JP2016003935A - Method for quantitatively determining specimen, and device for quantitatively determining the same - Google Patents

Method for quantitatively determining specimen, and device for quantitatively determining the same Download PDF

Info

Publication number
JP2016003935A
JP2016003935A JP2014123845A JP2014123845A JP2016003935A JP 2016003935 A JP2016003935 A JP 2016003935A JP 2014123845 A JP2014123845 A JP 2014123845A JP 2014123845 A JP2014123845 A JP 2014123845A JP 2016003935 A JP2016003935 A JP 2016003935A
Authority
JP
Japan
Prior art keywords
specific binding
substance
binding substance
substrate
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014123845A
Other languages
Japanese (ja)
Other versions
JP6512757B2 (en
Inventor
北森 武彦
Takehiko Kitamori
武彦 北森
和真 馬渡
Kazuma Mawatari
和真 馬渡
久史 清水
Hisashi Shimizu
久史 清水
英克 田澤
Hidekatsu Tazawa
英克 田澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microchemical Technology
Original Assignee
Institute of Microchemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microchemical Technology filed Critical Institute of Microchemical Technology
Priority to JP2014123845A priority Critical patent/JP6512757B2/en
Publication of JP2016003935A publication Critical patent/JP2016003935A/en
Application granted granted Critical
Publication of JP6512757B2 publication Critical patent/JP6512757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel method for quantitatively determining a specimen in a short time and with high sensitivity, and preferably at a countable level.SOLUTION: A device used for quantitative determination includes: a first base plate; a second base plate bonded to the first base plate; a flow channel formed on a bond surface between the first and second base plates and communicating with the outsides of the first and second base plates; a specific binding substance immobilization region which is a partial area of the flow channel and in which a first specific binding substance specifically bound to a specimen is immobilized. The flow channel has a height of 10 nm to 10 μm, and the specific binding substance immobilization region has a length of 1 μm to 10 cm. A method for quantitatively determining a specimen includes: causing a sample to flow through the flow channel and bind a specimen in the sample to the first specific binding substance; after cleaning, circulating a second labelled specific binding substance to be bound to the specimen through the flow channel to thereby bind the specimen bound to the first specific binding substance to the second specific binding substance; and, after cleaning, quantitatively determining the label bound to the specimen.

Description

本発明は、免疫測定等に適用することができる、被検物質の定量を可算個レベルで実現する超高感度分析方法及びそれに用いられる定量デバイスに関する。   The present invention relates to an ultrasensitive analysis method that can be applied to immunoassays and the like, and realizes quantification of a test substance at a count level, and a quantification device used therefor.

従来より、生体内に存在する様々な物質や、細菌やウイルス等の病原体を免疫測定により定量することが、各種疾病の診断等のために広く用いられている。免疫測定法として、固相に第1抗体を固相化し、これと被検試料中の抗原とを抗原抗体反応させて抗原を第1抗体に結合させ、洗浄後、この抗原と抗原抗体反応する、酵素標識された第2の抗体とを反応させ、洗浄後、標識酵素の酵素反応を利用して発色させ、発色の程度を測定する、酵素免疫測定法(Enzyme-linked Immunosorbent Assay, ELISA)と呼ばれる方法が広く用いられている。ELISAに用いられる固相としては、マイクロプレートのウェルやビーズ等が広く用いられている。しかしながら、マイクロプレートやビーズ等を用いた従来のELISAでは、多量の被検試料が必要であり、1個の細胞が持つ被検物質量を測定したり、被検物質を可算個レベルで定量したりすることはできない。また、抗原抗体反応に要する反応時間も、通常、数十分から数時間程度と長い。   Conventionally, quantifying various substances present in living bodies and pathogens such as bacteria and viruses by immunoassay has been widely used for diagnosis of various diseases. As an immunoassay method, a first antibody is immobilized on a solid phase, and this is reacted with an antigen in a test sample to bind the antigen to the first antibody. After washing, the antigen reacts with the antigen. An enzyme-linked immunosorbent assay (ELISA) that reacts with an enzyme-labeled second antibody, and after washing, develops color using the enzyme reaction of the labeled enzyme, and measures the degree of color development. The so-called method is widely used. As a solid phase used for ELISA, wells or beads of a microplate are widely used. However, the conventional ELISA using microplates or beads requires a large amount of test sample, and the amount of test substance possessed by one cell is measured or the test substance is quantified at a count level. You ca n’t. The reaction time required for the antigen-antibody reaction is usually as long as several tens of minutes to several hours.

一方、基板上に設けた微細な流路内で、様々な化学反応を行うことが最近広く研究されている。このような、マイクロスケールの微細空間は、混合・反応時間の短縮化、試料・試薬量の大幅な低減、小型デバイス化などを実現するものとして、診断・分析などの分野での利用が期待されている。例えば、数センチメートル角のガラス基板(マイクロチップ)上に、深さが数百μm以下の溝からなるマイクロチャネル(マイクロ流路)を形成して、別の基板と接合することでこのマイクロチャネルに液体を漏れ無く流すことを可能にする。また、チャネル内面に生体物質や触媒、電極などの機能性材料を部分的に修飾することで、所望の機能を付与してさまざまな化学システムを集積化することが提案され、実用化されている。このマイクロチャネルを構成する基板材料としては、高い強度、耐溶剤性、検出のための光学的透明性を有するガラス材料が望まれる。しかし、後述するようにガラスは基板同士の接合に高温条件(石英ガラスでは1000℃以上)を必要とするため、機能を付与するために修飾した生体物質や触媒、電極が熱損傷にとどまらず全て焼失してしまう。そのため、従来一方の基板には接合しやすいエラストマーなど別の基板が用いられて、ガラス基板のみでチャネルを構成することが困難であった。   On the other hand, recently, various chemical reactions have been widely studied in a fine channel provided on a substrate. Such micro-scale space is expected to be used in fields such as diagnosis and analysis as a means of shortening mixing and reaction times, greatly reducing the amount of samples and reagents, and making small devices. ing. For example, a microchannel (microchannel) composed of a groove with a depth of several hundred μm or less is formed on a glass substrate (microchip) of several centimeters square, and this microchannel is bonded to another substrate. Allows liquid to flow without leakage. It has also been proposed and put into practical use that various functional systems such as biological materials, catalysts, and electrodes are partially modified on the inner surface of the channel to provide desired functions and integrate various chemical systems. . As a substrate material constituting the microchannel, a glass material having high strength, solvent resistance, and optical transparency for detection is desired. However, as described later, glass requires high-temperature conditions (1000 ° C or higher for quartz glass) for bonding between substrates, so all biological materials, catalysts, and electrodes modified to provide functions are not limited to thermal damage. It will burn out. For this reason, another substrate such as an elastomer that can be easily bonded is conventionally used for one of the substrates, and it has been difficult to form a channel using only a glass substrate.

本願発明者らは、先に、酸素プラズマ照射と四フッ化メタンを用いて、ガラス基板同士を100℃以下の低温で堅固に接合できることを見出し、この技術を用いて、2枚のガラス基板の接合面に微細な流路を形成した機能性デバイスを発明し、特許出願した(特許文献1)。しかしながら、特許文献1には、被検物質を高感度、好ましくは可算個レベルで測定する具体的な方法は記載されていない。   The inventors of the present application have previously found that glass substrates can be firmly bonded to each other at a low temperature of 100 ° C. or lower using oxygen plasma irradiation and methane tetrafluoride. A functional device having a fine flow path formed on the joint surface was invented and a patent application was filed (Patent Document 1). However, Patent Document 1 does not describe a specific method for measuring a test substance with high sensitivity, preferably at a count level.

WO 2014/051054 A1WO 2014/051054 A1

本発明の目的は、短時間で、被検物質を高感度、好ましくは可算個レベルで定量可能な新規な定量方法及びそれに用いられる定量デバイスを提供することである。   An object of the present invention is to provide a novel quantification method capable of quantifying a test substance at a high sensitivity, preferably count level, in a short time and a quantification device used therefor.

本願発明者らは、鋭意研究の結果、基板に形成する微細な流路のサイズや、抗体等の特異結合物質を固定化する領域の長さを最適化すると共に、流路に流通させる被検試料の流速を、被検物質の拡散係数に応じた特定の流速で流通させることにより、被検物質を可算個レベルで定量可能であることを見出し、本発明を完成した。   As a result of diligent research, the inventors of the present application have optimized the size of a fine channel formed on a substrate and the length of a region where a specific binding substance such as an antibody is immobilized, and distributes the sample to the channel. The present inventors have found that the test substance can be quantified at a count level by flowing the sample at a specific flow rate corresponding to the diffusion coefficient of the test substance, and the present invention has been completed.

すなわち、本発明は、第1の基板と、該第1の基板と接合される第2の基板と、該第1及び第2の基板の接合面に形成され、該第1及び第2の基板の外部に連通する流路と、該流路の一部領域であって、被検物質に特異的に結合する第1の特異結合物質が固定化された特異結合物質固定化領域とを具備し、前記流路の高さが10nm〜10μm、前記特異結合物質固定化領域の長さが1μm〜10cmである、試料中の被検物質の定量デバイスの前記流路に前記試料を流通させて該試料中の前記被検物質を、前記第1の特異結合物質に結合させる工程と、
前記特異結合物質固定化領域を洗浄後、前記被検物質に特異的に結合する、標識された第2の特異結合物質を前記流路に流通させて前記第1の特異結合物質に結合した被検物質と第2の特異結合物質とを結合させる工程と、
前記特異結合物質固定化領域を洗浄後、被検物質に結合した標識を定量する工程とを含む、試料中の被検物質の定量方法を提供する。
That is, the present invention includes a first substrate, a second substrate bonded to the first substrate, and a bonding surface of the first and second substrates, and the first and second substrates. And a specific binding substance-immobilized region in which a first specific binding substance that specifically binds to a test substance is immobilized. The sample is circulated through the channel of the quantitative device for the test substance in the sample, wherein the channel has a height of 10 nm to 10 μm and the length of the specific binding substance immobilization region is 1 μm to 10 cm. Binding the test substance in the sample to the first specific binding substance;
After washing the specific binding substance-immobilized region, a labeled second specific binding substance that specifically binds to the test substance is circulated through the flow path and bound to the first specific binding substance. Binding the test substance and the second specific binding substance;
And a method of quantifying a label bound to the test substance after washing the specific binding substance-immobilized region.

