JP2016004758A - Binder composition for nonaqueous secondary battery porous membrane, composition for nonaqueous secondary battery porous membrane, porous membrane for nonaqueous secondary battery, and nonaqueous secondary battery - Google Patents

Binder composition for nonaqueous secondary battery porous membrane, composition for nonaqueous secondary battery porous membrane, porous membrane for nonaqueous secondary battery, and nonaqueous secondary battery Download PDF

Info

Publication number
JP2016004758A
JP2016004758A JP2014126349A JP2014126349A JP2016004758A JP 2016004758 A JP2016004758 A JP 2016004758A JP 2014126349 A JP2014126349 A JP 2014126349A JP 2014126349 A JP2014126349 A JP 2014126349A JP 2016004758 A JP2016004758 A JP 2016004758A
Authority
JP
Japan
Prior art keywords
secondary battery
porous membrane
composition
porous film
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014126349A
Other languages
Japanese (ja)
Other versions
JP6344081B2 (en
Inventor
智一 佐々木
Tomokazu Sasaki
智一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2014126349A priority Critical patent/JP6344081B2/en
Publication of JP2016004758A publication Critical patent/JP2016004758A/en
Application granted granted Critical
Publication of JP6344081B2 publication Critical patent/JP6344081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a binder composition for a nonaqueous secondary battery porous membrane, excellent in durability in an electrolyte, capable of forming a porous membrane low in moisture content, and also capable of increasing stability when a porous membrane composition is sheared.SOLUTION: A binder composition for a nonaqueous secondary battery porous membrane contains a particulate polymer including 0.05 mass% or more and 5 mass% or less of a monomer unit having two or more hydroxyl groups.

Description

本発明は、非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池に関するものである。   The present invention relates to a binder composition for a nonaqueous secondary battery porous film, a composition for a nonaqueous secondary battery porous film, a porous film for a nonaqueous secondary battery, and a nonaqueous secondary battery.

リチウムイオン二次電池などの非水系二次電池(以下、「二次電池」と略記する場合がある)は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして二次電池は、一般に正極、負極、そして正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレーターなどの電池部材を備えている。また二次電池においては、電極(正極および負極)やセパレーター上に、それらの耐熱性や強度の向上などを目的として、多孔膜を保護層として設けることがある。   Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes abbreviated as “secondary batteries”) have the characteristics of being small and lightweight, having high energy density, and capable of repeated charge and discharge. It is used for a wide range of purposes. The secondary battery generally includes a battery member such as a positive electrode, a negative electrode, and a separator that separates the positive electrode and the negative electrode and prevents a short circuit between the positive electrode and the negative electrode. In secondary batteries, a porous film may be provided as a protective layer on electrodes (positive electrode and negative electrode) and separators for the purpose of improving their heat resistance and strength.

ここで多孔膜としては、有機粒子や無機粒子などの非導電性粒子を、バインダーで結着して形成したものが挙げられる。このような多孔膜は、通常、非導電性粒子やバインダーなどの多孔膜材料を水などの分散媒に溶解または分散させたスラリー組成物(以下、「多孔膜用組成物」と称することがある)を用意し、この多孔膜用組成物を電極やセパレーターなどの基材上に塗布および乾燥させて形成される。   Here, examples of the porous film include those formed by binding non-conductive particles such as organic particles and inorganic particles with a binder. Such a porous film is usually referred to as a slurry composition in which a porous film material such as non-conductive particles or a binder is dissolved or dispersed in a dispersion medium such as water (hereinafter referred to as “a composition for a porous film”). ), And this porous film composition is applied and dried on a substrate such as an electrode or a separator.

そして、近年、二次電池の更なる高性能化を目的として、多孔膜、より具体的には多孔膜に用いるバインダーの改良が盛んに行われている。例えば特許文献1では、バインダーとして、(メタ)アクリル酸エステル単量体単位、架橋性単量体単位を含み、加えて不飽和カルボン酸単量体単位を特定割合以上で含む共重合体を用いて、ポリオレフィン樹脂製セパレーターの表面に多孔膜を形成する技術が提案されている。そして特許文献1の多孔膜を備えるセパレーターは、熱収縮が抑制され、二次電池に使用した際に正極と負極とが短絡する虞を低減し得ると報告されている。   In recent years, for the purpose of further improving the performance of secondary batteries, improvement of the porous film, more specifically, the binder used for the porous film has been actively performed. For example, Patent Document 1 uses a copolymer containing a (meth) acrylate monomer unit and a crosslinkable monomer unit as a binder, and additionally containing an unsaturated carboxylic acid monomer unit at a specific ratio or more. A technique for forming a porous film on the surface of a polyolefin resin separator has been proposed. And the separator provided with the porous film of patent document 1 is reported that heat shrinkage | contraction is suppressed and when using it for a secondary battery, a possibility that a positive electrode and a negative electrode may short-circuit can be reduced.

特開2011−8966号公報JP 2011-8966 A

ここで、二次電池に用いられる多孔膜には、上述のように電池部材の耐熱性や強度を確保して短絡を防止するという機能に加え、二次電池に優れた電気的特性(自己放電特性、低温出力特性)を発揮させることが求められる。
しかしながら、上記従来の技術では、バインダーによる多孔膜中への持ち込み水分に何ら着目しておらず、特に、バインダーである共重合体が不飽和カルボン酸単量体単位を多く含む場合などにおいて、親水性のカルボキシル基により多孔膜中への持ち込み水分量が上昇し、二次電池の電気的特性が損なわれる虞があった。
Here, the porous film used in the secondary battery has the electrical characteristics (self-discharge) excellent in the secondary battery in addition to the function of ensuring the heat resistance and strength of the battery member and preventing the short circuit as described above. Characteristics and low temperature output characteristics).
However, in the above conventional technique, no attention is paid to moisture brought into the porous film by the binder, particularly in the case where the copolymer as the binder contains many unsaturated carboxylic acid monomer units. There is a possibility that the amount of moisture brought into the porous film increases due to the functional carboxyl group, and the electrical characteristics of the secondary battery are impaired.

また、二次電池の更なる電気的特性の向上のため、多孔膜用のバインダーには、例えば使用中に連続的に大きな振動が与えられることになる電気自動車に搭載した場合など、過酷な使用条件下においても、電解液中において多孔膜中の成分の脱離を十分に防止すること、すなわち、電解液中において多孔膜に十分な耐久性を発揮させることが求められる。
くわえて、多孔膜の形成に用いられる、バインダーを含有してなる多孔膜用組成物は、基材上に多孔膜を形成する際に、例えばグラビア塗工装置で塗布すると、グラビアロールの回転によりせん断力を受ける。このせん断力が原因で、長時間に渡り多孔膜を形成したり、高速成形するためにグラビアロールの回転速度を高めたりすると、多孔膜用組成物中の成分が凝集し、均一な厚みの多孔膜が得難くなるという問題もあった。
In addition, in order to further improve the electrical characteristics of secondary batteries, the binder for porous membranes is used severely, for example, when it is installed in an electric vehicle that is continuously subjected to large vibrations during use. Even under the conditions, it is required that the components in the porous film are sufficiently prevented from desorbing in the electrolytic solution, that is, that the porous film has sufficient durability in the electrolytic solution.
In addition, the porous film composition containing a binder used for forming the porous film is formed by rotating the gravure roll when it is applied with a gravure coating device, for example, when the porous film is formed on the substrate. Receives shearing force. Due to this shearing force, when a porous film is formed over a long period of time, or when the rotational speed of the gravure roll is increased for high-speed molding, the components in the composition for the porous film are aggregated to form a porous film with a uniform thickness. There was also a problem that it was difficult to obtain a film.

そこで、本発明は、電解液中での耐久性に優れ、水分含有量が少ない多孔膜を形成可能であり、且つ、多孔膜用組成物のせん断下での安定性を高めることも可能な非水系二次電池多孔膜用バインダー組成物を提供することを目的とする。
また、本発明は、電解液中での耐久性に優れ、水分含有量が少ない多孔膜を形成可能であり、且つ、せん断下での安定性に優れる非水系二次電池多孔膜用組成物を提供することを目的とする。
そして、本発明は、電解液中での耐久性に優れ、水分含有量が少ない非水系二次電池用多孔膜、および電気的特性に優れる非水系二次電池を提供することを目的とする。
Therefore, the present invention is capable of forming a porous film that is excellent in durability in an electrolytic solution, has a low water content, and can enhance the stability of the composition for porous film under shear. It aims at providing the binder composition for water based secondary battery porous membranes.
In addition, the present invention provides a composition for a porous membrane of a non-aqueous secondary battery that is excellent in durability in an electrolytic solution, can form a porous membrane with a low water content, and is excellent in stability under shear. The purpose is to provide.
An object of the present invention is to provide a porous film for a non-aqueous secondary battery that is excellent in durability in an electrolytic solution and has a low water content, and a non-aqueous secondary battery that is excellent in electrical characteristics.

本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、少なくとも2つの水酸基を有する単量体単位を特定の割合で含む粒子状重合体を含有してなるバインダー組成物を、多孔膜用組成物の調製に用いることで、多孔膜用組成物のせん断下での安定性が確保され、しかも当該多孔膜用組成物から形成される多孔膜が、水分含有量が少なく、かつ電解液中での耐久性に優れることを見出し、本発明を完成させた。   The present inventor has intensively studied for the purpose of solving the above problems. Then, the present inventor uses a binder composition containing a particulate polymer containing a monomer unit having at least two hydroxyl groups in a specific ratio for the preparation of a porous membrane composition, It is found that the stability of the membrane composition under shear is ensured, and the porous membrane formed from the porous membrane composition has a low water content and is excellent in durability in an electrolyte solution, The present invention has been completed.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池多孔膜用バインダー組成物は、2つ以上の水酸基を有する単量体単位を0.05質量%以上5質量%以下含む粒子状重合体を含有することを特徴とする。このように、複数の水酸基を有する単量体単位を特定の割合で含む粒子状重合体を含有するバインダー組成物を用いれば、せん断下での安定性に優れる多孔膜用組成物を調製することができる。また、当該バインダー組成物を用いて形成される多孔膜は、水分含有量が少なく、かつ電解液中での耐久性に優れる。   That is, this invention aims to solve the above-mentioned problem advantageously, and the binder composition for a nonaqueous secondary battery porous membrane of the present invention comprises monomer units having two or more hydroxyl groups. A particulate polymer containing 0.05% by mass or more and 5% by mass or less is contained. Thus, by using a binder composition containing a particulate polymer containing a monomer unit having a plurality of hydroxyl groups at a specific ratio, a composition for a porous membrane having excellent stability under shear can be prepared. Can do. Moreover, the porous film formed using the said binder composition has little moisture content, and is excellent in durability in electrolyte solution.

ここで、本発明の非水系二次電池多孔膜用バインダー組成物は、前記2つ以上の水酸基を有する単量体単位が、2つ以上の水酸基および2つ以上のラジカル重合性不飽和結合を有する単量体由来の単量体単位であることが好ましい。2つ以上の水酸基に加えさらに2つ以上のラジカル重合性不飽和結合を有する単量体単位を含む粒子状重合体は、電解液中での強度が高く、また電解液中への溶出が抑制されるため、電解液中での多孔膜の耐久性を更に向上させることができるからである。   Here, in the binder composition for a nonaqueous secondary battery porous membrane according to the present invention, the monomer unit having two or more hydroxyl groups has two or more hydroxyl groups and two or more radical polymerizable unsaturated bonds. It is preferable that it is a monomer unit derived from the monomer to have. A particulate polymer containing monomer units having two or more radically polymerizable unsaturated bonds in addition to two or more hydroxyl groups has high strength in the electrolyte and suppresses elution into the electrolyte. This is because the durability of the porous membrane in the electrolytic solution can be further improved.

さらに、本発明の非水系二次電池多孔膜用バインダー組成物は、前記粒子状重合体が、さらに(メタ)アクリル酸エステル単量体単位を50質量%以上95質量%以下含むことが好ましい。上述の範囲内で(メタ)アクリル酸エステル由来の単量体単位を含む粒子状重合体は、柔軟性および接着性がバランスよく確保され、電解液中での多孔膜の耐久性を更に向上させることができるからである。   Furthermore, in the binder composition for a nonaqueous secondary battery porous membrane of the present invention, the particulate polymer preferably further contains 50% by mass to 95% by mass of a (meth) acrylic acid ester monomer unit. A particulate polymer containing a monomer unit derived from a (meth) acrylic acid ester within the above-mentioned range ensures a good balance between flexibility and adhesiveness, and further improves the durability of the porous membrane in the electrolytic solution. Because it can.

そして、本発明の非水系二次電池多孔膜用バインダー組成物は、前記粒子状重合体の電解液膨潤度が、1より大きく3倍以下であることが好ましい。粒子状重合体の電解液膨潤度が上述の範囲内であれば、電解液中での多孔膜の耐久性がさらに向上し、そして、リチウムイオン伝導性も確保されるため、非水系二次電池の低温出力特性などの電気的特性を更に向上させることがとできるからである。   In the binder composition for a nonaqueous secondary battery porous membrane of the present invention, the degree of swelling of the electrolytic solution of the particulate polymer is preferably greater than 1 and 3 times or less. If the degree of swelling of the electrolytic solution of the particulate polymer is within the above range, the durability of the porous membrane in the electrolytic solution is further improved, and lithium ion conductivity is ensured. This is because the electrical characteristics such as the low temperature output characteristics can be further improved.

