JP2016004274A - Defect detection method for product - Google Patents

Defect detection method for product Download PDF

Info

Publication number
JP2016004274A
JP2016004274A JP2014121928A JP2014121928A JP2016004274A JP 2016004274 A JP2016004274 A JP 2016004274A JP 2014121928 A JP2014121928 A JP 2014121928A JP 2014121928 A JP2014121928 A JP 2014121928A JP 2016004274 A JP2016004274 A JP 2016004274A
Authority
JP
Japan
Prior art keywords
image
product
roi
alignment
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014121928A
Other languages
Japanese (ja)
Other versions
JP6611415B2 (en
Inventor
布施 直紀
Naoki Fuse
直紀 布施
湯藤 隆夫
Takao Yuto
隆夫 湯藤
高橋 信幸
Nobuyuki Takahashi
信幸 高橋
弘樹 大田
Hiroki Ota
弘樹 大田
浩典 崎
Hironori Saki
浩典 崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Mitsubishi Space Software Co Ltd
Original Assignee
Daido Steel Co Ltd
Mitsubishi Space Software Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Mitsubishi Space Software Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2014121928A priority Critical patent/JP6611415B2/en
Publication of JP2016004274A publication Critical patent/JP2016004274A/en
Application granted granted Critical
Publication of JP6611415B2 publication Critical patent/JP6611415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a defect detection method for a product that can accurately and quickly detect a defect in a product by using a non-linear alignment.SOLUTION: The method compares a reference image obtained by photographing a defect-free normal product with an inspection image obtained by photographing an inspection target product which is the same type as the normal product by using a non-linear alignment, and detects the presence or absence of a defect in the inspection target product from a difference image between the images. A region of interest (ROI) in the non-linear alignment is set only when the ROI has a certain number or more of pixel patterns.

Description

本発明は製品の欠陥検出方法に関し、特にX線を使用した製品欠陥の検出に好適に使用できる方法に関するものである。   The present invention relates to a product defect detection method, and more particularly to a method that can be suitably used to detect product defects using X-rays.

製品内部の欠陥、例えば鋳造品の内部に生じる引け巣のような欠陥を検出する場合に内部透過性のX線を使用した検出が行われる。この場合、検査対象の製品は普通3次元形状を有していることから、X線の線源位置によって製品の透過画像に歪みを生じる。一方、欠陥検出は正常製品を撮影して得られた基準画像と、正常製品と同種の検査対象製品を撮影して得られた検査画像との差分画像を算出して、差分画像中に生じた図形領域を欠陥として判定することが行われている。ところがX線の透過画像は局所的に歪みの程度が異なるために一般的な線形座標変換によって検査画像を基準画像に合わせこむことができず、正確な欠陥検出ができない。そこで、このような欠陥検出に、特許文献1に示されている、いわゆる非線形位置合せを利用することが考えられる。   When a defect inside the product, for example, a defect such as a shrinkage nest generated inside a cast product is detected, detection using an internally transmissive X-ray is performed. In this case, since the product to be inspected usually has a three-dimensional shape, the transmission image of the product is distorted depending on the X-ray source position. On the other hand, defect detection occurred in the difference image by calculating the difference image between the reference image obtained by photographing the normal product and the inspection image obtained by photographing the same type of inspection target product as the normal product. A graphic region is determined as a defect. However, since the transmitted X-ray image has locally different degrees of distortion, the inspection image cannot be matched with the reference image by general linear coordinate transformation, and accurate defect detection cannot be performed. Therefore, it is conceivable to use so-called non-linear alignment shown in Patent Document 1 for such defect detection.

特開2005−176402JP-A-2005-176402

しかし、上記特許文献1に記載の発明の対象は人体胸部のX線画像であり、一般の工業製品を対象としたものではない。このような工業製品の欠陥検出に非線形位置合せを適用するに際してはその精度と共に演算の処理負担軽減による迅速化が必要である等の種々の対策が求められる。   However, the subject of the invention described in Patent Document 1 is an X-ray image of a human chest and is not intended for general industrial products. When applying non-linear alignment to such a defect detection of industrial products, various countermeasures are required such as the necessity of speeding up by reducing the processing load of the calculation as well as the accuracy.

そこで本発明はこのような要請に鑑みたもので、非線形位置合せを使用して製品の欠陥を正確かつ迅速に検出することが可能な製品の欠陥検出方法を提供することを目的とする。   Accordingly, the present invention has been made in view of such a demand, and an object of the present invention is to provide a product defect detection method capable of accurately and quickly detecting product defects using nonlinear alignment.