また、本発明は、第1の基板と、該第1の基板と接合される第2の基板と、該第1及び第2の基板の接合面に形成され、該第1及び第2の基板の外部に連通する流路と、該流路の一部領域であって、被検物質に特異的に結合する第1の特異結合物質が固定化された特異結合物質固定化領域とを具備し、前記流路の高さが10nm〜10μm、前記特異結合物質固定化領域の長さが1μm〜10cmである、上記本発明の定量方法に用いられる試料中の被検物質の定量デバイスを提供する。   The present invention also includes a first substrate, a second substrate bonded to the first substrate, and a bonding surface of the first and second substrates, the first and second substrates. And a specific binding substance-immobilized region in which a first specific binding substance that specifically binds to a test substance is immobilized. Provided is a device for quantifying a test substance in a sample used in the quantification method of the present invention, wherein the flow path has a height of 10 nm to 10 μm and the specific binding substance immobilization region has a length of 1 μm to 10 cm. .

本発明の方法によれば、極めて微量の被検試料を用い、数秒以内という短時間で、被検物質を特異結合物質固定化領域に確実に捕捉することができ、超高感度に、好ましい態様では、可算個レベルで定量することが可能である。したがって、本発明の方法によれば、従来の免疫測定等に比較して、測定感度を桁違いに高めることができ、また、測定に要する時間や被検試料の量もピコリットル以下(フェムトリットルからアットリットル)に大幅に少なくすることができる。微量化についてはピコリットルレベルの試料量である単一細胞の分析に非常に適していると考えられる。   According to the method of the present invention, it is possible to reliably capture a test substance in a specific binding substance-immobilized region in a short time of within a few seconds using a very small amount of test sample. Then, it is possible to quantify at the count level. Therefore, according to the method of the present invention, the measurement sensitivity can be increased by orders of magnitude compared to conventional immunoassays, and the time required for measurement and the amount of the test sample can be less than picoliter (femtoliter). To at liters). It is considered that the microminiaturization is very suitable for the analysis of a single cell having a sample amount of picoliter level.

下記実施例1で行った、ガラス基板上に抗体を選択的に固定化する方法を模式的に説明する図である。It is a figure which illustrates typically the method of selectively fixing an antibody on the glass substrate performed in the following Example 1. FIG. 下記実施例1で行った免疫測定法を模式的に説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which illustrates typically the immunoassay performed in the following Example 1. FIG. 下記実施例1で行った方法に用いたデバイスの写真(a)、VUV照射時間と水の接触角の関係を示す図(b)及び照射時間と結合エネルギーの関係(c)を示す図である。It is a figure which shows the relationship between the photograph (a) of the device used for the method performed in the following Example 1, VUV irradiation time and the contact angle of water (b), and the relationship between irradiation time and binding energy (c). . 下記実施例1で得られた、拡張ナノ流路中で、蛍光標識抗原により可視化された、分子捕捉領域の蛍光像及び長手方向の強度曲線(a)及び捕捉領域及び非捕捉領域における、タンパク質吸着に対するPEGの効果を示す図(b)である。In the extended nanochannel obtained in Example 1 below, the fluorescence image of the molecular capture region and the intensity curve (a) in the longitudinal direction and the protein adsorption in the capture region and the non-capture region visualized by the fluorescently labeled antigen (B) which shows the effect of PEG with respect to 下記実施例1で得られた、結合抗原量の経時変化を抗原濃度別に示す図(a)及び導入した抗原分子の数と捕捉速度の関係を示す図(b)である。黒丸はPBSについての結果、白丸は10倍希釈ウシ血清についての結果を示す。FIG. 2 is a diagram (a) showing the change over time in the amount of bound antigen obtained in Example 1 below for each antigen concentration, and (b) showing the relationship between the number of antigen molecules introduced and the capture rate. Black circles show results for PBS, and white circles show results for 10-fold diluted bovine serum. 下記実施例1で行った強度検量実験を模式的に示す図(a)、抗原濃度と蛍光強度の関係を示す検量線(b)、導入した抗原分子と捕捉された抗原分子の数の経時変化を示す図(c)(抗原濃度は7.6nM)、導入及び捕捉された分子数に基づき算出された捕捉効率の経時変化を示す図(d)である。Figure (a) schematically showing the intensity calibration experiment conducted in Example 1 below, calibration curve (b) showing the relationship between antigen concentration and fluorescence intensity, and time-dependent changes in the number of antigen molecules introduced and captured antigen molecules (C) (antigen concentration is 7.6 nM), and (d) is a graph showing the change in capture efficiency with time calculated based on the number of introduced and captured molecules. 下記実施例2で行った、サンドイッチELISAの方法を模式的に示す図であり、(a)は試料液注入後の反応を模式的に示し、(b)は標識の酵素反応を模式的に示す。下のグラフは、(a)二示す4分子の抗原が捕捉された場合の、TLMシグナルの経時変化を模式的に示す図である。It is a figure which shows typically the method of sandwich ELISA performed in the following Example 2, (a) shows typically the reaction after injection | pouring of a sample liquid, (b) shows typically the enzyme reaction of a label | marker. . The lower graph is a diagram schematically showing the change with time of the TLM signal when (a) two molecules of antigens are captured. 下記実施例2で行った、サンドイッチELISAの結果得られたTLMシグナルの経時変化を、導入した抗原分子数ごとに示す図である。It is a figure which shows the time-dependent change of the TLM signal obtained as a result of sandwich ELISA performed in the following Example 2 for every number of the introduced antigen molecules.

本発明の方法に用いられる定量デバイスは、第1の基板と、該第1の基板と接合される第2の基板と、該第1及び第2の基板の接合面に形成され、該第1及び第2の基板の外部に接続される流路を具備する。第1の基板及び第2の基板は、高い強度、耐溶剤性、検出のための光学的透明性の観点から、ガラス基板であることが好ましい。ガラス基板としては、例えば、広く用いられているスライドガラスや、従来から用いられているマイクロ流路チップのガラス基板等を利用することができるが、これに限定されるものではない。ガラス基板同士は、本願発明者らが先に発明した、酸素プラズマ照射と四フッ化メタンを用いる(特許文献1)ことにより低温で堅固に接合させることができるが(下記実施例参照)、この方法に限定されず事前に修飾した化学物質の機能を保持できる接合方法であれば広く用いることができる。なお、流路は、第1及び第2の基板の接合面に形成されるが、これは、(1)流路を第1の基板の表面に形成し、表面が平滑な第2の基板と接合する、(2)流路を第2の基板の表面に形成し、表面が平滑な第1の基板と接合する、又は(3)流路を第1及び第2の基板の両者の表面の対応する位置にそれぞれ形成し、両者の基板を接合して、一本の流路がそれらの接合面に形成されるようにしてもよい。流路は、下記実施例に具体的に記載するように1本のみであってもよいが、特許文献1に記載されるとおり、複数(通常、2本〜数百本程度)の流路を形成してもよい。   The quantitative device used in the method of the present invention is formed on the first substrate, the second substrate bonded to the first substrate, and the bonding surface of the first and second substrates, And a flow path connected to the outside of the second substrate. The first substrate and the second substrate are preferably glass substrates from the viewpoints of high strength, solvent resistance, and optical transparency for detection. As the glass substrate, for example, a widely used slide glass or a conventionally used glass substrate of a microchannel chip can be used, but the glass substrate is not limited thereto. The glass substrates can be firmly bonded at low temperature by using oxygen plasma irradiation and methane tetrafluoride (patent document 1) previously invented by the inventors of the present invention (see the following example). The bonding method is not limited to a method, and any bonding method that can maintain the function of a chemical substance modified in advance can be widely used. The flow path is formed on the bonding surface of the first and second substrates. This is because (1) the flow path is formed on the surface of the first substrate and the second substrate is smooth. (2) forming a flow path on the surface of the second substrate and bonding the first substrate with a smooth surface; or (3) connecting the flow path to the surface of both the first and second substrates. They may be formed at corresponding positions, and the two substrates may be bonded together so that a single flow path is formed on the bonding surface. The flow path may be only one as specifically described in the following examples, but as described in Patent Document 1, a plurality of (usually about 2 to several hundreds) flow paths are provided. It may be formed.

本発明の方法において、流路の高さ(深さ)が重要であり、10nm〜10μm、好ましくは10nm〜1000nm、さらに好ましくは、20nm〜400nm程度である。この時、下限10nmはガラスに囲まれた水溶液において、液体から固体になる境界の目安を示しており、液体や壁面の材質にも依存する。なお、流路の高さ(深さ)が1000nm以下の流路を、本明細書において「拡張ナノ流路」と呼ぶことがある。また、流路の高さが1000nmを超える流路を本明細書において「マイクロ流路」と呼ぶことがある。このような高さの流路、好ましくは拡張ナノ流路に、後述する式[I]を満足する条件で試料を流通させれば、極めて高感度に被検物質を測定することが可能になる。また、従来10分以上かかっていた反応時間を数秒で終了することや、単一細胞体積ピコリットル以下の試料量で測定できるなど、非常に大きな効果が得られることもわかった。流路の幅は、特に限定されないが、微量の試料で測定することを可能とし、抗体等の特異結合物質の量を節約する観点から、通常、10nm〜100μmであり、好ましくは1μm〜10μm程度である。また、流路の長さは特に限定されず、通常、10μm〜100mm程度である。流路は基板の外部に連通している。流路が拡張ナノ流路の場合には、後述のように、好ましくはマイクロ流路を介して基板外部に連通している。   In the method of the present invention, the height (depth) of the flow path is important, and is about 10 nm to 10 μm, preferably about 10 nm to 1000 nm, and more preferably about 20 nm to 400 nm. At this time, the lower limit of 10 nm indicates an indication of the boundary from liquid to solid in an aqueous solution surrounded by glass, and it also depends on the material of the liquid and the wall surface. A channel having a channel height (depth) of 1000 nm or less may be referred to as an “extended nanochannel” in this specification. A channel having a channel height exceeding 1000 nm may be referred to as a “micro channel” in the present specification. If a sample is circulated through such a height channel, preferably an extended nanochannel, under the condition satisfying formula [I] described later, it becomes possible to measure a test substance with extremely high sensitivity. . It was also found that the reaction time, which conventionally took 10 minutes or more, can be completed in a few seconds, and that a very large effect can be obtained, such as measurement with a sample volume of a single cell volume of picoliter or less. The width of the channel is not particularly limited, but it is usually 10 nm to 100 μm, preferably about 1 μm to 10 μm, from the viewpoint of enabling measurement with a very small amount of sample and saving the amount of a specific binding substance such as an antibody. It is. The length of the channel is not particularly limited, and is usually about 10 μm to 100 mm. The flow path communicates with the outside of the substrate. When the channel is an extended nano channel, it is preferably communicated with the outside of the substrate through a micro channel as described later.

