JP2016005185A - Antenna device and wireless transmitter - Google Patents

Antenna device and wireless transmitter Download PDF

Info

Publication number
JP2016005185A
JP2016005185A JP2014125585A JP2014125585A JP2016005185A JP 2016005185 A JP2016005185 A JP 2016005185A JP 2014125585 A JP2014125585 A JP 2014125585A JP 2014125585 A JP2014125585 A JP 2014125585A JP 2016005185 A JP2016005185 A JP 2016005185A
Authority
JP
Japan
Prior art keywords
power
unit
input
antenna device
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014125585A
Other languages
Japanese (ja)
Other versions
JP6241788B2 (en
Inventor
健 平賀
Takeshi Hiraga
健 平賀
智弘 関
Tomohiro Seki
智弘 関
野島 俊雄
Toshio Nojima
俊雄 野島
隆 日景
Takashi Hikage
隆 日景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Hokkaido University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Nippon Telegraph and Telephone Corp filed Critical Hokkaido University NUC
Priority to JP2014125585A priority Critical patent/JP6241788B2/en
Publication of JP2016005185A publication Critical patent/JP2016005185A/en
Application granted granted Critical
Publication of JP6241788B2 publication Critical patent/JP6241788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmitters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antenna device in which decrease in the transmission power efficiency can be suppressed, even if the input impedance matching deteriorates, and to provide a wireless transmitter.SOLUTION: An antenna device includes an electromagnetic wave radiation unit for radiating a wireless frequency signal, inputted through a transmission line, to a space while converting into electromagnetic waves, a reflection wave extraction unit provided on the transmission line, and extracting the reflection wave generated when the wireless frequency signal is inputted to the electromagnetic wave radiation unit, and a rectification unit for rectifying the power of the reflection wave extracted by the reflection wave extraction unit and outputting a DC power.

Description

本発明は、アンテナ装置および無線送信装置に関する。   The present invention relates to an antenna device and a wireless transmission device.

無線送信装置の送信電力効率は、直流電源等の動作電源から無線送信装置に供給される動作電源電力のうち、実際にアンテナ装置から空間に放射される電磁波の電力の割合により表される。送信電力効率を改善するための技術として、非特許文献1には、高効率電力増幅器構成法により、無線送信装置において最も電力を消費する電力増幅器の電力効率を向上する技術が記載されている。   The transmission power efficiency of the wireless transmission device is represented by the ratio of the power of electromagnetic waves that are actually radiated from the antenna device to the space, out of the operation power supplied from the operation power source such as a DC power source to the wireless transmission device. As a technique for improving transmission power efficiency, Non-Patent Document 1 describes a technique for improving the power efficiency of a power amplifier that consumes the most power in a wireless transmission device by a high-efficiency power amplifier configuration method.

無線送信装置の送信電力効率を改善するためには、上述の電力増幅器の電力効率を改善することのほかに、アンテナ装置に入力される無線周波数の電力とアンテナ装置から空間に放射される電磁波の電力との比によって表されるアンテナ放射効率を改善することが重要である。アンテナ放射効率は、アンテナ装置の入力インピーダンス整合がとれているか否か応じて異なり、入力インピーダンス整合がとれていれば、アンテナ放射効率が高くなり、入力インピーダンス整合がとれていなければ、アンテナ放射効率が低下する。   In order to improve the transmission power efficiency of the wireless transmission device, in addition to improving the power efficiency of the power amplifier described above, the power of the radio frequency input to the antenna device and the electromagnetic wave radiated from the antenna device to the space It is important to improve the antenna radiation efficiency expressed by the ratio with the power. The antenna radiation efficiency varies depending on whether or not the input impedance matching of the antenna device is achieved. If the input impedance matching is achieved, the antenna radiation efficiency is increased. If the input impedance matching is not achieved, the antenna radiation efficiency is increased. descend.

図8(A)および図8(B)は、従来技術によるアンテナ装置4を備えた無線送信装置の送信電力効率を説明するための図であり、このうち、図8(A)は、アンテナ装置4の入力インピーダンス整合がとれている場合の送信電力効率を説明するための図であり、図8(B)は、アンテナ装置4の入力インピーダンス整合がとれていない場合の送信電力効率を説明するための図である。   FIG. 8A and FIG. 8B are diagrams for explaining the transmission power efficiency of the wireless transmission device provided with the antenna device 4 according to the prior art. Among these, FIG. 8A shows the antenna device. 4 is a diagram for explaining the transmission power efficiency when the input impedance matching of 4 is taken, and FIG. 8B is for explaining the transmission power efficiency when the input impedance matching of the antenna device 4 is not taken. FIG.

図8(A)および図8(B)において、入力端子1を通じて入力された電力Psの無線周波数信号は増幅器2(電力増幅器)によって増幅される。増幅器2から出力された無線周波数信号の電力Ptは、増幅器2とアンテナ装置4との間の接続点4aを通じてアンテナ装置4に供給される。アンテナ装置4は、電力Ptを電磁波に変換して空間に放射する。増幅器2の動作電源として電源3から直流電力Pdcが増幅器2に供給されている。この例では、無線送信装置の送信電力効率は、電源3から増幅器2に供給される直流電力Pdcと、アンテナ装置4から放射された電磁波の電力Pout’との比(Pout’/Pdc)によって表される。   8A and 8B, the radio frequency signal of power Ps input through the input terminal 1 is amplified by the amplifier 2 (power amplifier). The power Pt of the radio frequency signal output from the amplifier 2 is supplied to the antenna device 4 through a connection point 4 a between the amplifier 2 and the antenna device 4. The antenna device 4 converts the power Pt into an electromagnetic wave and radiates it into space. DC power Pdc is supplied from the power source 3 to the amplifier 2 as an operating power source for the amplifier 2. In this example, the transmission power efficiency of the wireless transmission device is expressed by a ratio (Pout ′ / Pdc) between the DC power Pdc supplied from the power source 3 to the amplifier 2 and the power Pout ′ of the electromagnetic wave radiated from the antenna device 4. Is done.

一般に、アンテナ装置において、放射導体の共振により高効率で電磁波を空間に放射するために、放射導体の物理サイズは、放射導体の共振周波数で定まる或る一定の大きさに設定され、入力インピーダンス整合がとられている。アンテナ装置4の入力インピーダンス整合がとれている場合、図8(A)に例示するように、増幅器2からアンテナ装置4に供給される無線周波数信号の電力Ptの一部の電力Pt12が反射波となり、電磁波の形成に寄与しないものの、電力Ptの大部分の電力Pt11は電磁波に変換される。このため、アンテナ装置4の入力インピーダンス整合がとれていると、アンテナ放射効率および送信電力効率が高くなり、増幅器2から出力される無線周波数信号のエネルギーは高い効率でアンテナ装置4から空間に放射される。   In general, in an antenna device, in order to radiate electromagnetic waves into space with high efficiency due to resonance of a radiation conductor, the physical size of the radiation conductor is set to a certain size determined by the resonance frequency of the radiation conductor, and input impedance matching is performed. Has been taken. When the input impedance matching of the antenna device 4 is achieved, as illustrated in FIG. 8A, a part of the power Pt12 of the radio frequency signal power Pt supplied from the amplifier 2 to the antenna device 4 becomes a reflected wave. Although most of the electric power Pt does not contribute to the formation of electromagnetic waves, the electric power Pt11 is converted into electromagnetic waves. For this reason, if the input impedance matching of the antenna device 4 is taken, the antenna radiation efficiency and the transmission power efficiency become high, and the energy of the radio frequency signal output from the amplifier 2 is radiated from the antenna device 4 to the space with high efficiency. The

F. H. Raab, “Maximum Efficiency and Output of Class-F Power Amplifiers,” IEEE Trans. on Microwave Theory and Techniques, Vol. 49, No. 6, pp.1162-1166, June 2001.F. H. Raab, “Maximum Efficiency and Output of Class-F Power Amplifiers,” IEEE Trans. On Microwave Theory and Techniques, Vol. 49, No. 6, pp.1162-1166, June 2001.

近年、携帯端末に代表されるように、無線通信装置の小型化が推し進められている。無線通信装置の小型化を実現するためには、小型集積化されたアンテナ装置と通信回路を実現する必要がある。また、アレー化によりアンテナ装置の利得の向上を図る場合や、アンテナ装置の放射指向性を制御する場合にも、小型集積化されたアンテナ装置と無線送信装置を実現する必要がある。   In recent years, as represented by mobile terminals, miniaturization of wireless communication devices has been promoted. In order to reduce the size of the wireless communication device, it is necessary to realize a small-sized integrated antenna device and communication circuit. In addition, when the gain of the antenna device is improved by arraying or when the radiation directivity of the antenna device is controlled, it is necessary to realize a small-sized integrated antenna device and wireless transmission device.

しかしながら、アンテナ装置を小型化するためには放射導体の物理サイズを小さくする必要があり、放射導体の物理サイズを小さくすると、無線周波数信号の波長との関係でアンテナ装置の入力インピーダンス整合をとることが困難になる。アンテナ装置の入力インピーダンス整合がとれないと、アンテナ装置において、無線周波数で放射導体の共振が得られなくなる。   However, in order to reduce the size of the antenna device, it is necessary to reduce the physical size of the radiating conductor. When the physical size of the radiating conductor is reduced, the input impedance of the antenna device is matched in relation to the wavelength of the radio frequency signal. Becomes difficult. If the input impedance of the antenna device cannot be matched, resonance of the radiation conductor cannot be obtained at the radio frequency in the antenna device.

この場合、図8(B)に例示するように、増幅器2からアンテナ装置4に供給される無線周波数信号の電力Ptの一部の電力Pt21が電磁波に変換されるものの、電力Ptの大部分の電力Pt22は、アンテナ装置4と増幅器2との間の接続点4aで反射され、増幅器2側に戻される。即ち、増幅器2から出力される電力Ptの大部分は空間に放射されない。   In this case, as illustrated in FIG. 8B, although a part of the power Pt21 of the power Pt of the radio frequency signal supplied from the amplifier 2 to the antenna device 4 is converted into an electromagnetic wave, most of the power Pt is converted. The electric power Pt22 is reflected at the connection point 4a between the antenna device 4 and the amplifier 2 and returned to the amplifier 2 side. That is, most of the power Pt output from the amplifier 2 is not radiated to the space.

従って、アンテナ装置4の入力インピーダンス整合がとれていないと、アンテナ放射効率が低下する。この結果、電源3から増幅器2に供給される電力Pdcとアンテナ装置4から空間に放射される電磁波の電力Pout’との割合、即ち、無線送信装置の送信電力効率が低下する。   Therefore, if the input impedance matching of the antenna device 4 is not taken, the antenna radiation efficiency is lowered. As a result, the ratio between the power Pdc supplied from the power source 3 to the amplifier 2 and the power Pout 'of the electromagnetic wave radiated from the antenna device 4 to the space, that is, the transmission power efficiency of the wireless transmission device is reduced.

更に具体的に説明する。
図9(A)及び図9(B)は、アンテナ装置の放射導体の長さと入力抵抗との関係の一例を示す特性図であり、このうち、図9(A)は、ダイポールアンテナのアンテナ長と入力抵抗との関係を示す特性図であり、図9(B)は、ループアンテナのループ長と入力抵抗との関係を示す特性図である。図9(A)において、横軸は、ダイポールアンテナの放射導体の長さであるアンテナ長Lを波長λで正規化した値(L/λ)を表し、縦軸は、ダイポールアンテナの入力抵抗を表す。また、図9(B)において、横軸は、ループアンテナの放射導体の長さであるループ長Dを波長λで正規化した値(D/λ)を表し、縦軸は、ループアンテナの入力抵抗を表す。
This will be described more specifically.
9A and 9B are characteristic diagrams showing an example of the relationship between the length of the radiation conductor of the antenna device and the input resistance. Among these, FIG. 9A shows the antenna length of the dipole antenna. And FIG. 9B is a characteristic diagram showing the relationship between the loop length of the loop antenna and the input resistance. In FIG. 9A, the horizontal axis represents a value (L / λ) obtained by normalizing the antenna length L, which is the length of the radiation conductor of the dipole antenna, with the wavelength λ, and the vertical axis represents the input resistance of the dipole antenna. Represent. In FIG. 9B, the horizontal axis represents the value (D / λ) obtained by normalizing the loop length D, which is the length of the radiation conductor of the loop antenna, with the wavelength λ, and the vertical axis represents the input of the loop antenna. Represents resistance.

通常、ダイポールアンテナの場合、棒状の放射導体の全長は、入力された無線周波数信号の例えば半波長に設定され、無線周波数信号の周波数で放射導体が共振する。ダイポールアンテナの入力インピーダンスは、例えば約73オームである。   Usually, in the case of a dipole antenna, the total length of the rod-shaped radiation conductor is set to, for example, a half wavelength of the input radio frequency signal, and the radiation conductor resonates at the frequency of the radio frequency signal. The input impedance of the dipole antenna is about 73 ohms, for example.

