 24C (acceleration negative electrode), a reference positive electrode 210 is disposed in the vicinity of the positive electrode 22C, and its terminal portion 212 is a first lid member. The reference negative electrode 214 is disposed in the vicinity of the negative electrode 24C, and the terminal portion 216 extends through the second lid member 204 to the outside. The reference positive electrode 210 and the reference negative electrode 214 are electrically connected to the voltage detection means 218, and the voltage detection means 218 is a voltage of the electrolyte (reference voltage) between the reference positive electrode 210 and the reference negative electrode 214. ) Is detected.

この実施形態では、参照用正電極210及び参照用負電極214間の電圧(参照電圧)、即ち電圧検知手段218の検知電圧に基づいて第1電源装置102の出力電圧(即ち、正電極22C及び負電極24Cに印加される反応電力)が制御される。常温核融合状態(グロウ発光放電状態)の活性状態が強く(又は弱く)なると、参照用正電極210及び参照用負電極214間の参照電圧が高く(又は低く)なる、即ち電圧検知手段218の検知電圧が高く(又は低く)なるが、このような場合、この検知電圧に基づいて第1電源装置102(具体的には、電圧調整手段106)から正電極22C及び負電極24Cに印加される反応電力が低くなる(又は高くなる)ように制御する。このように制御すると、常温核融合状態(グロウ発光放電状態)の活性が弱まり(又は強まり)、かくして、常温核融合反応状態(グロウ発光放電状態)を安定させて継続的に稼働させることが可能となる。   In this embodiment, based on the voltage (reference voltage) between the reference positive electrode 210 and the reference negative electrode 214, that is, the detection voltage of the voltage detection means 218, the output voltage (that is, the positive electrode 22 </ b> C and the positive electrode 22 </ b> C) The reaction power applied to the negative electrode 24C) is controlled. When the active state in the cold fusion state (glow light emission discharge state) becomes strong (or weak), the reference voltage between the reference positive electrode 210 and the reference negative electrode 214 becomes high (or low), that is, the voltage detection means 218 In such a case, the detection voltage becomes higher (or lower). In such a case, the first power supply device 102 (specifically, the voltage adjusting unit 106) applies the detection voltage to the positive electrode 22C and the negative electrode 24C. The reaction power is controlled to be low (or high). By controlling in this way, the activity in the cold fusion state (glow light emission discharge state) is weakened (or increased), and thus the cold fusion reaction state (glow light emission discharge state) can be stabilized and continuously operated. It becomes.

また、正電極22C(加速用正電極)及び負電極24C(加速用負電極)に関連して電解用正電極220及び電解用負電極(この形態では、正電極22Cが電解用負電極としても機能する)が設けられている。電解用正電極220は、電解用負電極として機能する正電極22Cに対向して配設され、その端子部222が第1蓋部材202を貫通して外部に突出している。また、電源装置102と別個に第2電源装置224(電解用電源装置)が設けられ、この第2電源装置224の正出力端子側がこの電解用正電極220の端子部222に電気的に接続され、その負出力端子側が第2スイッチ手段226を介して正電極22C(加速用正電極)の端子部26Cに電気的に接続されている。   Further, in connection with the positive electrode 22C (acceleration positive electrode) and the negative electrode 24C (acceleration negative electrode), the electrolysis positive electrode 220 and the electrolysis negative electrode (in this embodiment, the positive electrode 22C may be used as the electrolysis negative electrode). Function). The positive electrode for electrolysis 220 is disposed to face the positive electrode 22C functioning as a negative electrode for electrolysis, and the terminal portion 222 penetrates the first lid member 202 and protrudes to the outside. Further, a second power supply device 224 (electrolysis power supply device) is provided separately from the power supply device 102, and the positive output terminal side of the second power supply device 224 is electrically connected to the terminal portion 222 of the electrolysis positive electrode 220. The negative output terminal side is electrically connected to the terminal portion 26C of the positive electrode 22C (acceleration positive electrode) via the second switch means 226.