流路の一部領域には、被検物質に特異的に結合する第1の特異結合物質が固定化され、「特異結合物質固定化領域」を形成している。ここで、特異結合物質は、試料中の被検物質と特異的に結合する物質であり、例えば、被検物質が抗原の場合には、該抗原と抗原抗体反応する抗体又はその抗原結合性断片、被検物質が抗体の場合には、該抗体と抗原抗体反応する抗原が挙げられる。もっとも、本発明の方法は、免疫測定に限定されるものではなく、例えば、リガンド又はレセプター、DNA等の核酸を特異結合物質として固定化し、リガンド−レセプター間の特異結合や、核酸の相補鎖同士の結合等を利用して、リガンド、レセプター、核酸等を定量することも可能である。   A first specific binding substance that specifically binds to the test substance is immobilized in a partial region of the flow path to form a “specific binding substance immobilization region”. Here, the specific binding substance is a substance that specifically binds to a test substance in a sample. For example, when the test substance is an antigen, an antibody or antigen-binding fragment thereof that reacts with the antigen with an antigen antibody In the case where the test substance is an antibody, an antigen that undergoes an antigen-antibody reaction with the antibody can be mentioned. However, the method of the present invention is not limited to immunoassay. For example, a ligand, a receptor, or a nucleic acid such as DNA is immobilized as a specific binding substance, and specific binding between a ligand and a receptor, or complementary strands of nucleic acids are interlinked. It is also possible to quantify ligands, receptors, nucleic acids and the like using the binding of

「特異結合物質固定化領域」の長さは、高感度な定量を短時間で達成する観点から、1μm〜10cm、好ましくは1μm〜1000μm、さらに好ましくは、50μm〜300μm程度である。なお、流路、特に拡張ナノ流路の一部領域のみに第1の特異結合物質を固定化する好ましい方法は、公知であり(特許文献1)、下記実施例にも具体的に記載されている。すなわち、基板同士を接合する前に、拡張ナノ流路を形成した基板の表面の全面にAPTES(アミノプロピルトリエトキシシラン:シランカップリング剤)をコーティングし、フォトマスクを用いて、特異結合物質固定化領域以外の領域にコーティングされたAPTESに真空紫外線光を照射してAPTESを選択的に除去し、特異結合物質固定化領域のアミノ基を利用して第1の特異結合物質を共有結合させることができる。もっとも、第1の特異結合物質を固定化する方法は、これに限定されるものではなく、基板同士を接合する前に、従来から広く用いられている物理吸着を行うことやコンタクトプリンティング法により行う等によっても可能である。第1の特異結合物質を固定化後、非特異吸着を防止するために、流路の全体を、ポリエチレングリコール(PEG)や、市販のブロッキング剤などによりブロッキング処理することが好ましい。   The length of the “specific binding substance immobilization region” is about 1 μm to 10 cm, preferably 1 μm to 1000 μm, and more preferably about 50 μm to 300 μm, from the viewpoint of achieving highly sensitive quantification in a short time. In addition, a preferable method for immobilizing the first specific binding substance only on a partial region of the flow channel, particularly the extended nano flow channel is known (Patent Document 1), and is specifically described in the following examples. Yes. That is, before bonding the substrates, the entire surface of the substrate on which the extended nanochannels are formed is coated with APTES (aminopropyltriethoxysilane: silane coupling agent), and a specific binding substance is immobilized using a photomask. APTES coated in a region other than the activated region is irradiated with vacuum ultraviolet light to selectively remove APTES, and the first specific binding substance is covalently bound using the amino group in the specific binding substance immobilization region. Can do. However, the method for immobilizing the first specific binding substance is not limited to this, and before joining the substrates, a conventional physical adsorption or a contact printing method is used. Etc. are also possible. After the first specific binding substance is immobilized, the entire flow path is preferably blocked with polyethylene glycol (PEG) or a commercially available blocking agent in order to prevent nonspecific adsorption.

流路が拡張ナノ流路である場合、定量デバイスには、流路として、上記した拡張ナノ流路のみが形成されていてもよいが、試料液を注入したり、排出したりする操作を容易にするために、拡張ナノ流路に、深さや幅がより大きなマイクロ流路が接続されていることが好ましい(下記実施例参照、特許文献1)。マイクロ流路のサイズは、特に限定されないが、通常、深さが1μm〜1000μm程度、幅が1μm〜1000μm程度である。   When the channel is an extended nanochannel, the quantitative device may be formed with only the above-described extended nanochannel as the channel, but it is easy to inject and discharge the sample liquid. In order to achieve this, it is preferable that a microchannel having a larger depth or width is connected to the extended nanochannel (see the following example, Patent Document 1). The size of the microchannel is not particularly limited, but is usually about 1 μm to 1000 μm in depth and about 1 μm to 1000 μm in width.

本発明の方法では、上記定量デバイスの流路に試料を流通させて該試料中の被検物質を、前記第1の特異結合物質に結合させる。流路が拡張ナノ流路であり、上記したマイクロ流路が存在する場合には、マイクロ流路に試料液を注入し、マイクロ流路に接続される拡張ナノ流路に試料を流通させる。この際、下記の式[I]
5 ≦ (2Dτ)1/2/d [I]
(式中、Dは被検物質の拡散係数(m2/s)、τは特異結合物質固定化領域上に被検物質の分子が滞在する平均時間(s)、dは流路の深さ(m))
が満足される流速で試料を流通させることが好ましい。Dの拡散係数(m2/s)自体は、当業者にとって周知であり、該デバイスが用いる温度に依存する値である。被検物質のDは、濃度勾配を利用した従来の周知の拡散係数の測定等により測定することができる。また、文献(Small, 8(8),1237-1242(2012))に掲載されているように、拡張ナノ空間やマイクロ空間で直接測定してもよい。特定の試料に含まれる被検物質を、特定の定量デバイスで定量する場合、D及びdは定数となるので、変数はτのみであり、τは、流路を流通する試料の平均流速と特異結合物質固定化領域の長さから直ちに算出可能であるので、特定の試料に含まれる被検物質を、特定の定量デバイスで定量する場合、上記式[I]は、試料の流速や流量を適切に選択することにより達成することができる。試料の流速や流量は、マイクロ流路チップの分野で常用されている定量ポンプを用いて試料を注入することにより容易に調節可能である。なお、この工程の反応温度は、被検物質と第1の特異結合物質との反応に適した温度であり、例えば、抗原抗体反応の場合や、レセプターとリガンドの反応の場合、通常、室温〜37℃であり、核酸相補鎖間の反応の場合には、特異的なハイブリダイゼーションを達成するのに適した温度(例えば、50℃〜60℃)である。
In the method of the present invention, a sample is circulated through the flow path of the quantitative device, and a test substance in the sample is bound to the first specific binding substance. When the channel is an extended nanochannel and the above-described microchannel is present, the sample liquid is injected into the microchannel, and the sample is circulated through the extended nanochannel connected to the microchannel. At this time, the following formula [I]
5 ≤ (2Dτ) 1/2 / d [I]
(Where D is the diffusion coefficient of the test substance (m 2 / s), τ is the average time (s) that the molecules of the test substance stay on the specific binding substance immobilization region, and d is the depth of the flow path. (m))
It is preferable to distribute the sample at a flow rate that satisfies the above. The diffusion coefficient of D (m 2 / s) itself is well known to those skilled in the art and is a value depending on the temperature used by the device. D of the test substance can be measured by a conventional well-known diffusion coefficient measurement using a concentration gradient. Further, as described in the literature (Small, 8 (8), 1237-1242 (2012)), direct measurement may be performed in an extended nanospace or a microspace. When a test substance contained in a specific sample is quantified with a specific quantification device, D and d are constants, so the variable is only τ, and τ is the average flow rate of the sample flowing through the flow path and a specific value. Since it can be calculated immediately from the length of the binding substance immobilization region, when quantifying a test substance contained in a specific sample with a specific quantitative device, the above formula [I] can be used to determine the flow rate and flow rate of the sample appropriately. This can be achieved by selecting The flow rate and flow rate of the sample can be easily adjusted by injecting the sample using a metering pump commonly used in the field of microchannel chips. The reaction temperature in this step is a temperature suitable for the reaction between the test substance and the first specific binding substance. For example, in the case of an antigen-antibody reaction or in the case of a reaction between a receptor and a ligand, 37 ° C., and in the case of reaction between nucleic acid complementary strands, it is a temperature suitable for achieving specific hybridization (eg, 50 ° C. to 60 ° C.).