また、本発明の非水系二次電池多孔膜用組成物は、上述の何れかの非水系二次電池多孔膜用バインダー組成物および非導電性粒子を含むことを特徴とする。上述した何れかのバインダー組成物を含む多孔膜用組成物は、せん断下での安定性に優れており、多孔膜の形成時に凝集し難い。そして、上述した何れかのバインダー組成物を含む多孔膜用組成物を多孔膜の形成に用いることで、水分含有量が低く耐久性に優れる多孔膜が得られる。   Moreover, the composition for non-aqueous secondary battery porous membranes of this invention is characterized by including one of the above-mentioned binder compositions for non-aqueous secondary battery porous membranes and non-conductive particles. The composition for porous membranes containing any of the binder compositions described above is excellent in stability under shear and hardly aggregates during the formation of the porous membrane. And the porous film which is low in water | moisture content and excellent in durability is obtained by using the composition for porous films containing any binder composition mentioned above for formation of a porous film.

また、本発明の非水系二次電池用多孔膜は、上述の非水系二次電池多孔膜用組成物から形成されたことを特徴とする。当該多孔膜は、水分含有量が低く電解液中での耐久性に優れる。   The porous membrane for a non-aqueous secondary battery of the present invention is formed from the above-described composition for a porous membrane of a non-aqueous secondary battery. The porous film has a low moisture content and excellent durability in an electrolytic solution.

また、本発明の非水系二次電池は、正極、負極、セパレーター、および電解液を備え、前記正極、負極、およびセパレーターからなる群から選択される少なくとも1つの電池部材の表面に上述の非水系二次電池用多孔膜を備える。当該非水系二次電池は、電気的特性に優れる。   The nonaqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the nonaqueous secondary battery described above is formed on the surface of at least one battery member selected from the group consisting of the positive electrode, the negative electrode, and the separator. A porous membrane for a secondary battery is provided. The non-aqueous secondary battery is excellent in electrical characteristics.

本発明によれば、電解液中での耐久性に優れ、水分含有量が少ない多孔膜を形成可能であり、且つ、多孔膜用組成物のせん断下での安定性を高めることも可能な非水系二次電池多孔膜用バインダー組成物を提供することができる。
また、本発明によれば、電解液中での耐久性に優れ、水分含有量が少ない多孔膜を形成可能であり、且つ、せん断下での安定性に優れる非水系二次電池多孔膜用組成物を提供することができる。
そして、本発明によれば、電解液中での耐久性に優れ、水分含有量が少ない非水系二次電池用多孔膜、および電気的特性に優れる非水系二次電池を提供することができる。
According to the present invention, it is possible to form a porous film having excellent durability in an electrolytic solution and having a low water content, and it is possible to improve the stability of the composition for porous film under shear. A binder composition for an aqueous secondary battery porous membrane can be provided.
Further, according to the present invention, a composition for a porous membrane of a nonaqueous secondary battery that is excellent in durability in an electrolytic solution, can form a porous membrane with a low water content, and has excellent stability under shear. Things can be provided.
According to the present invention, it is possible to provide a porous film for a non-aqueous secondary battery that is excellent in durability in an electrolytic solution and has a low water content, and a non-aqueous secondary battery that is excellent in electrical characteristics.

以下、本発明の実施形態について詳細に説明する。
ここで、本発明の非水系二次電池多孔膜用バインダー組成物は、非水系二次電池多孔膜用組成物を調製する際の材料として用いられる。そして、本発明の非水系二次電池多孔膜用組成物は、本発明の非水系二次電池多孔膜用バインダー組成物を用いて調製される。また、本発明の非水系二次電池用多孔膜は、本発明の非水系二次電池多孔膜用組成物を用いて形成される。加えて、本発明の非水系二次電池は、少なくとも1つの電池部材の表面に、本発明の非水系二次電池用多孔膜を備えるものである。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the binder composition for nonaqueous secondary battery porous membranes of the present invention is used as a material for preparing a nonaqueous secondary battery porous membrane composition. And the composition for non-aqueous secondary battery porous films of this invention is prepared using the binder composition for non-aqueous secondary battery porous films of this invention. Moreover, the porous film for nonaqueous secondary batteries of this invention is formed using the composition for nonaqueous secondary battery porous films of this invention. In addition, the non-aqueous secondary battery of the present invention is provided with the porous membrane for a non-aqueous secondary battery of the present invention on the surface of at least one battery member.

(非水系二次電池多孔膜用バインダー組成物)
本発明のバインダー組成物は、結着能を有する粒子状重合体および水などの分散媒を含み、そして、任意にその他の成分を含む組成物である。そして当該粒子状重合体は、2つ以上の水酸基を有する単量体単位を0.05質量%以上5質量%以下含むことを特徴とする。
なお、本発明において「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の構造単位が含まれている」ことを意味する。
そして、本発明のバインダー組成物を含む多孔膜用組成物は、せん断下の安定性に優れている。また、本発明の多孔膜用バインダー組成物を用いて形成される多孔膜は、耐久性に優れており、かつ水分含有量が低い。そして当該多孔膜は、非水系二次電池に優れた電気的特性を発揮させることができる。
(Binder composition for nonaqueous secondary battery porous membrane)
The binder composition of the present invention is a composition containing a particulate polymer having binding ability and a dispersion medium such as water, and optionally containing other components. And the said particulate polymer is characterized by including 0.05 mass% or more and 5 mass% or less of monomer units which have a 2 or more hydroxyl group.
In the present invention, “comprising a monomer unit” means “a monomer-derived structural unit is contained in a polymer obtained using the monomer”.
And the composition for porous films containing the binder composition of this invention is excellent in stability under shear. Moreover, the porous film formed using the binder composition for porous films of this invention is excellent in durability, and its water content is low. And the said porous film can exhibit the electrical property excellent in the non-aqueous secondary battery.

<粒子状重合体>
粒子状重合体は、得られる多孔膜の強度を確保すると共に、多孔膜に含まれる成分が多孔膜から脱離しないように保持する。
ここで、通常、粒子状重合体は水溶性の重合体ではなく、水系媒体中において粒子状で存在しており、その粒子形状を維持したまま多孔膜に含まれる。
そして、粒子状重合体は、2つ以上の水酸基を有する単量体単位を0.05質量%以上5質量%以下含み、任意に(メタ)アクリル酸エステル単量体およびその他の単量体単位を含む。
なお、本発明において「(メタ)アクリル」とは、アクリル及び/又はメタクリルを指す。
<Particulate polymer>
The particulate polymer ensures the strength of the obtained porous film and holds the components contained in the porous film so as not to be detached from the porous film.
Here, normally, the particulate polymer is not a water-soluble polymer but is present in the form of particles in an aqueous medium, and is contained in the porous film while maintaining the particle shape.
The particulate polymer contains 0.05% by mass or more and 5% by mass or less of a monomer unit having two or more hydroxyl groups, and optionally a (meth) acrylic acid ester monomer and other monomer units. including.
In the present invention, “(meth) acryl” refers to acryl and / or methacryl.

[2つ以上の水酸基を有する単量体単位]
2つ以上の水酸基を有する単量体単位を形成しうる、2つ以上の水酸基を有する単量体としては、分子中に水酸基を2つ以上有し、さらに他の単量体と共重合可能な少なくとも1つの構造を有する単量体であれば特に限定されない。2つ以上の水酸基を有する単量体を用いて調製され、当該単量体由来の単量体単位を含む粒子状重合体は、1つの水酸基を有する単量体をより多量に用いて調製された粒子状重合体に比して、重合が容易であり、そして多孔膜用組成物のせん断下での安定性および電解液中での多孔膜の耐久性を、バランスよく向上させることができる。
なお、2つ以上の水酸基を有する単量体は一種単独で、または、2種以上を組み合わせて用いることができる。
[Monomer unit having two or more hydroxyl groups]
The monomer having two or more hydroxyl groups that can form a monomer unit having two or more hydroxyl groups has two or more hydroxyl groups in the molecule and can be copolymerized with other monomers. Any monomer having at least one structure is not particularly limited. A particulate polymer containing a monomer unit having two or more hydroxyl groups and containing a monomer unit derived from the monomer is prepared using a larger amount of a monomer having one hydroxyl group. Compared with the particulate polymer, the polymerization is easy, and the stability of the composition for porous membrane under shear and the durability of the porous membrane in the electrolyte can be improved in a balanced manner.
In addition, the monomer which has two or more hydroxyl groups can be used individually by 1 type or in combination of 2 or more types.

そして、粒子状重合体の電解液中での強度を高め、且つ、電解液中への成分の溶出を抑制し、多孔膜の耐久性を更に向上させる観点から、2つ以上の水酸基を有する単量体としては、2つ以上の水酸基および2つ以上のラジカル重合性不飽和結合(ラジカル重合性炭素−炭素二重結合など)を有する単量体が好ましい。
さらに、得られる粒子状重合体の電解液中での強度と重合性を確保する観点からは、複数のグリシジル基を有する化合物とエチレン性不飽和カルボン酸のエポキシエステルが好ましく、エチレングリコールジグリシジルエーテル・(メタ)アクリル酸付加物、プロピレングリコールジグリシジルエーテル・(メタ)アクリル酸付加物、トリプロピレングリコールジグリシジルエーテル・(メタ)アクリル酸付加物、ネオペンチルグリコールジグリシジルエーテル・(メタ)アクリル酸付加物、1,6-ヘキサンジオールジグリシジルエーテル・(メタ)アクリル酸付加物などの、アルキレングリコールジグリシジルエーテルと(メタ)アクリル酸のエポキシエステルがより好ましい。同様の観点から、これらの中でもエチレングリコールジグリシジルエーテル・(メタ)アクリル酸付加物、プロピレングリコールジグリシジルエーテル・(メタ)アクリル酸付加物、トリプロピレングリコールジグリシジルエーテル・(メタ)アクリル酸付加物が更に好ましい。
Then, from the viewpoint of increasing the strength of the particulate polymer in the electrolytic solution, suppressing the elution of the components into the electrolytic solution, and further improving the durability of the porous membrane, the single polymer having two or more hydroxyl groups. As the monomer, a monomer having two or more hydroxyl groups and two or more radical polymerizable unsaturated bonds (such as a radical polymerizable carbon-carbon double bond) is preferable.
Furthermore, from the viewpoint of ensuring the strength and polymerizability of the obtained particulate polymer in the electrolytic solution, a compound having a plurality of glycidyl groups and an epoxy ester of an ethylenically unsaturated carboxylic acid are preferred, and ethylene glycol diglycidyl ether・ (Meth) acrylic acid adduct, propylene glycol diglycidyl ether ・ (Meth) acrylic acid adduct, tripropylene glycol diglycidyl ether ・ (Meth) acrylic acid adduct, neopentyl glycol diglycidyl ether ・ (meth) acrylic acid More preferred are epoxy esters of alkylene glycol diglycidyl ether and (meth) acrylic acid, such as adducts and 1,6-hexanediol diglycidyl ether / (meth) acrylic acid adducts. From the same viewpoint, among these, ethylene glycol diglycidyl ether / (meth) acrylic acid adduct, propylene glycol diglycidyl ether / (meth) acrylic acid adduct, tripropylene glycol diglycidyl ether / (meth) acrylic acid adduct Is more preferable.

また、粒子状重合体を用いて得られる多孔膜の水分含有量を減少させる観点からは、2つ以上の水酸基を有する単量体としては、エチレングリコールジグリシジルエーテル・メタクリル酸付加物などの、複数のグリシジル基を有する化合物とメタクリル酸のエポキシエステル(メタクリル酸付加物)が好ましい。
なお、複数のグリシジル基を有する化合物と(メタ)アクリル酸のエポキシエステルなどの上記化合物は、公知の方法で製造することができる。
In addition, from the viewpoint of reducing the water content of the porous film obtained using the particulate polymer, the monomer having two or more hydroxyl groups, such as ethylene glycol diglycidyl ether / methacrylic acid adduct, A compound having a plurality of glycidyl groups and an epoxy ester (methacrylic acid adduct) of methacrylic acid are preferred.
The compound having a plurality of glycidyl groups and the above compound such as an epoxy ester of (meth) acrylic acid can be produced by a known method.

粒子状重合体における、2つ以上の水酸基を有する単量体単位の含有割合は、0.05質量%以上5質量%以下であることが必要であり、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは4質量%以下、より好ましくは3質量%以下である。2つ以上の水酸基を有する単量体単位の含有割合が0.05質量%未満であるとバインダー組成物中の粒子状重合体の分散性が損なわれ、当該バインダー組成物を含む多孔膜用組成物のせん断下の安定性を確保することができず、加えて多孔膜の強度や二次電池の電気的特性が低下する。一方、2つ以上の水酸基を有する単量体単位の含有割合が5質量%超であると、多孔膜への持ち込み水分量が上昇し、二次電池の自己放電特性などの電気的特性が低下する。さらに、粒子状重合体の安定性が損なわれ、多孔膜用組成物のせん断下の安定性を確保することができない。   The content ratio of the monomer unit having two or more hydroxyl groups in the particulate polymer needs to be 0.05% by mass or more and 5% by mass or less, preferably 0.1% by mass or more, and more. Preferably it is 0.2 mass% or more, More preferably, it is 0.5 mass% or more, Preferably it is 4 mass% or less, More preferably, it is 3 mass% or less. When the content ratio of the monomer unit having two or more hydroxyl groups is less than 0.05% by mass, the dispersibility of the particulate polymer in the binder composition is impaired, and the composition for a porous membrane containing the binder composition The stability of the object under shear cannot be ensured, and in addition, the strength of the porous film and the electrical characteristics of the secondary battery are reduced. On the other hand, if the content of the monomer unit having two or more hydroxyl groups exceeds 5% by mass, the amount of moisture brought into the porous film increases, and the electrical characteristics such as the self-discharge characteristics of the secondary battery decrease. To do. Furthermore, the stability of the particulate polymer is impaired, and the stability under shearing of the porous membrane composition cannot be ensured.