上記目的を達成するために、本第1発明では、無欠陥の正常製品を撮影して得られた基準画像と、正常製品と同種の、検査対象製品を撮影して得られた検査画像とを非線形位置合せによって比較してその差分画像より検査対象製品の欠陥の有無を検出する方法において、非線形位置合せにおける関心領域(ROI)の設定を、当該ROIの画素パターンが一定以上ある場合にのみ行うようにする。   In order to achieve the above object, in the first invention, a reference image obtained by photographing a defect-free normal product and an inspection image obtained by photographing a product to be inspected of the same type as the normal product are obtained. In the method of detecting the presence / absence of a defect in the inspection target product from the difference image by comparison by non-linear alignment, the region of interest (ROI) in non-linear alignment is set only when the pixel pattern of the ROI exceeds a certain level. Like that.

本第1発明によれば、非線形位置合せが困難な、平坦で画素パターンの変化が乏しい領域を有する製品では当該領域にROIの設定を行わないようにしたから、ROI間の相互相関演算の負担が軽減されて画像位置合せ速度の向上が図られる。また、ROIの設定が行われない領域は画素パターンの変化が乏しい領域であるから、この領域にROIを設定しなくても画像位置合せの精度は低下せず正確な欠陥検出が可能である。   According to the first aspect of the present invention, since the ROI is not set in the region having a flat region in which the non-linear alignment is difficult and the change of the pixel pattern is poor, the burden of the cross-correlation calculation between the ROIs is not set. Is reduced and the image alignment speed is improved. In addition, since the region where the ROI is not set is a region where the change of the pixel pattern is scarce, even if the ROI is not set in this region, the accuracy of image alignment is not lowered and accurate defect detection is possible.

本第2発明では、前記非線形位置合せにおける位置合せ探索時の対象ROIと探索ROIのサイズを相対的に大きくするとともに、位置合せ演算時の対象ROIと探索ROIの画像を相対的に縮小するようにする。   In the second aspect of the invention, the size of the target ROI and the search ROI at the time of alignment search in the nonlinear alignment is relatively increased, and the image of the target ROI and the search ROI at the time of alignment calculation is relatively reduced. To.

本第2発明によれば、位置合せ探索時のROIのサイズを相対的に大きくしてあるから局所的な画素パターンの類似性の影響を受けにくくなり、位置合わせの精度が向上する。また、位置合せ演算時のROIの画像を相対的に縮小してあるから相互相関演算の演算量低減が可能となって、迅速な欠陥検出が可能である。   According to the second aspect of the invention, since the size of the ROI at the time of registration search is relatively large, it is less affected by local pixel pattern similarity, and the accuracy of registration is improved. Further, since the ROI image at the time of alignment calculation is relatively reduced, the amount of calculation of cross-correlation calculation can be reduced, and rapid defect detection is possible.

本第3発明では、前記非線形位置合せにおいて、前記検査画像を、複数製品が同時に撮影された撮影画像から各製品毎に分離して得るようにする。   In the third aspect of the invention, in the nonlinear alignment, the inspection image is obtained separately for each product from a photographed image obtained by photographing a plurality of products simultaneously.

本第3発明によれば、異なる姿勢で複数がトレイに収容されて同時に撮影される製品について、各製品毎に分離された検査画像を得ることができるから、各製品毎の欠陥検出が可能となる。   According to the third aspect of the present invention, it is possible to obtain inspection images separated for each product for products that are stored in the tray in different postures and photographed at the same time, so that it is possible to detect defects for each product. Become.

本第4発明では、前記非線形位置合せにおいて、前記検査画像を部分領域に分割し、各部分領域毎に前記差分画像を得るようにする。   In the fourth aspect of the invention, in the nonlinear alignment, the inspection image is divided into partial areas, and the difference image is obtained for each partial area.

本第4発明によれば、検査画像を例えば輝度が同程度の部分領域に分割して、各部分領域毎に差分画像を得るようにしたから、高精度な差分画像を得ることができ、正確な欠陥検出が可能となる。   According to the fourth aspect of the invention, the inspection image is divided into, for example, partial areas having the same luminance, and a difference image is obtained for each partial area. Defect detection is possible.