なお、上記式[I]は、つぎのようにして導かれた。すなわち、鋭意検討の結果、表面への目的分子の捕捉は、目的分子と壁面が単位時間あたりの衝突回数に依存すると考えた。このデバイスでは、分子が特異結合物質固定化領域を通過する場合にどの程度特異結合物質と衝突できるかであると考えられる。この時、従来のブラウン運動の理論から、通過時間τあたりの目的分子の平均移動距離は(2Dτ)1/2で与えられる。すなわち、この平均移動距離と流路深さの比(2Dτ)1/2/dが衝突回数を決めるファクターであると考えられる。従来、どの程度の衝突回数があれば確実に目的分子を捕捉できるか未知であったが下記のように本実施例から捕捉効率がこのファクターに依存することを見出した。 The above formula [I] was derived as follows. That is, as a result of intensive studies, it was considered that the capture of the target molecule on the surface depends on the number of collisions between the target molecule and the wall surface per unit time. In this device, it is considered how much the molecule can collide with the specific binding substance when passing through the specific binding substance immobilization region. At this time, from the conventional Brownian motion theory, the average movement distance of the target molecule per transit time τ is given by (2Dτ) 1/2 . That is, the ratio (2Dτ) 1/2 / d between the average moving distance and the channel depth is considered to be a factor that determines the number of collisions. Conventionally, it has been unknown how many collisions the target molecule can be reliably captured. However, as described below, it was found that the capture efficiency depends on this factor.

上記式[I]の右辺の値は、10以上であることが好ましく、さらには30以上であることが好ましい。この値が30以上であれば、被検物質の分子は、ほぼ100%が第1の特異結合物質に結合する。なお、上記式[I]の右辺の値が5の場合には捕捉率が数%になることを確認しており、この程度であれば、被検物質の定量は可能である。なお、下記実施例1では、Dが40μm2/s、τが1.8秒、dが200nmであり、単位を上記の通りに修正して計算すると、式[I]の右辺は60になる。また、下記実施例2では、Dが40μm2/s、τが10秒、dが800nmであり、単位を上記の通りに修正して計算すると、式[I]の右辺は35になる。右辺の値の上限は特に限定されないが、測定を迅速に行う観点また微量試料の測定を行う観点から、通常、1000以下であり、好ましくは100以下である。また、試料中の被検物質の濃度は被検物質の定量が可能な範囲であれば特に限定されないが、好ましい態様では、0.1pM〜10pM程度の低濃度でも定量可能である。 The value on the right side of the above formula [I] is preferably 10 or more, and more preferably 30 or more. If this value is 30 or more, almost 100% of the molecules of the test substance bind to the first specific binding substance. In addition, when the value on the right side of the above formula [I] is 5, it has been confirmed that the capture rate is several percent. With this level, the test substance can be quantified. In Example 1 below, D is 40 μm 2 / s, τ is 1.8 seconds, d is 200 nm, and when the unit is corrected as described above, the right side of the formula [I] is 60. In Example 2 below, D is 40 μm 2 / s, τ is 10 seconds, and d is 800 nm. When the unit is corrected as described above, the right side of equation [I] is 35. The upper limit of the value on the right side is not particularly limited, but is usually 1000 or less, preferably 100 or less, from the viewpoint of measuring quickly and measuring a trace amount of sample. The concentration of the test substance in the sample is not particularly limited as long as the test substance can be quantified, but in a preferred embodiment, the test substance can be quantified even at a low concentration of about 0.1 pM to 10 pM.

次に、特異結合物質固定化領域を緩衝液等で洗浄後、被検物質に特異的に結合する、標識された第2の特異結合物質を前記流路に流通させて前記第1の特異結合物質に結合した被検物質と第2の特異結合物質とを結合させる。ここで、第2の特異結合物質は、被検物質が第1の特異結合物質と結合した状態で、被検物質と特異的に結合する物質であり、被検物質が抗原の場合には、該抗原と抗原抗体反応する抗体又はその抗原結合性断片、被検物質が抗体の場合には、該抗体と抗原抗体反応する抗原や抗体(標識されていない場合は、さらに標識された別の抗体を反応させる)、被検物質が核酸の場合には、第1の特異結合性物質(核酸)とハイブリダイズしていない一本鎖領域に相補的な核酸等やこれら拡散を認識する抗体(標識されていない場合は、さらに標識された別の抗体を反応させる)などが挙げられる。   Next, after washing the specific binding substance-immobilized region with a buffer solution or the like, a labeled second specific binding substance that specifically binds to the test substance is circulated through the flow path, thereby the first specific binding. The test substance bound to the substance is bound to the second specific binding substance. Here, the second specific binding substance is a substance that specifically binds to the test substance in a state where the test substance is bound to the first specific binding substance, and when the test substance is an antigen, An antibody or antigen-binding fragment thereof that reacts with the antigen and antigen-antibody, and when the test substance is an antibody, an antigen or antibody that reacts with the antibody by antigen-antibody (if not labeled, another labeled antibody) When the test substance is a nucleic acid, a nucleic acid complementary to a single-stranded region that is not hybridized with the first specific binding substance (nucleic acid) or an antibody that recognizes these diffusions (label) If it is not, a further labeled antibody is reacted).

第2の特異結合物質を反応させる際の流速条件としては、好ましくは、第1の特異結合物質と結合させる条件と同等か、低流速であることが好ましい。反応温度は、被検物質と第1の特異結合物質との反応と同様、被検物質と第2の特異結合物質との反応に適した温度である。   The flow rate conditions for reacting the second specific binding substance are preferably equal to or lower than the conditions for binding to the first specific binding substance. The reaction temperature is a temperature suitable for the reaction between the test substance and the second specific binding substance, as in the reaction between the test substance and the first specific binding substance.

標識としては、従来からサンドイッチ免疫測定に用いられている周知の標識を用いることができ、酵素標識、蛍光標識、化学発光標識などが挙げられる。これらのうち、酵素標識及び蛍光標識は、容易に高感度な定量が可能である(下記実施例参照)ので好ましい。特に、基質と反応して発色する酵素を標識として用いると、発色した物質を微分干渉熱レンズ顕微鏡を用いて定量することが可能であり、被検物質を可算個単位で定量することが可能になるので、測定感度を著しく高めることができ好ましい。基質と反応して発色する酵素としては、セイヨウワサビペルオキシダーゼ(HRP)や、アルカリフォスファターゼ(ALP)等の、酵素反応により発色する、従来からELISAに常用されている酵素を用いることができる。酵素標識の方法自体は、周知である。これらのうち、HRPを標識酵素とし、3,3',5,5'-テトラメチルベンチジン(TMB)を基質として用いた場合には、酵素のターンオーバー数(1秒間当りに何個の分子を酵素反応させるか)が大きい(6000回転/s程度)ことが実験からわかり、可算個レベルの超高感度な定量が可能となり、好ましい。   As the label, a known label conventionally used for sandwich immunoassay can be used, and examples thereof include an enzyme label, a fluorescent label, and a chemiluminescent label. Of these, enzyme labels and fluorescent labels are preferred because they can be easily quantified with high sensitivity (see Examples below). In particular, when an enzyme that reacts with the substrate and develops color is used as a label, the colored substance can be quantified using a differential interference thermal lens microscope, and the test substance can be quantified in countable units. Therefore, the measurement sensitivity can be remarkably increased, which is preferable. As an enzyme that reacts with a substrate and develops color, an enzyme that has been conventionally used in ELISA, such as horseradish peroxidase (HRP) or alkaline phosphatase (ALP), which develops color by an enzymatic reaction, can be used. The enzyme labeling method itself is well known. Among these, when HRP is used as the labeling enzyme and 3,3 ', 5,5'-tetramethylbenzidine (TMB) is used as the substrate, the turnover number of the enzyme (number of molecules per second) It is preferable from the experiment that it is possible to perform a highly sensitive quantification at the count level.

次に、特異結合物質固定化領域を緩衝液等で洗浄後、第2の特異結合物質を介して被検物質に結合した標識を定量する。標識の定量自体は、免疫測定分野において周知の方法により行うことができる。その基質と反応して発色する酵素を標識とする場合、標識酵素の基質液を流通させ、酵素をその基質と酵素反応させて発色させる。この際、酵素反応は、試料の流通を停止した状態で行うことが測定感度及び再現性の観点から好ましい。停止時間は、上記数式[I]を満足するように適宜設定されるが、通常、15秒〜4分程度、好ましくは、30秒〜2分程度でよい。反応温度等の他の条件は、周知のELISAと同様でよい。   Next, after washing the specific binding substance-immobilized region with a buffer solution or the like, the label bound to the test substance via the second specific binding substance is quantified. The quantification of the label itself can be performed by a well-known method in the immunoassay field. When an enzyme that reacts with the substrate and develops color is used as a label, a substrate solution of the labeling enzyme is circulated and the enzyme reacts with the substrate to cause color development. At this time, the enzyme reaction is preferably performed in a state where the flow of the sample is stopped from the viewpoint of measurement sensitivity and reproducibility. The stop time is appropriately set so as to satisfy the above formula [I], but is usually about 15 seconds to 4 minutes, and preferably about 30 seconds to 2 minutes. Other conditions such as the reaction temperature may be the same as in the well-known ELISA.

次に、酵素反応により基質から生成される、発色した物質を微分干渉熱レンズ顕微鏡(DIC-TLM)で定量する。DIC-TLM自体は公知である(文献:Analytical Chemistry, 81, 9802-9806 (2009))。拡張ナノ流路などの微小空間での微分干渉熱レンズ顕微鏡による定量では、前記特異結合物質固定化領域で測定を行うと信号値が大きく変化して、定量が困難であることがわかった。そこで、特異結合物質固定化領域の下流の領域で行うことが、定量の再現性の観点から好ましい。   Next, the colored substance produced from the substrate by the enzymatic reaction is quantified with a differential interference thermal lens microscope (DIC-TLM). DIC-TLM itself is known (Reference: Analytical Chemistry, 81, 9802-9806 (2009)). In quantification with a differential interference thermal lens microscope in a minute space such as an extended nanochannel, it was found that when measurement was performed in the specific binding substance immobilization region, the signal value changed greatly, and quantification was difficult. Therefore, it is preferable to carry out in the region downstream of the specific binding substance immobilization region from the viewpoint of reproducibility of quantification.

以下、本発明を実施例に基づき具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the following examples.