[(メタ)アクリル酸エステル単量体単位]
(メタ)アクリル酸エステル単量体単位を形成しうる(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、t−ブチルアクリレート、イソブチルアクリレート、n−ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n−テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、イソプロピルメタクリレート、n−ブチルメタクリレート、t−ブチルメタクリレート、イソブチルメタクリレート、n−ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2−エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n−テトラデシルメタクリレート、ステアリルメタクリレート、グリシジルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。これらの中でも、粒子状重合体の電解液中での膨潤を適度なものとし、電解液中での多孔膜の耐久性や二次電池の電気的特性を向上させる観点からは、2−エチルヘキシルアクリレート、エチルアクリレート、ブチルアクリレートが好ましく、多孔膜中の水分含量を低下させ、そしてリチウムイオン二次電池の自己放電特性および低温出力特性を向上させる観点から、2−エチルヘキシルアクリレートがより好ましい。これらは一種単独で、または、2種以上を組み合わせて用いることができる。
[(Meth) acrylic acid ester monomer unit]
Examples of the (meth) acrylate monomer that can form a (meth) acrylate monomer unit include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, Alkyl acrylates such as isobutyl acrylate, n-pentyl acrylate, isopentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate Relate, t-butyl methacrylate, isobutyl methacrylate, n-pentyl methacrylate, isopentyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n-tetradecyl methacrylate, stearyl methacrylate Methacrylic acid alkyl esters such as glycidyl methacrylate; and the like. Among these, 2-ethylhexyl acrylate is preferred from the viewpoint of appropriate swelling of the particulate polymer in the electrolytic solution and improving the durability of the porous film in the electrolytic solution and the electrical characteristics of the secondary battery. Ethyl acrylate and butyl acrylate are preferable, and 2-ethylhexyl acrylate is more preferable from the viewpoint of reducing the water content in the porous film and improving the self-discharge characteristics and low-temperature output characteristics of the lithium ion secondary battery. These can be used alone or in combination of two or more.

粒子状重合体における、(メタ)アクリル酸エステル単量体単位の含有割合は、好ましくは50質量%以上、より好ましくは55質量%以上、特に好ましくは60質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下、特に好ましくは85質量%以下である。(メタ)アクリル酸エステル単量体単位の含有割合が50質量%以上であると、粒子状重合体の柔軟性が向上し、95質量%以下であると、粒子状重合体の接着性を確保することができる。したがって、(メタ)アクリル酸エステル単量体単位の含有割合が上述の範囲内にあると、電解液中での多孔膜の強度が更に高まり、リチウムイオン二次電池の電気的特性を更に向上させることができる。   The content ratio of the (meth) acrylic acid ester monomer unit in the particulate polymer is preferably 50% by mass or more, more preferably 55% by mass or more, particularly preferably 60% by mass or more, and preferably 95% by mass. % Or less, more preferably 90% by mass or less, and particularly preferably 85% by mass or less. When the content ratio of the (meth) acrylic acid ester monomer unit is 50% by mass or more, the flexibility of the particulate polymer is improved, and when it is 95% by mass or less, the adhesiveness of the particulate polymer is ensured. can do. Therefore, when the content ratio of the (meth) acrylic acid ester monomer unit is within the above range, the strength of the porous film in the electrolytic solution is further increased, and the electrical characteristics of the lithium ion secondary battery are further improved. be able to.

[その他の単量体単位]
粒子状重合体は、上述した2つ以上の水酸基を有する単量体単位、(メタ)アクリル酸エステル単量体単位以外の他の単量体単位をさらに含んでいてもよい。そのような他の単量体単位としては、特に限定されることなく、芳香族ビニル単量体単位、脂肪族共役ジエン単量体単位が挙げられる。
芳香族ビニル単量体単位を形成しうる芳香族ビニル単量体としては、スチレン、スチレンスルホン酸およびその塩(例えば、スチレンスルホン酸ナトリウムなど)などが挙げられる。
脂肪族共役ジエン単量体単位を形成しうる脂肪族共役ジエン単量体としては、イソプレン、1,3−ブタジエンなどが挙げられる。
これらの中でも、電解液中での粒子状重合体の過度な膨潤を抑制し、電解液中での多孔膜の耐久性を確保する観点からは、芳香族ビニル単量体が好ましく、スチレン、スチレンスルホン酸ナトリウムがより好ましい。
[Other monomer units]
The particulate polymer may further contain a monomer unit other than the above-described monomer unit having two or more hydroxyl groups and a (meth) acrylate monomer unit. Such other monomer units are not particularly limited, and examples thereof include aromatic vinyl monomer units and aliphatic conjugated diene monomer units.
Examples of the aromatic vinyl monomer that can form an aromatic vinyl monomer unit include styrene, styrene sulfonic acid and salts thereof (for example, sodium styrene sulfonate) and the like.
Examples of the aliphatic conjugated diene monomer that can form an aliphatic conjugated diene monomer unit include isoprene and 1,3-butadiene.
Among these, from the viewpoint of suppressing excessive swelling of the particulate polymer in the electrolytic solution and ensuring the durability of the porous film in the electrolytic solution, an aromatic vinyl monomer is preferable, and styrene, styrene Sodium sulfonate is more preferred.

粒子状重合体における、上述したその他の単量体単位の含有割合は、特に限定されないが、好ましくは50質量%以下である。そして、粒子状重合体が例えばその他の単量体単位として芳香族ビニル単量体単位を含む場合、芳香族ビニル単量体単位の含有割合は、好ましくは4質量%以上、より好ましくは15質量%以上、特に好ましくは18質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、特に好ましくは25質量%以下である。芳香族ビニル単量体単位の含有割合が上述の範囲内であると、電解液中での粒子状重合体の過度な膨潤が抑制され、そして2つ以上の水酸基を有する単量体単位および(メタ)アクリル酸エステル単量体単位由来の粒子状重合体の性質を十分に発揮させることができる。   Although the content rate of the other monomer unit mentioned above in a particulate polymer is not specifically limited, Preferably it is 50 mass% or less. And when a particulate polymer contains an aromatic vinyl monomer unit as another monomer unit, for example, the content rate of an aromatic vinyl monomer unit becomes like this. Preferably it is 4 mass% or more, More preferably, it is 15 mass % Or more, particularly preferably 18% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, and particularly preferably 25% by mass or less. When the content ratio of the aromatic vinyl monomer unit is within the above range, excessive swelling of the particulate polymer in the electrolytic solution is suppressed, and the monomer unit having two or more hydroxyl groups and ( The properties of the particulate polymer derived from the (meth) acrylate monomer unit can be sufficiently exhibited.

なお、粒子状重合体における、上述の2つ以上の水酸基を有する単量体単位以外の親水性基含有単量体単位の含有割合は、好ましくは5質量%未満、より好ましくは1質量%未満、更に好ましくは0.1質量%未満であり、特に好ましくは0質量%である。当該親水性基含有単量体単位の含有割合が5質量%未満であれば、本発明のバインダー組成物を含む多孔膜用組成物は、せん断下の安定性に優れ、また、当該多孔膜用組成物を用いて形成された多孔膜は電解液中での耐久性に優れ、かつ、水分含量が低い。ここで親水性基としては、水酸基、カルボキシル基、リン酸基が挙げられる。   In the particulate polymer, the content ratio of the hydrophilic group-containing monomer units other than the above-described monomer units having two or more hydroxyl groups is preferably less than 5% by mass, more preferably less than 1% by mass. More preferably, it is less than 0.1% by mass, and particularly preferably 0% by mass. If the content ratio of the hydrophilic group-containing monomer unit is less than 5% by mass, the composition for a porous membrane containing the binder composition of the present invention is excellent in stability under shear, and for the porous membrane. The porous film formed using the composition is excellent in durability in the electrolytic solution and has a low water content. Here, examples of the hydrophilic group include a hydroxyl group, a carboxyl group, and a phosphoric acid group.

[粒子状重合体の調製]
そして、粒子状重合体は、上述した単量体を含む単量体組成物を重合することにより調製される。ここで、単量体組成物中の各単量体の含有割合は、通常、所望の粒子状重合体における単量体単位の含有割合と同様にする。
粒子状重合体の重合様式は、特に限定はされず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。そして、重合に使用される乳化剤、分散剤、重合開始剤、重合助剤などは、一般に用いられるものを使用することができ、その使用量も、一般に使用される量とする。
[Preparation of particulate polymer]
And a particulate polymer is prepared by superposing | polymerizing the monomer composition containing the monomer mentioned above. Here, the content ratio of each monomer in the monomer composition is usually the same as the content ratio of the monomer units in the desired particulate polymer.
The polymerization mode of the particulate polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method may be used. As the polymerization reaction, addition polymerization such as ionic polymerization, radical polymerization, and living radical polymerization can be used. And generally used emulsifiers, dispersants, polymerization initiators, polymerization aids and the like used for the polymerization can be used, and the amount used is also generally used.

[粒子状重合体の電解液膨潤度]
本発明において、「粒子状重合体の電解液膨潤度」は、粒子状重合体を成形してなるフィルム(バインダーフィルム)を特定の電解液に所定条件で浸漬した場合の浸漬後の重量を浸漬前の重量で除した値(倍)として求めることができ、具体的には、本明細書の実施例に記載の方法を用いてバインダーフィルムを成形し、同実施例に記載の測定方法を用いて測定する。
ここで、粒子状重合体の電解液膨潤度は、好ましくは1倍超であり、好ましくは3倍以下、より好ましくは2.5倍以下、特に好ましくは2倍以下である。粒子状重合体の電解液膨潤度が3倍以下であると、粒子状重合体の電解液への溶出が抑制され、電解液中での多孔膜の耐久性を確保することができ、一方1倍超であることで、二次電池中のリチウムイオン伝導性を確保することができる。
粒子状重合体の電解液膨潤度は、使用する単量体の種類および量を変更することにより調整することができ、例えば、スチレンなどの芳香族ビニル単量体の量を増加させることや、重合温度を上げたり、重合反応時間を長くすることにより重合分子量を大きくすることで電解液膨潤度を低下させることができる。
[Electrolytic solution swelling degree of particulate polymer]
In the present invention, “the degree of swelling of the electrolytic solution of the particulate polymer” refers to the weight after immersion when a film (binder film) formed from the particulate polymer is immersed in a specific electrolytic solution under predetermined conditions. It can be obtained as a value (times) divided by the previous weight. Specifically, a binder film is formed using the method described in the examples of the present specification, and the measurement method described in the examples is used. To measure.
Here, the degree of swelling of the electrolytic solution of the particulate polymer is preferably more than 1 time, preferably 3 times or less, more preferably 2.5 times or less, and particularly preferably 2 times or less. When the degree of swelling of the electrolytic solution of the particulate polymer is 3 times or less, the elution of the particulate polymer into the electrolytic solution is suppressed, and the durability of the porous membrane in the electrolytic solution can be ensured. By being over twice, lithium ion conductivity in the secondary battery can be secured.
The degree of swelling of the electrolyte solution of the particulate polymer can be adjusted by changing the type and amount of the monomer used, for example, increasing the amount of aromatic vinyl monomer such as styrene, The degree of swelling of the electrolyte solution can be reduced by increasing the polymerization molecular weight by increasing the polymerization temperature or increasing the polymerization reaction time.

<非水系二次電池多孔膜用バインダー組成物の調製>
バインダー組成物の調製方法は特に限定されないが、例えば、粒子状重合体の調製を水系媒体中で実施し、粒子状重合体が水分散液として得られる場合には、粒子状重合体の水分散液をそのままバインダー組成物としてもよいし、粒子状重合体の水分散液に、任意のその他の成分を加えてバインダー組成物としてもよい。ここでその他の成分としては、後述する「非水系二次電池多孔膜用組成物」の項で記載するその他の成分が挙げられる。
<Preparation of binder composition for nonaqueous secondary battery porous membrane>
The method for preparing the binder composition is not particularly limited. For example, when the particulate polymer is prepared in an aqueous medium and the particulate polymer is obtained as an aqueous dispersion, the particulate polymer is dispersed in water. The liquid may be used as it is as the binder composition, or any other component may be added to the aqueous dispersion of the particulate polymer to form the binder composition. Here, as other components, other components described in the section “Composition for non-aqueous secondary battery porous membrane” described later can be given.

(非水系二次電池多孔膜用組成物)
本発明の非水系二次電池多孔膜用組成物は、上述したバインダー組成物由来の粒子状重合体と、非導電性粒子とが水などの分散媒に分散したスラリー組成物である。
そして、本発明の多孔膜用組成物は、せん断下での安定性に優れる。くわえて、当該多孔膜用組成物を用いて形成される多孔膜は、水分含有量が低く、電解液中での耐久性に優れる。
(Composition for non-aqueous secondary battery porous membrane)
The composition for a nonaqueous secondary battery porous membrane of the present invention is a slurry composition in which the above-mentioned particulate polymer derived from the binder composition and nonconductive particles are dispersed in a dispersion medium such as water.
And the composition for porous films of this invention is excellent in stability under shear. In addition, the porous film formed using the composition for porous film has a low water content and is excellent in durability in the electrolytic solution.