以上のように、本発明の製品の欠陥検出方法によれば、非線形位置合せを使用して製品の欠陥を正確かつ迅速に検出することができる。   As described above, according to the product defect detection method of the present invention, product defects can be detected accurately and quickly using nonlinear alignment.

本発明方法を実施する欠陥検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the defect detection apparatus which enforces the method of this invention. クライアントPCで実行される処理のフローチャートである。It is a flowchart of the process performed by client PC. 欠陥検出処理のフローチャートである。It is a flowchart of a defect detection process. エリア分割のマスクパターン生成の概念図である。It is a conceptual diagram of mask pattern generation of area division. 検査画像を示す図およびテンプレートROIの配置例を示す図である。It is a figure which shows a test | inspection image, and a figure which shows the example of arrangement | positioning of template ROI. ROIの設定サイズを示す概念図である。It is a conceptual diagram which shows the setting size of ROI. ROIの縮小処理を示す概念図である。It is a conceptual diagram which shows the reduction process of ROI. 製品の基準画像を示す図およびマスク画像作成にための領域分割を示す図である。It is a figure which shows the reference | standard image of a product, and the figure which shows the area | region division for mask image preparation.

図1には本発明方法を実施する欠陥検出装置の構成を示す。欠陥検出装置はX線照射装置1、X線画像保存装置2および判定装置3で構成されている。X線照射装置1は製品にX線を照射してイメージングプレート11に製品の透過撮影画像を定着させる。透過撮影画像が定着されたイメージングプレート11はX線画像保存装置2を構成する読取装置21に装着されてDICOMデジタル画像として読み込まれ、X線画像保存サーバ22に蓄積される。当該保存サーバ22には画像確認用のモニタ23が付設されている。   FIG. 1 shows the configuration of a defect detection apparatus for carrying out the method of the present invention. The defect detection apparatus includes an X-ray irradiation apparatus 1, an X-ray image storage apparatus 2, and a determination apparatus 3. The X-ray irradiation apparatus 1 irradiates the product with X-rays and fixes the transmission photographed image of the product on the imaging plate 11. The imaging plate 11 on which the transmission image is fixed is mounted on a reading device 21 that constitutes the X-ray image storage device 2, read as a DICOM digital image, and stored in the X-ray image storage server 22. The storage server 22 is provided with a monitor 23 for image confirmation.

DICOMデジタル画像は判定装置3を構成するクライアントPC31に送られてRAW画像に変換される。クライアントPC31にはモニタ32、データベース用サーバ33および外部記憶装置(NAS)34が接続されている。以下、クライアントPC31で実行される処理を図2のフローチャートに従って説明する。   The DICOM digital image is sent to the client PC 31 constituting the determination apparatus 3 and converted into a RAW image. A monitor 32, a database server 33, and an external storage device (NAS) 34 are connected to the client PC 31. Hereinafter, processing executed by the client PC 31 will be described with reference to the flowchart of FIG.

図2のステップ101でRAW画像ファイルを読み込み、ステップ102でエリア分割を行う。エリア分割の手法を図4で説明する。検査対象の製品は通常、複数が異なる姿勢でトレイに収容されて同時に撮影される。そこで、製品を個々に分離した画像を得る必要がある。例えば図4(1)に示すように二個の製品W1,W2が撮影された場合には、図4(2)に示すように各製品W1,W2に対応したマスクパターンM1,M2を生成して、これらマスクパターンM1,M2をオーバーレイして図4(3)に示すように単一製品毎に分離されたRAW画像を得る。   In step 101 of FIG. 2, a RAW image file is read, and in step 102, area division is performed. A method of area division will be described with reference to FIG. Usually, a plurality of products to be inspected are housed in trays in different postures and photographed simultaneously. Therefore, it is necessary to obtain an image in which products are individually separated. For example, when two products W1 and W2 are photographed as shown in FIG. 4 (1), mask patterns M1 and M2 corresponding to the products W1 and W2 are generated as shown in FIG. 4 (2). Then, these mask patterns M1 and M2 are overlaid to obtain a RAW image separated for each single product as shown in FIG.

図2のステップ103では、分離された各製品のRAW画像について非線形位置合せ画像を生成する。非線形位置合せ画像を生成するに際しては例えば、検査対象の各製品のRAW画像(検査画像)にテンプレート関心領域(ROI)を設定するとともに、これと同種の無欠陥の正常製品を予め撮影して得られたRAW画像(基準画像)に探索関心領域(ROI)を設定する。   In step 103 of FIG. 2, a nonlinear alignment image is generated for the RAW image of each separated product. When generating a non-linear alignment image, for example, a template region of interest (ROI) is set in the RAW image (inspection image) of each product to be inspected, and a normal product of the same type as this is imaged in advance. A search region of interest (ROI) is set in the obtained RAW image (reference image).