実施例1
1.1.抗体パターニング法
熱接合の過程で機能性分子が熱に伴い損傷するのを防ぐため低温接合を利用した。この方法により、フッ素を含む酸素プラズマ表面活性化による25〜100℃でのガラス−ガラス接合が可能となる。しかしながら、この酸素プラズマ表面活性化プロセスは、官能基や抗体等の表面修飾分子を損傷する。ここでは、抗体を固定化するための官能基をパターニングし、接合させるガラス表面を活性化するため、高い光子エネルギー(λ=172nm)による強い酸化効果を有する真空紫外線(VUV)光を使用した。
Example 1
1.1. Antibody patterning method Low temperature bonding was used to prevent functional molecules from being damaged by heat during the thermal bonding process. This method enables glass-glass bonding at 25 to 100 [deg.] C. by activation of oxygen plasma surface containing fluorine. However, this oxygen plasma surface activation process damages surface modifying molecules such as functional groups and antibodies. Here, in order to pattern the functional group for immobilizing the antibody and activate the glass surface to be bonded, vacuum ultraviolet (VUV) light having a strong oxidizing effect by high photon energy (λ = 172 nm) was used.

図1は、拡張ナノ流路における抗体パターニング操作の概略図を示す。抗体を固定化する官能基を導入するため、石英ガラス基板(第1の基板)の表面全体を、気相中においてアミノプロピルトリエトキシシラン(APTES)で修飾し、均一なAPTES層を形成した。クロムフォトマスクを介して VUV光を照射すると、高エネルギーのVUV光を吸収する酸素ガス分子から発生した反応性酸素種がAPTESを酸化的に分解する。このガラス表面は超親水性となり、APTESの分解後に活性化されるため、高圧流通系を用いるナノ流体制御に重大な意味をもつ強いガラス−ガラス接合を達成可能である。抗体固定化領域の大きさと位置を設計し調節するため、フォトマスクを用いて 基板エリアの一部をVUV光照射からマスキングすることにより、部分的に修飾されたAPTES層を形成した。VUV光を使用する利点は、パターン形成と表面活性化を同時に達成可能できる点である。   FIG. 1 shows a schematic diagram of an antibody patterning operation in an extended nanochannel. In order to introduce a functional group for immobilizing the antibody, the entire surface of the quartz glass substrate (first substrate) was modified with aminopropyltriethoxysilane (APTES) in the gas phase to form a uniform APTES layer. When VUV light is irradiated through a chromium photomask, reactive oxygen species generated from oxygen gas molecules that absorb high energy VUV light oxidize APTES oxidatively. Since this glass surface becomes superhydrophilic and is activated after the decomposition of APTES, it is possible to achieve a strong glass-glass bonding that has a significant meaning in nanofluid control using a high-pressure flow system. In order to design and adjust the size and position of the antibody immobilization region, a partially modified APTES layer was formed by masking a portion of the substrate area from VUV light irradiation using a photomask. An advantage of using VUV light is that patterning and surface activation can be achieved simultaneously.

次いで、APTESをパターニングした基板(第1の基板)を、マイクロ流路及びナノ流路を含む上部ガラス基板(第2の基板)と接触させ、この基板をフッ素含有酸素プラズマにより活性化した。その後、APTESパターンとナノ流路を直交するように配列させた。各ナノ流路の幅、深さ及び長さは、それぞれ3.3μm、200nm、及び2mmであり、十分な分析用データを得るために、50本のナノ流路を平行に作製した。基板を5000Nの力で比較的低温の100℃にて2時間加圧することにより接合させた。ナノ流路表面に非特異的タンパク質が吸着する可能性を低減するため、物理吸着した場合には他の修飾表面上へのタンパク質吸着を有意に低減させることが示されたトリメトシキシラン−ポリ(エチレングリコール)(PEG)で表面を化学修飾した。接合後、流路表面の露出シリカ領域とAPTES領域をシラン化PEGで修飾した。下記2.3節に詳述するように、この修飾は抗体の表面密度に大きくは影響しなかったが、APTES領域をPEG修飾から完全には遮蔽しなかったため、APTES領域が部分的に修飾された。APTES分子のアミノ基と抗体をグルタルアルデヒドを用いて架橋することにより、捕捉抗体を化学的に固定化した。残った反応性基をエタノールアミンでブロックした。基板の接合と抗体パターニングのための化学修飾に関する実験詳細の全てを実験の部に記載する。   Next, the substrate on which APTES was patterned (first substrate) was brought into contact with an upper glass substrate (second substrate) including microchannels and nanochannels, and this substrate was activated by fluorine-containing oxygen plasma. Thereafter, the APTES pattern and the nanochannel were arranged to be orthogonal. The width, depth, and length of each nanochannel were 3.3 μm, 200 nm, and 2 mm, respectively, and 50 nanochannels were prepared in parallel to obtain sufficient analytical data. The substrates were bonded by pressing at a relatively low temperature of 100 ° C. with a force of 5000 N for 2 hours. Trimethoxysilane-poly (which has been shown to significantly reduce protein adsorption on other modified surfaces when physisorbed to reduce the possibility of nonspecific protein adsorption to the nanochannel surface. The surface was chemically modified with (ethylene glycol) (PEG). After bonding, the exposed silica region and the APTES region on the channel surface were modified with silanized PEG. As detailed in Section 2.3 below, this modification did not significantly affect the surface density of the antibody, but it did not completely shield the APTES region from the PEG modification, so the APTES region was partially modified. It was. The capture antibody was chemically immobilized by crosslinking the amino group of the APTES molecule with the antibody using glutaraldehyde. The remaining reactive groups were blocked with ethanolamine. All experimental details regarding substrate bonding and chemical modification for antibody patterning are described in the experimental section.

1.2.ナノ流体制御のための耐圧性能評価
ナノ流体用のイムノアッセイデバイスは、液体体積と液体交換の調節により標的分子を導入し捕捉するために、圧力駆動型の流体制御を要する。これにより、免疫化学的反応体を他の分子から適切に分離することが可能となる。本目的のための実験装置の概略図を図2に示す。前述のように、液流は圧力駆動型の流通系により制御した。バイアルに含まれた液体の流れをコンプレッサーに接続した圧力制御装置により調節した空気圧により導入した。ポリエーテルエーテルケトン(PEEK)製のキャピラリーをマイクロ流路(幅500μm×深さ6μm)の入口と出口に接続した。マイクロ流路とナノ流路の溶液を迅速に交換するために、マイクロ流路の両端を貫通孔を通して外部と接続した。この溶液を、マイクロ流路の一方の入口に圧力をかけることによりナノ流路に導入した。次いで、提案方法を用いて作製されたデバイスが漏出なく圧力駆動型の流体制御を可能とするか否かを検討した。
1.2. Evaluation of pressure resistance performance for nanofluid control An immunoassay device for nanofluid requires pressure-driven fluid control to introduce and capture target molecules by adjusting liquid volume and liquid exchange. This makes it possible to properly separate the immunochemical reactant from other molecules. A schematic diagram of the experimental apparatus for this purpose is shown in FIG. As described above, the liquid flow was controlled by a pressure-driven flow system. The flow of liquid contained in the vial was introduced by air pressure adjusted by a pressure control device connected to a compressor. A capillary made of polyetheretherketone (PEEK) was connected to the inlet and outlet of the microchannel (width 500 μm × depth 6 μm). In order to quickly exchange the solution of the microchannel and the nanochannel, both ends of the microchannel were connected to the outside through a through hole. This solution was introduced into the nanochannel by applying pressure to one inlet of the microchannel. Next, it was examined whether or not a device fabricated using the proposed method would enable pressure-driven fluid control without leakage.

作製したデバイス(図3(a))は空隙や縞のない均一な接合を示した。VUV光照射で達成された表面活性化の程度を調べることにより耐圧性能を評価し、水の接触角を測定することによりガラス−ガラス接合エネルギーに対するその効果を評価した。図3(b)に示されるように、VUV光により発生した活性酸素種によりAPTES分子が分解するため、VUV光の照射時間tが増えるにつれて基板上の水の接触角が小さくなる。APTES表面は、既に報告された結果と同様に初期にはわずかに疎水性であり、70°以下の接触角を示した。t=10分になるまでには、その表面は5°未満の接触角を示す超親水性となり、表面は完全に活性化された。この表面活性化の程度はガラス−ガラス接合エネルギーに強く影響した。   The fabricated device (FIG. 3 (a)) showed uniform bonding without voids or stripes. The pressure resistance was evaluated by examining the degree of surface activation achieved by VUV light irradiation, and its effect on glass-glass bonding energy was evaluated by measuring the contact angle of water. As shown in FIG. 3B, since the APTES molecule is decomposed by the active oxygen species generated by the VUV light, the contact angle of water on the substrate decreases as the irradiation time t of the VUV light increases. The APTES surface was slightly hydrophobic initially, similar to the previously reported results, and showed a contact angle of 70 ° or less. By t = 10 minutes, the surface became superhydrophilic with a contact angle of less than 5 ° and the surface was fully activated. This degree of surface activation strongly influenced the glass-glass bonding energy.

接合エネルギーの測定結果を図3(c)に示す。接合エネルギーは、接合強度の評価に広く使用される標準方法である亀裂開口試験を用いて測定した。接合エネルギーの測定に加え、フルオレセイン溶液の導入後の観察により漏出を評価した。これらの試験結果は、表面が活性化される程、接合エネルギーが高くなることを示した。t=0分(即ち、APTES修飾されたガラス表面とプラズマ励起されたガラス表面の間の接合)では、接合エネルギーは0.16J/mであり、50kPa未満の圧力で漏出が観察された。t=12分では、接合エネルギーは0.89J/mであり、2MPaを超える圧力でも漏出は観察されなかった。照射により得られた強い接合は親水性活性表面上の高いシラノール基密度に起因する。典型的なサイズ寸法(幅及び深さ10nm、長さ1mm以下)のナノ流路に、fL/秒の速度で流体を流すのに必要な圧力は数百kPaのオーダーであるため、このデバイスは圧力駆動流における漏出に強く、イムノアッセイの実験で使用できると結論できた。 The measurement results of the bonding energy are shown in FIG. The bonding energy was measured using a crack opening test, which is a standard method widely used for evaluating bonding strength. In addition to the measurement of the bonding energy, leakage was evaluated by observation after introduction of the fluorescein solution. These test results indicated that the more the surface was activated, the higher the bonding energy. At t = 0 minutes (ie, the bond between the APTES modified glass surface and the plasma excited glass surface), the bond energy was 0.16 J / m 2 and leakage was observed at pressures below 50 kPa. At t = 12 minutes, the joining energy was 0.89 J / m 2 , and no leakage was observed even at a pressure exceeding 2 MPa. The strong bond obtained by irradiation is due to the high silanol group density on the hydrophilic active surface. Since the pressure required to flow a fluid at a speed of fL / second through a nanochannel having a typical size (width and depth: 10 2 nm, length: 1 mm or less) is on the order of several hundred kPa, It was concluded that the device is resistant to leakage in pressure driven flow and can be used in immunoassay experiments.