図9(A)から理解されるように、ダイポールアンテナのアンテナ長(L/λ)を無線周波数信号の半波長より短くすると、ダイポールアンテナの入力抵抗が大幅に小さくなる傾向を示す。このため、外付けの整合回路により入力インピーダンス整合を実現することが困難になる。無線送信装置の増幅器の出力とダイポールアンテナの入力抵抗が整合していないと、放射導体の共振を得ることができなくなる。このため、ダイポールアンテナに効率よく電力を供給することが困難になり、アンテナ放射効率が大幅に劣化する。また、図9(B)から理解されるように、ループアンテナについても、ダイポールアンテナと同様、ループ長(D/λ)を短くすると、ループアンテナの入力抵抗が大幅に小さくなり、入力インピーダンス整合を実現することが困難になる。   As understood from FIG. 9A, when the antenna length (L / λ) of the dipole antenna is made shorter than a half wavelength of the radio frequency signal, the input resistance of the dipole antenna tends to be greatly reduced. For this reason, it becomes difficult to realize input impedance matching by an external matching circuit. If the output of the amplifier of the wireless transmission device and the input resistance of the dipole antenna do not match, the resonance of the radiation conductor cannot be obtained. For this reason, it becomes difficult to efficiently supply power to the dipole antenna, and the antenna radiation efficiency is greatly deteriorated. As can be seen from FIG. 9B, as with the dipole antenna, the loop antenna (D / λ) is shortened, and the input resistance of the loop antenna is greatly reduced. It becomes difficult to realize.

このように、アンテナ装置の放射導体のサイズを無線周波数信号の半波長よりも小さくしてアンテナ装置を小型化することは、アンテナ装置の入力インピーダンス整合を劣化させる。アンテナ装置の入力インピーダンスの整合が劣化すると、上述したように、無線送信装置の増幅器からアンテナ装置に供給される無線周波数信号の電力の大部分が反射され、実際にアンテナ装置から空間に放射される電磁波の電力が小さくなる。このため、アンテナ放射効率が低下し、無線送信装置の送信電力効率が低下する。コードレス電話機のアンテナや無線タグのように、無線伝送距離が十分に短く、アンテナ放射効率が低下しても必要とされる信号強度が得られる用途を除けば、無線周波数信号の半波長よりも大幅に小さい微小サイズの放射導体を用いることは、アンテナ放射効率および送信電力効率の観点から好ましくない。   Thus, downsizing the antenna device by making the size of the radiation conductor of the antenna device smaller than the half wavelength of the radio frequency signal degrades the input impedance matching of the antenna device. When the matching of the input impedance of the antenna device deteriorates, as described above, most of the power of the radio frequency signal supplied from the amplifier of the wireless transmission device to the antenna device is reflected and actually radiated from the antenna device to space. The power of electromagnetic waves is reduced. For this reason, antenna radiation efficiency falls and the transmission power efficiency of a wireless transmitter falls. Except for applications where the required signal strength can be obtained even when the antenna transmission efficiency is sufficiently short and the antenna radiation efficiency is reduced, such as the antenna and wireless tag of a cordless telephone, it is much larger than the half wavelength of the radio frequency signal. It is not preferable to use a small radiating conductor having a small size from the viewpoint of antenna radiation efficiency and transmission power efficiency.

本発明は、このような事情を考慮してなされたものであり、その目的は、入力インピーダンス整合が劣化しても、送信周波数に依存することなく、送信電力効率を改善することができるアンテナ装置および無線送信装置を提供することにある。   The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide an antenna device capable of improving transmission power efficiency without depending on a transmission frequency even when input impedance matching is deteriorated. And providing a wireless transmission device.

本発明は、上記の課題を解決するため、次に述べるように、電磁波を空間に放射する電磁波放射部(導体部分)から反射されて無線送信装置の電力増幅器側に戻る反射波の電力を別経路で直流電力に変換し、その直流電力を回収して無線送信装置等の電源電圧として利用できるように構成したアンテナ装置および無線送信装置を提供する。   In order to solve the above problems, the present invention separates the power of the reflected wave that is reflected from the electromagnetic wave radiation part (conductor part) that radiates electromagnetic waves into the space and returns to the power amplifier side of the wireless transmission device as described below. Provided are an antenna device and a wireless transmission device that are configured to be converted into direct-current power through a path, and the direct-current power is recovered and used as a power supply voltage for a wireless transmission device or the like.

本発明の一態様によるアンテナ装置は、伝送線路を通じて入力される無線周波数信号を電磁波に変換して空間に放射する電磁波放射部と、前記伝送線路上に設けられ、前記電磁波放射部に前記無線周波数信号が入力される際に発生した反射波を抽出する反射波抽出部と、前記反射波抽出部により抽出された前記反射波の電力を整流して直流電力を出力する整流部と、を備えたアンテナ装置の構成を有する。   An antenna device according to an aspect of the present invention includes an electromagnetic wave radiation unit that converts a radio frequency signal input through a transmission line into an electromagnetic wave and radiates the electromagnetic wave, and is provided on the transmission line. A reflected wave extraction unit that extracts a reflected wave generated when a signal is input; and a rectification unit that rectifies the power of the reflected wave extracted by the reflected wave extraction unit and outputs DC power. It has a configuration of an antenna device.

前記アンテナ装置において、例えば、前記伝送線路は平衡型線路である。
前記アンテナ装置において、例えば、前記反射波抽出部は、サーキュレータから構成され、前記サーキュレータは、前記無線周波数信号による高周波電力が入力される第1ポートと、前記第1ポートに入力された無線周波数信号による高周波電力を前記電磁波放射部へ出力するとともに、前記反射波による高周波電力が入力される第2ポートと、前記第2ポートに入力された前記反射波による高周波電力を前記整流部に出力する第3ポートと、を有する。
In the antenna device, for example, the transmission line is a balanced line.
In the antenna device, for example, the reflected wave extraction unit is configured by a circulator, and the circulator includes a first port to which high-frequency power from the radio frequency signal is input, and a radio frequency signal input to the first port. A second port to which the high-frequency power by the reflected wave is input, and a high-frequency power by the reflected wave input to the second port is output to the rectifying unit. 3 ports.

前記アンテナ装置において、例えば、前記反射波抽出部は、方向性結合器から構成され、前記方向性結合器は、少なくとも、前記無線周波数信号による高周波電力が入力される第1ポートと、前記第1ポートに入力された無線周波数信号による高周波電力を前記電磁波放射部へ出力するとともに、前記反射波による高周波電力が入力される第2ポートと、前記第2ポートに入力された前記反射波による高周波電力を前記整流部に出力する第3ポートと、を有する。   In the antenna apparatus, for example, the reflected wave extraction unit is configured by a directional coupler, and the directional coupler includes at least a first port to which high-frequency power by the radio frequency signal is input, and the first A high-frequency power based on a radio frequency signal input to the port is output to the electromagnetic wave radiation unit, a second port to which the high-frequency power based on the reflected wave is input, and a high-frequency power based on the reflected wave input to the second port And a third port for outputting to the rectifying unit.

前記アンテナ装置において、例えば、前記電磁波放射部の入力反射係数をRとし、前記無線周波数信号を発生させる増幅器の電力効率をηPAとし、前記整流部の電力変換効率をηCVとしたときに、前記電磁波放射部の入力反射係数と、前記増幅器の電力効率と、前記整流部の電力変換効率は、ηPA×ηCV×(1+0.5×R)>1、且つ、ηPA×ηCV>2/3なる関係を満足する。
前記アンテナ装置において、例えば、前記整流部から出力された直流電力を蓄える蓄電部を更に備える。
In the antenna device, for example, when the input reflection coefficient of the electromagnetic wave radiation unit is R, the power efficiency of the amplifier that generates the radio frequency signal is η PA, and the power conversion efficiency of the rectification unit is η CV , The input reflection coefficient of the electromagnetic wave radiation unit, the power efficiency of the amplifier, and the power conversion efficiency of the rectifier unit are η PA × η CV × (1 + 0.5 × R)> 1 and η PA × η CV > Satisfies the 2/3 relationship.
The antenna device further includes, for example, a power storage unit that stores DC power output from the rectification unit.

本発明の一態様による無線送信装置は、アレーアンテナを備えた無線送信装置であって、前記アレーアンテナは、上記のアンテナ装置をアレー化して備える。
本発明の一態様による無線送信装置は、上記のアンテナ装置を備えた無線送信装置であって、前記無線周波数信号の電力を増幅する増幅器と、所定の電源から得られる電力を前記増幅器の動作電源電力として前記増幅器に供給し、前記整流部から前記直流電力が出力された場合、前記所定の電源から前記送信増幅器に供給される電力を制限すると共に前記直流電力を前記増幅器の動作電源電力として前記増幅器に供給する電源制御部と、を備えた無線送信装置の構成を有する。
A wireless transmission device according to an aspect of the present invention is a wireless transmission device including an array antenna, and the array antenna includes the antenna device described above as an array.
A wireless transmission device according to an aspect of the present invention is a wireless transmission device including the antenna device described above, an amplifier that amplifies the power of the radio frequency signal, and power obtained from a predetermined power source. When the DC power is supplied from the rectifier unit to the amplifier as power, the power supplied from the predetermined power source to the transmission amplifier is limited and the DC power is used as the operating power source power of the amplifier. And a power transmission control unit for supplying power to the amplifier.

本発明によれば、入力インピーダンス整合が劣化しても、送信周波数に依存することなく、送信電力効率を改善することができる。   According to the present invention, even if input impedance matching is deteriorated, it is possible to improve transmission power efficiency without depending on the transmission frequency.

本発明の第1実施形態によるアンテナ装置を備えた無線送信装置の構成例を示す図である。It is a figure which shows the structural example of the radio | wireless transmitter provided with the antenna device by 1st Embodiment of this invention. 本発明の第2実施形態によるアンテナ装置を備えた無線送信装置の構成例を示す図である。It is a figure which shows the structural example of the radio | wireless transmitter provided with the antenna device by 2nd Embodiment of this invention. 本発明の第2実施形態によるアンテナ装置を備えた無線送信装置の構成例を補足説明するための図である。It is a figure for supplementarily explaining the structural example of the radio | wireless transmitter provided with the antenna device by 2nd Embodiment of this invention. 本発明の第3実施形態によるアンテナ装置を備えた無線送信装置の構成例を示す図である。It is a figure which shows the structural example of the radio | wireless transmission apparatus provided with the antenna device by 3rd Embodiment of this invention. 図4に示す本発明の第3実施形態によるアンテナ装置を備えた無線送信装置の構成例を補足説明するための図である。FIG. 6 is a diagram for supplementarily explaining a configuration example of a wireless transmission device including an antenna device according to a third embodiment of the present invention shown in FIG. 4. 本発明の第4実施形態によるアンテナ装置を備えた無線送信装置の構成例を示す図である。It is a figure which shows the structural example of the radio | wireless transmitter provided with the antenna device by 4th Embodiment of this invention. 本発明の第5実施形態によるアンテナ装置を備えた無線送信装置の構成例を示す図である。It is a figure which shows the structural example of the radio | wireless transmitter provided with the antenna device by 5th Embodiment of this invention. 従来技術によるアンテナ装置を備えた無線送信装置の送信電力効率を説明するための図であり、(A)は、アンテナ装置の入力インピーダンス整合がとれている場合の送信電力効率を説明するための図であり、(B)は、アンテナ装置の入力インピーダンス整合がとれていない場合の送信電力効率を説明するための図である。It is a figure for demonstrating the transmission power efficiency of the radio | wireless transmitter provided with the antenna apparatus by a prior art, (A) is a figure for demonstrating the transmission power efficiency in case the input impedance matching of the antenna apparatus is taken. (B) is a figure for demonstrating the transmission power efficiency in case the input impedance matching of the antenna apparatus is not taken. アンテナ装置の放射導体の長さと入力抵抗との関係の一例を示す特性図であり、(A)は、ダイポールアンテナのアンテナ長と入力抵抗との関係を示す特性図であり、(B)は、ループアンテナのループ長と入力抵抗との関係を示す特性図である。It is a characteristic view which shows an example of the relationship between the length of the radiation conductor of an antenna apparatus, and input resistance, (A) is a characteristic view which shows the relationship between the antenna length of a dipole antenna, and input resistance, (B) is It is a characteristic view which shows the relationship between the loop length of a loop antenna, and input resistance.

以下、図面を参照して、本発明の実施形態について説明する。
<第1実施形態>
図1は、本発明の第1実施形態によるアンテナ装置150を備えた無線送信装置100の構成例を示す図である。
第1実施形態によるアンテナ装置150を備えた無線送信装置100は、アンテナ装置150の電磁波放射部151に高周波電力を給電する伝送線路上に、電磁波放射部151からの反射波を抽出する反射波抽出部152を設け、電磁波放射部151からの反射波を反射波抽出部152により抽出し、その反射波の電力を直流電力に変換して再利用する機能を有する。
Embodiments of the present invention will be described below with reference to the drawings.
<First Embodiment>
FIG. 1 is a diagram illustrating a configuration example of a wireless transmission device 100 including an antenna device 150 according to the first embodiment of the present invention.
The wireless transmission device 100 including the antenna device 150 according to the first embodiment extracts a reflected wave that extracts a reflected wave from the electromagnetic wave radiation unit 151 on a transmission line that supplies high frequency power to the electromagnetic wave radiation unit 151 of the antenna device 150. The unit 152 is provided, and the reflected wave from the electromagnetic wave radiation unit 151 is extracted by the reflected wave extraction unit 152, and the reflected wave power is converted into DC power and reused.