<非導電性粒子>
非導電性粒子は、非導電性を有し、多孔膜用組成物において使用される水などの分散媒および二次電池の電解液に溶解せず、それらの中においても、その形状が維持される粒子である。そして非導電性粒子は、電気化学的にも安定であるため二次電池の使用環境下で、多孔膜中に安定に存在する。多孔膜用組成物が非導電性粒子を含むことで、得られる多孔膜の網目状構造が適度に目詰めされ、リチウムデンドライトなどが多孔膜を貫通するのを防止し、電極の短絡の抑制をより一層確かなものとすることができるからである。非導電性粒子としては、例えば各種の無機粒子や有機粒子を使用することができる。
<Non-conductive particles>
Non-conductive particles have non-conductivity and do not dissolve in a dispersion medium such as water used in the composition for porous membranes and the electrolyte of the secondary battery, and the shape is maintained in them. Particles. And since nonelectroconductive particle is electrochemically stable, it exists stably in a porous film under the use environment of a secondary battery. Since the porous membrane composition contains non-conductive particles, the network structure of the obtained porous membrane is moderately clogged, lithium dendrites and the like are prevented from penetrating the porous membrane, and the short circuit of the electrode is suppressed. This is because it can be made even more certain. As non-conductive particles, for example, various inorganic particles and organic particles can be used.

無機粒子としては、例えば、酸化アルミニウム(アルミナ)、酸化珪素、酸化マグネシウム、酸化チタン、BaTiO2、ZrO、アルミナ−シリ力複合酸化物等の酸化物粒子、窒化アルミニウム、窒化硼素等の窒化物粒子、シリコン、ダイヤモンド等の共有結合性結晶粒子、硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子、タルク、モンモリロナイトなどの粘土微粒子などを挙げることができる。
有機粒子としては、例えば、ポリエチレン、ポリスチレン、ポリジビニルベンゼン、スチレン−ジビニルベンゼン共重合体架橋物、そして、ポリイミド、ポリアミド、ポリアミドイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン−ホルムアルデヒド縮合物などの各種架橋高分子粒子や、ポリスルフォン、ポリアクリロニトリル、ポリアラミド、ポリアセタール、熱可塑性ポリイミドなどの耐熱性高分子粒子などを挙げることができる。ここで有機粒子と、上述の粒子状重合体とは、粒子状重合体は結着能を有することに対して、有機粒子が結着能を有さないという点で異なる。
Examples of inorganic particles include oxide particles such as aluminum oxide (alumina), silicon oxide, magnesium oxide, titanium oxide, BaTiO 2 , ZrO, and alumina-sili force composite oxide, and nitride particles such as aluminum nitride and boron nitride. And covalently bonded crystal particles such as silicon and diamond, sparingly soluble ion crystal particles such as barium sulfate, calcium fluoride and barium fluoride, and clay fine particles such as talc and montmorillonite.
Organic particles include, for example, polyethylene, polystyrene, polydivinylbenzene, styrene-divinylbenzene copolymer cross-linked products, and various cross-linking heights such as polyimide, polyamide, polyamideimide, melamine resin, phenol resin, and benzoguanamine-formaldehyde condensate. Examples thereof include molecular particles and heat-resistant polymer particles such as polysulfone, polyacrylonitrile, polyaramid, polyacetal, and thermoplastic polyimide. Here, the organic particles are different from the above-mentioned particulate polymer in that the particulate polymer has binding ability, whereas the organic particles do not have binding ability.

これらの中でも、多孔膜の耐久性および当該多孔膜を備える二次電池の電気的特性を向上させる観点からは、非導電性粒子としては無機粒子が好ましく、酸化アルミニウム(アルミナ)がより好ましい。
なお、非導電性粒子の粒径は、特に限定されることなく、従来使用されている非導電性粒子と同様とすることができる。
Among these, from the viewpoint of improving the durability of the porous film and the electrical characteristics of the secondary battery including the porous film, the nonconductive particles are preferably inorganic particles, and aluminum oxide (alumina) is more preferable.
In addition, the particle size of nonelectroconductive particle is not specifically limited, It can be made to be the same as that of the nonelectroconductive particle conventionally used.

<非導電性粒子とバインダー組成物の配合比>
多孔膜用組成物中における、非導電性粒子とバインダー組成物の配合比は特に限定されない。例えば、多孔膜用組成物は、非導電性粒子100質量部当たり、粒子状重合体の配合量が、好ましくは0.1質量部以上、より好ましくは1質量部以上、特に好ましくは3質量部以上、そして、好ましくは25質量部以下、より好ましくは20質量部以下、さらに好ましくは18質量部以下、特に好ましくは15質量部以下となる量で、バインダー組成物を含む。粒子状重合体の配合量が非導電性粒子100質量部当たり0.1質量部以上であれば、多孔膜と電池部材との密着性が確保され、電解液中での多孔膜の耐久性を向上させることができ、25質量部以下であれば、粒子状重合体に起因する二次電池への水分の持ち込み量を減少させ、二次電池の電気的特性を向上させることができる。また、多孔膜用組成物のせん断下の安定性も向上させることができる。
<Combination ratio of non-conductive particles and binder composition>
The compounding ratio of the non-conductive particles and the binder composition in the porous film composition is not particularly limited. For example, in the composition for a porous membrane, the amount of the particulate polymer is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, particularly preferably 3 parts by mass, per 100 parts by mass of the non-conductive particles. The binder composition is contained in an amount of 25 parts by mass or less, more preferably 20 parts by mass or less, further preferably 18 parts by mass or less, and particularly preferably 15 parts by mass or less. If the blending amount of the particulate polymer is 0.1 parts by mass or more per 100 parts by mass of the non-conductive particles, the adhesion between the porous membrane and the battery member is ensured, and the durability of the porous membrane in the electrolytic solution is ensured. If it is 25 parts by mass or less, the amount of moisture brought into the secondary battery due to the particulate polymer can be reduced, and the electrical characteristics of the secondary battery can be improved. Moreover, the stability under shear of the composition for porous membranes can also be improved.

<その他の成分>
多孔膜用組成物は、上述した成分以外にも、その他の任意の成分を含んでいてもよい。前記任意の成分は、多孔膜を用いた二次電池における電池反応に過度に好ましくない影響を及ぼさないものであれば、特に制限は無い。また、前記任意の成分の種類は、1種類でもよく、2種類以上でもよい。
前記任意の成分としては、例えば、濡れ剤、レベリング剤、電解液分解抑制剤、水溶性重合体など挙げられる。
<Other ingredients>
The composition for porous films may contain other arbitrary components in addition to the components described above. The optional component is not particularly limited as long as it does not have an excessively unfavorable effect on the battery reaction in the secondary battery using the porous film. Further, the kind of the arbitrary component may be one kind or two or more kinds.
Examples of the optional component include a wetting agent, a leveling agent, an electrolytic solution decomposition inhibitor, and a water-soluble polymer.

[水溶性重合体]
上述のその他の成分の中でも、多孔膜用組成物は、水溶性重合体を含むことが好ましい。水系のスラリー組成物である多孔膜用組成物が水溶性重合体を含むことで、多孔膜用組成物を増粘させて塗布し易い粘度に調整することができる。加えて、水溶性重合体は結着性および耐電解液性を備えているため、二次電池中において、粒子状重合体による多孔膜中の各成分同士の結着および多孔膜と電池部材の密着を補助する役割を果たすことができる。よって、水溶性重合体を用いることで、電解液中での多孔膜の耐久性を更に向上させることができる。
ここで、本発明においてある物質が「水溶性」であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が1.0質量%未満であることをいう。なお、水のpHによって溶解性が変わる物質については、少なくともいずれかのpHにおいて上述した「水溶性」に該当するのであれば、その物質は「水溶性」であるとする。
そして水溶性重合体としては、例えば、天然高分子、半合成高分子及び合成高分子を挙げることができる。
[Water-soluble polymer]
Among the other components described above, the porous membrane composition preferably contains a water-soluble polymer. When the porous membrane composition, which is an aqueous slurry composition, contains a water-soluble polymer, the viscosity of the porous membrane composition can be increased and adjusted to be easy to apply. In addition, since the water-soluble polymer has a binding property and an electrolytic solution resistance, in the secondary battery, the components in the porous film are bound to each other by the particulate polymer, and the porous film and the battery member It can play a role of assisting adhesion. Therefore, the durability of the porous membrane in the electrolytic solution can be further improved by using the water-soluble polymer.
Here, a substance in the present invention is “water-soluble” means that an insoluble content is less than 1.0% by mass when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C. Say. A substance whose solubility changes depending on the pH of water is considered to be “water-soluble” if it falls under the above-mentioned “water-soluble” at least at any pH.
Examples of the water-soluble polymer include natural polymers, semi-synthetic polymers, and synthetic polymers.

[天然高分子]
天然高分子としては、例えば、植物または動物由来の多糖類および蛋白質、並びにこれらの微生物等による発酵処理物、これらの熱処理物が挙げられる。
そしてこれらの天然高分子は、植物系天然高分子、動物系天然高分子および微生物産出天然高分子等に分類することができる。
植物系天然高分子としては、例えば、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンナン、クインスシード(マルメロ)、アルケコロイド(ガッソウエキス)、澱粉(コメ、トウモロコシ、馬鈴薯、小麦等に由来するもの)、グリチルリチンが挙げられる。動物系天然高分子としては、コラーゲン、カゼイン、アルブミン、ゼラチンが挙げられる。微生物産生天然高分子としては、キサンタンガム、デキストラン、サクシノグルカン、ブルランが挙げられる。
[Natural polymer]
Examples of natural polymers include plant- or animal-derived polysaccharides and proteins, fermentation-treated products of these microorganisms, and heat-treated products thereof.
These natural polymers can be classified into plant-based natural polymers, animal-based natural polymers, and microorganism-produced natural polymers.
Examples of plant-based natural polymers include gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, cannan, quince seed (malmello), arche colloid (gasso extract), starch (rice, corn, potato, wheat) Etc.) and glycyrrhizin. Examples of animal natural polymers include collagen, casein, albumin, and gelatin. Examples of the microorganism-produced natural polymer include xanthan gum, dextran, succinoglucan, and bullulan.

[半合成高分子]
半合成高分子としては、セルロース系半合成高分子が挙げられる。そしてセルロース系半合成高分子は、ノニオン性セルロース系半合成高分子、アニオン性セルロース系半合成高分子およびカチオン性セルロース系半合成高分子に分類することができる。
[Semi-synthetic polymer]
Examples of the semisynthetic polymer include cellulose semisynthetic polymers. The cellulose semisynthetic polymer can be classified into nonionic cellulose semisynthetic polymer, anionic cellulose semisynthetic polymer and cationic cellulose semisynthetic polymer.

ノニオン性セルロース系半合成高分子としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース、等のアルキルセルロース類;ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロース類が挙げられる。   Nonionic cellulose-based semisynthetic polymers include, for example, alkyl celluloses such as methyl cellulose, methyl ethyl cellulose, ethyl cellulose, and microcrystalline cellulose; hydroxyethyl cellulose, hydroxybutyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxy Examples thereof include hydroxyalkylcelluloses such as propylmethylcellulose stearoxy ether, carboxymethylhydroxyethylcellulose, alkylhydroxyethylcellulose, and nonoxynylhydroxyethylcellulose.

アニオン性セルロース系半合成高分子としては、上記のノニオン性セルロース系半合成高分子を各種誘導基により置換した置換体およびその塩(ナトリウム塩、アンモニウム塩など)が挙げられる。具体的には、セルロース硫酸ナトリウム、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)及びそれらの塩が挙げられる。   Examples of the anionic cellulose semisynthetic polymer include substituted products obtained by substituting the above nonionic cellulose semisynthetic polymer with various derivative groups and salts thereof (sodium salt, ammonium salt, etc.). Specific examples include sodium cellulose sulfate, methyl cellulose, methyl ethyl cellulose, ethyl cellulose, carboxymethyl cellulose (CMC) and salts thereof.

カチオン性セルロース系半合成高分子としては、例えば、低窒素ヒドロキシエチルセルロースジメチルジアリルアンモニウムクロリド(ポリクオタニウム−4)、塩化O−[2−ヒドロキシ−3−(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム−10)、塩化O−[2−ヒドロキシ−3−(ラウリルジメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム−24)が挙げられる。   Examples of the cationic cellulose semisynthetic polymer include low nitrogen hydroxyethylcellulose dimethyl diallylammonium chloride (polyquaternium-4), O- [2-hydroxy-3- (trimethylammonio) propyl] hydroxyethylcellulose (polyquaternium-10). ), O- [2-hydroxy-3- (lauryldimethylammonio) propyl] hydroxyethylcellulose chloride (polyquaternium-24).

[合成高分子]
合成系高分子としては、ポリアクリル酸ナトリウムなどのポリアクリル酸塩、ポリビニルアルコール、ポリエチレンオキシド、ポリビニルピロリドン、アクリル酸またはアクリル酸塩とビニルアルコールとの共重合体、無水マレイン酸またはマレイン酸もしくはフマル酸と酢酸ビニルとの共重合体の完全または部分ケン化物、変性ポリビニルアルコール、変性ポリアクリル酸、ポリエチレングリコール、ポリカルボン酸、エチレン−ビニルアルコール共重合体、酢酸ビニル重合体、カルボン酸基が導入されたアクリルアミド重合体などが挙げられる。
[Synthetic polymer]
Synthetic polymers include polyacrylates such as sodium polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, acrylic acid or copolymers of acrylate and vinyl alcohol, maleic anhydride, maleic acid or fumaric acid. Completely or partially saponified copolymer of acid and vinyl acetate, modified polyvinyl alcohol, modified polyacrylic acid, polyethylene glycol, polycarboxylic acid, ethylene-vinyl alcohol copolymer, vinyl acetate polymer, carboxylic acid group introduced Acrylamide polymer prepared.