1.3.フェムトリットル量の反応空間の立証
フェムトリットル量の反応空間を構築するためには、デバイス表面を精密に設計する必要がある。拡張ナノ流路の表面積/体積比が大きいため、標的分子の非特異的吸着は試料の著しい損失をもたらし、その結果定量分析を妨げる場合がある。一般にタンパク質は露出したシリカ表面上に不可逆的に吸着し、捕捉抗体と標的抗原の著しい非特異的吸着をもたらす。従って、非特異的吸着を低減するために、シラノール基にシラン化PEGを直接結合させる方法を選択する。設計通りに分子捕捉領域(即ち、抗体固定化領域)(特異結合物質固定化領域)が形成されたことを立証するため、抗原過剰条件下で蛍光標識抗原を結合させて固定化抗体を間接的に視覚化した。本目的のために、抗マウスIgG(抗体)とDylight488標識マウスIgG(抗原)を使用した。可視化前には、キャピラリーとマイクロ流路及びナノ流路の表面を2%BSAのPBS溶液で30分間ブロックした。68nMの抗原溶液を用いた反応と反応緩衝液による洗浄の後に、分子補足領域(特異結合物質固定化領域)を観察した。図4(a)に示すように、蛍光強度の像と線プロファイルの両方において明確なコントラストが観察された。測定幅130μmはVUV光照射工程で使用されたフォトマスクの設計幅135μmとほぼ同じであったため、抗体固定化表面は十分調節可能である。VUV光の屈折により生じるAPTESパターンの不均一性により、パターン幅のわずかな減少と、パターン両端における強度の段階的変化が生じた。ナノ流路の閉塞と漏出は観察されなかった。上記結果は、分子補足領域を予め設定した場所に構築でき、免疫化学反応場体積86fLで成功したことを示した。この反応場体積は抗体が固定化されマイクロビーズが充填されたマイクロ流路の反応量(10nL)より5桁小さい。
1.3. Verification of femtoliter reaction space
In order to construct a femtoliter reaction space, it is necessary to design the device surface precisely. Due to the large surface area / volume ratio of the extended nanochannels, non-specific adsorption of target molecules can lead to significant sample loss and consequently prevent quantitative analysis. In general, proteins adsorb irreversibly on the exposed silica surface, resulting in significant non-specific adsorption of capture antibody and target antigen. Therefore, in order to reduce non-specific adsorption, a method of directly coupling silanized PEG to a silanol group is selected. In order to verify that a molecular capture region (ie, an antibody immobilization region) (specific binding substance immobilization region) has been formed as designed, the immobilized antibody is indirectly bound by binding a fluorescently labeled antigen under an antigen-excess condition. Visualized. For this purpose, anti-mouse IgG (antibody) and Dylight 488-labeled mouse IgG (antigen) were used. Prior to visualization, the capillary, microchannel and nanochannel surfaces were blocked with 2% BSA in PBS for 30 minutes. After the reaction using the 68 nM antigen solution and the washing with the reaction buffer, the molecular supplement region (specific binding substance immobilization region) was observed. As shown in FIG. 4A, clear contrast was observed in both the fluorescence intensity image and the line profile. Since the measurement width 130 μm was almost the same as the design width 135 μm of the photomask used in the VUV light irradiation process, the antibody-immobilized surface can be adjusted sufficiently. The non-uniformity of the APTES pattern caused by refraction of VUV light caused a slight decrease in pattern width and a step change in intensity at both ends of the pattern. Nanochannel blockage and leakage were not observed. The above results indicated that the molecular capture region could be constructed at a preset location and was successful with an immunochemical reaction field volume of 86 fL. The reaction field volume reaction volume of microchannel antibody microbeads immobilized filled (10 0 nL) 5 orders of magnitude smaller than.

拡張ナノ流路のPEG修飾の有効性を測定するために、分子補足領域と他の領域の平均蛍光強度をPEG修飾した流路とPEG非修飾の流路の両方において測定した。バックグラウンドを差し引いた結果を図4(b)に示す。PEG分子がタンパク質を著しく拒絶したため、PEG修飾された非補足領域の蛍光強度は、露出シリカの蛍光強度よりも百倍低い、殆ど電気的なバックグラウンドレベルまで有意に低下した。PEG修飾した補足領域とPEG非修飾の補足領域の強度のわずかな差は、APTES分子内の未反応シラノール基に対しPEGが結合したことに起因する。APTES内の少量のPEGは、捕捉抗体と標的抗原の間の結合を低減できる。以上の結果から、ナノ流路のPEG修飾は極めて有効であった。   In order to measure the effectiveness of the PEG modification of the extended nanochannel, the average fluorescence intensity of the molecular capture region and other regions was measured in both the PEG-modified channel and the non-PEG-modified channel. The result of subtracting the background is shown in FIG. Because the PEG molecule significantly rejected the protein, the fluorescence intensity of the PEG-modified non-supplemented region was significantly reduced to an almost electrical background level that was a hundred times lower than that of exposed silica. The slight difference in strength between the PEG-modified and PEG-unmodified supplemental regions is due to the attachment of PEG to unreacted silanol groups in the APTES molecule. A small amount of PEG in APTES can reduce the binding between the capture antibody and the target antigen. From the above results, the PEG modification of the nanochannel was extremely effective.

1.4.拡張ナノ流路における高効率な免疫化学反応
マイクロ流体デバイス又は96ウェルプレートのような従来のイムノアッセイフォーマットにおける反応空間の大きさ(μmからmmスケール)とは対照的に、拡張ナノ流路(nmスケール)の大きさは、数秒間にわたる拡散距離よりもはるかに小さい。このような条件下では、拡散距離が短いため、導入された抗原は固定化抗体と必然的に相互作用し、その結果反応は非常に効率的となり、標的分子をロスすることなく補足できる。これは拡張ナノ流路における分子補足に特有の特徴であり、この特徴により拡張ナノ流路は極めて少量の分析物の定量に理想的に適合したものとなる。
1.4. Efficient immunochemical reaction in extended nanochannels In contrast to the size of reaction spaces (μm to mm scale) in conventional immunoassay formats such as microfluidic devices or 96-well plates, extended nanochannels (nm scale) ) Is much smaller than the diffusion distance over a few seconds. Under such conditions, due to the short diffusion distance, the introduced antigen necessarily interacts with the immobilized antibody, so that the reaction becomes very efficient and can be captured without losing the target molecule. This is a characteristic characteristic of molecular capture in the extended nanochannel, which makes the extended nanochannel ideally suited for quantifying very small amounts of analyte.

反応を定量的に検討するために、表面結合した抗原の経時的変化量を、種々の濃度の抗原溶液を制御された流速で連続流通下に導入した場合の蛍光強度変化を測定することにより評価した。抗原導入前には、キャピラリーとマイクロ流路及びナノ流路の表面を2%BSAのPBS溶液で30分間ブロックした。2%BSAと0.05%Tween20を含む10mMPBSを用いて68nMからの三段階希釈により抗原溶液を調製し、調べた抗原濃度は0、2.5、7.6、23及び68nMであった。1mg/mLのフルオレセイン緩衝溶液の平均速度(68μm/秒)を測定して実験的に求めた流速は45fL/秒であった。この平均流速は、ハーゲン‐ポアズイユ流と仮定した圧力損失から算出した理論値と一致した。各抗原溶液の通過により生じた蛍光強度を測定した後、グリシン/HCl緩衝液を用いてpHを2.4まで低下させることにより結合抗原を除去し、再生した表面を再び使用した。図5(a)には、各濃度の抗原について、固定化領域全体の蛍光強度変化を3秒間隔でプロットしたものを示す。t=0は反応出発点であり、導入された抗原が分子補足領域に到達した時間である。これはナノ流路入口と分子補足領域の間の流速と距離(1mm以下)から算出した。t=0における強度を差し引くことにより強度増加をプロットした。プロットした値は5本のナノ流路の平均を表し、エラーバーは±2αを表す。蛍光強度の変化は導入した抗原の濃度に明確に対応した。最も高濃度の抗原(68nM)では、全ての結合部位が80秒未満で飽和した。固定化抗体のない領域の強度も測定したが、増加は観察されなかった。フォトブリーチングにより生じた蛍光強度の低下を、プラトーにおける強度のわずかな低下から推定した。1回の測定の間の総露光時間はわずか5秒であったため、強度は3ケタ小さく、フォトブリーチングの影響は無視できた。   In order to examine the reaction quantitatively, the amount of surface-bound antigen change over time was evaluated by measuring the change in fluorescence intensity when antigen solutions of various concentrations were introduced under controlled flow rate under continuous flow. did. Prior to introduction of the antigen, the surfaces of the capillary, microchannel, and nanochannel were blocked with 2% BSA in PBS for 30 minutes. Antigen solutions were prepared by three-step dilution from 68 nM using 10 mM PBS containing 2% BSA and 0.05% Tween 20, and the antigen concentrations examined were 0, 2.5, 7.6, 23 and 68 nM. The flow rate experimentally determined by measuring the average rate (68 μm / sec) of a 1 mg / mL fluorescein buffer solution was 45 fL / sec. This average flow velocity was consistent with the theoretical value calculated from the pressure loss assumed to be Hagen-Poiseuille flow. After measuring the fluorescence intensity generated by the passage of each antigen solution, the bound antigen was removed by reducing the pH to 2.4 using glycine / HCl buffer, and the regenerated surface was used again. FIG. 5A shows a plot of changes in fluorescence intensity of the entire immobilized region at intervals of 3 seconds for each concentration of antigen. t = 0 is the reaction starting point, and is the time when the introduced antigen reaches the molecular supplement region. This was calculated from the flow velocity and distance (1 mm or less) between the nanochannel inlet and the molecular supplement region. The intensity increase was plotted by subtracting the intensity at t = 0. The plotted values represent the average of 5 nanochannels and error bars represent ± 2α. The change in fluorescence intensity clearly corresponded to the concentration of the introduced antigen. At the highest concentration of antigen (68 nM), all binding sites were saturated in less than 80 seconds. The intensity of the area without immobilized antibody was also measured, but no increase was observed. The decrease in fluorescence intensity caused by photobleaching was estimated from the slight decrease in intensity at the plateau. Since the total exposure time during one measurement was only 5 seconds, the intensity was 3 digits smaller and the influence of photobleaching could be ignored.