具体的には、無線送信装置100は、入力端子110、送信増幅器(電力増幅器)120、電源制御部130、バッテリや商用電源等の電源140、アンテナ装置150を備えている。送信増幅器120の入力部には、入力端子110を通じて電力Psの無線周波数信号Ssが供給される。送信増幅器120は、電力Psの無線周波数信号Ssを増幅して電力Ptの無線周波数信号Stを出力する。送信増幅器120から出力された無線周波数信号Stの電力Ptはアンテナ装置150に供給される。   Specifically, the wireless transmission device 100 includes an input terminal 110, a transmission amplifier (power amplifier) 120, a power supply control unit 130, a power supply 140 such as a battery or a commercial power supply, and an antenna device 150. A radio frequency signal Ss of power Ps is supplied to the input portion of the transmission amplifier 120 through the input terminal 110. The transmission amplifier 120 amplifies the radio frequency signal Ss with power Ps and outputs a radio frequency signal St with power Pt. The power Pt of the radio frequency signal St output from the transmission amplifier 120 is supplied to the antenna device 150.

電源制御部130は、送信増幅器120の動作電源電力Pdcinを供給するための構成要素である。本実施形態では、電源制御部130は、バッテリや商用電源等の所定の電源140から得られる電力Pdcを送信増幅器120の動作電源電力Pdcinとして送信増幅器120の電源端子(図示なし)に供給する。また、電源制御部130は、アンテナ装置150の整流部153から直流電力Pdcretが出力された場合、動作電源電力Pdcinとして所定の電源140から送信増幅器120に供給される電力を制限すると共に、直流電力Pdcretを送信増幅器120の動作電源電力Pdcinとして送信増幅器120の電源端子(図示なし)に供給する。   The power supply control unit 130 is a component for supplying the operation power supply power Pdcin of the transmission amplifier 120. In the present embodiment, the power supply control unit 130 supplies power Pdc obtained from a predetermined power supply 140 such as a battery or a commercial power supply to the power supply terminal (not shown) of the transmission amplifier 120 as the operation power supply power Pdcin of the transmission amplifier 120. In addition, when the DC power Pdcret is output from the rectifier 153 of the antenna device 150, the power supply control unit 130 limits the power supplied from the predetermined power supply 140 to the transmission amplifier 120 as the operation power supply power Pdcin, and the DC power Pdcret is supplied to the power supply terminal (not shown) of the transmission amplifier 120 as the operating power supply power Pdcin of the transmission amplifier 120.

アンテナ装置150は、電磁波放射部151、反射波抽出部152、整流部153を備えている。送信増幅器120の出力部と電磁波放射部151とは伝送線路(符号なし)を介して接続されており、上記伝送線路上には反射波抽出部152が設けられている。即ち、送信増幅器120の出力部と電磁波放射部151との間には、反射波抽出部152が接続されている。送信増幅器120の出力部と反射波抽出部152との間は伝送線路を介して接続され、反射波抽出部152と電磁波放射部151との間も伝送線路を介して接続されている。   The antenna device 150 includes an electromagnetic wave radiation unit 151, a reflected wave extraction unit 152, and a rectification unit 153. The output section of the transmission amplifier 120 and the electromagnetic wave radiation section 151 are connected via a transmission line (no symbol), and a reflected wave extraction section 152 is provided on the transmission line. That is, the reflected wave extraction unit 152 is connected between the output unit of the transmission amplifier 120 and the electromagnetic wave radiation unit 151. The output section of the transmission amplifier 120 and the reflected wave extraction section 152 are connected via a transmission line, and the reflected wave extraction section 152 and the electromagnetic wave radiation section 151 are also connected via a transmission line.

電磁波放射部151は、送信増幅器120から伝送線路を通じて入力される無線周波数信号Stを電磁波に変換して空間に放射するための構成要素である。本実施形態では、電磁波放射部151は、共振波長を無視した超小型設計のダイポールアンテナから構成され、その放射導体の長さは、例えば、無線周波数の電波伝搬空間内波長の10分の1以下に設定されている。即ち、電磁波放射部151の放射導体の長さは、必ずしも入力インピーダンス整合をとることを前提として設定されていない。
なお、電磁波放射部151は、所望の無線通信に必要とされる電磁波を空間に放射し得ることを限度として、任意の形式のアンテナから構成することができ、その放射導体の長さも任意に設定し得る。
The electromagnetic wave radiation unit 151 is a component for converting the radio frequency signal St input from the transmission amplifier 120 through the transmission line into an electromagnetic wave and radiating it to the space. In the present embodiment, the electromagnetic wave radiation unit 151 is composed of a dipole antenna with an ultra-compact design that ignores the resonance wavelength, and the length of the radiation conductor is, for example, one tenth or less of the wavelength in the radio wave propagation space. Is set to In other words, the length of the radiation conductor of the electromagnetic wave radiation portion 151 is not necessarily set on the assumption that input impedance matching is taken.
The electromagnetic wave radiating unit 151 can be composed of any type of antenna as long as it can radiate an electromagnetic wave required for desired wireless communication to the space, and the length of the radiation conductor is also arbitrarily set. Can do.

反射波抽出部152は、送信増幅器120から出力された無線周波数信号Stが電磁波放射部151に入力される際に発生する反射波を抽出するための構成要素である。
整流部153は、反射波抽出部152により抽出された反射波の電力Pretを整流して直流電力Pdcretを出力するための構成要素である。
The reflected wave extraction unit 152 is a component for extracting a reflected wave that is generated when the radio frequency signal St output from the transmission amplifier 120 is input to the electromagnetic wave emission unit 151.
The rectifying unit 153 is a component for rectifying the reflected wave power Pret extracted by the reflected wave extracting unit 152 and outputting DC power Pdcret.

なお、第1実施形態では、アンテナ装置150に電力Ptの無線周波数信号Stを供給するための伝送線路は、アンテナ装置150から所望の電磁波を放射することができることを限度として、不平衡型線路であってもよく、平衡型線路であってもよい。即ち、送信増幅器120と反射波抽出部152との間の伝送線路と、反射波抽出部152と電磁波放射部151との間の伝送線路は、不平衡型線路であってもよく、平衡型線路であってもよく、これらの組み合わせであってもよい。   In the first embodiment, the transmission line for supplying the radio frequency signal St of the power Pt to the antenna device 150 is an unbalanced line as long as a desired electromagnetic wave can be radiated from the antenna device 150. There may be a balanced line. That is, the transmission line between the transmission amplifier 120 and the reflected wave extraction unit 152 and the transmission line between the reflected wave extraction unit 152 and the electromagnetic wave radiation unit 151 may be an unbalanced line, or a balanced line. Or a combination thereof.

次に、第1実施形態によるアンテナ装置150を備えた無線送信装置100の動作を説明する。ここでは、送信増幅器120から出力される電力Ptの無線周波数信号Stがアンテナ装置150に入力される際に発生する反射波の電力Pretを回収し、この反射波の電力Pretを送信増幅器120の動作電源電力Pdcinとして利用するまでの無線送信装置100の動作を説明する。   Next, the operation of the wireless transmission device 100 including the antenna device 150 according to the first embodiment will be described. Here, the power Pret of the reflected wave generated when the radio frequency signal St of the power Pt output from the transmission amplifier 120 is input to the antenna device 150 is recovered, and the power Pret of the reflected wave is used as the operation of the transmission amplifier 120. The operation of the wireless transmission device 100 until it is used as the power source power Pdcin will be described.

無線周波数信号Ssが送信増幅器120に入力されていない状態では、電源制御部130は、送信増幅器120の動作電源電力Pdcinを、バッテリや商用電源等の所定の電源140の電力Pdcから得る。即ち、電源制御部130は、電源140から得られる電力Pdcを動作電源電力Pdcinとして送信増幅器120に供給する。この状態から、電力Psの無線周波数信号Ssが送信増幅器120に入力されると、送信増幅器120は、無線周波数信号Ssを増幅して電力Ptの無線周波数信号Stをアンテナ装置150に出力する。   In a state where the radio frequency signal Ss is not input to the transmission amplifier 120, the power supply control unit 130 obtains the operating power supply power Pdcin of the transmission amplifier 120 from the power Pdc of a predetermined power supply 140 such as a battery or a commercial power supply. That is, the power supply control unit 130 supplies the power Pdc obtained from the power supply 140 to the transmission amplifier 120 as the operation power supply power Pdcin. From this state, when the radio frequency signal Ss with power Ps is input to the transmission amplifier 120, the transmission amplifier 120 amplifies the radio frequency signal Ss and outputs the radio frequency signal St with power Pt to the antenna device 150.

送信増幅器120からアンテナ装置150に入力された無線周波数信号Stは、反射波抽出部152を通じて電磁波放射部151に供給される。このとき、電磁波放射部151に供給される無線周波数信号Stの一部が、反射波抽出部152と電磁波放射部151との間の接続点151aで反射される。電磁波放射部151の接続点151aで反射された反射波は、反射波抽出部152に入力される。反射波抽出部152は、電磁波放射部151で反射された反射波を抽出し、その反射波の電力Pretを整流部153に出力する。整流部153は、反射波抽出部152により抽出された反射波の電力Pretを整流して直流電力Pdcretを生成し、直流電力Pdcretを電源制御部130に供給する。   The radio frequency signal St input from the transmission amplifier 120 to the antenna device 150 is supplied to the electromagnetic wave radiation unit 151 through the reflected wave extraction unit 152. At this time, a part of the radio frequency signal St supplied to the electromagnetic wave radiation unit 151 is reflected at the connection point 151 a between the reflected wave extraction unit 152 and the electromagnetic wave radiation unit 151. The reflected wave reflected at the connection point 151 a of the electromagnetic wave radiation unit 151 is input to the reflected wave extraction unit 152. The reflected wave extraction unit 152 extracts the reflected wave reflected by the electromagnetic wave radiation unit 151, and outputs the power Pret of the reflected wave to the rectifying unit 153. The rectification unit 153 rectifies the reflected wave power Pret extracted by the reflected wave extraction unit 152 to generate DC power Pdcret, and supplies the DC power Pdcret to the power supply control unit 130.

電源制御部130の検知部132は、整流部153から直流電力Pdcretが入力されると、直流電力Pdcretを検知する。検知部132は、直流電力Pdcretを検知すると、電流制限部131に対し、電源140から送信増幅器120に供給される動作電源電力Pdcinを制限すると共に直流電力Pdcretを送信増幅器120の動作電源電力Pdcretとして利用する旨の指示を出力する。   When the DC power Pdcret is input from the rectifier 153, the detection unit 132 of the power supply control unit 130 detects the DC power Pdcret. When detecting the DC power Pdcret, the detection unit 132 limits the operating power supply power Pdcin supplied from the power supply 140 to the transmission amplifier 120 to the current limiting unit 131 and uses the DC power Pdcret as the operating power supply power Pdcret of the transmission amplifier 120. An instruction to use is output.

電流制限部131は、検知部132からの上記の指示を受けると、整流部153から供給される直流電力Pdcretの電流に相当する量だけ、所定の電源140からの電力Pdcの電流を制限する。このとき、電流制限部131は、整流部153から直流電力Pdcretを受電し、直流電力Pdcretを利用して送信増幅器120の動作電源電力Pdcinを生成する。   When receiving the above instruction from the detection unit 132, the current limiting unit 131 limits the current of the power Pdc from the predetermined power supply 140 by an amount corresponding to the current of the DC power Pdcret supplied from the rectifying unit 153. At this time, the current limiting unit 131 receives the DC power Pdcret from the rectifying unit 153, and generates the operating power supply power Pdcin for the transmission amplifier 120 using the DC power Pdcret.

具体的には、整流部153から供給される直流電力Pdcretが、送信増幅器120の動作に必要とされる電力未満である場合、電流制限部131は、直流電力Pdcretの全てを動作電源電力Pdcinとして利用すると共に、不足分の電力(Pdc−Pdcret)を所定の電源140の電力Pdcから得る。この場合、整流部153から出力される直流電力Pdcretの電流分だけ、所定の電源140から供給される電力Pdcの電流量が減少されるため、電源140の電力Pdcの消費が抑制される。なお、エネルギー保存則から、直流電力Pdcretが動作電源電力Pdcin以上になることはない。   Specifically, when the DC power Pdcret supplied from the rectifier 153 is less than the power required for the operation of the transmission amplifier 120, the current limiter 131 uses all of the DC power Pdcret as the operating power supply power Pdcin. While being used, the power (Pdc−Pdcret) for the shortage is obtained from the power Pdc of the predetermined power supply 140. In this case, since the amount of power Pdc supplied from the predetermined power supply 140 is reduced by the amount of DC power Pdcret output from the rectifier 153, consumption of the power Pdc from the power supply 140 is suppressed. Note that, from the energy conservation law, the DC power Pdcret never exceeds the operating power supply power Pdcin.