そしてこれらの水溶性重合体の中でも、多孔膜に耐熱性を付与しポリプロピレンなどの有機セパレーターの熱収縮を抑制する観点からは、カルボキシルメチルセルロースおよびその塩、カルボン酸基が導入されたアクリルアミド重合体が好ましい。さらに、二次電池への持ち込み水分量を減少させ、電気的特性を向上させる観点からは、カルボン酸基が導入されたアクリルアミド重合体が特に好ましい。
なお、多孔膜用組成物中の水溶性重合体の配合量は、非導電性粒子100質量部当たり、好ましくは0.5質量部以上、より好ましくは3質量部以上であり、好ましくは15質量部以下、より好ましくは10質量部以下である。水溶性重合体の配合量が上述の範囲内であることで、多孔膜用組成物に適度な粘度が付与され、また、得られる多孔膜の耐久性を向上させることができる。
Among these water-soluble polymers, from the viewpoint of imparting heat resistance to the porous membrane and suppressing heat shrinkage of an organic separator such as polypropylene, carboxymethyl cellulose, its salt, and an acrylamide polymer into which a carboxylic acid group has been introduced are used. preferable. Furthermore, an acrylamide polymer into which a carboxylic acid group is introduced is particularly preferred from the viewpoint of reducing the amount of moisture brought into the secondary battery and improving the electrical characteristics.
The blending amount of the water-soluble polymer in the porous membrane composition is preferably 0.5 parts by mass or more, more preferably 3 parts by mass or more, preferably 15 parts by mass per 100 parts by mass of the non-conductive particles. Part or less, more preferably 10 parts by weight or less. When the blending amount of the water-soluble polymer is within the above range, an appropriate viscosity is imparted to the porous membrane composition, and the durability of the obtained porous membrane can be improved.

<非水系二次電池多孔膜用組成物の調製>
多孔膜用組成物の調製方法は、特に限定はされないが、通常は、上述した多孔膜用バインダー組成物と、非導電性粒子と、水と、必要に応じて用いられる任意の成分とを混合して得られる。混合方法は特に制限されないが、各成分を効率よく分散させるべく、混合装置として分散機を用いて混合を行う。
分散機は、上記成分を均一に分散および混合できる装置が好ましい。例を挙げると、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどが挙げられる。なかでも、高い分散シェアを加えることができることから、ビーズミル、ロールミル、フィルミックス等の高分散装置が特に好ましい。
<Preparation of composition for nonaqueous secondary battery porous membrane>
The method for preparing the composition for a porous membrane is not particularly limited, but usually, the binder composition for a porous membrane described above, non-conductive particles, water, and any components used as necessary are mixed. Is obtained. The mixing method is not particularly limited, but in order to disperse each component efficiently, mixing is performed using a disperser as a mixing device.
The disperser is preferably an apparatus capable of uniformly dispersing and mixing the above components. Examples include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. Among them, a high dispersion apparatus such as a bead mill, a roll mill, or a fill mix is particularly preferable because a high dispersion share can be added.

そして、多孔膜用組成物の固形分濃度は、通常、多孔膜を製造する際に作業性を損なわない範囲の粘度を多孔膜用組成物が有する範囲で任意に設定すればよい。具体的には、多孔膜用組成物の固形分濃度は、通常10〜50質量%とすることができる。   And normally, what is necessary is just to arbitrarily set the solid content density | concentration of the composition for porous films in the range which the composition for porous films has the viscosity of the range which does not impair workability | operativity, when manufacturing a porous film. Specifically, the solid content concentration of the composition for a porous membrane can usually be 10 to 50% by mass.

(非水系二次電池用多孔膜)
上述した二次電池多孔膜用組成物を、例えば適切な基材の表面に塗布することで塗膜を形成し、形成した塗膜を乾燥することにより、基材上に非水系二次電池用多孔膜を形成することができる。この多孔膜は、水分含有量が低く、且つ、電解液の中での耐久性に優れ、当該多孔膜を備える非水系二次電池は、自己放電特性や低温出力特性などの電気的特性に優れる。
(Porous membrane for non-aqueous secondary batteries)
For example, the above-described composition for a secondary battery porous membrane is applied to the surface of an appropriate base material to form a coating film, and the formed coating film is dried to provide a non-aqueous secondary battery on the base material. A porous film can be formed. This porous film has a low water content and is excellent in durability in an electrolytic solution, and the nonaqueous secondary battery including the porous film is excellent in electrical characteristics such as self-discharge characteristics and low-temperature output characteristics. .

ここで、多孔膜用組成物を塗布する基材は、多孔膜用組成物の塗膜を形成する対象となる部材である。基材に制限は無く、例えば離型基材の表面に多孔膜用組成物の塗膜を形成し、その塗膜を乾燥して多孔膜を形成し、多孔膜から離型基材を剥がすようにしてもよい。このように離型基材から剥がされた多孔膜を自立膜として二次電池に用いることもできる。
しかし、多孔膜を剥がす工程を省略して製造効率を高める観点からは、基材として電池部材を用いることが好ましい。このような電池部材の具体例としては、セパレーターおよび電極などが挙げられる。セパレーターおよび電極上に設けられた多孔膜は、これらの耐熱性や強度などを向上させる保護層として好適に使用することができる。
Here, the base material which apply | coats the composition for porous films is a member used as the object which forms the coating film of the composition for porous films. There is no limitation on the substrate, for example, a coating film of the composition for porous film is formed on the surface of the release substrate, the coating film is dried to form a porous film, and the release substrate is peeled off from the porous film. It may be. Thus, the porous film peeled off from the mold release substrate can be used for a secondary battery as a self-supporting film.
However, it is preferable to use a battery member as the base material from the viewpoint of improving the production efficiency by omitting the step of peeling the porous film. Specific examples of such battery members include separators and electrodes. The porous film provided on the separator and the electrode can be suitably used as a protective layer for improving the heat resistance and strength.

<セパレーター>
セパレーターとしては、特に限定されないが、有機セパレーターなどの既知のセパレーターが挙げられる。ここで有機セパレーターは、有機材料からなる多孔性部材であり、有機セパレーターの例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微孔膜または不織布などが挙げられ、強度に優れることからポリエチレン製の微多孔膜や不織布が好ましい。なお、有機セパレーターの厚さは、任意の厚さとすることができ、通常0.5μm以上、好ましくは5μm以上であり、通常40μm以下、好ましくは30μm以下、より好ましくは20μm以下である。
<Separator>
Although it does not specifically limit as a separator, Well-known separators, such as an organic separator, are mentioned. Here, the organic separator is a porous member made of an organic material. Examples of the organic separator include a microporous film or a nonwoven fabric containing a polyolefin resin such as polyethylene and polypropylene, an aromatic polyamide resin, and the like. A polyethylene microporous film and a nonwoven fabric are preferable. In addition, the thickness of an organic separator can be made into arbitrary thickness, and is 0.5 micrometer or more normally, Preferably it is 5 micrometers or more, and is 40 micrometers or less normally, Preferably it is 30 micrometers or less, More preferably, it is 20 micrometers or less.

<電極>
電極(正極および負極)としては、特に限定されないが、集電体上に電極合材層が形成された電極が挙げられる。
集電体、電極合材層中の電極活物質(正極活物質、負極活物質)および電極合材層用バインダー(正極合材層用バインダー、負極合材層用バインダー)、並びに集電体上への電極合材層の形成方法は、既知のものを用いることができ、例えば特開2013−145763号公報に記載のものを挙げられる。
<Electrode>
Although it does not specifically limit as an electrode (a positive electrode and a negative electrode), The electrode with which the electrode compound-material layer was formed on the electrical power collector is mentioned.
On current collector, electrode active material (positive electrode active material, negative electrode active material) in electrode mixture layer, binder for electrode mixture layer (binder for positive electrode mixture layer, binder for negative electrode mixture layer), and current collector As the method for forming the electrode mixture layer on the substrate, known methods can be used, and examples thereof include those described in JP2013-145663A.

<非水系二次電池用多孔膜の形成方法>
上述したセパレーター、電極などの電池部材上に多孔膜を形成する方法としては、以下の方法が挙げられる。
1)多孔膜用組成物を電池部材の表面(電極の場合は電極合材層側の表面、以下同じ)に塗布し、次いで乾燥する方法;
2)多孔膜用組成物に電池部材を浸漬後、これを乾燥する方法;
3)多孔膜用組成物を、離型基材上に塗布、乾燥して多孔膜を製造し、得られた多孔膜を電池部材の表面に転写する方法;
これらの中でも、前記1)の方法が、多孔膜の膜厚制御をしやすいことから特に好ましい。該1)の方法は、詳細には、多孔膜用組成物を電池部材上に塗布する工程(塗布工程)、電池部材上に塗布された多孔膜用組成物を乾燥させて多孔膜を形成する工程(多孔膜形成工程)を備える。
<Method for forming porous film for non-aqueous secondary battery>
Examples of the method for forming the porous film on the battery member such as the separator and the electrode described above include the following methods.
1) A method of applying a composition for a porous membrane to the surface of a battery member (in the case of an electrode, the surface on the electrode mixture layer side, the same shall apply hereinafter), and then drying;
2) A method of drying a battery member after immersing it in the composition for a porous membrane;
3) A method for producing a porous film by applying the composition for porous film onto a release substrate and drying it, and transferring the obtained porous film to the surface of the battery member;
Among these, the method 1) is particularly preferable because the film thickness of the porous film can be easily controlled. Specifically, the method 1) includes a step of applying the porous membrane composition onto the battery member (application step), and drying the porous membrane composition applied onto the battery member to form a porous membrane. A process (porous film formation process) is provided.

塗布工程において、多孔膜用組成物を電池部材上に塗布する方法は、特に制限は無く、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。なかでも、均一な多孔膜が得られる点で、グラビア法が好ましい。
また多孔膜形成工程において、電池部材上の多孔膜用組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。乾燥条件は特に限定されないが、乾燥温度は好ましくは50〜150℃で、乾燥時間は好ましくは5〜30分である。
In the coating process, the method for coating the porous membrane composition on the battery member is not particularly limited, and examples thereof include a doctor blade method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method. A method is mentioned. Of these, the gravure method is preferable in that a uniform porous film can be obtained.
In the porous film forming step, the method for drying the composition for the porous film on the battery member is not particularly limited, and a known method can be used, for example, drying with hot air, hot air, low-humidity air, vacuum drying, A drying method by irradiation with infrared rays or electron beams can be mentioned. The drying conditions are not particularly limited, but the drying temperature is preferably 50 to 150 ° C., and the drying time is preferably 5 to 30 minutes.

なお、正極、負極、およびセパレーターは、本発明の効果を著しく損なわない限り、これら電池部材および上述した本発明の多孔膜以外の構成要素を備えていてもよい。例えば、必要に応じて、電池部材と本発明の多孔膜との間に他の層を設けてもよい。この場合、本発明の多孔膜は電池部材の表面に間接的に設けられることになる。また、本発明の多孔膜の表面に、更に別の層を設けてもよい。   In addition, the positive electrode, the negative electrode, and the separator may include components other than these battery members and the above-described porous film of the present invention as long as the effects of the present invention are not significantly impaired. For example, you may provide another layer between a battery member and the porous film of this invention as needed. In this case, the porous film of the present invention is indirectly provided on the surface of the battery member. Further, another layer may be provided on the surface of the porous membrane of the present invention.

なお、基材上に形成された多孔膜の厚みは、好ましくは0.01μm以上、より好ましくは0.1μm以上、特に好ましくは1μm以上であり、好ましくは20μm以下、より好ましくは10μm以下、特に好ましくは5μm以下である。多孔膜の厚みが0.01μm以上であることで、多孔膜の強度を十分に確保することができ、20μm以下であることで、電解液の拡散性を確保し該多孔膜を用いた二次電池の低温出力特性を向上させることができる。   The thickness of the porous film formed on the substrate is preferably 0.01 μm or more, more preferably 0.1 μm or more, particularly preferably 1 μm or more, preferably 20 μm or less, more preferably 10 μm or less, particularly Preferably it is 5 micrometers or less. When the thickness of the porous film is 0.01 μm or more, the strength of the porous film can be sufficiently ensured, and when it is 20 μm or less, the diffusibility of the electrolytic solution is secured and the secondary film using the porous film is used. The low-temperature output characteristics of the battery can be improved.

(非水系二次電池)
本発明の非水系二次電池は、正極、負極、セパレーター、および電解液を備え、前記正極、負極、およびセパレーターからなる群から選択される少なくとも1つの電池部材の表面に上述の非水系二次電池用多孔膜を備える。
本発明の非水系二次電池は、本発明の非水系二次電池用多孔膜を備えているので、自己放電特性や低温出力特性などの電気的特性に優れる。
(Non-aqueous secondary battery)
The non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the above non-aqueous secondary battery is formed on the surface of at least one battery member selected from the group consisting of the positive electrode, the negative electrode, and the separator. A porous membrane for a battery is provided.
Since the nonaqueous secondary battery of the present invention includes the porous film for a nonaqueous secondary battery of the present invention, it is excellent in electrical characteristics such as self-discharge characteristics and low-temperature output characteristics.