第1スイッチ手段208が閉(オン)状態になると、第1電源装置102(加速用電源装置)からの電圧(反応電圧)が正電極22C(加速用正電極)及び負電極24C(加速用負電極)に印加され、後述するように電極22C,24Cの間にて常温核融合反応状態が起こる。また、第2スイッチ手段226が閉(オン)状態になると、第2電源装置(電解用電源装置)224からの電圧(電解電圧)が電解用正電極220及び正電極22C(電解用負電極として機能する)に印加され、これら電極220,22Cの間にて電解反応が起こる。電解液に電解反応を起こさせるための電圧(電解電圧)は、例えば3〜5V程度でよく、また電解反応から常温核融合状態に移行させるための電圧(反応電圧)は、例えば100〜400V程度でよい。   When the first switch means 208 is in the closed (on) state, the voltage (reaction voltage) from the first power supply device 102 (acceleration power supply device) becomes the positive electrode 22C (acceleration positive electrode) and the negative electrode 24C (acceleration negative electrode). As will be described later, a cold fusion reaction state occurs between the electrodes 22C and 24C. When the second switch means 226 is closed (on), the voltage (electrolytic voltage) from the second power supply device (electrolysis power supply device) 224 becomes the positive electrode 220 for electrolysis and the positive electrode 22C (negative electrode for electrolysis). And an electrolytic reaction occurs between the electrodes 220 and 22C. The voltage (electrolysis voltage) for causing an electrolytic reaction in the electrolytic solution may be about 3 to 5 V, for example, and the voltage (reaction voltage) for shifting from the electrolytic reaction to the cold fusion state is about 100 to 400 V, for example. It's okay.

この反応容器13Cには排出部230が接続され、反応容器13C内で発生した気体(酸素及び水素など)は、この排出部230を通して外部に排出される。この排出部230に関連して、図6に示すような逆火防止器、燃焼器、燃焼ガス冷却器及びガス分離器を設けることができ、このように構成した場合、上述したと同様に、冷却して凝縮した液体(凝縮水)は反応容器13Cに戻すようにし、冷却した気体はガス分離器にて分離回収するようにすればよい。   A discharge unit 230 is connected to the reaction vessel 13C, and gases (oxygen, hydrogen, etc.) generated in the reaction vessel 13C are discharged to the outside through the discharge unit 230. In connection with the discharge unit 230, a backfire preventer, a combustor, a combustion gas cooler, and a gas separator as shown in FIG. 6 can be provided. When configured in this way, as described above, The cooled and condensed liquid (condensed water) may be returned to the reaction vessel 13C, and the cooled gas may be separated and recovered by a gas separator.

この実施形態では、また、参照用正電極210及び参照用負電極214を集電用正電極及び集電用負電極として機能させている。即ち、参照用正電極210の端子部212及び参照用負電極214の端子部216が電力負荷232に電気的に接続され、このように電力負荷232に接続したときには、参照用正電極210及び参照用負電極214が集電用正電極及び集電用負電極として機能する。この場合、参照用正電極210及び参照用負電極214にて集電された電力は電力負荷232に送給されて消費され、常温核融合反応状態における電気エネルギーを取り出して利用することができる。   In this embodiment, the reference positive electrode 210 and the reference negative electrode 214 are caused to function as a current collecting positive electrode and a current collecting negative electrode. That is, the terminal portion 212 of the reference positive electrode 210 and the terminal portion 216 of the reference negative electrode 214 are electrically connected to the power load 232, and when connected to the power load 232 in this way, the reference positive electrode 210 and the reference The negative electrode 214 functions as a current collecting positive electrode and a current collecting negative electrode. In this case, the electric power collected by the reference positive electrode 210 and the reference negative electrode 214 is supplied to the power load 232 and consumed, and the electric energy in the cold fusion reaction state can be taken out and used.