このように、電磁波放射部151で反射された反射波の電力Pretは、反射波抽出部152で回収され、整流部153から直流電力Pdcretとして電源制御部130に帰還される。電源制御部130の電流制限部131は、整流部153から供給される直流電力Pdcretに応じて電源140の電力Pdcの利用を制限し、反射波の電力Pretから生成された直流電力Pdcretを送信増幅器120の動作電源電力Pdcinとして利用する。このため、電源140の電力Pdcと電磁波放射部151から放射される電磁波の電力Poutとの比(Pout/Pdc)によって表される送信電力効率を改善することができ、無線送信装置100全体での消費電力を低減することが可能となる。   Thus, the reflected wave power Pret reflected by the electromagnetic wave radiation unit 151 is collected by the reflected wave extraction unit 152 and fed back from the rectification unit 153 to the power supply control unit 130 as the DC power Pdcret. The current limiting unit 131 of the power supply control unit 130 limits the use of the power Pdc of the power supply 140 according to the DC power Pdcret supplied from the rectifying unit 153, and transmits the DC power Pdcret generated from the reflected wave power Pret as a transmission amplifier. It is used as 120 operating power supply power Pdcin. For this reason, the transmission power efficiency represented by the ratio (Pout / Pdc) of the power Pdc of the power supply 140 and the power Pout of the electromagnetic wave radiated from the electromagnetic wave radiation unit 151 can be improved. It becomes possible to reduce power consumption.

従来の技術による無線送信装置の構成方法では、例えば、電磁波放射部151の入力部(接続点151a)において送信増幅器120側とのインピーダンス整合がとられ、例えば、目安として入力反射係数(SパラメータのS11)が−10dB以下に設定される。この場合、電磁波放射部151から送信増幅器120側への反射波の電力は、電磁波放射部151の入射波の電力Ptの1/10以下となる。即ち、送信増幅器120から出力される無線周波数信号Stの電力Ptの約90パーセントは、電磁波放射部151での損失を除いて、電磁波として空間に放射される。   In the configuration method of the wireless transmission device according to the prior art, for example, impedance matching with the transmission amplifier 120 side is performed in the input section (connection point 151a) of the electromagnetic wave radiation section 151. For example, the input reflection coefficient (S parameter S11) is set to -10 dB or less. In this case, the power of the reflected wave from the electromagnetic wave radiation unit 151 to the transmission amplifier 120 side is 1/10 or less of the power Pt of the incident wave of the electromagnetic wave radiation unit 151. That is, about 90 percent of the power Pt of the radio frequency signal St output from the transmission amplifier 120 is radiated into the space as an electromagnetic wave except for the loss at the electromagnetic wave radiation unit 151.

一方、本発明の第1実施形態によれば、アンテナ装置150の電磁波放射部151の放射導体として、入力インピーダンス整合をとることが困難な微小な放射導体を使用した場合には、一般のアンテナ装置と同様に、電磁波放射部151の入射波の大半は反射されるため、全体の効率は低下する。しかし、第1実施形態では、反射波抽出部152が、電磁波放射部151での反射波を抽出し、整流部153が、反射波抽出部152によって抽出された反射波の電力Pretを整流して直流電力Pdcretとして回収する。そして、電源制御部130が、整流部153により整流された直流電力Pdcretを利用して送信増幅器120の動作電源電力Pdcinを生成する。   On the other hand, according to the first embodiment of the present invention, when a minute radiation conductor that is difficult to achieve input impedance matching is used as the radiation conductor of the electromagnetic wave radiation section 151 of the antenna device 150, a general antenna device is used. Similarly, since most of the incident wave of the electromagnetic wave radiation portion 151 is reflected, the overall efficiency is lowered. However, in the first embodiment, the reflected wave extraction unit 152 extracts the reflected wave from the electromagnetic wave radiation unit 151, and the rectification unit 153 rectifies the reflected wave power Pret extracted by the reflected wave extraction unit 152. It collects as direct-current power Pdcret. Then, the power supply control unit 130 generates the operating power supply power Pdcin of the transmission amplifier 120 using the DC power Pdcret rectified by the rectification unit 153.

このように、第1実施形態によれば、反射波の電力Pretが送信増幅器120の動作電源電力Pdcinとして利用されるので、入力インピーダンス整合が劣化しても、送信周波数(無線周波数信号の周波数)に依存することなく、無線送信装置100全体で送信電力効率を改善することができる。   Thus, according to the first embodiment, since the reflected wave power Pret is used as the operating power supply power Pdcin of the transmission amplifier 120, even if the input impedance matching is deteriorated, the transmission frequency (frequency of the radio frequency signal). The transmission power efficiency can be improved in the entire wireless transmission device 100 without depending on.

また、第1実施形態によれば、反射波の電力Pretを回収して送信増幅器120の動作電源電力Pdcinとして利用するので、微小サイズ(例えば、無線周波数信号の半波長以下のサイズ)の電磁波放射部151を用いたことにより入力インピーダンス整合がとれなくても、アンテナ放射効率と送信電力効率の各特性に優れた微小アンテナを実現することができる。   In addition, according to the first embodiment, the reflected wave power Pret is collected and used as the operating power supply power Pdcin of the transmission amplifier 120. Therefore, electromagnetic radiation of a minute size (for example, a size equal to or less than a half wavelength of a radio frequency signal) Even if input impedance matching cannot be achieved by using the unit 151, it is possible to realize a minute antenna having excellent characteristics of antenna radiation efficiency and transmission power efficiency.

また、第1実施形態によれば、微小サイズ(例えば、無線周波数信号の半波長以下のサイズ)の電磁波放射部151を用いた場合において、電磁波放射部151の共振現象を利用しないので、アンテナ放射効率と送信電力効率の送信周波数に対する依存性を抑制することが出来る。   In addition, according to the first embodiment, when the electromagnetic wave radiation unit 151 having a minute size (for example, a size equal to or less than a half wavelength of the radio frequency signal) is used, the resonance phenomenon of the electromagnetic wave radiation unit 151 is not used. The dependence of the efficiency and transmission power efficiency on the transmission frequency can be suppressed.

また、第1実施形態によれば、電磁波放射部151を微小サイズの放射導体から構成し、アンテナ装置150を小型に構成することができるため、無線送信装置100を高集積化することを実現することができる。   In addition, according to the first embodiment, since the electromagnetic wave radiation unit 151 is configured from a minute size radiation conductor and the antenna device 150 can be configured in a small size, it is possible to achieve high integration of the wireless transmission device 100. be able to.

また、第1実施形態によれば、微小サイズの電磁波放射部151からなるアンテナ素子をアレー化することができる。このため、空間に放射される電磁波の振幅だけでなく、位相の放射指向特性を柔軟に制御することができるいわゆるパターンコントロールアンテナを実現することができる。この場合、各アンテナ素子から空間に放射される電磁波の電力は小さくなるが、多数のアンテナ素子を並列化することにより、空間に放射される電磁波の電力として、共振型アンテナ等を使用した場合と同等の電力を得ることができる。   In addition, according to the first embodiment, the antenna elements including the minute electromagnetic wave radiation portion 151 can be arrayed. Therefore, it is possible to realize a so-called pattern control antenna that can flexibly control not only the amplitude of the electromagnetic wave radiated into the space but also the phase radiation directivity. In this case, the power of the electromagnetic wave radiated from each antenna element to the space is reduced, but by using many antenna elements in parallel, a resonant antenna or the like is used as the power of the electromagnetic wave radiated to the space. Equivalent power can be obtained.

<第2実施形態>
次に、本発明の第2実施形態を説明する。
図2は、本発明の第2実施形態によるアンテナ装置250を備えた無線送信装置200の構成例を示す図である。
Second Embodiment
Next, a second embodiment of the present invention will be described.
FIG. 2 is a diagram illustrating a configuration example of a wireless transmission device 200 including the antenna device 250 according to the second embodiment of the present invention.

第2実施形態による無線送信装置200は、上述の第1実施形態による図1に示す無線送信装置100の構成において、アンテナ装置150に代えてアンテナ装置250を備えている。アンテナ装置250は、上述の第1実施形態による図1に示すアンテナ装置150の構成において、アンテナ装置150に電力Ptを供給するための伝送線路として平衡型線路161を備えている。即ち、送信増幅器120と反射波抽出部152との間の伝送線路と、反射波抽出部152と電磁波放射部151との間の伝送線路は、それぞれ、平衡型線路161である。その他は第1実施形態と同様である。   The wireless transmission device 200 according to the second embodiment includes an antenna device 250 instead of the antenna device 150 in the configuration of the wireless transmission device 100 shown in FIG. 1 according to the first embodiment described above. The antenna apparatus 250 includes a balanced line 161 as a transmission line for supplying power Pt to the antenna apparatus 150 in the configuration of the antenna apparatus 150 shown in FIG. 1 according to the first embodiment described above. That is, the transmission line between the transmission amplifier 120 and the reflected wave extraction unit 152 and the transmission line between the reflected wave extraction unit 152 and the electromagnetic wave radiation unit 151 are balanced lines 161, respectively. Others are the same as in the first embodiment.

第2実施形態によれば、平衡型線路161を流れる高周波電流によって形成される電磁界(図示なし)は、平衡型線路161を構成する2本の線路導体間の内部空間に閉じ込められる。これにより、平衡型線路161から外部の空間へ放射される電磁波が抑制され、電磁波放射部151以外の部分からの電磁波の放射が抑えられる。このため、アンテナ装置150に電力Ptを供給するための伝送線路でのエネルギーの損失を低減することができる。従って、第2実施形態によれば、送信電力効率の更なる改善効果を得ることができる。   According to the second embodiment, an electromagnetic field (not shown) formed by the high-frequency current flowing through the balanced line 161 is confined in the internal space between the two line conductors constituting the balanced line 161. Thereby, the electromagnetic wave radiated from the balanced line 161 to the outside space is suppressed, and the radiation of the electromagnetic wave from the part other than the electromagnetic wave radiation part 151 is suppressed. For this reason, the energy loss in the transmission line for supplying the electric power Pt to the antenna apparatus 150 can be reduced. Therefore, according to the second embodiment, a further improvement effect of transmission power efficiency can be obtained.

ここで、第2実施形態による効果を補足説明するために、平衡型線路161に代えて不平衡型線路を備えた場合について検討する。
図3は、図2に示す本発明の第2実施形態によるアンテナ装置250を備えた無線送信装置200の構成例を補足説明するための図であり、図2に示す平衡型線路161に代えて不平衡型線路162を備えた構成例を示す図である。図3の例では、送信増幅器120と反射波抽出部152との間の伝送線路と、反射波抽出部152と電磁波放射部151との間の伝送線路は、それぞれ、不平衡型線路162から構成され、不平衡型線路162は、例えば不平衡型のマイクロストリップ線路である。
Here, in order to supplementarily explain the effects of the second embodiment, a case where an unbalanced line is provided instead of the balanced line 161 will be considered.
FIG. 3 is a diagram for supplementarily explaining a configuration example of the wireless transmission device 200 including the antenna device 250 according to the second embodiment of the present invention shown in FIG. 2, and replaces the balanced line 161 shown in FIG. 2. 5 is a diagram illustrating a configuration example including an unbalanced line 162. FIG. In the example of FIG. 3, the transmission line between the transmission amplifier 120 and the reflected wave extracting unit 152 and the transmission line between the reflected wave extracting unit 152 and the electromagnetic wave radiating unit 151 are each configured by an unbalanced line 162. The unbalanced line 162 is, for example, an unbalanced microstrip line.

図3の例によれば、アンテナ装置150に電力Ptを供給する過程で不平衡型線路162には高いレベルの反射波が発生し、大きな定在波が発生する。そのため、不平衡型線路162が一種のアンテナとして機能し、不平衡型線路162から不必要な方向へ電磁波Etが放射される。不平衡型線路162から放射される電磁波Etの電力が大きいと、例えばアレー構成によるパターンコントロールアンテナ等を実施する用途において不要な方向へ電磁波の放射が行われるため、所望のアンテナ放射パターンを得ることが困難になる。   According to the example of FIG. 3, a high level reflected wave is generated in the unbalanced line 162 in the process of supplying the power Pt to the antenna device 150, and a large standing wave is generated. Therefore, the unbalanced line 162 functions as a kind of antenna, and the electromagnetic wave Et is radiated from the unbalanced line 162 in an unnecessary direction. When the power of the electromagnetic wave Et radiated from the unbalanced line 162 is large, for example, the electromagnetic wave is radiated in an unnecessary direction in an application in which a pattern control antenna or the like having an array configuration is implemented. Becomes difficult.

従って、送信増幅器120から電磁波放射部151へ電力Ptを伝送する伝送線路(即ち、送信増幅器120と反射波抽出部152との間の伝送線路と、反射波抽出部152と電磁波放射部151との間の伝送線路)として、マイクロストリップ線路のような不平衡型線路162を用いるよりも、図2に示す平衡型線路161を用いた方が望ましい。ただし、図3に示す不平衡型線路162からの不要な電磁波Etの放射は、通信が破綻しないことを限度として許容することができ、本発明は不平衡型線路の使用を排除しない。   Therefore, a transmission line that transmits power Pt from the transmission amplifier 120 to the electromagnetic wave radiation unit 151 (that is, a transmission line between the transmission amplifier 120 and the reflected wave extraction unit 152, and the reflected wave extraction unit 152 and the electromagnetic wave radiation unit 151). It is preferable to use a balanced line 161 shown in FIG. 2 as an intermediate transmission line) rather than using an unbalanced line 162 such as a microstrip line. However, unnecessary radiation of the electromagnetic wave Et from the unbalanced line 162 shown in FIG. 3 can be allowed as long as communication does not fail, and the present invention does not exclude the use of the unbalanced line.