<正極、負極、セパレーター、および多孔膜>
正極、負極、セパレーター、および多孔膜は、「非水系二次電池用多孔膜」の項で挙げたものと同様のものを用いることができ、多孔膜を正極、負極、セパレーターの表面に設ける方法も、これらの項で挙げた手法を採用することができる。
<Positive electrode, negative electrode, separator, and porous membrane>
As the positive electrode, the negative electrode, the separator, and the porous film, the same materials as those mentioned in the section “Porous film for non-aqueous secondary battery” can be used, and the method of providing the porous film on the surface of the positive electrode, the negative electrode, and the separator Also, the methods mentioned in these sections can be adopted.

<電解液>
電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池においてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
<Electrolyte>
As the electrolytic solution, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used. As the supporting electrolyte, for example, a lithium salt is used in a lithium ion secondary battery. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Among these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable because they are easily dissolved in a solvent and exhibit a high degree of dissociation. In addition, electrolyte may be used individually by 1 type and may be used in combination of 2 or more types. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.

電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池においては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のカーボネート類;γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
The organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. For example, in a lithium ion secondary battery, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC). Carbonates such as propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (MEC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolane, Sulfur-containing compounds such as dimethyl sulfoxide; are preferably used. Moreover, you may use the liquid mixture of these solvents. Among these, carbonates are preferable because they have a high dielectric constant and a wide stable potential region. Usually, the lower the viscosity of the solvent used, the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted depending on the type of solvent.
The concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. Moreover, you may add a known additive to electrolyte solution.

<非水系二次電池の製造方法>
非水系二次電池は、例えば、正極と負極とをセパレーターを介して重ね合わせ、これを必要に応じて、巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することで製造し得る。なお、正極、負極、セパレーターのうち、少なくとも一つの部材を多孔膜付きの部材とする。ここで、電池容器には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
<Method for producing non-aqueous secondary battery>
A non-aqueous secondary battery, for example, stacks a positive electrode and a negative electrode through a separator, and rolls or folds it as necessary to put it in a battery container, and injects an electrolyte into the battery container and seals it. Can be manufactured. In addition, let at least 1 member be a member with a porous film among a positive electrode, a negative electrode, and a separator. Here, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate, or the like may be placed in the battery container as necessary to prevent an increase in pressure inside the battery or overcharge / discharge. The shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.

以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例における部および%は、特記しない限り質量基準である。
実施例および比較例において、粒子状重合体の電解液膨潤度は以下の方法を用いて測定した。そして多孔膜用組成物のせん断下での安定性、電解液中での多孔膜の耐久性、多孔膜の水分含有量、並びに非水系二次電池の自己放電特性および低温出力特性は、以下の方法により評価した。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto. In addition, unless otherwise indicated, the part and% in a present Example are a mass reference | standard.
In Examples and Comparative Examples, the degree of electrolyte swelling of particulate polymers was measured using the following method. The stability of the porous membrane composition under shear, the durability of the porous membrane in the electrolyte, the moisture content of the porous membrane, and the self-discharge characteristics and low-temperature output characteristics of the nonaqueous secondary battery are as follows. The method was evaluated.

<粒子状重合体の電解液膨潤度>
非水系二次電池多孔膜用バインダー組成物(粒子状重合体の水分散液)を、電解銅箔(古河電工製NC−WS(登録商標))に対してテーブルコーターを用いて塗布し、50℃で20分、120℃で20分、熱風乾燥器で乾燥させ、1cm×1cmのバインダーフィルム(厚さ500μm)を作製し、重量M0を測定した。その後、得られたフィルムを電解液(溶媒:EC/DEC/VC=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF6)に60℃、72時間浸漬した。浸漬後のフィルムの表面の電解液をふき取り重量M1を測定した。そして、下記式に従って、電解液膨潤度を算出した。
電解液膨潤度=M1/M0
<多孔膜用組成物のせん断下での安定性>
多孔膜用組成物を、グラビアロール(線数95)を用いて、搬送速度10m/min、グラビア回転比100%の条件で、セパレーター(ポリエチレン製)上に塗布し、塗布後のセパレーターを切り出し、単位面積当たりの塗布量M0(mg/cm2)を算出した。また、塗布の1時間後、同様に塗布量M1(mg/cm2)を算出した。そして、ΔM=(|M0−M1|)/M0×100(%)の式を用いて塗布量変化率ΔM(%)を算出し、下記のように評価した。この値が小さいほど、多孔膜用組成物のせん断下での安定性が高いことを示す。
A:塗布量変化率ΔMが5%未満
B:塗布量変化率ΔMが5%以上10%未満
C:塗布量変化率ΔMが10%以上20%未満
D:塗布量変化率ΔMが20%以上
<電解液中での多孔膜の耐久性>
多孔膜付きセパレーターを5cm×5cmに切り出しその重量を測定し、セパレーターの重量を差し引いて多孔膜の重量M0を算出した。続いて切り出した多孔膜付きセパレーターを、60℃の電解液(溶媒:EC/DEC/VC=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF6)中に浸漬し、10分間、30kHzの超音波振動を与えた。その後多孔膜付きセパレーターを取出し、60℃の雰囲気下で10時間乾燥し、乾燥後の多孔膜の重量M1を重量M0と同様にして算出した。そしてΔM={(M0−M1)/M0}×100の式を用いて振動脱落率ΔM(%)を算出し、下記のように評価した。この値が小さいほど、多孔膜が電解液中での耐久性に優れることを示す。
A:振動脱落率ΔMが20%未満
B:振動脱落率ΔMが20%以上40%未満
C:振動脱落率ΔMが40%以上60%未満
D:振動脱落率ΔMが60%以上
<多孔膜の水分含有量>
多孔膜付きセパレーターを10cm×10cmに切り出し、試験片とした。この試験片を温度25℃、湿度50%で24時間放置し、その後、電量滴定式水分計を用い、カールフィッシャー法(JIS K−0068(2001)水分気化法、気化温度150℃)により試験片の水分含有量W(ppm)を測定した。この値が小さいほど、多孔膜中の水分含有量が少なく、二次電池への持ち込み水分量が少ないことを示す。
A:水分含有量Wが500ppm以下
B:水分含有量Wが500ppm超600ppm以下
C:水分含有量Wが600ppm超700ppm以下
D:水分含有量Wが700ppm超
<自己放電特性>
作製した二次電池を、25℃の環境下で24時間静置させた後に、25℃の環境下で4.35V、0.1Cの充電、2.75V、0.1Cの放電にて充放電の操作を行った。その後、4.35V、0.1Cで充電し、そのまま60℃で168時間(7日間)放置し、その後25℃でセル電圧V1(V)を測定した。電圧降下ΔV(mV)をΔV={4.35−V1}×1000の式を用いて算出し、下記のように評価した。この値が小さいほど自己放電特性(寿命特性)に優れていることを示す。
A:電圧降下ΔVが200mV以下
B:電圧降下ΔVが200mV超400mV以下
C:電圧降下ΔVが400mV超600mV以下
D:電圧降下ΔVが600mV超
<低温出力特性>
作製した二次電池を、25℃の環境下で24時間静置させた後に、25℃の環境下で、4.2V、0.1C、5時間の充電の操作を行い、その時の電圧V0(V)を測定した。その後、−10℃環境下で、1Cの放電レートにて放電の操作を行い、放電開始15秒後の電圧V2(V)を測定した。電圧変化ΔV(mV)をΔV={V0−V2}×1000の式を用いて算出し、下記のように評価した。この値が小さいほど低温出力特性に優れることを示す。
A:電圧変化ΔVが500mV以下
B:電圧変化ΔVが500mV超700mV以下
C:電圧変化ΔVが700mV超900mV以下
D:電圧変化ΔVが900mV超
<Electrolyte swelling degree of particulate polymer>
A binder composition for a nonaqueous secondary battery porous membrane (aqueous dispersion of particulate polymer) was applied to an electrolytic copper foil (Furukawa Electric NC-WS (registered trademark)) using a table coater, and 50 It was dried with a hot air drier at 20 ° C. for 20 minutes and 120 ° C. to prepare a 1 cm × 1 cm binder film (thickness: 500 μm), and the weight M0 was measured. Thereafter, the obtained film was immersed in an electrolytic solution (solvent: EC / DEC / VC = 68.5 / 30 / 1.5 (volume ratio), electrolyte: LiPF 6 having a concentration of 1 M) at 60 ° C. for 72 hours. The electrolyte solution on the surface of the film after immersion was wiped off, and the weight M1 was measured. And according to the following formula, electrolyte solution swelling degree was computed.
Electrolyte swelling degree = M1 / M0
<Stability of the porous membrane composition under shear>
The composition for porous membrane was applied on a separator (made of polyethylene) using a gravure roll (number of lines: 95) under the conditions of a conveyance speed of 10 m / min and a gravure rotation ratio of 100%, and the separator after application was cut out. The coating amount M0 (mg / cm 2 ) per unit area was calculated. Moreover, 1 hour after application | coating, the application quantity M1 (mg / cm < 2 >) was computed similarly. Then, a coating amount change rate ΔM (%) was calculated using an equation of ΔM = (| M0−M1 |) / M0 × 100 (%) and evaluated as follows. It shows that stability under the shear of the composition for porous films is so high that this value is small.
A: Application rate change rate ΔM is less than 5% B: Application rate change rate ΔM is 5% or more and less than 10% C: Application rate change rate ΔM is 10% or more and less than 20% D: Application rate change rate ΔM is 20% or more <Durability of porous membrane in electrolyte>
The separator with a porous membrane was cut out to 5 cm × 5 cm, the weight was measured, and the weight M0 of the porous membrane was calculated by subtracting the weight of the separator. Subsequently, the separator with a porous film cut out was immersed in an electrolytic solution (solvent: EC / DEC / VC = 68.5 / 30 / 1.5 (volume ratio), electrolyte: LiPF 6 having a concentration of 1 M) at 60 ° C. An ultrasonic vibration of 30 kHz was applied for 10 minutes. Thereafter, the separator with the porous film was taken out and dried in an atmosphere at 60 ° C. for 10 hours, and the weight M1 of the porous film after drying was calculated in the same manner as the weight M0. Then, the vibration dropout rate ΔM (%) was calculated using an equation of ΔM = {(M0−M1) / M0} × 100, and evaluated as follows. It shows that a porous film is excellent in durability in electrolyte solution, so that this value is small.
A: Vibration drop rate ΔM is less than 20% B: Vibration drop rate ΔM is 20% or more and less than 40% C: Vibration drop rate ΔM is 40% or more and less than 60% D: Vibration drop rate ΔM is 60% or more Water content>
A separator with a porous membrane was cut into 10 cm × 10 cm to obtain a test piece. This test piece is left for 24 hours at a temperature of 25 ° C. and a humidity of 50%, and then a test piece is obtained by a Karl Fischer method (JIS K-0068 (2001) water vaporization method, vaporization temperature 150 ° C.) using a coulometric titration moisture meter. The water content W (ppm) of was measured. The smaller this value, the smaller the water content in the porous film, and the smaller the amount of water brought into the secondary battery.
A: Water content W is 500 ppm or less B: Water content W is more than 500 ppm and 600 ppm or less C: Water content W is more than 600 ppm and 700 ppm or less D: Water content W is more than 700 ppm <Self-discharge characteristics>
The prepared secondary battery was allowed to stand for 24 hours in a 25 ° C. environment, and then charged and discharged with a 4.35 V, 0.1 C charge and a 2.75 V, 0.1 C discharge in a 25 ° C. environment. Was performed. Thereafter, the battery was charged at 4.35 V and 0.1 C, left as it was for 168 hours (7 days) at 60 ° C., and then the cell voltage V 1 (V) was measured at 25 ° C. The voltage drop ΔV (mV) was calculated using the equation: ΔV = {4.35−V1} × 1000 and evaluated as follows. It shows that it is excellent in the self-discharge characteristic (life characteristic), so that this value is small.
A: Voltage drop ΔV is 200 mV or less B: Voltage drop ΔV is more than 200 mV to 400 mV or less C: Voltage drop ΔV is more than 400 mV to 600 mV or less D: Voltage drop ΔV is more than 600 mV <Low-temperature output characteristics>
The fabricated secondary battery was allowed to stand for 24 hours in an environment of 25 ° C., and then charged with 4.2 V, 0.1 C, and 5 hours in an environment of 25 ° C., and the voltage V0 ( V) was measured. Thereafter, a discharge operation was performed at a discharge rate of 1 C in a −10 ° C. environment, and the voltage V2 (V) 15 seconds after the start of discharge was measured. The voltage change ΔV (mV) was calculated using the equation: ΔV = {V0−V2} × 1000, and evaluated as follows. It shows that it is excellent in low temperature output characteristics, so that this value is small.
A: Voltage change ΔV is 500 mV or less B: Voltage change ΔV is more than 500 mV and 700 mV or less C: Voltage change ΔV is more than 700 mV and 900 mV or less D: Voltage change ΔV is more than 900 mV

(実施例1)
<非水系二次電池多孔膜用バインダー組成物の調製>
撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてラウリル硫酸ナトリウム(花王ケミカル社製、「エマール(登録商標)2F」)0.15部、および過流酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。
一方、別の容器でイオン交換水50部、分散剤としてドデシルベンゼンスルホン酸ナトリウム0.5部、そして2つ以上の水酸基を有する単量体として下記式(I)のエチレングリコールジグリシジルエーテル・メタクリル酸付加物(共栄社化学社製、「エポキシエステル40EM」、エポキシエステル1)1.5部、(メタ)アクリル酸エステル単量体として2−エチルヘキシルアクリレート(2−EHA)78.5部、芳香族ビニル単量体としてスチレン(ST)20部を混合して単量体組成物を得た。
(Example 1)
<Preparation of binder composition for nonaqueous secondary battery porous membrane>
In a reactor equipped with a stirrer, 70 parts of ion exchange water, 0.15 part of sodium lauryl sulfate (“Emar (registered trademark) 2F” manufactured by Kao Chemical Co., Ltd.) as an emulsifier, and 0.5 part of ammonium persulfate are added. The gas phase portion was replaced with nitrogen gas, and the temperature was raised to 60 ° C.
On the other hand, in a separate container, 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate as a dispersant, and ethylene glycol diglycidyl ether / methacrylic acid of the following formula (I) as a monomer having two or more hydroxyl groups Acid adduct (manufactured by Kyoeisha Chemical Co., Ltd., “epoxy ester 40EM”, epoxy ester 1) 1.5 parts, (meth) acrylic acid ester monomer as 2-ethylhexyl acrylate (2-EHA) 78.5 parts, aromatic As a vinyl monomer, 20 parts of styrene (ST) was mixed to obtain a monomer composition.