初期の抗原結合率、即ち、補足率を検討することにより、抗原の濃度依存性を調べる。補足率は次のようにして求めた。補足抗体結合部位の表面密度の日差変動を訂正するために、0〜68nMの溶液の強度を、捕捉抗体の殆ど全てが蛍光標識抗原分子に結合した濃度である68nMでのプラトー値を用いて正規化した。数時間の間の一連の希釈試料の測定の間には、利用可能な結合部位は変化しなかったと推定した。最小二乗法を用いて0〜18秒の間の正規化数の線形適合から求めた傾きを補足率と定義した。反応の特異性を測定するために、Dylight488標識マウスIgGを加えたウシ血清の10倍希釈物も評価した。図5(b)には、補足開始後最初の18秒間の補足率を導入分子の絶対数と濃度に対してプロットしたものを示す。補足率と導入した抗原分子数の間には強い関連があった。利用可能な結合部位[抗体]の数は反応の最初の18秒間で急速に減少するため、抗原濃度が高い場合には、補足率は直線的増加を想定した予想値よりも低かった。ウシ血清の場合と同じ濃度依存性が示されたため、反応は固定化抗体に対し特異的であった。仮に抗原分子が固定化抗体に非特異的に結合した場合には、血清試料(多くの不純物を含む)中の補足率は、PBS中の補足率よりも低くなるべきである。最初の18秒間に流路を通過する試料の量は810fLであり、分子の絶対数に基づく検出限界は3zmolであった。   The concentration dependence of the antigen is examined by examining the initial antigen binding rate, that is, the capture rate. The supplement rate was calculated as follows. To correct the diurnal variation in surface density of the supplemental antibody binding site, the strength of the solution from 0 to 68 nM was determined using the plateau value at 68 nM, the concentration at which almost all of the capture antibody was bound to the fluorescently labeled antigen molecule. Normalized. It was estimated that the available binding sites did not change during the measurement of a series of diluted samples over several hours. The slope determined from the linear fit of the normalized number between 0-18 seconds using the least squares method was defined as the supplement rate. To measure the specificity of the reaction, a 10-fold dilution of bovine serum with Dylight488 labeled mouse IgG was also evaluated. FIG. 5B shows a plot of the capture rate for the first 18 seconds after the start of supplementation against the absolute number and concentration of the introduced molecules. There was a strong relationship between the capture rate and the number of antigen molecules introduced. Since the number of available binding sites [antibodies] decreased rapidly during the first 18 seconds of the reaction, the capture rate was lower than expected assuming a linear increase when the antigen concentration was high. The reaction was specific for the immobilized antibody since the same concentration dependence was shown as for bovine serum. If antigen molecules bind nonspecifically to the immobilized antibody, the capture rate in serum samples (containing many impurities) should be lower than the capture rate in PBS. The amount of sample passing through the channel in the first 18 seconds was 810 fL, and the detection limit based on the absolute number of molecules was 3 zmol.

抗体抗原反応の効率を確認するため、導入分子数に対する表面結合分子数として定義された分子補足率を評価し、パーセンテージで表した。導入分子数は、濃度、流速及び流れ持続時間から算出した。表面結合分子を評価するのは困難であったが、それらの数は、校正プロセスにより測定した蛍光強度から推定した。図6(a)に示すように、ナノ流路を満たす同種の蛍光標識抗原溶液の強度を測定することにより、蛍光強度の検量線を作成した。検出領域の大きさは、図5に要約した実験で使用した検出領域の大きさと同じであり、全体の蛍光強度を検出領域全域にわたって導き出した。励起光(2.2μm)の共焦点長はナノ流路の深さ(200nm)よりも長かったことから、ナノ流路における全ての分子を検出できるため、溶液の濃度が任意の値の場合には、検出領域における分子数を算出可能である。得られた検量線(図6(b))を用いて、強度を分子数に変換した。   In order to confirm the efficiency of the antibody-antigen reaction, the molecular capture rate defined as the number of surface-bound molecules relative to the number of introduced molecules was evaluated and expressed as a percentage. The number of molecules introduced was calculated from the concentration, flow rate and flow duration. Although surface-bound molecules were difficult to assess, their number was estimated from the fluorescence intensity measured by the calibration process. As shown in FIG. 6 (a), a calibration curve of fluorescence intensity was prepared by measuring the intensity of the same kind of fluorescently labeled antigen solution filling the nanochannel. The size of the detection area was the same as the detection area used in the experiment summarized in FIG. 5, and the entire fluorescence intensity was derived over the entire detection area. Since the confocal length of the excitation light (2.2 μm) was longer than the depth of the nanochannel (200 nm), all the molecules in the nanochannel can be detected, so the solution concentration is an arbitrary value. Can calculate the number of molecules in the detection region. Using the obtained calibration curve (FIG. 6B), the intensity was converted to the number of molecules.

図6(c)は、7.6nMの抗原濃度での数千個の分子の範囲内における導入分子と補足分子の数の差(エラーバー:±2α)をプロットしたものである。導入分子数を示す線の傾きと補足分子数を示す線の傾きは殆ど同じである。各ポイントにおける補足効率をプロットしたものを図6(d)に示す。他のポイントについては大きな誤差が観察されたが、極めて高い値(100%近く)が得られ、例えば、t=27秒では補足効率は95±20%であった。比較的大きな誤差は、検出の低いSB比(強度値から0.16として算出)が原因であると考えられた。表面結合抗原からの弱いシグナル強度は、溶媒が関係するバックグラウンドシグナル、ガラス基板及び光学散乱に大きな影響を受けた。補足領域内のAPTES層に対する抗原の非特異的吸着の定量は困難であったが、抗体抗原反応の間の抗原の非特異的吸着の可能性を最小化するために、2%BSAと0.05%Tween20を抗原溶液に添加したため、その効果は無視できるほど小さいと考える。また、エタノールアミンによるキャッピング、PEG修飾、及びBSAの物理吸着により表面をブロックした。実験で使用した表面ブロッキング法は、非特異的吸着を最小化するためにイムノアッセイで一般的に使用されている。   FIG. 6 (c) is a plot of the difference in the number of introduced and supplemented molecules (error bar: ± 2α) within the range of several thousand molecules at an antigen concentration of 7.6 nM. The slope of the line indicating the number of introduced molecules and the slope of the line indicating the number of supplemental molecules are almost the same. FIG. 6D shows a plot of the supplementary efficiency at each point. Large errors were observed for the other points, but very high values (near 100%) were obtained, for example, the supplementary efficiency was 95 ± 20% at t = 27 seconds. The relatively large error was considered to be caused by a low SB ratio (calculated as 0.16 from the intensity value). The weak signal intensity from the surface bound antigen was greatly affected by the solvent related background signal, glass substrate and optical scattering. Quantification of nonspecific adsorption of antigen to the APTES layer in the supplemental region was difficult, but to minimize the possibility of nonspecific adsorption of antigen during the antibody antigen reaction, 0.2% BSA and 0. Since 05% Tween 20 was added to the antigen solution, the effect is considered to be negligible. The surface was blocked by capping with ethanolamine, PEG modification, and physical adsorption of BSA. The surface blocking method used in the experiments is commonly used in immunoassays to minimize nonspecific adsorption.

これらのデータを説明するために、ナノ流路の深さを分子補足領域を通過する間の標的抗原の拡散距離と比較した。分子が分子補足領域を通過するのに必要な移動時間tは、補足領域の流速と長さから算出すると1.8 秒であった。tが1.8秒の間の拡散距離L(μm)は、式L=(2Dt)1/2(式中IgGの拡散係数(D)=40μm/s)から12μmと計算された。計算された拡散距離は200nmの深さよりもはるかに(1桁)大きかった。従って、導入分子が固定化抗体と相互作用することは間違いなく、その結果高い補足効率が得られる。流路の大きさは最適化しなかったが、補足効率を下げることなく必要な試料量を低減するために、流路の大きさを更に小さくすることは可能である。しかし、十分な流れの形成に必要な圧力は(MPaまで)著しく増加し、修飾とアッセイの間にナノ流路が閉塞するリスクも高まる。 To account for these data, the depth of the nanochannel was compared to the diffusion distance of the target antigen while passing through the molecular capture region. The movement time t required for the molecules to pass through the molecular supplementary region was 1.8 seconds as calculated from the flow rate and length of the supplemental region. The diffusion distance L (μm) when t was 1.8 seconds was calculated as 12 μm from the formula L = (2Dt) 1/2 (wherein the diffusion coefficient of IgG (D) = 40 μm 2 / s). The calculated diffusion distance was much (one order of magnitude) greater than the depth of 200 nm. Thus, the introduced molecule will definitely interact with the immobilized antibody, resulting in a high capture efficiency. Although the size of the channel was not optimized, it is possible to further reduce the size of the channel in order to reduce the amount of sample required without reducing the capture efficiency. However, the pressure required to create a sufficient flow increases significantly (up to MPa) and increases the risk of clogging the nanochannel between modification and assay.