<第3実施形態>
次に、本発明の第3実施形態を説明する。
図4は、本発明の第3実施形態によるアンテナ装置350を備えた無線送信装置300の構成例を示す図である。
図4に示す無線送信装置300は、上述の第1実施形態による図1に示す無線送信装置100の構成において、アンテナ装置150に代えてアンテナ装置350を備える。アンテナ装置350は、上述の第1実施形態による図1に示すアンテナ装置150の構成において、反射波抽出部152としてサーキュレータ352を備えている。即ち、反射波抽出部152は、サーキュレータ352から構成されている。その他は第1実施形態または第2実施形態と同様である。
<Third Embodiment>
Next, a third embodiment of the present invention will be described.
FIG. 4 is a diagram illustrating a configuration example of a wireless transmission device 300 including the antenna device 350 according to the third embodiment of the present invention.
4 includes an antenna device 350 in place of the antenna device 150 in the configuration of the wireless transmission device 100 shown in FIG. 1 according to the first embodiment described above. The antenna device 350 includes a circulator 352 as the reflected wave extraction unit 152 in the configuration of the antenna device 150 shown in FIG. 1 according to the first embodiment described above. In other words, the reflected wave extraction unit 152 includes a circulator 352. Others are the same as those of the first embodiment or the second embodiment.

サーキュレータ352は、第1ポート(符号なし)、第2ポート(符号なし)、第3ポート(符号なし)を備える。第1ポートは、送信増幅器120の出力部に接続されている。第1ポートには、送信増幅器120から出力された無線周波数信号Stによる高周波電力Ptが入力される。第2ポートは、電磁波放射部151の入力部(接続点151a)に接続されている。第2ポートからは、第1ポートに入力された無線周波数信号Stによる高周波電力Ptが電磁波放射部151へ出力される。また、第2ポートには、電磁波放射部151からの反射波による高周波電力が入力される。第3ポートは、整流部153の入力部に接続されている。第3ポートからは、第2ポートに入力された上記反射波による高周波電力が整流部153に出力される。   The circulator 352 includes a first port (unsigned), a second port (unsigned), and a third port (unsigned). The first port is connected to the output section of the transmission amplifier 120. The high frequency power Pt by the radio frequency signal St output from the transmission amplifier 120 is input to the first port. The second port is connected to the input part (connection point 151a) of the electromagnetic wave radiation part 151. From the second port, the high frequency power Pt by the radio frequency signal St input to the first port is output to the electromagnetic wave radiation unit 151. In addition, high-frequency power by a reflected wave from the electromagnetic wave radiation unit 151 is input to the second port. The third port is connected to the input unit of the rectifying unit 153. From the third port, high-frequency power due to the reflected wave input to the second port is output to the rectifier 153.

サーキュレータ352の通過係数Lc(0<Lc≦1)は、高周波電力Ptの無線周波数信号Stがサーキュレータ352を順方向で伝達するときの信号レベルの変動の度合いを示す量である。一般に、マイクロ波用のサーキュレータ製品の通過係数Lcは−1dB程度である。送信増幅器120から出力された無線周波数信号Stはアンテナ装置350のサーキュレータ352の第1ポートに入力される。サーキュレータ352に入力された無線周波数信号Stの電力Ptのうち、次式(1)により表される電力Ptaが、第2ポートから電磁波放射部151に出力される。   The passage coefficient Lc (0 <Lc ≦ 1) of the circulator 352 is an amount indicating the degree of fluctuation of the signal level when the radio frequency signal St of the high frequency power Pt is transmitted through the circulator 352 in the forward direction. In general, the passage coefficient Lc of a microwave circulator product is about -1 dB. The radio frequency signal St output from the transmission amplifier 120 is input to the first port of the circulator 352 of the antenna device 350. Of the power Pt of the radio frequency signal St input to the circulator 352, the power Pta represented by the following equation (1) is output from the second port to the electromagnetic wave radiation unit 151.

Pta=Lc×Pt …(1) Pta = Lc × Pt (1)

電磁波放射部151に入力された電力Ptaの無線周波数信号の一部は、電磁波放射部151から空間に放射され、残りは接続点151aで反射され、反射波となってサーキュレータ352の第2ポートに入力される。電磁波放射部151の反射係数をR(0<R<1)とすると、電磁波放射部151から空間に放射される電磁波の電力Poutは、次の式(2)により表される。   A part of the radio frequency signal of the electric power Pta input to the electromagnetic wave radiating unit 151 is radiated from the electromagnetic wave radiating unit 151 to the space, and the rest is reflected at the connection point 151a and becomes a reflected wave to the second port of the circulator 352 Entered. When the reflection coefficient of the electromagnetic wave radiation part 151 is R (0 <R <1), the power Pout of the electromagnetic wave radiated from the electromagnetic wave radiation part 151 to the space is expressed by the following equation (2).

Pout=Lc×Pt×(1−R) …(2) Pout = Lc × Pt × (1-R) (2)

また、電磁波放射部151の接続点151aから反射波となってサーキュレータ352の第2ポートに入力される無線周波数信号の電力(反射波の電力)Pretは、次の式(3)により表される。   Further, the power (reflected wave power) Pret of the radio frequency signal input to the second port of the circulator 352 as a reflected wave from the connection point 151a of the electromagnetic wave radiation unit 151 is expressed by the following equation (3). .

Pret=Lc×Pt×R …(3) Pret = Lc 2 × Pt × R (3)

サーキュレータ352の第2ポートに入力された反射波の電力Pretは、整流部153に入力され、整流部153により直流電力Pdcretに変換される。直流電力Pdcretは、電源制御部130に入力される。整流部153により変換された直流電力Pdcretは、電源制御部130に供給される。直流電力Pdcretは、次式(4)により表される。式(4)において、ηCVは整流部153の電力変換効率を表し、電力変換効率ηCVは、無線周波数の電力から直流電力への変換効率を表し、整流部153における直流−直流変換器での効率も含む。 The reflected wave power Pret input to the second port of the circulator 352 is input to the rectification unit 153 and converted into DC power Pdcret by the rectification unit 153. The DC power Pdcret is input to the power supply control unit 130. The DC power Pdcret converted by the rectifier 153 is supplied to the power controller 130. The DC power Pdcret is expressed by the following equation (4). In Equation (4), η CV represents the power conversion efficiency of the rectifier 153, and the power conversion efficiency η CV represents the conversion efficiency from the radio frequency power to the DC power, and is a DC-DC converter in the rectifier 153. Including the efficiency.

Pdcret=ηCV×Lc×Pt×R …(4) Pdcret = η CV × Lc 2 × Pt × R (4)

ここで、送信増幅器120の利得Gが十分に高く、即ち、Pt>>Psなる関係が成り立ち、電源制御部130から送信増幅器120に供給される動作電源電力Pdcinと送信増幅器120の電力効率ηPAとの積が送信増幅器120から出力される無線周波数信号の電力Ptと等しいとする。即ち、次式(5)が成り立つとする。 Here, the gain G of the transmission amplifier 120 is sufficiently high, that is, the relationship Pt >> Ps is established, and the operation power supply power Pdcin supplied from the power supply control unit 130 to the transmission amplifier 120 and the power efficiency η PA of the transmission amplifier 120 Is equal to the power Pt of the radio frequency signal output from the transmission amplifier 120. That is, it is assumed that the following formula (5) holds.

Pt=ηPA×Pdcin …(5) Pt = η PA × Pdcin (5)

無線送信装置300全体の送信電力効率η(即ち、無線送信装置300が消費する電源電力、言い換えれば、バッテリ等の電源140の消費量に対する、空間に放射される無線周波数の電磁波の電力Poutの割合)は、次式(6)により表される。   The transmission power efficiency η of the entire wireless transmission device 300 (that is, the ratio of the power Pout consumed by the wireless transmission device 300, in other words, the power Pout of the radio frequency electromagnetic wave radiated into the space to the consumption of the power source 140 such as a battery) ) Is expressed by the following equation (6).

η=Pout/(Pdcin−Pdcret) …(6) η = Pout / (Pdcin−Pdcret) (6)

式(6)の分母において、整流部153から電源制御部130に帰還される直流電力Pdcretを送信増幅器120の動作電源電力Pdcinから差し引いている点に注目されたい。第3実施形態によるアンテナ装置350が有する直流電力Pdcretの帰還機能により、式(6)の分母に直流電力Pdcretの減算が含まれる。この直流電力Pdcretが大きいほど、式(6)の分母の値は小さくなるため、無線送信装置300全体の送信電力効率ηは大きくなる。式(2)、式(4)、式(5)を式(6)に代入すると、次式(7)が得られる。式(7)に示すように、送信電力効率ηは、送信増幅器120の変換効率ηPAと整流部153の変換効率ηCVと電磁波放射部151の反射係数Rの関数として表すことができる。 Note that in the denominator of Equation (6), the DC power Pdcret fed back from the rectifier 153 to the power controller 130 is subtracted from the operating power Pdcin of the transmission amplifier 120. Due to the feedback function of the DC power Pdcret that the antenna device 350 according to the third embodiment has, the denominator of the equation (6) includes the subtraction of the DC power Pdcret. As the DC power Pdcret is larger, the value of the denominator of the equation (6) is smaller, and the transmission power efficiency η of the entire wireless transmission device 300 is larger. Substituting Equation (2), Equation (4), and Equation (5) into Equation (6) yields the following Equation (7). As shown in Expression (7), the transmission power efficiency η can be expressed as a function of the conversion efficiency η PA of the transmission amplifier 120, the conversion efficiency η CV of the rectifying unit 153, and the reflection coefficient R of the electromagnetic wave radiating unit 151.

η={ηPA(1−R)×Lc}/{1−ηPA×ηCV×R×Lc} …(7) η = {η PA (1-R) × Lc} / {1-η PA × η CV × R × Lc 2 } (7)

参考として、前述の図8(B)を参照して、上述の第3実施形態による直流電力Pdcretの帰還機能がない場合の送信電力効率ηを求める。
第3実施形態によるアンテナ装置350を使用しない場合の無線送信装置の構成は、図8(B)に示す従来の無線送信装置と同様になり、図8(B)に示される無線送信装置、即ち、直流電力の帰還機能がない無線送信装置の送信電力効率ηは次式(8)により表される。式(8)において、Pout’は、図8(B)に示す従来構成においてアンテナ装置4の電磁波放射部から放射される電磁波の電力を表している。
As a reference, with reference to FIG. 8B described above, the transmission power efficiency η 0 in the case where there is no feedback function of the DC power Pdcret according to the third embodiment described above is obtained.
The configuration of the wireless transmission device when the antenna device 350 according to the third embodiment is not used is the same as that of the conventional wireless transmission device shown in FIG. 8B, that is, the wireless transmission device shown in FIG. The transmission power efficiency η 0 of a wireless transmission device without a DC power feedback function is expressed by the following equation (8). In Expression (8), Pout ′ represents the power of the electromagnetic wave radiated from the electromagnetic wave radiation unit of the antenna device 4 in the conventional configuration shown in FIG.

η=Pout’/Pdcin …(8) η 0 = Pout ′ / Pdcin (8)

この場合も、送信増幅器120の利得Gが十分に高く、電源制御部130から送信増幅器120に供給される動作電源電力Pdcinと送信増幅器120の電力効率ηPAとの積が送信増幅器120から出力される無線周波数信号の電力Ptと等しいと仮定する。ここで、電磁波放射部151から空間に放射される無線周波数の電磁波の電力Pout’は、次式(9)によって表される。 Also in this case, the gain G of the transmission amplifier 120 is sufficiently high, and the product of the operating power supply power Pdcin supplied from the power supply control unit 130 to the transmission amplifier 120 and the power efficiency η PA of the transmission amplifier 120 is output from the transmission amplifier 120. Is assumed to be equal to the power Pt of the radio frequency signal. Here, the power Pout ′ of the radio frequency electromagnetic wave radiated into the space from the electromagnetic wave radiation unit 151 is expressed by the following equation (9).

Pout’=(1−R)×Pt=ηPA×Pdcin×(1−R) …(9) Pout ′ = (1−R) × Pt = η PA × Pdcin × (1−R) (9)

式(8)と式(9)から、無線送信装置の送信電力効率ηは次式(10)のように表される。 From Expression (8) and Expression (9), the transmission power efficiency η 0 of the wireless transmission device is expressed as the following Expression (10).