この場合、探索ROIはテンプレートROIより大きく設定され、テンプレートROIを探索ROI内で移動させつつ両領域の相互相関値を計算する。そして相互相関値が最大となる領域が互いに対応する領域であるとして非線形位置合せを行う。この操作は既述の特許文献1に説明されている公知の方法である。   In this case, the search ROI is set larger than the template ROI, and the cross-correlation value of both regions is calculated while moving the template ROI within the search ROI. Then, nonlinear alignment is performed assuming that the regions having the maximum cross-correlation values correspond to each other. This operation is a known method described in Patent Document 1 described above.

本実施形態では、工業製品の特性に鑑みて非線形位置合せの精度と速度向上を図っている。すなわち、このような工業製品の画像では一般に、平坦で画素パターンの変化が乏しい領域が存在する。このような領域ではテンプレートROIと探索ROIの相互相関値のピークが得難いため位置合せが良好に行われない。そこで、画素の輝度値Iの分散Vを下式(1)で算出して、ROI内の画素の輝度分散Vが一定値より高い場合にのみ、位置合せに有効な画素パターンがあるものとしてテンプレートROIを配置する。
V=Σ|I(x,y)−Iv|**2…(1)
ここでI(x,y)はテンプレートROI内の各画素の輝度、IvはテンプレートROI内の画素の輝度平均値、**2は二乗(以下同様)を示す。
In this embodiment, the accuracy and speed of nonlinear alignment are improved in view of the characteristics of industrial products. That is, in such an image of an industrial product, there is generally an area that is flat and has little change in pixel pattern. In such a region, since it is difficult to obtain a peak of the cross-correlation value between the template ROI and the search ROI, the alignment is not performed well. Therefore, the distribution V of the luminance value I of the pixel is calculated by the following equation (1), and the template is assumed to have a pixel pattern effective for alignment only when the luminance distribution V of the pixel in the ROI is higher than a certain value. Place the ROI.
V = Σ | I (x, y) −Iv | ** 2 (1)
Here, I (x, y) is the luminance of each pixel in the template ROI, Iv is the average luminance value of the pixels in the template ROI, and ** 2 is the square (the same applies hereinafter).

このようなテンプレートROIの配置の一例を図5に示す。図5(1)は検査画像であり、円形部の内周領域W11や外方突出部の一部領域W12では画素パターンの変化が乏しい。そこでこのような領域W11,W12には、図5(2)に示すように、テンプレートROI4が配置されない。これにより、位置合せ精度を保ちつつ、テンプレートROIと探索ROI間の相互相関演算の負担が軽減されて位置合せ速度の向上が実現される。   An example of the arrangement of such template ROI is shown in FIG. FIG. 5A is an inspection image, and the pixel pattern hardly changes in the inner peripheral region W11 of the circular portion and the partial region W12 of the outward protruding portion. Therefore, as shown in FIG. 5B, the template ROI 4 is not arranged in such areas W11 and W12. Thereby, while maintaining the alignment accuracy, the burden of the cross-correlation calculation between the template ROI and the search ROI is reduced, and the alignment speed is improved.

ところで、工業製品の場合には規則的な変化部分が多いため、テンプレートROIや探索ROIの大きさを小さくすると複数領域で相互相関値が同程度の値を示して位置合わせの精度が低下してしまう。そこで、本実施形態では、テンプレートROI4の画素サイズを図6に示すように例えばXピクセル(X=45ピクセル)角として、従来の人体胸部を対象とした異常検出の際の画素サイズである23ピクセル角に比して大きくし、また、探索ROI5の画素サイズも例えば従来の121ピクセル角からYピクセル(Y=501ピクセル)角と大きくして、探索範囲を広げている。   By the way, since there are many regular changes in the case of industrial products, if the size of the template ROI or the search ROI is reduced, the cross-correlation values in a plurality of regions show similar values, and the alignment accuracy decreases. End up. Therefore, in this embodiment, the pixel size of the template ROI4 is set to, for example, an X pixel (X = 45 pixel) angle as shown in FIG. 6, and the pixel size at the time of abnormality detection for the conventional human chest is 23 pixels. The search range is expanded by increasing the pixel size of the search ROI 5 from the conventional 121 pixel angle to the Y pixel (Y = 501 pixel) angle, for example.