Figure 2016004758
Figure 2016004758

この単量体組成物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了し、粒子状重合体を含む水分散液(バインダー組成物)を製造した。
得られた粒子状重合体の電解液膨潤度を測定した。結果を表1に示す。
This monomer composition was continuously added to the reactor over 4 hours for polymerization. During the addition, the reaction was carried out at 60 ° C. After completion of the addition, the reaction was further terminated by stirring at 70 ° C. for 3 hours to produce an aqueous dispersion (binder composition) containing a particulate polymer.
The electrolyte solution swelling degree of the obtained particulate polymer was measured. The results are shown in Table 1.

<非水系二次電池多孔膜用組成物の調製>
非導電性粒子としてのアルミナフィラー(日本軽金属社製、「LS256」)100部に対して、粒子状重合体を含むバインダー組成物を固形分相当で6部、増粘剤としてカルボン酸基が導入されたアクリルアミド重合体(荒川化学社製、「ポリストロン(登録商標)117」)6部、ポリエチレングリコール型界面活性剤(サンノプコ社製、「サンノプコ(登録商標)SNウェット366」)0.2部を混合し、多孔膜用組成物を調製した。
得られた多孔膜用組成物を用いて、せん断下における安定性を評価した。
<Preparation of composition for nonaqueous secondary battery porous membrane>
6 parts of binder composition containing particulate polymer is introduced into 100 parts of alumina filler (Nippon Light Metal Co., Ltd., “LS256”) as non-conductive particles, and a carboxylic acid group is introduced as a thickener. 6 parts of the obtained acrylamide polymer (Arakawa Chemical Co., Ltd., “Polystron (registered trademark) 117”), polyethylene glycol type surfactant (San Nopco, “San Nopco (registered trademark) SN wet 366”) 0.2 part Were mixed to prepare a porous membrane composition.
Using the obtained porous membrane composition, the stability under shear was evaluated.

<多孔膜および多孔膜付きセパレーターの製造>
ポリエチレン製の多孔基材からなる有機セパレーター(セルガード社製、「2500」、厚み25μm)を用意した。用意した有機セパレーターの片面に、上述のようにして得られた多孔膜用組成物を塗布し、60℃で10分乾燥させた。これにより、多孔膜付きセパレーター(厚み27μm)を得た。
得られた多孔膜付きセパレーターを用いて、電解液中での多孔膜の耐久性および多孔膜の水分含有量を評価した。
<Manufacture of porous membrane and separator with porous membrane>
An organic separator made of a polyethylene porous substrate (manufactured by Celgard, “2500”, thickness 25 μm) was prepared. The porous membrane composition obtained as described above was applied to one side of the prepared organic separator and dried at 60 ° C. for 10 minutes. This obtained the separator (thickness 27 micrometers) with a porous film.
Using the obtained separator with a porous membrane, the durability of the porous membrane in the electrolytic solution and the moisture content of the porous membrane were evaluated.

<負極の製造>
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン33部、イタコン酸3.5部、ST63.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、負極合材層用バインダー(SBR)を含む混合物を得た。上記負極合材層用バインダーを含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、所望の負極合材層用バインダーを含む水分散液を得た。
負極活物質としての人造黒鉛(平均粒子径:15.6μm)100部、水溶性重合体としてのカルボキシメチルセルロースナトリウム塩(日本製紙社製、「MAC350HC」)の2%水溶液を固形分相当で1部、およびイオン交換水を混合して固形分濃度68%に調製した後、25℃で60分間さらに混合した。さらにイオン交換水で固形分濃度を62%に調製した後、25℃で15分間さらに混合した。上記混合液に、上記の負極合材層用バインダーを固形分相当量で1.5部、及びイオン交換水を入れ、最終固形分濃度が52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い二次電池負極用スラリー組成物を得た。
得られた負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理してプレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層の厚みが80μmのプレス後の負極を得た(片面負極)。
また、前記プレス前の負極原反の裏面に同様の塗布を実施し、両面に負極合材層を形成し、ロールプレスで圧延して、負極合材層の厚みが各80μmのプレス後の負極を得た(両面負極)。
<Manufacture of negative electrode>
In a 5 MPa pressure vessel equipped with a stirrer, 33 parts of 1,3-butadiene, 3.5 parts of itaconic acid, ST63.5 parts, 0.4 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and excess as a polymerization initiator. After 0.5 parts of potassium sulfate was added and sufficiently stirred, the polymerization was started by heating to 50 ° C. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing the binder for negative electrode mixture layer (SBR). After adding 5% sodium hydroxide aqueous solution to the mixture containing the binder for the negative electrode mixture layer and adjusting to pH 8, the unreacted monomer is removed by heating under reduced pressure, and then cooled to 30 ° C or lower. An aqueous dispersion containing a desired binder for the negative electrode mixture layer was obtained.
1 part of 2% aqueous solution of artificial graphite (average particle size: 15.6 μm) as a negative electrode active material and 2% aqueous solution of carboxymethyl cellulose sodium salt (manufactured by Nippon Paper Industries Co., Ltd., “MAC350HC”) as a water-soluble polymer And ion-exchanged water were mixed to prepare a solid content concentration of 68%, and further mixed at 25 ° C. for 60 minutes. Further, the solid concentration was adjusted to 62% with ion-exchanged water, and further mixed at 25 ° C. for 15 minutes. In the above mixed solution, 1.5 parts of the binder for the negative electrode mixture layer and ion exchange water are added in an amount corresponding to the solid content, adjusted so that the final solid content concentration is 52%, and further mixed for 10 minutes. . This was defoamed under reduced pressure to obtain a slurry composition for a secondary battery negative electrode having good fluidity.
The obtained negative electrode slurry composition was applied on a copper foil having a thickness of 20 μm, which was a current collector, with a comma coater so that the film thickness after drying was about 150 μm, and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing. The negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode mixture layer thickness of 80 μm (single-sided negative electrode).
Moreover, the same application | coating is implemented on the back surface of the negative electrode original fabric before the said press, a negative electrode compound material layer is formed on both surfaces, it rolls with a roll press, and the negative electrode after the press whose thickness of a negative electrode compound material layer is 80 micrometers each (Double-sided negative electrode) was obtained.

<正極の製造>
正極活物質としての体積平均粒子径12μmのLiCoO2を100部、導電材としてのアセチレンブラック(電気化学工業社製、「HS−100」)を2部、正極合材層用バインダーとしてのポリフッ化ビニリデン(クレハ社製、「#7208」)を固形分相当で2部と、N−メチルピロリドンとを混合し全固形分濃度が70%となる量とした。これらをプラネタリーミキサーで混合し、正極用スラリー組成物を調製した。
得られた正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。このプレス前の正極原反をロールプレスで圧延して、正極合材層の厚みが80μmのプレス後正極を得た(片面正極)。
また、前記プレス前の正極原反の裏面に同様の塗布を実施し、両面に正極合材層を形成し、ロールプレスで圧延して、正極合材層の厚みが各80μmのプレス後の正極を得た(両面正極)。
<Production of positive electrode>
100 parts of LiCoO 2 having a volume average particle diameter of 12 μm as a positive electrode active material, 2 parts of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., “HS-100”) as a conductive material, polyfluorination as a binder for a positive electrode mixture layer 2 parts of vinylidene (manufactured by Kureha, “# 7208”) in an amount corresponding to the solid content and N-methylpyrrolidone were mixed to make the total solid content concentration 70%. These were mixed with a planetary mixer to prepare a positive electrode slurry composition.
The obtained positive electrode slurry composition was applied onto a 20 μm-thick aluminum foil as a current collector by a comma coater so that the film thickness after drying was about 150 μm and dried. This drying was performed by transporting the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing. The positive electrode raw material before pressing was rolled with a roll press to obtain a positive electrode after pressing with a positive electrode mixture layer thickness of 80 μm (single-sided positive electrode).
In addition, the same application is performed on the back surface of the positive electrode original fabric before pressing, a positive electrode mixture layer is formed on both surfaces, and rolling is performed by a roll press. (Double-sided positive electrode) was obtained.

<リチウムイオン二次電池の製造>
上記で得られた片面正極を5cm×15cmに切り出し、その上(合材層側)に、6cm×16cmに切り出した多孔膜付きセパレーターを、多孔膜が片面正極と対向するように配置し、そして、当該多孔膜付きセパレーターの有機セパレーターの上に、5.5cm×15.5cmに切り出した両面負極を配置し、積層体Aを得た。この積層体Aの両面負極側に、6cm×16cmに切り出した多孔膜付きセパレーターを、有機セパレーターが両面負極と対向するように配置した。そして、当該多孔膜付きセパレーターの多孔膜の上に、5cm×15cmに切り出した両面正極を重ね、次いで、その上に6cm×16cmに切り出した多孔膜付きセパレーターを、多孔膜が両面正極と対向するように配置した。最後に、その上に5.5cm×5.5cmに切り出した片面負極を、負極合材層が多孔膜付きセパレーターの有機セパレーターと対向するように積層し、積層体Bを得た。この積層体Bを、電池の外装としてのアルミ包材外装で包み、電解液(溶媒:EC/DEC/VC=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF6)を空気が残らないように注入した。さらに、150℃のヒートシールをしてアルミ包材外装を閉口したのちに、得られた電池外装体を100℃、2分間、100Kgfで平板プレスし、1000mAhの積層型リチウムイオン二次電池を製造した。
得られたリチウムイオン二次電池を用いて、自己放電特性、低温出力特性を評価した。結果を表1に示す。
<Manufacture of lithium ion secondary batteries>
The single-sided positive electrode obtained above was cut out to 5 cm × 15 cm, and a separator with a porous film cut out to 6 cm × 16 cm was disposed thereon (on the side of the composite layer) so that the porous film was opposed to the single-sided positive electrode, and A double-sided negative electrode cut out to 5.5 cm × 15.5 cm was placed on the organic separator of the separator with a porous film, and a laminate A was obtained. On the double-sided negative electrode side of the laminate A, a separator with a porous film cut out to 6 cm × 16 cm was disposed so that the organic separator faces the double-sided negative electrode. And the double-sided positive electrode cut out to 5 cm x 15 cm is piled up on the porous film of the separator with a porous film, and then the separator with the porous film cut out to 6 cm x 16 cm is placed on the double-sided positive electrode. Arranged. Finally, the single-sided negative electrode cut out to 5.5 cm x 5.5 cm was laminated | stacked so that the negative electrode compound material layer might face the organic separator of the separator with a porous film, and the laminated body B was obtained. This laminate B is wrapped in an aluminum wrapping case as a battery case, and an electrolytic solution (solvent: EC / DEC / VC = 68.5 / 30 / 1.5 (volume ratio)), electrolyte: LiPF 6 having a concentration of 1M. ) Was injected so that no air remained. Furthermore, after heat sealing at 150 ° C. and closing the aluminum packaging outer packaging, the obtained battery outer packaging was flat-pressed at 100 ° C. for 2 minutes at 100 kgf to produce a 1000 mAh stacked lithium ion secondary battery. did.
Using the obtained lithium ion secondary battery, self-discharge characteristics and low-temperature output characteristics were evaluated. The results are shown in Table 1.

(実施例2、3)
多孔膜用のバインダー組成物の調製時に、エポキシエステル1およびSTの使用量を表1のように変更した以外は、実施例1と同様にして、バインダー組成物、多孔膜用組成物、多孔膜付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(Examples 2 and 3)
A binder composition, a composition for a porous film, and a porous film were prepared in the same manner as in Example 1 except that the amount of epoxy ester 1 and ST used was changed as shown in Table 1 when preparing the binder composition for the porous film. A separator, a negative electrode, a positive electrode, and a lithium ion secondary battery were manufactured, and the same items were evaluated. The results are shown in Table 1.