η=Pout’/Pdcin=ηPA×(1−R) …(10) η 0 = Pout ′ / Pdcin = η PA × (1-R) (10)

式(10)に示される従来の無線送信装置の送信電力効率ηよりも、第3実施形態によるアンテナ装置350を用いた無線送信装置300の効率η(式(7))が大きい場合、即ち、η<ηなる大小関係が成立する場合に第3実施形態による無線送信装置300が有用であるといえる。よって、第3実施形態による無線送信装置300が有用となる条件は、式(7)と式(10)を用いて、次式(11)により表される。 When the efficiency η (equation (7)) of the wireless transmission device 300 using the antenna device 350 according to the third embodiment is larger than the transmission power efficiency η 0 of the conventional wireless transmission device shown in the equation (10), that is, It can be said that the wireless transmission device 300 according to the third embodiment is useful when the magnitude relationship of η 0 <η is established. Therefore, the conditions under which the wireless transmission device 300 according to the third embodiment is useful are expressed by the following equation (11) using equations (7) and (10).

(ηPA×ηCV×R×Lc+1)×Lc>1 …(11) PA × η CV × R × Lc + 1) × Lc> 1 (11)

ここで、第3実施形態による無線送信装置300において、式(11)によって示される条件が満足されるかどうかについて、一例を挙げて検証する。
基準インピーダンスが50オームの回路において、電磁波放射部151の入力抵抗が1オームの場合、電磁波放射部151の反射係数Rが0.961となるため、リターンロスはわずか0.346dBである。この例から、反射係数Rを0.961と仮定する。その他のパラメータを次のように仮定する。
Here, in the wireless transmission device 300 according to the third embodiment, whether or not the condition represented by the equation (11) is satisfied is verified by giving an example.
In a circuit with a reference impedance of 50 ohms, when the input resistance of the electromagnetic wave radiation part 151 is 1 ohm, the reflection coefficient R of the electromagnetic wave radiation part 151 is 0.961, so the return loss is only 0.346 dB. From this example, assume that the reflection coefficient R is 0.961. Other parameters are assumed as follows.

ηCV=0.9
Lc=0.9
ηPA=0.7
η CV = 0.9
Lc = 0.9
η PA = 0.7

従来構成による無線送信装置の送信増幅器の効率ηは、式(10)より、次式(12)のように算出される。 The efficiency η 0 of the transmission amplifier of the wireless transmission device according to the conventional configuration is calculated from the equation (10) as the following equation (12).

η=ηPA×(1−R)=0.7×(1−0.961)=0.027 …(12) η 0 = η PA × (1-R) = 0.7 × (1-0.961) = 0.027 (12)

これに対し、第3実施形態によるアンテナ装置350を備えた無線送信装置300の送信電力効率ηは、式(7)より、次式(13)のように算出される。   On the other hand, the transmission power efficiency η of the wireless transmission device 300 including the antenna device 350 according to the third embodiment is calculated from the equation (7) as the following equation (13).

η={ηPA×(1−R)×Lc}/{1−ηPA×ηCV×R×Lc}=0.7×(1−0.96)×0.9/(1−0.7×0.9×0.0961×0.9)=0.048 …(13) η = {η PA × (1−R) × Lc} / {1-η PA × η CV × R × Lc 2 } = 0.7 × (1−0.96) × 0.9 / (1-0 0.7 × 0.9 × 0.0961 × 0.9 2 ) = 0.048 (13)

上述の例では、第3実施形態によるアンテナ装置350を用いた無線送信装置300の効率ηと従来構成による無線送信装置の送信増幅器の効率ηとの比(η/η)は、式(12)および式(13)から、約1.8(=0.048/0.027)となり、送信電力効率ηは約1.8倍に向上している。従って、第3実施形態によれば、従来構成に比較して、無線送信装置300全体の送信電力効率ηを向上させることができる。 In the above example, the ratio (η / η 0 ) between the efficiency η of the wireless transmission device 300 using the antenna device 350 according to the third embodiment and the efficiency η 0 of the transmission amplifier of the wireless transmission device according to the conventional configuration is From (12) and (13), it is about 1.8 (= 0.048 / 0.027), and the transmission power efficiency η is improved by about 1.8 times. Therefore, according to the third embodiment, the transmission power efficiency η of the entire wireless transmission device 300 can be improved as compared with the conventional configuration.

図5は、図4に示す本発明の第3実施形態によるアンテナ装置350を備えた無線送信装置300の構成例を補足説明するための図である。図5に示す無線送信装置300aはアンテナ装置350aを備え、アンテナ装置350aは、図4に示す整流部153に代えて、負荷装置であるダミーロード155を備えている。また、図5に示すサーキュレータ154は図4に示すサーキュレータ352に対応している。図5に示すアンテナ装置350aの構成は従来装置の構成に相当し、ダミーロード155は、サーキュレータ154から出力される反射波の電力Pretを消費することにより反射波を吸収するためのものである。図5の構成によれば、反射波が通信に与える影響を抑制することができる。   FIG. 5 is a diagram for supplementarily explaining a configuration example of the wireless transmission device 300 including the antenna device 350 according to the third embodiment of the present invention shown in FIG. The wireless transmission device 300a illustrated in FIG. 5 includes an antenna device 350a, and the antenna device 350a includes a dummy load 155 that is a load device instead of the rectifying unit 153 illustrated in FIG. A circulator 154 shown in FIG. 5 corresponds to the circulator 352 shown in FIG. The configuration of the antenna device 350a shown in FIG. 5 corresponds to the configuration of the conventional device, and the dummy load 155 is for absorbing the reflected wave by consuming the power Pret of the reflected wave output from the circulator 154. According to the configuration of FIG. 5, the influence of reflected waves on communication can be suppressed.

しかしながら、図5に示す従来装置に相当する構成によれば、サーキュレータ154から出力される電力Pret(=Lc×Pt×R)は、ダミーロード155によって消費され、送信増幅器120の動作電源電力Pdcinとして利用されることはない。従ってこの場合、反射波による電力Pretは送信電力効率ηの向上に寄与しない。これに対し、第3実施形態による図4に示す無線送信装置300によれば、上述したように、サーキュレータ154により回収された反射波の電力Pretを整流して直流電力Pdcretに変換する整流部153を備えたことにより、無線送信装置300の送信電力効率を改善することができる。 However, according to the configuration corresponding to the conventional apparatus shown in FIG. 5, the power Pret (= Lc 2 × Pt × R) output from the circulator 154 is consumed by the dummy load 155, and the operation power supply power Pdcin of the transmission amplifier 120. It will not be used as. Therefore, in this case, the power Pret by the reflected wave does not contribute to the improvement of the transmission power efficiency η. On the other hand, according to the wireless transmission device 300 shown in FIG. 4 according to the third embodiment, as described above, the rectifying unit 153 that rectifies the reflected wave power Pret collected by the circulator 154 and converts it into DC power Pdcret. As a result, the transmission power efficiency of the wireless transmission device 300 can be improved.

<第4実施形態>
次に、本発明の第4実施形態を説明する。
図6は、本発明の第4実施形態によるアンテナ装置450を備えた無線送信装置400の構成例を示す図である。
<Fourth embodiment>
Next, a fourth embodiment of the present invention will be described.
FIG. 6 is a diagram illustrating a configuration example of a wireless transmission device 400 including an antenna device 450 according to the fourth embodiment of the present invention.

図6に示す無線送信装置400は、上述の第1実施形態による図1に示す無線送信装置100の構成において、アンテナ装置150に代えてアンテナ装置450を備える。アンテナ装置450は、上述の第1実施形態による図1に示すアンテナ装置150の構成において、反射波抽出部152として、方向性結合器452および電力合成器453を備えている。即ち、第4実施形態では、図1に示す反射波抽出部152が方向性結合器452および電力合成器453から構成されている。方向性結合器452は、例えば3dB方向性結合器である。電力合成器453は、極めて低損失で電力を合成することができる例えばウィルキンソン分配器等である。   A wireless transmission device 400 illustrated in FIG. 6 includes an antenna device 450 instead of the antenna device 150 in the configuration of the wireless transmission device 100 illustrated in FIG. 1 according to the first embodiment described above. The antenna device 450 includes a directional coupler 452 and a power combiner 453 as the reflected wave extraction unit 152 in the configuration of the antenna device 150 shown in FIG. 1 according to the first embodiment described above. That is, in the fourth embodiment, the reflected wave extraction unit 152 shown in FIG. 1 includes a directional coupler 452 and a power combiner 453. The directional coupler 452 is, for example, a 3 dB directional coupler. The power combiner 453 is, for example, a Wilkinson distributor that can combine power with extremely low loss.

方向性結合器452は、第1ポート452a、第2ポート452b、第3ポート452c、第4ポート452dを備える。第1ポート452aは、送信増幅器120の出力部に接続されている。第1ポート452aには、送信増幅器120から出力された無線周波数信号Stによる高周波電力Ptが入力される。第2ポート452bは、電磁波放射部151の入力部(接続点151a)に接続されている。第2ポート452bからは、第1ポート452aに入力された無線周波数信号Stによる高周波電力Ptの2分の1の電力(0.5×Pt)が電磁波放射部151へ出力される。また、第2ポート452bには、電磁波放射部151からの反射波による高周波電力(0.5×Pt×R)が入力される。   The directional coupler 452 includes a first port 452a, a second port 452b, a third port 452c, and a fourth port 452d. The first port 452a is connected to the output section of the transmission amplifier 120. The first port 452a receives the high frequency power Pt based on the radio frequency signal St output from the transmission amplifier 120. The second port 452b is connected to the input part (connection point 151a) of the electromagnetic wave radiation part 151. From the second port 452b, half the power (0.5 × Pt) of the high-frequency power Pt generated by the radio frequency signal St input to the first port 452a is output to the electromagnetic wave radiation unit 151. In addition, high-frequency power (0.5 × Pt × R) due to a reflected wave from the electromagnetic wave radiation unit 151 is input to the second port 452b.

第3ポート452cおよび第4ポート452dは、電力合成器453の入力部に接続されている。第3ポート452cからは、第2ポート452bに入力された反射波の高周波電力(0.5×Pt×R)の2分の1の電力(0.25×Pt×R)が電力合成器157に出力される。第4ポート452dからは、第1ポート452aに入力された高周波電力Ptの2分の1の電力(0.5×Pt)が電力合成器453に出力される。   The third port 452c and the fourth port 452d are connected to the input unit of the power combiner 453. From the third port 452c, half the power (0.25 × Pt × R) of the high frequency power (0.5 × Pt × R) of the reflected wave input to the second port 452b is the power combiner 157. Is output. From the fourth port 452d, half the power (0.5 × Pt) of the high-frequency power Pt input to the first port 452a is output to the power combiner 453.

電力合成器453の出力部は、整流部153の入力部に接続されている。電力合成器453の出力部からは、上述の方向性結合器452の第3ポート452cから出力された電力(0.25×Pt×R)と第4ポート452dから出力された電力(0.5×Pt)とを合成して得られる電力(0.5×(1+0.5×R)×Pt)が整流部153に供給される。
その他は第1実施形態または第2実施形態と同様である。
The output unit of the power combiner 453 is connected to the input unit of the rectifier unit 153. From the output unit of the power combiner 453, the power output from the third port 452c of the directional coupler 452 (0.25 × Pt × R) and the power output from the fourth port 452d (0.5 The electric power (0.5 × (1 + 0.5 × R) × Pt) obtained by combining with (Pt) is supplied to the rectifying unit 153.
Others are the same as those of the first embodiment or the second embodiment.

送信増幅器120から出力された電力Ptの無線周波数信号Stはアンテナ装置450に入力される。入力された無線周波数信号Stは、方向性結合器452の第1ポート452aへ入力される。方向性結合器452に入力された電力Ptのうちの半分の電力(0.5×Pt)は第2ポート452bから電磁波放射部151に出力され、残りの半分(0.5×Pt)は方向性結合器452の第4ポート452dから電力合成器157に出力される。方向性結合器452の第2ポート452bから電磁波放射部151に出力される電力をP452bとし、方向性結合器452の第4ポート452dから電力合成器453に出力される電力をP452dとすれば、これら電力P452b,P452dは、次式(14)によって表される。   The radio frequency signal St of power Pt output from the transmission amplifier 120 is input to the antenna device 450. The input radio frequency signal St is input to the first port 452a of the directional coupler 452. Half of the power Pt input to the directional coupler 452 (0.5 × Pt) is output from the second port 452b to the electromagnetic wave radiation unit 151, and the other half (0.5 × Pt) is the direction. The power is output from the fourth port 452 d of the sex coupler 452 to the power combiner 157. If the power output from the second port 452b of the directional coupler 452 to the electromagnetic wave radiation unit 151 is P452b and the power output from the fourth port 452d of the directional coupler 452 to the power combiner 453 is P452d, These electric powers P452b and P452d are expressed by the following equation (14).

P452b=P452d=0.5×Pt …(14) P452b = P452d = 0.5 × Pt (14)

方向性結合器452の第2ポート452bから電磁波放射部151に入力された信号の電力は、一部が空間に放射され、残りは反射されて方向性結合器452の第2ポート452bに戻る。電磁波放射部151の反射係数をR(0<R<1)とすると、空間に放射される電力レベルPoutは次式(15)により表される。   Part of the power of the signal input from the second port 452b of the directional coupler 452 to the electromagnetic wave radiation unit 151 is radiated to the space, and the rest is reflected to return to the second port 452b of the directional coupler 452. When the reflection coefficient of the electromagnetic wave radiation unit 151 is R (0 <R <1), the power level Pout radiated to the space is expressed by the following equation (15).