この常温核融合反応装置12Cにおいては、まず、第2スイッチ手段226を閉状態にし、その後第1スイッチ手段208を閉状態にし、このように操作することによって、常温核融合反応を比較的短時間に行うことができる。第2スイッチ手段226を閉状態にすると、第2電源装置224からの電圧(電解電圧)が電解用正電極230及び正電極22C(電解用負電極として機能する)に印加され、電解用正電極230及び正電極22C間にて電解反応が生じる。   In this cold fusion reaction apparatus 12C, first, the second switch means 226 is closed, and then the first switch means 208 is closed. By operating in this way, the cold fusion reaction is performed for a relatively short time. Can be done. When the second switch means 226 is closed, the voltage (electrolytic voltage) from the second power supply device 224 is applied to the positive electrode for electrolysis 230 and the positive electrode 22C (functioning as a negative electrode for electrolysis), and the positive electrode for electrolysis An electrolytic reaction occurs between 230 and the positive electrode 22C.

この電解反応が開始して数秒から数分後(例えば5〜300秒後)に、第1スイッチ手段208を閉状態にすると、第1電源装置102からの電圧(反応電圧)が正電極22C(加速用正電極)及び負電極24C(加速用負電極)間に印加され、これによって今までの電解反応状態から常温核融合反応状態に移行し、正電極22C及び負電極24C間にてグロウ放電発光が生じて常温核融合反応状態となり、このように前段階にて電解反応を行うことにより、短時間で常温核融合反応状態に移行させることができる。   When the first switch means 208 is closed several seconds to several minutes after the start of the electrolytic reaction (for example, after 5 to 300 seconds), the voltage (reaction voltage) from the first power supply device 102 is changed to the positive electrode 22C ( Applied between the positive electrode for acceleration) and the negative electrode 24C (negative electrode for acceleration), thereby shifting from the current electrolytic reaction state to the normal temperature nuclear fusion reaction state, and glow discharge between the positive electrode 22C and the negative electrode 24C. Luminescence is generated and a cold fusion reaction state is obtained. Thus, by performing the electrolytic reaction in the previous stage, it is possible to shift to the cold fusion reaction state in a short time.

このような常温核融合反応状態においては、参照用正電極210及び参照用負電極214間の電圧が電圧検知手段218により検知され、この電圧検知手段218の検知電圧(参照電圧)に基づいて第1電源装置102の出力電圧(反応電圧)が制御される。常温核融合反応の活性状態が強く(又は弱く)なると、電圧検知手段218の検知電圧(参照電圧)が大きく(又は小さく)なるが、このような場合、電源装置102から正電極22C及び負電極24Cに印加される反応電力が低くなる(又は高くなる)ように制御する。このように制御すると、常温核融合の活性状態が弱まり(又は強まり)、かくして、常温核融合反応状態を安定させて継続的に稼働させることができる。   In such a cold fusion reaction state, the voltage between the reference positive electrode 210 and the reference negative electrode 214 is detected by the voltage detection means 218, and the voltage is detected based on the detection voltage (reference voltage) of the voltage detection means 218. 1 The output voltage (reaction voltage) of the power supply apparatus 102 is controlled. When the active state of the cold fusion reaction becomes strong (or weak), the detection voltage (reference voltage) of the voltage detection means 218 becomes large (or small). In such a case, the positive electrode 22C and the negative electrode are supplied from the power supply device 102. The reaction power applied to 24C is controlled to be low (or high). By controlling in this way, the active state of cold fusion is weakened (or strengthened), and thus the cold fusion reaction state can be stabilized and continuously operated.

上述した実施形態では、正電極22C(加速用正電極)及び負電極24C(加速用負電極)を印加するための第1電源装置102と、電解用正電極220及び電解用負電極(正電極22Cが電解用負電極として機能する)を印加するための第2電源装置224とを別個に設けているが、第1電源装置102の出力電圧を反応電圧と電解電圧とに切換えができるように構成し、第1電源装置102から電解電圧を出力するときには電解用正電極及び電解用負電極に印加するようにし、第1電源装置102から反応電力を出力するときには、正電極22C(加速用正電極)及び負電極24C(加速用負電極)に印加するようにするすることもできる。   In the embodiment described above, the first power supply device 102 for applying the positive electrode 22C (acceleration positive electrode) and the negative electrode 24C (acceleration negative electrode), the electrolysis positive electrode 220, and the electrolysis negative electrode (positive electrode) 22C functions as a negative electrode for electrolysis), but the output voltage of the first power supply device 102 can be switched between the reaction voltage and the electrolysis voltage. When the electrolysis voltage is output from the first power supply apparatus 102, it is applied to the positive electrode for electrolysis and the negative electrode for electrolysis, and when the reaction power is output from the first power supply apparatus 102, the positive electrode 22C (positive positive electrode for acceleration) is used. Electrode) and negative electrode 24C (acceleration negative electrode).