しかしこのようにすると、相互相関処理の演算処理量が3430倍[=(121/23)**2×(501/45)**2]に増大してしまう。そこで、本実施形態ではさらに、非線形位置合せのための相互相関演算を行うに際してテンプレートROIと探索ROIの画像を、例えば画素を適当に間引く等によって図7に示すようにZ(例えば1/5)倍だけ縮小して、相互相関処理の演算処理量を1/625[=(1/5)**2×(1/5)**2]だけ軽減している。これにより、広い範囲で相互相関を取るようにしても、相互相関演算の演算処理量の増加を全体として5.5倍程度(=3430×1/625)に抑えることができる。   However, if it does in this way, the calculation processing amount of a cross correlation process will increase to 3430 times [= (121/23) ** 2 * (501/45) ** 2]. Therefore, in the present embodiment, when the cross-correlation calculation for nonlinear alignment is performed, the images of the template ROI and the search ROI are represented by Z (for example, 1/5) as shown in FIG. The calculation processing amount of the cross-correlation processing is reduced by 1/625 [= (1/5) ** 2 × (1/5) ** 2]. Thereby, even if cross-correlation is taken in a wide range, the increase in the amount of calculation processing of cross-correlation calculation can be suppressed to about 5.5 times (= 3430 × 1/625) as a whole.

図2のステップ104では、以上の処理で生成された非線形位置合せ画像を使用して欠陥検出を行う。欠陥検出処理の詳細を図3のフローチャートを参照して以下に説明する。図3のステップ201で非線形位置合せ画像を読み込み、ステップ202ではマスク画像を非線形位置合せ画像にオーバーレイしてステップ203で検査領域を抽出する。ここで、検査領域を抽出するためのマスク画像の作成について説明する。図8(1)に示す製品の基準画像につき、当該画像の濃淡(輝度)に基いて輝度が同程度の領域を、閉鎖された輪郭線で区画して領域分割する(図8(2))。図8(2)中、数字・文字を付した部分が分割された各領域である。マスク画像は検査対象とする領域以外をマスキングしたもので、分割された領域の数だけ作成される。   In step 104 of FIG. 2, defect detection is performed using the nonlinear alignment image generated by the above processing. Details of the defect detection processing will be described below with reference to the flowchart of FIG. The non-linear alignment image is read in step 201 in FIG. 3, the mask image is overlaid on the non-linear alignment image in step 202, and the inspection region is extracted in step 203. Here, creation of a mask image for extracting an inspection region will be described. With respect to the reference image of the product shown in FIG. 8 (1), an area having the same luminance based on the shade (luminance) of the image is divided by a closed contour line to divide the area (FIG. 8 (2)). . In FIG. 8 (2), each part with numbers / letters is divided. The mask image is obtained by masking areas other than the area to be inspected, and is created by the number of divided areas.

上記ステップ203での検査領域の抽出は、非線形位置合せ画像に上記マスク画像をオーバーレイすることによって所望の領域のみを検査領域として抽出するものである。ステップ204では、検査領域が鋳出文字部やバリ部を含むものであるか判定する。これを行う理由は、鋳出文字部には明部と暗部が混在しているため後述する非線形位置合せ差分画像上では欠陥と区別することが困難だからである。また、バリ部については非線形位置合せ画像での位置合わせが難しいからである。   The extraction of the inspection area in step 203 is to extract only a desired area as an inspection area by overlaying the mask image on the nonlinear alignment image. In step 204, it is determined whether the inspection area includes a cast character part or a burr part. The reason for this is that it is difficult to distinguish from a defect on a non-linear alignment difference image, which will be described later, because the cast character portion includes a bright portion and a dark portion. In addition, the burr portion is difficult to align with the nonlinear alignment image.

そこで、上記ステップ204で、検査領域が鋳出文字部やバリ部を含むものである場合にはステップ205へ進んで、非線形位置合せ画像ではなくRAW画像である検査画像を読み込み、上記マスク画像を検査画像にオーバーレイして鋳出文字部やバリ部を含む検査領域を抽出してステップ207以下の画像処理に移行する。ここで、X線透過画像である上記検査画像に代えて目視画像を使用しても良い。   Therefore, in step 204, if the inspection area includes a cast character part or a burr part, the process proceeds to step 205, in which an inspection image that is a RAW image is read instead of a nonlinear alignment image, and the mask image is converted into an inspection image. The inspection area including the cast character part and the burr part is extracted by overlaying and the process proceeds to the image processing in step 207 and the subsequent steps. Here, a visual image may be used instead of the inspection image which is an X-ray transmission image.