Pout=0.5×Pt×(1−R) …(15) Pout = 0.5 × Pt × (1-R) (15)

また、電磁波放射部151の入力部から反射波として方向性結合器452の第2ポート452bに戻る反射波の電力Pretは次式(16)により表される。   Moreover, the power Pret of the reflected wave returning from the input part of the electromagnetic wave radiation part 151 to the second port 452b of the directional coupler 452 as a reflected wave is expressed by the following equation (16).

Pret=0.5×Pt×R …(16) Pret = 0.5 × Pt × R (16)

式(16)により表される電力Pretのうちの半分は方向性結合器452の第3ポート452cから電力合成器453に入力される。よって、式(14)と式(16)より、電力合成器453から出力される電力をP453とすれば、電力P453は次式(17)により表される。   Half of the power Pret represented by Expression (16) is input to the power combiner 453 from the third port 452 c of the directional coupler 452. Therefore, from the formulas (14) and (16), if the power output from the power combiner 453 is P453, the power P453 is expressed by the following formula (17).

P453=0.5×Pt×(1+0.5×R) …(17) P453 = 0.5 × Pt × (1 + 0.5 × R) (17)

式(17)により表される電力P453は整流部153に入力され、直流に変換されたのち、電源制御部130に入力される。整流部153における無線周波数の反射波の電力Pretから直流電力Pdcretへの電力変換における電力変換効率をηCVとすれば、整流部153から出力される直流電力Pdcretは、次式(18)により表される。 The electric power P453 represented by the equation (17) is input to the rectifying unit 153, converted into direct current, and then input to the power supply control unit 130. If the power conversion efficiency in the power conversion from the radio frequency reflected wave power Pret to the DC power Pdcret in the rectification unit 153 is η CV , the DC power Pdcret output from the rectification unit 153 is expressed by the following equation (18). Is done.

Pdcret=ηCV×0.5×Pt×(1+0.5×R) …(18) Pdcret = η CV × 0.5 × Pt × (1 + 0.5 × R) (18)

ここで、送信増幅器120の利得Gが十分に高く、即ち、Pt>>Psなる関係が成り立ち、電源制御部130から送信増幅器120に供給される動作電源電力Pdcinと送信増幅器120の電力効率ηPAとの積が送信増幅器120から出力される無線周波数信号の電力Ptと等しいとする。即ち、次式(19)が成り立つとする。 Here, the gain G of the transmission amplifier 120 is sufficiently high, that is, the relationship Pt >> Ps is established, and the operation power supply power Pdcin supplied from the power supply control unit 130 to the transmission amplifier 120 and the power efficiency η PA of the transmission amplifier 120 Is equal to the power Pt of the radio frequency signal output from the transmission amplifier 120. That is, it is assumed that the following equation (19) holds.

Pt=ηPA×Pdcin …(19) Pt = η PA × Pdcin (19)

無線送信装置400全体の送信電力効率η(即ち、無線送信装置400が消費する電源電力、言い換えれば、バッテリ等の電源140の消費量に対する、空間に放射される無線周波数の電磁波の電力Poutの割合)は、次式(20)により表される。   The transmission power efficiency η of the entire wireless transmission device 400 (that is, the ratio of the power Pout consumed by the wireless transmission device 400, in other words, the power Pout of the radio frequency electromagnetic wave radiated into the space to the consumption of the power supply 140 such as a battery) ) Is represented by the following equation (20).

η=Pout/(Pdcin−Pdcret) …(20) η = Pout / (Pdcin−Pdcret) (20)

ここで、式(20)の分母において、整流部153から帰還する直流電力Pdcretを送信増幅器120の動作電源電力Pdcinから差し引いている点に注目されたい。第4実施形態によるアンテナ装置450が有する直流電力の帰還機能により、式(20)の分母に電力Pdcretの減算が含まれる。この直流電力Pdcretが大きいほど、式(20)の分母の値は小さくなるため、無線送信装置400全体の送信電力効率ηは大きくなる。式(15)、式(18)、式(19)を(20)に代入すると、次式(21)が得られる。式(21)に示すように、送信電力効率ηは、送信増幅器120の変換効率ηPAと整流部153の変換効率ηCVと電磁波放射部151の反射係数Rの関数として表すことができる。 Here, it should be noted that in the denominator of the equation (20), the DC power Pdcret fed back from the rectifier 153 is subtracted from the operating power supply power Pdcin of the transmission amplifier 120. Due to the DC power feedback function of the antenna device 450 according to the fourth embodiment, subtraction of the power Pdcret is included in the denominator of Expression (20). As the DC power Pdcret is larger, the value of the denominator of the equation (20) is smaller, and the transmission power efficiency η of the entire wireless transmission device 400 is larger. Substituting Equation (15), Equation (18), and Equation (19) into (20) yields the following Equation (21). As shown in Expression (21), the transmission power efficiency η can be expressed as a function of the conversion efficiency η PA of the transmission amplifier 120, the conversion efficiency η CV of the rectifying unit 153, and the reflection coefficient R of the electromagnetic wave radiating unit 151.

η=0.5×Pt×(1−R)/{Pt/ηPA−ηCV×0.5×Pt×(1+0.5×R)}=ηPA×(1−R)/{2−ηPA×ηCV×(1+0.5×R)} …(21) [eta] = 0.5 * Pt * (1-R) / {Pt / [eta] PA- [eta] CV * 0.5 * Pt * (1 + 0.5 * R)} = [eta] PA * (1-R) / {2- η PA × η CV × (1 + 0.5 × R)} (21)

第4実施形態では、3dB方向性結合器452により送信増幅器120の出力をあらかじめ半分に分けて電磁波放射部151に出力しているため、全体効率が低くなるように見える。しかし、それは、電磁波放射部151の反射係数Rが大きい場合、つまり電磁波放射部151の入力インピーダンス整合がとれていない場合には当てはまらない。従って、第4実施形態によれば、入力インピーダンス整合がとれていない状況において、送信電力効率ηを改善する効果が得られる。   In the fourth embodiment, since the output of the transmission amplifier 120 is divided in half by the 3 dB directional coupler 452 and output to the electromagnetic wave radiation unit 151 in advance, the overall efficiency seems to be low. However, this is not the case when the reflection coefficient R of the electromagnetic wave radiation part 151 is large, that is, when the input impedance matching of the electromagnetic wave radiation part 151 is not achieved. Therefore, according to the fourth embodiment, an effect of improving the transmission power efficiency η can be obtained in a situation where input impedance matching is not achieved.

第4実施形態では、上述のように電磁波放射部151の反射係数Rが大きい場合に送信電力効率ηを改善する効果が得られるが、次に、電磁波放射部151の反射係数がどのような範囲にあるときに送信電力効率ηの改善効果が得られるのかを定量的に検討する。   In the fourth embodiment, an effect of improving the transmission power efficiency η can be obtained when the reflection coefficient R of the electromagnetic wave radiation unit 151 is large as described above. Next, what is the range of the reflection coefficient of the electromagnetic wave radiation unit 151 It is quantitatively examined whether the improvement effect of the transmission power efficiency η can be obtained.

第4実施形態によるアンテナ装置450を使用しない場合の無線送信装置の構成は、図8(B)に示す従来の無線送信装置の構成と同様である。図8(B)に示される、直流電力の帰還機能がない無線送信装置の送信電力効率ηは、次式(22)により表される。式(22)において、Pout’は、図8(B)に示す従来構成においてアンテナ装置4の電磁波放射部から放射される電磁波の電力を表している。 The configuration of the wireless transmission device when the antenna device 450 according to the fourth embodiment is not used is the same as the configuration of the conventional wireless transmission device shown in FIG. The transmission power efficiency η 0 of the wireless transmission device without the DC power feedback function shown in FIG. 8B is expressed by the following equation (22). In Expression (22), Pout ′ represents the power of the electromagnetic wave radiated from the electromagnetic wave radiation unit of the antenna device 4 in the conventional configuration shown in FIG.

η=Pout’/Pdcin …(22) η 0 = Pout ′ / Pdcin (22)

ここで、電磁波放射部151から空間に放射される無線周波数の電磁波の電力Pout’は、次式(23)によって表される。   Here, the power Pout ′ of the radio frequency electromagnetic wave radiated into the space from the electromagnetic wave radiation part 151 is expressed by the following equation (23).

Pout’=(1−R)×Pt=ηPA×Pdcin×(1−R) …(23) Pout ′ = (1−R) × Pt = η PA × Pdcin × (1−R) (23)

式(22)、式(23)から、無線送信装置の送信電力効率ηは次式(24)のように書き換えられる。 From Expression (22) and Expression (23), the transmission power efficiency η 0 of the wireless transmission device is rewritten as the following Expression (24).

η=Pout’/Pdcin=ηPA×(1−R) …(24) η 0 = Pout ′ / Pdcin = η PA × (1-R) (24)

上記の式(24)に示される従来の無線送信装置の効率ηよりも、第4実施形態によるアンテナ装置450を用いた無線送信装置400の送信電力効率η(式(21))が大きい場合、つまり、η<ηなる大小関係が成立する場合に第4実施形態による無線送信装置400が有用であるといえる。よって、第4実施形態による無線送信装置400が有用となる条件は、式(21)と式(24)を用いて、次式(25)により表される。 When the transmission power efficiency η (equation (21)) of the wireless transmission device 400 using the antenna device 450 according to the fourth embodiment is larger than the efficiency η 0 of the conventional wireless transmission device shown in the above equation (24). That is, it can be said that the wireless transmission device 400 according to the fourth embodiment is useful when the magnitude relationship of η 0 <η is established. Therefore, the conditions under which the wireless transmission device 400 according to the fourth embodiment is useful are expressed by the following equation (25) using equations (21) and (24).

ηPA×(1−R)<ηPA×(1−R)/{2−ηPA×ηCV×(1+0.5×R)} …(25) [eta] PA * (1-R) <[eta] PA * (1-R) / {2- [eta] PA * [eta] CV * (1 + 0.5 * R)} (25)

式(25)を書き換えると、次式(26)が得られる。式(26)から、反射係数Rが式(26)を満たす大きな値であるとき、本発明が有用となることがわかる。   When equation (25) is rewritten, the following equation (26) is obtained. From Expression (26), it can be seen that the present invention is useful when the reflection coefficient R is a large value satisfying Expression (26).

R>2×{1/(ηPA×ηCV)−1} …(26) R> 2 × {1 / (η PA × η CV ) −1} (26)

送信増幅器120と整流部153の各変換効率が高ければ、反射係数Rがより小さな場合でも本発明が有用であるといえる。また、反射係数Rは必ず1より小さいので、式(26)の右辺も1より小さい値である必要がある。つまり、次式(27)が満足される必要がある。   If each conversion efficiency of the transmission amplifier 120 and the rectifier 153 is high, it can be said that the present invention is useful even when the reflection coefficient R is smaller. Since the reflection coefficient R is always smaller than 1, the right side of the equation (26) also needs to be a value smaller than 1. That is, the following formula (27) needs to be satisfied.

ηPA×ηCV>2/3 …(27) η PA × η CV > 2/3 (27)

第4実施形態では、電磁波放射部151が非常に小型で反射係数Rが大きい場合、即ち、反射係数Rが1に近い値をとる場合を想定しているので、第4実施形態によるアンテナ装置450の有用性は明らかである。従って、第4実施形態によれば、無線送信装置400の送信電力効率ηを有効に改善することができる。   In the fourth embodiment, it is assumed that the electromagnetic wave radiation portion 151 is very small and the reflection coefficient R is large, that is, the case where the reflection coefficient R takes a value close to 1, and therefore the antenna device 450 according to the fourth embodiment. The usefulness of is obvious. Therefore, according to the fourth embodiment, the transmission power efficiency η of the wireless transmission device 400 can be effectively improved.

<第5実施形態>
図7は、本発明の第5実施形態によるアンテナ装置150を備えた無線送信装置500の構成例を示す図である。
第5実施形態による無線送信装置500は、上述の第1実施形態による図1に示す無線送信装置100の構成において、電源制御部130に代えて電源制御部530を備える。電源制御部530は、上述の第1実施形態による図1に示す電源制御部130の構成において、整流部153から出力された直流電力Pdcretを蓄えるための蓄電部133を更に備えている。即ち、電源制御部530は、直流電力Pdcretをエネルギーとして蓄積する機能、即ち二次電池を充電する機能を有している。第5実施形態では、蓄電部133は、電流制限部131と検知部132との間に接続されている。その他は第1実施形態から第4実施形態の何れかと同様である。
<Fifth Embodiment>
FIG. 7 is a diagram illustrating a configuration example of a wireless transmission device 500 including an antenna device 150 according to the fifth embodiment of the present invention.
The wireless transmission device 500 according to the fifth embodiment includes a power control unit 530 instead of the power control unit 130 in the configuration of the wireless transmission device 100 illustrated in FIG. 1 according to the first embodiment described above. The power supply control unit 530 further includes a power storage unit 133 for storing the DC power Pdcret output from the rectification unit 153 in the configuration of the power supply control unit 130 shown in FIG. 1 according to the first embodiment described above. That is, the power supply control unit 530 has a function of storing the DC power Pdcret as energy, that is, a function of charging the secondary battery. In the fifth embodiment, the power storage unit 133 is connected between the current limiting unit 131 and the detection unit 132. Others are the same as those in any one of the first to fourth embodiments.