(実施例4、5)
多孔膜用のバインダー組成物の調製時に、2つ以上の水酸基を有する単量体としてのエポキシエステル1に替えてそれぞれ下記式(II)のプロピレングリコールジグリシジルエーテル・アクリル酸付加物(共栄社化学社製、「エポキシエステル70PA」、エポキシエステル2)、下記式(III)のトリプロピレングリコールジグリシジルエーテル・アクリル酸付加物(共栄社化学社製、「エポキシエステル200PA」、エポキシエステル3)を使用した以外は、実施例1と同様にして、バインダー組成物、多孔膜用組成物、多孔膜付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(Examples 4 and 5)
When preparing a binder composition for a porous membrane, the propylene glycol diglycidyl ether / acrylic acid adduct of the following formula (II) is used instead of the epoxy ester 1 as a monomer having two or more hydroxyl groups (Kyoeisha Chemical Co., Ltd.) Except for using "Epoxy ester 70PA", Epoxy ester 2), Tripropylene glycol diglycidyl ether / acrylic acid adduct (Kyoeisha Chemical Co., "Epoxy ester 200PA", Epoxy ester 3) of the following formula (III) Produced a binder composition, a porous membrane composition, a separator with a porous membrane, a negative electrode, a positive electrode, and a lithium ion secondary battery in the same manner as in Example 1, and evaluated the same items. The results are shown in Table 1.

Figure 2016004758
Figure 2016004758

Figure 2016004758
Figure 2016004758

(実施例6、7)
多孔膜用のバインダー組成物の調製時に、2−EHAおよびSTの使用量を表1のように変更した以外は、実施例1と同様にして、バインダー組成物、多孔膜用組成物、多孔膜付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(Examples 6 and 7)
Except that the amount of 2-EHA and ST used was changed as shown in Table 1 when preparing the binder composition for the porous membrane, the same as in Example 1, the binder composition, the porous membrane composition, and the porous membrane A separator, a negative electrode, a positive electrode, and a lithium ion secondary battery were manufactured, and the same items were evaluated. The results are shown in Table 1.

(実施例8、9)
多孔膜用のバインダー組成物の調製時に、(メタ)アクリル酸エステル単量体としての2−EHAに替えてそれぞれブチルアクリレート(BA)、エチルアクリレート(EA)を使用した以外は、実施例1と同様にして、バインダー組成物、多孔膜用組成物、多孔膜付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(Examples 8 and 9)
Example 1 and Example 1 except that butyl acrylate (BA) and ethyl acrylate (EA) were used in place of 2-EHA as the (meth) acrylic acid ester monomer when preparing the binder composition for the porous membrane, respectively. Similarly, a binder composition, a porous membrane composition, a separator with a porous membrane, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced, and the same items were evaluated. The results are shown in Table 1.

(比較例1、2)
多孔膜用のバインダー組成物の調製時に、エポキシエステル1、EAおよびSTの使用量を表1のように変更した以外(比較例1においてはエポキシエステル1の使用量0)は、実施例9と同様にして、バインダー組成物、多孔膜用組成物、多孔膜付きセパレーター、負極、正極、およびリチウムイオン二次電池を製造し、同様の項目について評価した。結果を表1に示す。
(Comparative Examples 1 and 2)
Except having changed the usage-amount of epoxy ester 1, EA, and ST as shown in Table 1 at the time of preparation of the binder composition for porous membranes (the usage-amount of the epoxy ester 1 in the comparative example 1), and Example 9 Similarly, a binder composition, a porous membrane composition, a separator with a porous membrane, a negative electrode, a positive electrode, and a lithium ion secondary battery were produced, and the same items were evaluated. The results are shown in Table 1.

Figure 2016004758
Figure 2016004758

表1の実施例1〜9、比較例1、2より、2つ以上の水酸基を有する単量体単位を特定の割合で含有する粒子状重合体を用いた実施例1〜9は、多孔膜用組成物がせん断下での安定性に優れ、そして多孔膜が電解液中での耐久性に優れ且つ水分含有量も少ないことがわかる。加えて、実施例1〜9は、リチウムイオン二次電池の自己放電特性および低温出力特性に優れることがわかる。
また、表1の実施例1〜5より、2つ以上の水酸基を有する単量体単位の含有割合、種類を変更することで、多孔膜の水分含有量を低下させ、そしてリチウムイオン二次電池の自己放電特性を向上させ得ることがわかる。
そして、表1の実施例1、6〜9より、(メタ)アクリル酸エステル単量体単位の含有割合、種類を変更することで、多孔膜の水分含有量を低下させ、多孔膜の電解液中での耐久性並びにリチウムイオン二次電池の自己放電特性および低温出力特性を向上させ得ることがわかる。
From Examples 1 to 9 in Table 1 and Comparative Examples 1 and 2, Examples 1 to 9 using a particulate polymer containing monomer units having two or more hydroxyl groups at a specific ratio are porous membranes. It can be seen that the composition for use is excellent in stability under shear, and the porous membrane is excellent in durability in the electrolytic solution and has a low water content. In addition, it turns out that Examples 1-9 are excellent in the self-discharge characteristic and low-temperature output characteristic of a lithium ion secondary battery.
Further, from Examples 1 to 5 in Table 1, the moisture content of the porous membrane is reduced by changing the content ratio and type of the monomer unit having two or more hydroxyl groups, and the lithium ion secondary battery It can be seen that the self-discharge characteristics can be improved.
And from Example 1, 6-9 of Table 1, the water content of a porous membrane is reduced by changing the content rate and kind of (meth) acrylic acid ester monomer unit, and the electrolyte solution of a porous membrane It can be seen that the durability in the battery and the self-discharge characteristics and low-temperature output characteristics of the lithium ion secondary battery can be improved.

本発明によれば、耐久性に優れる多孔膜を形成可能であり、且つ、多孔膜用組成物のせん断下での安定性を高めることも可能な非水系二次電池多孔膜用バインダーを提供することができる。
また、本発明によれば、せん断下での安定性に優れており、且つ、耐久性に優れる多孔膜を形成可能な非水系二次電池多孔膜用組成物を提供することができる。
そして、本発明によれば、耐久性に優れる非水系二次電池用多孔膜、および当該非水系二次電池用多孔膜を備える非水系二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the binder for nonaqueous secondary battery porous membranes which can form the porous membrane which is excellent in durability, and can also improve the stability under the shear of the composition for porous membranes is provided. be able to.
Moreover, according to this invention, the composition for non-aqueous secondary battery porous films which can form the porous film which is excellent in stability under shear and excellent in durability can be provided.
And according to this invention, the nonaqueous secondary battery provided with the porous film for nonaqueous secondary batteries excellent in durability and the said porous film for nonaqueous secondary batteries can be provided.

Claims (7)

2つ以上の水酸基を有する単量体単位を0.05質量%以上5質量%以下含む粒子状重合体を含有する、非水系二次電池多孔膜用バインダー組成物。   A binder composition for a nonaqueous secondary battery porous membrane, comprising a particulate polymer containing 0.05% by mass or more and 5% by mass or less of a monomer unit having two or more hydroxyl groups. 前記2つ以上の水酸基を有する単量体単位が、2つ以上の水酸基および2つ以上のラジカル重合性不飽和結合を有する単量体由来の単量体単位である、請求項1に記載の非水系二次電池多孔膜用バインダー組成物。   The monomer unit having the two or more hydroxyl groups is a monomer unit derived from a monomer having two or more hydroxyl groups and two or more radical polymerizable unsaturated bonds. A binder composition for a nonaqueous secondary battery porous membrane. 前記粒子状重合体が、さらに(メタ)アクリル酸エステル単量体単位を50質量%以上95質量%以下含む、請求項1または2に記載の非水系二次電池多孔膜用バインダー組成物。   The binder composition for a nonaqueous secondary battery porous film according to claim 1 or 2, wherein the particulate polymer further contains 50% by mass or more and 95% by mass or less of a (meth) acrylic acid ester monomer unit. 前記粒子状重合体の電解液膨潤度が、1より大きく3倍以下である、請求項1〜3の何れかに記載の非水系二次電池多孔膜用バインダー組成物。   The binder composition for a nonaqueous secondary battery porous membrane according to any one of claims 1 to 3, wherein the degree of swelling of the electrolytic solution of the particulate polymer is greater than 1 and 3 times or less. 請求項1〜4の何れかに記載の非水系二次電池多孔膜用バインダー組成物および非導電性粒子を含む、非水系二次電池多孔膜用組成物。   The composition for non-aqueous secondary battery porous films containing the binder composition for non-aqueous secondary battery porous films in any one of Claims 1-4, and a nonelectroconductive particle. 請求項5に記載の非水系二次電池多孔膜用組成物から形成された、非水系二次電池用多孔膜。   A porous film for a non-aqueous secondary battery, formed from the composition for a non-aqueous secondary battery porous film according to claim 5. 正極、負極、セパレーター、および電解液を備え、
前記正極、負極、およびセパレーターからなる群から選択される少なくとも1つの電池部材の表面に請求項6に記載の非水系二次電池用多孔膜を備える、非水系二次電池。
A positive electrode, a negative electrode, a separator, and an electrolyte solution,
A non-aqueous secondary battery comprising the porous film for a non-aqueous secondary battery according to claim 6 on the surface of at least one battery member selected from the group consisting of the positive electrode, the negative electrode, and the separator.
JP2014126349A 2014-06-19 2014-06-19 Nonaqueous secondary battery porous membrane binder composition, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery Active JP6344081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014126349A JP6344081B2 (en) 2014-06-19 2014-06-19 Nonaqueous secondary battery porous membrane binder composition, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014126349A JP6344081B2 (en) 2014-06-19 2014-06-19 Nonaqueous secondary battery porous membrane binder composition, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2016004758A true JP2016004758A (en) 2016-01-12
JP6344081B2 JP6344081B2 (en) 2018-06-20

Family

ID=55223888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014126349A Active JP6344081B2 (en) 2014-06-19 2014-06-19 Nonaqueous secondary battery porous membrane binder composition, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP6344081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200028933A (en) 2017-07-12 2020-03-17 니폰 제온 가부시키가이샤 Binder composition for electrochemical device functional layer, composition for electrochemical device functional layer, functional layer for electrochemical device, and electrochemical device
US11258135B2 (en) 2017-01-06 2022-02-22 Lg Energy Solution, Ltd. Battery separator including functional binder and electrochemical device comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123168A1 (en) * 2008-03-31 2009-10-08 日本ゼオン株式会社 Porous film and secondary cell electrode
WO2010134501A1 (en) * 2009-05-18 2010-11-25 日本ゼオン株式会社 Porous film and secondary battery
JP2014505344A (en) * 2011-02-15 2014-02-27 エルジー・ケム・リミテッド Separator, method for manufacturing the same, and electrochemical device including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123168A1 (en) * 2008-03-31 2009-10-08 日本ゼオン株式会社 Porous film and secondary cell electrode
WO2010134501A1 (en) * 2009-05-18 2010-11-25 日本ゼオン株式会社 Porous film and secondary battery
JP2014505344A (en) * 2011-02-15 2014-02-27 エルジー・ケム・リミテッド Separator, method for manufacturing the same, and electrochemical device including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258135B2 (en) 2017-01-06 2022-02-22 Lg Energy Solution, Ltd. Battery separator including functional binder and electrochemical device comprising the same
KR20200028933A (en) 2017-07-12 2020-03-17 니폰 제온 가부시키가이샤 Binder composition for electrochemical device functional layer, composition for electrochemical device functional layer, functional layer for electrochemical device, and electrochemical device

Also Published As

Publication number Publication date
JP6344081B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6597634B2 (en) Non-aqueous secondary battery binder, non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP6221875B2 (en) Nonaqueous secondary battery porous membrane binder, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery
KR102650447B1 (en) Binder composition for porous membranes for non-aqueous secondary batteries, slurry composition for porous membranes for non-aqueous secondary batteries, porous membranes for non-aqueous secondary batteries, and non-aqueous secondary batteries and methods for manufacturing the same.
JPWO2016152026A1 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP6503790B2 (en) Binder for non-aqueous secondary battery porous membrane, composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery
JP7259746B2 (en) Binder composition for electrochemical element functional layer, composition for electrochemical element functional layer, functional layer for electrochemical element, and electrochemical element
JP6515574B2 (en) Non-aqueous secondary battery functional layer binder, non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP7179463B2 (en) Composition for non-aqueous secondary battery adhesive layer, non-aqueous secondary battery adhesive layer, and non-aqueous secondary battery
JPWO2017221572A1 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer and non-aqueous secondary battery
JP7063324B2 (en) Binder composition for non-aqueous secondary battery porous membrane, slurry composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery, and non-aqueous secondary battery
JP6344081B2 (en) Nonaqueous secondary battery porous membrane binder composition, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery
JP6406066B2 (en) Nonaqueous secondary battery porous membrane binder, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery
JP6485269B2 (en) Nonaqueous secondary battery porous membrane binder composition, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery
JP6492741B2 (en) Nonaqueous secondary battery functional layer binder composition, nonaqueous secondary battery functional layer slurry composition, nonaqueous secondary battery functional layer, nonaqueous secondary battery and method for producing the same
JP6337554B2 (en) Nonaqueous secondary battery porous membrane binder, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery
JP6693101B2 (en) Non-aqueous secondary battery functional layer composition, method for producing non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
KR20200019867A (en) Composition for non-aqueous secondary battery porous membrane, porous membrane for non-aqueous secondary battery and non-aqueous secondary battery
JP2017027855A (en) Binder composition for nonaqueous secondary battery porous film, composition for nonaqueous secondary battery porous film, nonaqueous secondary battery porous film, and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6344081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250