また、上述した実施形態では、正電極22C(加速用正電極)を電解用負電極としても機能させ、電解用正電極220と正電極22Cとの間に電解電圧を印加させて電解反応させているが、電解用正電極220に対向させて専用の電解用負電極を設けるようにすることもできる。   In the above-described embodiment, the positive electrode 22C (acceleration positive electrode) also functions as a negative electrode for electrolysis, and an electrolytic voltage is applied between the positive electrode for electrolysis 220 and the positive electrode 22C to cause an electrolytic reaction. However, a dedicated negative electrode for electrolysis can be provided to face the positive electrode for electrolysis 220.

また、上述した実施形態では、正電極22C(加速用正電極)及び負電極24C(加速用負電極)の近傍に参照用正電極210及び参照用負電極214を設け、参照用正電極210及び参照用負電極214を集電用正電極及び集電用負電極としても機能させているが、このような構成に限定されず、正電極22C及び負電極24Cの近傍に、参照用正電極210及び参照用負電極214に加えて専用の集電用正電極及び集電用負電極を設けるようにすることもできる。
また、上述した実施形態では、第2スイッチ手段226を閉状態に保持したまま第1スイッチ手段208を閉状態にして常温核融合反応に移行させているが、第2スイッチ手段226を閉状態にした後に第1スイッチ手段208を閉状態にして常温核融合反応に移行させるようにしてもよい。
In the above-described embodiment, the reference positive electrode 210 and the reference negative electrode 214 are provided in the vicinity of the positive electrode 22C (acceleration positive electrode) and the negative electrode 24C (acceleration negative electrode). The reference negative electrode 214 also functions as a current collecting positive electrode and a current collecting negative electrode. However, the present invention is not limited to such a configuration, and the reference positive electrode 210 is provided in the vicinity of the positive electrode 22C and the negative electrode 24C. In addition to the negative electrode for reference 214, a dedicated positive electrode for collecting current and a negative electrode for collecting current may be provided.
Further, in the above-described embodiment, the first switch means 208 is closed and the cold fusion reaction is shifted while the second switch means 226 is kept closed, but the second switch means 226 is closed. After that, the first switch means 208 may be closed to shift to the cold fusion reaction.

以上、本発明に従う常温核融合反応方法及び装置の実施形態について説明したが、本発明はかかる実施形態に限定されず、本発明の範囲を逸脱することなく種々の修正乃至修正が可能である。   As mentioned above, although the embodiment of the cold fusion reaction method and apparatus according to the present invention has been described, the present invention is not limited to such an embodiment, and various modifications or modifications can be made without departing from the scope of the present invention.

常温核融合反応が発生しているかを確認するために、次の実験を行った。実験として図7に示す形態の常温核融合反応装置を用いて行い、電解液として蒸留水(95%)と重水(5%)を混合した水に、電解物質として炭酸ソーダ:NaCO)0.1モル溶解させたものを用いた。反応容器として直径7cm、長さ30cmのもの円筒状のものを用い、この反応容器内に電解液を1リットル充填した。正電極(加速用正電極)と負電極(加速用負電極)との間隔は15cm、電解用正電極と正電極(電解用負電極)との間隔は0.5cmであった。 In order to confirm whether the cold fusion reaction occurred, the following experiment was conducted. As an experiment, a cold fusion reactor having the form shown in FIG. 7 was used, and distilled water (95%) and heavy water (5%) were mixed as an electrolytic solution, and sodium carbonate (Na 2 CO 3 ) as an electrolytic substance. What was dissolved 0.1 mol was used. A cylindrical container having a diameter of 7 cm and a length of 30 cm was used as a reaction container, and 1 liter of an electrolytic solution was filled in the reaction container. The distance between the positive electrode (acceleration positive electrode) and the negative electrode (acceleration negative electrode) was 15 cm, and the distance between the electrolysis positive electrode and the positive electrode (electrolysis negative electrode) was 0.5 cm.