第5実施形態によれば、電源制御部530が蓄電部133を備えたことにより、例えば電源140の容量よりも大きな電力が必要になった場合、蓄電部133に蓄積されたエネルギーを纏めて利用することができ、送信増幅器120が必要とする電力を安定的に確保することができる。   According to the fifth embodiment, when the power control unit 530 includes the power storage unit 133, for example, when electric power larger than the capacity of the power source 140 is required, the energy stored in the power storage unit 133 is used collectively. Therefore, the power required by the transmission amplifier 120 can be stably secured.

<第6実施形態>
第6実施形態による無線送信装置は、上述した第1実施形態から第5実施形態による無線送信装置において、アンテナ装置を多数アレー化して備えた構成を有している。即ち、第6実施形態による無線送信装置は、アレーアンテナを備え、上記アレーアンテナは、第1実施形態から第5実施形態の何れかのアンテナ装置をアレー化して備えている。その他は第1実施形態から第5実施形態の何れかと同様である。
<Sixth Embodiment>
The wireless transmission device according to the sixth embodiment has a configuration in which a large number of antenna devices are arranged in the wireless transmission devices according to the first to fifth embodiments described above. That is, the wireless transmission device according to the sixth embodiment includes an array antenna, and the array antenna includes any one of the antenna devices according to the first to fifth embodiments. Others are the same as those in any one of the first to fifth embodiments.

第6実施形態によれば、第1から第5実施形態によるアンテナ装置を多数アレー化して備えたことにより、位相指向性をコントロールすることが可能な無線送信装置を実現することができる。前述したように、電磁波放射部151の放射導体の物理サイズを小さくすると、送信電力効率ηが劣化するが、第6実施形態によるアレー化されたアンテナ装置を使用すれば、送信電力効率ηの劣化を補うことが可能となる。これに対し、上述した第1実施形態から第5実施形態によれば、電磁波放射部151の放射導体の物理サイズを小さくすると、空間に放射される電磁波の電力Poutを大きくすることはできないが、第6実施形態によれば、アンテナ装置をアレー化することにより、アンテナ装置から放射される電磁波の電力を大きくすることが可能となる。   According to the sixth embodiment, a radio transmission apparatus capable of controlling phase directivity can be realized by providing a large number of antenna apparatuses according to the first to fifth embodiments in an array. As described above, when the physical size of the radiation conductor of the electromagnetic wave radiation unit 151 is reduced, the transmission power efficiency η is degraded. However, if the arrayed antenna device according to the sixth embodiment is used, the transmission power efficiency η is degraded. Can be supplemented. On the other hand, according to the first to fifth embodiments described above, if the physical size of the radiation conductor of the electromagnetic wave radiation unit 151 is reduced, the power Pout of the electromagnetic wave radiated into the space cannot be increased. According to the sixth embodiment, it is possible to increase the power of electromagnetic waves radiated from the antenna device by arraying the antenna device.

以上、本発明の実施形態を説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で任意の変形や修正等が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and arbitrary modifications and corrections can be made without departing from the gist of the present invention.

100,200,300,400,500…無線送信装置、110…入力端子、120…送信増幅器(電力増幅器)、130,530…電源制御部、133…蓄電部、140…電源、150,250,350,450…アンテナ装置、352…サーキュレータ、151…電磁波放射部、152…反射波抽出部、153…整流部、155…ダミーロード、161…平衡型線路、162…不平衡型線路、452…方向性結合器、453…電力合成器。   100, 200, 300, 400, 500 ... wireless transmission device, 110 ... input terminal, 120 ... transmission amplifier (power amplifier), 130, 530 ... power source control unit, 133 ... power storage unit, 140 ... power source, 150, 250, 350 , 450 ... Antenna device, 352 ... Circulator, 151 ... Electromagnetic wave radiation part, 152 ... Reflected wave extraction part, 153 ... Rectification part, 155 ... Dummy load, 161 ... Balanced line, 162 ... Unbalanced line, 452 ... Directionality Combiner, 453 ... Power combiner.

Claims (8)

伝送線路を通じて入力される無線周波数信号を電磁波に変換して空間に放射する電磁波放射部と、
前記伝送線路上に設けられ、前記電磁波放射部に前記無線周波数信号が入力される際に発生した反射波を抽出する反射波抽出部と、
前記反射波抽出部により抽出された前記反射波の電力を整流して直流電力を出力する整流部と、
を備えたアンテナ装置。
An electromagnetic wave radiation unit that converts a radio frequency signal input through a transmission line into an electromagnetic wave and radiates it into space;
A reflected wave extraction unit that is provided on the transmission line and extracts a reflected wave generated when the radio frequency signal is input to the electromagnetic wave radiation unit;
A rectifier that rectifies the power of the reflected wave extracted by the reflected wave extraction unit and outputs DC power; and
An antenna device comprising:
前記伝送線路は平衡型線路であることを特徴とする、請求項1に記載のアンテナ装置。   The antenna apparatus according to claim 1, wherein the transmission line is a balanced line. 前記反射波抽出部は、サーキュレータから構成され、
前記サーキュレータは、
前記無線周波数信号による高周波電力が入力される第1ポートと、
前記第1ポートに入力された無線周波数信号による高周波電力を前記電磁波放射部へ出力するとともに、前記反射波による高周波電力が入力される第2ポートと、
前記第2ポートに入力された前記反射波による高周波電力を前記整流部に出力する第3ポートと、
を有することを特徴とする請求項1または2に記載のアンテナ装置。
The reflected wave extraction unit is composed of a circulator,
The circulator is
A first port to which high-frequency power by the radio frequency signal is input;
A second port to which the high-frequency power by the radio frequency signal input to the first port is output to the electromagnetic wave radiation unit, and the high-frequency power by the reflected wave is input;
A third port for outputting, to the rectifying unit, high-frequency power due to the reflected wave input to the second port;
The antenna device according to claim 1, wherein the antenna device is provided.
前記反射波抽出部は、方向性結合器から構成され、
前記方向性結合器は、少なくとも、
前記無線周波数信号による高周波電力が入力される第1ポートと、
前記第1ポートに入力された無線周波数信号による高周波電力を前記電磁波放射部へ出力するとともに、前記反射波による高周波電力が入力される第2ポートと、
前記第2ポートに入力された前記反射波による高周波電力を前記整流部に出力する第3ポートと、
を有することを特徴とする請求項1または2に記載のアンテナ装置。
The reflected wave extraction unit is composed of a directional coupler,
The directional coupler is at least
A first port to which high-frequency power by the radio frequency signal is input;
A second port to which the high-frequency power by the radio frequency signal input to the first port is output to the electromagnetic wave radiation unit, and the high-frequency power by the reflected wave is input;
A third port for outputting, to the rectifying unit, high-frequency power due to the reflected wave input to the second port;
The antenna device according to claim 1, wherein the antenna device is provided.
前記電磁波放射部の入力反射係数をRとし、前記無線周波数信号を発生させる増幅器の電力効率をηPAとし、前記整流部の電力変換効率をηCVとしたときに、
前記電磁波放射部の入力反射係数と、前記増幅器の電力効率と、前記整流部の電力変換効率は、
ηPA×ηCV×(1+0.5×R)>1、且つ、ηPA×ηCV>2/3なる関係を満足することを特徴とする、請求項1から4の何れか1項に記載のアンテナ装置。
When the input reflection coefficient of the electromagnetic wave radiation unit is R, the power efficiency of the amplifier that generates the radio frequency signal is η PA, and the power conversion efficiency of the rectification unit is η CV ,
The input reflection coefficient of the electromagnetic wave radiation unit, the power efficiency of the amplifier, and the power conversion efficiency of the rectification unit are:
5. The relationship according to claim 1, wherein the following relationship is satisfied: η PA × η CV × (1 + 0.5 × R)> 1 and η PA × η CV > 2/3. Antenna device.
前記整流部から出力された直流電力を蓄える蓄電部を更に備えたことを特徴とする請求項1から5の何れか1項に記載のアンテナ装置。   The antenna device according to claim 1, further comprising a power storage unit that stores the DC power output from the rectifying unit. アレーアンテナを備えた無線送信装置であって、
前記アレーアンテナは、請求項1から6の何れか1項に記載のアンテナ装置をアレー化して備えたことを特徴とする無線送信装置。
A wireless transmission device equipped with an array antenna,
7. The radio transmitting apparatus according to claim 1, wherein the array antenna includes the antenna apparatus according to claim 1 in an array.
請求項1から6の何れか1項に記載のアンテナ装置を備えた無線送信装置であって、
前記無線周波数信号の電力を増幅する増幅器と、
所定の電源から得られる電力を前記増幅器の動作電源電力として前記増幅器に供給し、前記整流部から前記直流電力が出力された場合、前記所定の電源から前記送信増幅器に供給される電力を制限すると共に前記直流電力を前記増幅器の動作電源電力として前記増幅器に供給する電源制御部と、
を備えた無線送信装置。
A wireless transmission device comprising the antenna device according to any one of claims 1 to 6,
An amplifier for amplifying the power of the radio frequency signal;
The power obtained from a predetermined power source is supplied to the amplifier as the operating power source power of the amplifier, and when the DC power is output from the rectifier, the power supplied from the predetermined power source to the transmission amplifier is limited. And a power supply controller that supplies the DC power to the amplifier as operating power supply power of the amplifier, and
A wireless transmission device comprising:
JP2014125585A 2014-06-18 2014-06-18 Antenna device and wireless transmission device Active JP6241788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014125585A JP6241788B2 (en) 2014-06-18 2014-06-18 Antenna device and wireless transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014125585A JP6241788B2 (en) 2014-06-18 2014-06-18 Antenna device and wireless transmission device

Publications (2)

Publication Number Publication Date
JP2016005185A true JP2016005185A (en) 2016-01-12
JP6241788B2 JP6241788B2 (en) 2017-12-06

Family

ID=55224163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125585A Active JP6241788B2 (en) 2014-06-18 2014-06-18 Antenna device and wireless transmission device

Country Status (1)

Country Link
JP (1) JP6241788B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273688A (en) * 1994-03-31 1995-10-20 N T T Idou Tsuushinmou Kk Communication equipment
JP2008278097A (en) * 2007-04-27 2008-11-13 Ntt Docomo Inc Radio communication device and power supplying method for the radio communication device
JP2008278096A (en) * 2007-04-27 2008-11-13 Ntt Docomo Inc Radio communication equipment, and power supply method for radio communication equipment
JP2013098894A (en) * 2011-11-04 2013-05-20 Hitachi Kokusai Electric Inc Radio equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273688A (en) * 1994-03-31 1995-10-20 N T T Idou Tsuushinmou Kk Communication equipment
JP2008278097A (en) * 2007-04-27 2008-11-13 Ntt Docomo Inc Radio communication device and power supplying method for the radio communication device
JP2008278096A (en) * 2007-04-27 2008-11-13 Ntt Docomo Inc Radio communication equipment, and power supply method for radio communication equipment
JP2013098894A (en) * 2011-11-04 2013-05-20 Hitachi Kokusai Electric Inc Radio equipment

Also Published As

Publication number Publication date
JP6241788B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
US20110175457A1 (en) Power supplying apparatus, power receiving apparatus, and wireless power supplying system
US10141792B2 (en) Power harvesting circuit and method
US10520997B2 (en) Supplying power to a computer accessory from a captured wifi signal
TWI662786B (en) Amplifier with base current reuse
JPWO2008018338A1 (en) Harmonic processing circuit and amplifier circuit using the same
US10431889B2 (en) Low-loss compact transmit impedance matching tuning technique
Choi et al. Design of high efficiency wireless charging pad based on magnetic resonance coupling
JP2011004479A (en) Wireless power supply device
JP6124355B2 (en) Wireless transmission device and wireless transmission system
CN106532985A (en) High-power 2.45GHz microwave wireless power transmission system
Abdullah et al. Design of Dual ISM bands low power rectenna for indoor wireless power transfer application
US9935581B2 (en) High-frequency semiconductor amplifier
JP6241788B2 (en) Antenna device and wireless transmission device
Talla et al. An experimental technique for design of practical wireless power transfer systems
Bougas et al. State-of-the-art technologies in RF energy harvesting circuits–a review
US8884698B2 (en) Transformer and CMOS power amplifier including the same
US10038340B2 (en) Wireless power transmission method and apparatus for improving spectrum efficiency and space efficiency based on impedance matching and relay resonance
Wang et al. Design of a wide dynamic range rectifier array with an adaptive power distribution technique
US9450546B2 (en) System, method and device for power amplification of a signal in an integrated circuit
KR101252282B1 (en) Apparatus and method for transmiting a wireless power
US10560072B2 (en) Non-foster active antenna
TW201328103A (en) Wireless power supplying apparatus and method
JP5662525B2 (en) ANTENNA DEVICE AND ITS FEEDING STRUCTURE
US11056787B2 (en) Hybrid antenna
JP2017034927A (en) Rectifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171027

R150 Certificate of patent or registration of utility model

Ref document number: 6241788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250