上記ステップ204で検査領域に鋳出文字部等が含まれていない場合にはステップ207へ進んで、ステップ203で抽出された非線形位置合せ画像中の各検査領域について基準画像との差分画像(非線形位置合せ差分画像)を算出し生成する。   When the inspection area does not include a cast character portion or the like in step 204, the process proceeds to step 207, and a difference image (nonlinearity) from the reference image is obtained for each inspection area in the nonlinear alignment image extracted in step 203. A registration difference image) is calculated and generated.

ステップ208では、各検査領域の背景輝度の補正を行い、続くステップ209で検査領域の画像を所定のスレッショールド値で二値化する。そしてステップ210で、二値化された画像中に残った図形のピクセル数を解析し、ピクセル数が所定値以上の場合にステップ211で上記図形を欠陥と判定する。   In step 208, the background luminance of each inspection area is corrected, and in step 209, the image of the inspection area is binarized with a predetermined threshold value. In step 210, the number of pixels of the graphic remaining in the binarized image is analyzed. If the number of pixels is equal to or greater than a predetermined value, the graphic is determined as a defect in step 211.

なおこの場合、製品が収容されたトレイ内に、複数の同一円図形を数段階の異なる濃度で描いたスケール部材を入れておき、各製品と同時に撮影された上記スケール部材のRAW画像を得て、上記ステップ209で二値化された画像上の円図形を、RAW画像中の円図形と比較して、この時の寸法変化率よりステップ211でのピクセル数の判定値を校正するようにすれば、さらに正確な欠陥の有無判定が可能となる。   In this case, a scale member in which a plurality of identical circular figures are drawn at different densities in several stages is placed in a tray in which the product is accommodated, and a RAW image of the scale member taken simultaneously with each product is obtained. The circle figure on the image binarized in step 209 is compared with the circle figure in the RAW image, and the determination value of the number of pixels in step 211 is calibrated based on the dimensional change rate at this time. In this case, it is possible to more accurately determine the presence / absence of a defect.

1…X線照射装置、2…X線画像保存装置、3…判定装置、31…クライアントPC。 DESCRIPTION OF SYMBOLS 1 ... X-ray irradiation apparatus, 2 ... X-ray image storage apparatus, 3 ... Determination apparatus, 31 ... Client PC.

Claims (4)

無欠陥の正常製品を撮影して得られた基準画像と、正常製品と同種の、検査対象製品を撮影して得られた検査画像とを非線形位置合せによって比較してその差分画像より検査対象製品の欠陥の有無を検出する方法において、非線形位置合せにおける関心領域(ROI)の設定を、当該ROIの画素パターンが一定以上ある場合にのみ行うようにした製品の欠陥検出方法。 A reference image obtained by photographing a defect-free normal product and an inspection image obtained by photographing the inspection target product of the same type as the normal product are compared by non-linear alignment, and the inspection target product is obtained from the difference image. In the method for detecting the presence or absence of a defect, a region of interest (ROI) in nonlinear alignment is set only when the pixel pattern of the ROI is greater than a certain value. 前記非線形位置合せにおける位置合せ探索時の対象ROIと探索ROIのサイズを相対的に大きくするとともに、位置合せ演算時の対象ROIと探索ROIの画像を相対的に縮小するようにした請求項1に記載の製品の欠陥検出方法。 2. The size of the target ROI and the search ROI at the time of alignment search in the non-linear alignment is relatively increased, and the image of the target ROI and the search ROI at the time of alignment calculation is relatively reduced. Defect detection method for the described product. 前記非線形位置合せにおいて、前記検査画像を、複数製品が同時に撮影された撮影画像から各製品毎に分離して得るようにした請求項1又は2に記載の製品の欠陥検出方法。 3. The product defect detection method according to claim 1, wherein in the nonlinear alignment, the inspection image is obtained separately for each product from a photographed image obtained by photographing a plurality of products simultaneously. 前記非線形位置合せにおいて、前記検査画像を部分領域に分割し、各部分領域毎に前記差分画像を得るようにした請求項1ないし3のいずれかに記載の製品の欠陥検出方法。 The product defect detection method according to claim 1, wherein, in the non-linear alignment, the inspection image is divided into partial areas, and the difference image is obtained for each partial area.
JP2014121928A 2014-06-13 2014-06-13 Internal defect detection method for industrial products Active JP6611415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014121928A JP6611415B2 (en) 2014-06-13 2014-06-13 Internal defect detection method for industrial products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014121928A JP6611415B2 (en) 2014-06-13 2014-06-13 Internal defect detection method for industrial products