まず、電解反応を行うために、電解用正電極と正電極(電解用負電極)との間に2V、1Aの電圧(電解電圧)を5秒間にわたって加えた。その後、常温核融合反応に移行させるために、正電極(加速用正電極)及び負電極(加速用負電極)との間に250V、1Aの電圧(反応電圧)を印加した。この反応電圧を印加すると、負電極の近傍の電解液がミルク状になり、このミルク状の状態が拡がって正電極及び負電極間の全域において微小の火花が無数に生じてグロウ放電発光状態となり、電流が0.1Aまで低下した。このグロウ放電発光状態が数秒間続くと、反応容器内の電解液が沸騰してその沸騰状態が激しくなり、この激しい沸騰状態が5〜6秒続くと蒸発により液面レベルが急激に下がり、正電極及び負電極が電解液の液面より露出した。そこで、反応電圧を50Vまで下げると、グロウ放電発光状態が沈静化し、反応容器内は元の状態に戻った。   First, in order to perform an electrolytic reaction, a voltage of 2 V and 1 A (electrolytic voltage) was applied for 5 seconds between a positive electrode for electrolysis and a positive electrode (negative electrode for electrolysis). Thereafter, a voltage of 250 V and 1 A (reaction voltage) was applied between the positive electrode (acceleration positive electrode) and the negative electrode (acceleration negative electrode) in order to shift to the cold fusion reaction. When this reaction voltage is applied, the electrolyte in the vicinity of the negative electrode becomes milky, this milky state spreads, and countless small sparks are generated across the area between the positive and negative electrodes, resulting in a glow discharge light emission state. The current decreased to 0.1A. If the glow discharge light emission state continues for several seconds, the electrolytic solution in the reaction vessel boils and the boiling state becomes intense, and if this intense boiling state continues for 5 to 6 seconds, the liquid surface level rapidly decreases due to evaporation. The electrode and the negative electrode were exposed from the surface of the electrolytic solution. Therefore, when the reaction voltage was lowered to 50 V, the glow discharge light emission state was calmed down and the inside of the reaction vessel returned to the original state.

この実験後に電解液の液蒸発量を計測すると約150ccであった。この液蒸発量は、電力に換算すると60kW・hに相当し、またこの実験で参照用正電極及び参照用負電極から取り出した電力は、電圧200V、電流10Aであり、2kW・hの電力出力が得られた。このような状態、また発生したエネルギー量を考慮すると、常温核融合反応が起こったと考えられる。   After this experiment, when the amount of evaporation of the electrolyte was measured, it was about 150 cc. This liquid evaporation amount corresponds to 60 kW · h in terms of electric power, and the electric power taken out from the reference positive electrode and the reference negative electrode in this experiment is a voltage of 200 V and a current of 10 A, and a power output of 2 kW · h. was gotten. Considering such a state and the amount of energy generated, it is considered that the cold fusion reaction occurred.

12,12A,12B,12C 常温核融合装置
13,13A,13B,13C 反応容器
20 電解液
22,22C 正電極(加速用正電極)
24,24C 負電極(加速用負電極)
68,68A 受光手段
102 電源装置(第1電源装置)
106 電圧調整手段
210 参照用正電極
214 参照用負電極
218 電圧検知手段
220 電解用正電極

12, 12A, 12B, 12C Cold fusion device 13, 13A, 13B, 13C Reaction vessel 20 Electrolytic solution 22, 22C Positive electrode (acceleration positive electrode)
24, 24C Negative electrode (acceleration negative electrode)
68, 68A Light receiving means 102 Power supply (first power supply)
106 Voltage adjustment means 210 Reference positive electrode 214 Reference negative electrode 218 Voltage detection means 220 Electrolysis positive electrode

Claims (5)

反応容器内の電解液中に加速用正電極及び加速用負電極を設置するとともに、前記加速用正電極及び前記加速用負電極の近傍に集電するための集電用正電極及び集電用負電極を配置し、前記加速用正電極及び前記加速用負電極に反応電圧を印加して前記加速用正電極及び前記加速用負電極間に常温核融合状態を発生させ、この常温核融合状態における電気エネルギーを前記集電用正電極及び前記集電用負電極により取り出して電力負荷に送給することを特徴とする常温核融合反応方法。   The positive electrode for acceleration and the negative electrode for acceleration are installed in the electrolyte in the reaction vessel, and the positive electrode for current collection and the current collector for collecting current in the vicinity of the positive electrode for acceleration and the negative electrode for acceleration A negative electrode is disposed, a reaction voltage is applied to the accelerating positive electrode and the accelerating negative electrode to generate a cold fusion state between the accelerating positive electrode and the accelerating negative electrode, and this cold fusion state The room temperature fusion reaction method is characterized in that the electrical energy in is taken out by the current collecting positive electrode and the current collecting negative electrode and is sent to a power load. 前記反応容器内に電解用正電極及び電解用負電極を設置し、前記電解用正電極及び前記電解用負電極間に電解電圧を印加して電解液中で予備電解を行い、その後前記加速用正電極及び前記加速用負電極の間の反応電圧を印加して前記加速用正電極及び前記加速用負電極間に常温各融合状態を発生させることを特徴とする請求項1に記載の常温核融合反応方法。   A positive electrode for electrolysis and a negative electrode for electrolysis are installed in the reaction vessel, an electrolysis voltage is applied between the positive electrode for electrolysis and the negative electrode for electrolysis, and preliminary electrolysis is performed in an electrolytic solution. The room temperature nucleus according to claim 1, wherein a reaction voltage between a positive electrode and the accelerating negative electrode is applied to generate each room temperature fusion state between the accelerating positive electrode and the accelerating negative electrode. Fusion reaction method. 前記加速用正電極に対応して前記電解用正電極を配設し、前記加速用正電極と前記電解用正電極との間に電解電圧を印加して前記加速用正電極を前記電解用負電極として機能させることを特徴とする請求項2に記載の常温核融合反応方法。   The positive electrode for electrolysis is disposed corresponding to the positive electrode for acceleration, and an electrolytic voltage is applied between the positive electrode for acceleration and the positive electrode for electrolysis to thereby connect the positive electrode for acceleration to the negative electrode for electrolysis. The cold fusion reaction method according to claim 2, wherein the cold fusion reaction method is used as an electrode. 電解液を収容する反応容器と、前記反応容器内の電解液中に浸漬された加速用正電極及び加速用負電極と、前記加速用正電極及び前記加速用負電極の近傍に配設された集電用正電極及び集電用負電極と、前記加速用正電極及び前記加速用負電極に反応電圧を印加するための第1電源装置と、電力を消費するための電力負荷とを備え、前記第1電源装置からの反応電圧が前記加速用正電極及び前記加速用負電極間に印加されて前記反応容器内で常温核融合状態が発生し、この常温核融合状態における電気エネルギーが前記集電用正電極及び前記集電用負電極により集電されて取り出され、取り出された電気エネルギーが前記電力負荷で消費されることを特徴とする常温核融合反応装置。   A reaction vessel containing an electrolytic solution, an accelerating positive electrode and an accelerating negative electrode immersed in the electrolytic solution in the reaction vessel, and disposed in the vicinity of the accelerating positive electrode and the accelerating negative electrode A positive electrode for collecting current and a negative electrode for collecting current, a first power supply device for applying a reaction voltage to the positive electrode for accelerating and the negative electrode for accelerating, and a power load for consuming electric power, A reaction voltage from the first power supply device is applied between the accelerating positive electrode and the accelerating negative electrode to generate a cold fusion state in the reaction vessel, and the electric energy in the cold fusion state is collected. A room temperature nuclear fusion reactor characterized in that the electric energy collected and taken out by the positive electrode for electricity and the negative electrode for collecting electricity is consumed by the electric power load. 前記反応容器内には、電解液中に浸漬されるように電解用正電極及び電解用負電極が設置され、更に、前記電解用正電極及び前記電解用負電極間に電解電圧を印加するための第2電源装置が設けられ、常温核融合反応を行うに際し、前記電解用正電極及び前記電解用負電極間に前記第2電源装置からの電解電圧が印加されて電解液中で予備電解が行われ、その後前記加速用正電極及び前記加速用負電極の間に前記第1電源装置からの反応電圧が印加されて前記加速用正電極及び前記加速用負電極間に常温各融合状態が発生することを特徴とする請求項4に記載の常温核融合反応装置。