Publications (2)

Publication Number Publication Date
JP2016004274A true JP2016004274A (en) 2016-01-12
JP6611415B2 JP6611415B2 (en) 2019-11-27

Family

ID=55223550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014121928A Active JP6611415B2 (en) 2014-06-13 2014-06-13 Internal defect detection method for industrial products

Country Status (1)

Country Link
JP (1) JP6611415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062178A (en) * 2015-09-25 2017-03-30 大同特殊鋼株式会社 Defect detection method for product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737074A (en) * 1992-11-25 1995-02-07 Arch Dev Corp Method and device for detecting time change between continuous breast images in time
JPH095262A (en) * 1995-06-21 1997-01-10 Hamamatsu Photonics Kk Inspecting equipment using projection image or projection image and tomogram
JP2009225933A (en) * 2008-03-21 2009-10-08 Fujifilm Corp Capsule endoscope system, and capsule endoscope motion control method
JP2011128756A (en) * 2009-12-16 2011-06-30 Fuji Heavy Ind Ltd Object detection device
JP2013011856A (en) * 2011-06-01 2013-01-17 Canon Inc Imaging system and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737074A (en) * 1992-11-25 1995-02-07 Arch Dev Corp Method and device for detecting time change between continuous breast images in time
JPH095262A (en) * 1995-06-21 1997-01-10 Hamamatsu Photonics Kk Inspecting equipment using projection image or projection image and tomogram
JP2009225933A (en) * 2008-03-21 2009-10-08 Fujifilm Corp Capsule endoscope system, and capsule endoscope motion control method
JP2011128756A (en) * 2009-12-16 2011-06-30 Fuji Heavy Ind Ltd Object detection device
JP2013011856A (en) * 2011-06-01 2013-01-17 Canon Inc Imaging system and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017062178A (en) * 2015-09-25 2017-03-30 大同特殊鋼株式会社 Defect detection method for product

Also Published As

Publication number Publication date
JP6611415B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
EP3239929B1 (en) Image processing apparatus, image processing method and program
CN101976436B (en) Pixel-level multi-focus image fusion method based on correction of differential image
WO2013187206A1 (en) Image processing device, image processing method, and image processing program
EP3142045B1 (en) Predicting accuracy of object recognition in a stitched image
JP2009268641A (en) System and method for collating dental x-ray image
CN107085728B (en) Method and system for effectively scoring probe in image by using vision system
JP6317725B2 (en) System and method for determining clutter in acquired images
CN106934794A (en) Information processor, information processing method and inspection system
WO2014045508A1 (en) Inspection device, inspection method, and inspection program
US10620417B2 (en) Method for generating a reflection-reduced contrast image and corresponding device
JP5839710B2 (en) Analysis point setting device and method, and body motion detection device and method
WO2023047118A1 (en) A computer-implemented method of enhancing object detection in a digital image of known underlying structure, and corresponding module, data processing apparatus and computer program
US11410300B2 (en) Defect inspection device, defect inspection method, and storage medium
JP2014020926A (en) Surface defect inspection device and surface defect inspection method
Yoshikawa et al. Automated detection of architectural distortion using improved adaptive Gabor filter
Abbas et al. Breast cancer image segmentation using morphological operations
JP6525837B2 (en) Product defect detection method
JP6611415B2 (en) Internal defect detection method for industrial products
KR101777696B1 (en) Method For Subpixel Localization Of Edges Based on Areal Symmetry
Jiang et al. A comprehensive method of contour extraction for industrial computed tomography images
CN102663750A (en) Method for edge detection of digital image
JP2007209583A (en) Medical image processor
JP2008294451A (en) Image forming method and image forming apparatus
JP2015093131A5 (en)
JP2019100937A (en) Defect inspection device and defect inspection method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190226

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191029

R150 Certificate of patent or registration of utility model

Ref document number: 6611415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350