In the reaction vessel, a positive electrode for electrolysis and a negative electrode for electrolysis are installed so as to be immersed in an electrolytic solution, and an electrolytic voltage is applied between the positive electrode for electrolysis and the negative electrode for electrolysis. When the room temperature fusion reaction is performed, the electrolysis voltage from the second power supply device is applied between the positive electrode for electrolysis and the negative electrode for electrolysis to perform preliminary electrolysis in the electrolytic solution. After that, a reaction voltage from the first power supply device is applied between the accelerating positive electrode and the accelerating negative electrode, and each room temperature fusion state occurs between the accelerating positive electrode and the accelerating negative electrode. The cold fusion reactor according to claim 4, wherein:














JP2015160521A 2015-08-17 2015-08-17 Normal temperature nuclear fusion reaction method and device Pending JP2016006431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015160521A JP2016006431A (en) 2015-08-17 2015-08-17 Normal temperature nuclear fusion reaction method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015160521A JP2016006431A (en) 2015-08-17 2015-08-17 Normal temperature nuclear fusion reaction method and device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013229915A Division JP2015090312A (en) 2013-11-06 2013-11-06 Cold nuclear fusion reaction method and apparatus

Publications (1)

Publication Number Publication Date
JP2016006431A true JP2016006431A (en) 2016-01-14

Family

ID=55224925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015160521A Pending JP2016006431A (en) 2015-08-17 2015-08-17 Normal temperature nuclear fusion reaction method and device

Country Status (1)

Country Link
JP (1) JP2016006431A (en)

Similar Documents

Publication Publication Date Title
US5273635A (en) Electrolytic heater
JP2009174043A (en) Apparatus for generating water electrolytic gas
WO2013183527A1 (en) Room-temperature fusion reaction method and device
JP2017138091A (en) Spray type heat insulating steam supply device and power generation facility using the same
JP6610003B2 (en) Fuel cell system
US20060045228A1 (en) Dual-plasma fusion and fission fuel cells
JP2015090312A (en) Cold nuclear fusion reaction method and apparatus
JP2001108775A (en) Thermal energy takeout device, hot water supply device, and electric power generating device
KR101321010B1 (en) Independent power supply device use thermoelectric generation
JP2016006431A (en) Normal temperature nuclear fusion reaction method and device
JP3637039B2 (en) Hydrogen gas generation method and hydrogen gas generator
KR100794759B1 (en) System for generating Combined Energy
JP2014095713A (en) Ordinary temperature nuclear fusion reaction method and ordinary temperature nuclear fusion reactor
KR20200111080A (en) A ion electrode boiler structure and frequency using equipment
JP2016072054A (en) Fuel cell module and fuel cell system
US10260738B2 (en) Steam generator using a plasma arc
CN107431218A (en) It is provided with the fuel cell system of electric deionizer
JP2013198390A (en) Cassette type gas combustion thermal power generator
CA2897246C (en) A steam generator using a plasma arc
US9480137B2 (en) Electrolytic cell for heating electrolyte by a glow plasma field in the electrolyte
JP6409368B2 (en) Fuel cell system
RU2286033C1 (en) Plasmatron with liquid electrolytic cathode
KR102371840B1 (en) Water gas generator
KR101017271B1 (en) Hydrogen energy systems
CN103267345B (en) A kind of combustion type rapid heating water boiler