本研究で記載したデバイスの性能を、マイクロ流路に充填したマイクロビーズ上に固定化した抗体を用いる従来のイムノアッセイと比較した結果を表1にまとめた。本研究では、反応量を5桁(86fLまで)減少させ、試料量を6桁(810fLまで)減少させた。加えて、感度(検出可能な分子の絶対数に基づく)を酵素増幅の必要なく(3zmolまで)5桁増加させた。このように、単一細胞の体積ピコリットルよりはるかに少ない試料量を用いた分子補足を実証した。今後の研究においては、単一細胞内のいくつかの標的分子を分析するために、pM濃度の検出に対する感度を改善すべきである。検出可能量の蛍光発生基質又は発色基質は、酵素反応を用いる化学増幅によって、更に少ない標的分子から産生されるため、感度を改善するための有効な方法の1つは、酵素結合免疫吸着測定法(ELISA)の導入である。   Table 1 summarizes the results of comparing the performance of the device described in this study with a conventional immunoassay using antibodies immobilized on microbeads packed in microchannels. In this study, the reaction volume was reduced by 5 orders of magnitude (to 86 fL) and the sample volume was reduced by 6 orders of magnitude (to 810 fL). In addition, the sensitivity (based on the absolute number of molecules detectable) was increased by 5 orders of magnitude without the need for enzyme amplification (up to 3 zmol). Thus, molecular supplementation was demonstrated using a much smaller sample volume than a single cell volume picoliter. In future work, the sensitivity to detection of pM concentration should be improved to analyze several target molecules within a single cell. Since detectable amounts of fluorogenic or chromogenic substrates are produced from fewer target molecules by chemical amplification using enzymatic reactions, one effective method for improving sensitivity is an enzyme-linked immunosorbent assay. (ELISA).

2. 実験の部
原材料及び化学薬品:APTESは東京化成工業(日本、東京)から購入した。グルタルアルデヒド(25%)は和光純薬工業(日本、大阪)から購入した。トリメトシキシラン−PEG(シラン−PEG、MW=5kDa)はNANOCS(米国、ニューヨーク州、ニューヨーク)から購入した。モノクロナール抗マウスIgG2a(ab131231)及びマウスIgG2aアイソタイプコントロール(クローン20102)抗体は、アブカム(日本、東京)及びR&Dシステムズ(米国、ミネソタ州、ミネアポリス)からそれぞれ購入した。蛍光染料Dylight488を用いたマウスIgG2aの標識は、サーモフィッシャーサイエンティフィック(米国、マサチューセッツ州、ウォルサム)から購入したDylight488マイクロスケール抗体標識キットを用いて行った。グルタルアルデヒド(2.5%)の10mMホウ酸塩緩衝溶液(pH7.0)を抗体の固定化に使用した。反応緩衝液は、2%のウシ血清アルブミンと0.05%のTween20を含む10mMのPBS(pH7.4)であり、抗体が固定化された表面を再生するのに使用した緩衝液はpH2.4のグリシン/HClであった。ウシ血清はコージンバイオ株式会社(日本、埼玉県)から購入した。全ての溶液は、流路の閉塞を防ぐため0.22μmのシリンジフィルターで濾過した。
2. Experimental Part Raw materials and chemicals: APTES was purchased from Tokyo Chemical Industry (Tokyo, Japan). Glutaraldehyde (25%) was purchased from Wako Pure Chemical Industries (Osaka, Japan). Trimethoxysilane-PEG (Silane-PEG, MW = 5 kDa) was purchased from NANOCS (New York, NY, USA). Monoclonal anti-mouse IgG2a (ab131231) and mouse IgG2a isotype control (clone 20102) antibodies were purchased from Abcam (Tokyo, Japan) and R & D Systems (Minneapolis, Minnesota, USA), respectively. Mouse IgG2a labeling with the fluorescent dye Dylight 488 was performed using a Dylight 488 microscale antibody labeling kit purchased from Thermo Fisher Scientific (Waltham, Mass., USA). Glutaraldehyde (2.5%) in 10 mM borate buffer (pH 7.0) was used for antibody immobilization. The reaction buffer was 10 mM PBS (pH 7.4) containing 2% bovine serum albumin and 0.05% Tween 20, and the buffer used to regenerate the antibody-immobilized surface was pH 2. 4 glycine / HCl. Bovine serum was purchased from Kojin Bio Inc. (Saitama Prefecture, Japan). All solutions were filtered through a 0.22 μm syringe filter to prevent blockage of the channel.

流路の作製:別途記載したように、拡張ナノ流路を、電子ビームリソグラフィー及びプラズマエッチングにより、VIOSIL−SQ溶融石英ガラス基板(厚み0.7mmx幅70mmx長さ30mm、信越化学工業株式会社、日本)上に作製した。走査型電子・原子間力顕微鏡により、拡張ナノ流路は、幅3.3μm、深さ200nm及び長さ2mmと測定された。全部で50本のナノ流路を平行に作製した。ナノ流路の両端を、従来のUVフォトリソグラフィー技術を用いて作製した幅が500μm、深さが6μmのマイクロ流路に接続した。   Fabrication of the flow path: As described separately, the expanded nano-flow path was subjected to a VIOSIL-SQ fused silica glass substrate (thickness 0.7 mm × width 70 mm × length 30 mm, Shin-Etsu Chemical Co., Ltd., Japan) by electron beam lithography and plasma etching. ) Produced above. The expanded nanochannel was measured to be 3.3 μm wide, 200 nm deep and 2 mm long by scanning electron / atomic force microscope. A total of 50 nanochannels were made in parallel. Both ends of the nanochannel were connected to a microchannel having a width of 500 μm and a depth of 6 μm, which was produced using a conventional UV photolithography technique.

抗体パターニングのための化学修飾:溶融石英ガラス基板を気相中にてAPTESで修飾した。修飾前に、基板をピラニア溶液(硫酸:過酸化水素=2:1)に10分間浸漬させた。この基板を完全にすすぎ、超純水中で超音波処理し、気流で乾燥させた。この清浄なシリカ基板を、200μLのAPTES溶液を含むバイアルと共にセパラブルフラスコに入れ、次いでセパラブルフラスコを密閉し、真空ポンプを用いて真空にした。このフラスコを120℃のオイルバス中で加熱した。2時間の反応後、基板をフラスコから取り除き、無水トルエン中で5分間超音波処理した。その後、基板をエタノール、次いで超純水ですすぎ、気流下で乾燥させた。APTESで修飾された基板を自製のステンレススチール容器に入れ、クロムマスク(マスク全体は30mmx30mmであり、クロムエリアはマスク中心部の135μmx3mmであった)で覆った。この容器の上にVUV光ランプ・ハウジング(E500−172−120−A2、株式会社エキシマ、日本)を置き、光強度の減衰を最小化するために、基板から数mm以内に光源を置いた。この基板に VUV光を5mW/cmの強度で0〜15分間照射した。既に報告したように、照射後、APTESでパターンニングされた基板を超純水ですすぎ、気流下で乾燥させた。この基板を、フッ素強化プラズマにより表面が活性化されたマイクロ流路と拡張ナノ流路を含む別のシリカ基板と接合させた。簡単に述べると、ピラニア溶液で洗浄後、流路を有するきれいなシリカ基板をプラズマ容器に入れ、フッ素含有酸素プラズマ(60Pa O、250W パワー)で40秒間処理した。基板をプラズマ容器から取り出し、APTESパターンニングした基板と接触させた。基板の接合強度を高めるために、このデバイスを、ボンディング機(ボンドテック株式会社、日本)を用い、5,000N及び100℃にて2時間加圧した。接合させたデバイスを室温(25℃)で24時間保持した。抗体固定化のための全ての試薬を、200kPaの圧力駆動流により流路に導入した。0.1wt%トリメトシキシラン−PEGの水/エタノール(5/95)溶液を流路に1時間通し、その後流路をエタノールと水で10分間洗浄した。APTESと抗体をタンパク質のアミノ基を介して化学的に架橋させるため、2.5%グルタルアルデヒドの10mMホウ酸塩緩衝液を流路に2時間通し、次いで25μg/mL捕捉抗体のPBS溶液に1時間通した。0.5MのNaClを含む0.5Mエタノールアミン溶液(pH8.3)を流路に10分間通し、残存する反応性基をブロックした。 Chemical modification for antibody patterning: A fused silica glass substrate was modified with APTES in the gas phase. Prior to modification, the substrate was immersed in a piranha solution (sulfuric acid: hydrogen peroxide = 2: 1) for 10 minutes. The substrate was thoroughly rinsed, sonicated in ultrapure water, and dried with an air stream. This clean silica substrate was placed in a separable flask with a vial containing 200 μL of APTES solution, then the separable flask was sealed and evacuated using a vacuum pump. The flask was heated in a 120 ° C. oil bath. After 2 hours of reaction, the substrate was removed from the flask and sonicated in anhydrous toluene for 5 minutes. Thereafter, the substrate was rinsed with ethanol and then with ultrapure water and dried under a stream of air. The substrate modified with APTES was placed in a self-made stainless steel container and covered with a chrome mask (the entire mask was 30 mm × 30 mm, and the chrome area was 135 μm × 3 mm at the center of the mask). A VUV light lamp housing (E500-172-120-A2, Excimer, Japan) was placed on this container, and a light source was placed within several mm from the substrate in order to minimize the attenuation of light intensity. This substrate was irradiated with VUV light at an intensity of 5 mW / cm 2 for 0 to 15 minutes. As already reported, after irradiation, the substrate patterned with APTES was rinsed with ultrapure water and dried under air flow. This substrate was bonded to another silica substrate including a microchannel whose surface was activated by fluorine-enhanced plasma and an extended nanochannel. Briefly, after washing with a piranha solution, a clean silica substrate having a flow path was placed in a plasma vessel and treated with fluorine-containing oxygen plasma (60 Pa O 2 , 250 W power) for 40 seconds. The substrate was removed from the plasma container and contacted with the APTES patterned substrate. In order to increase the bonding strength of the substrate, this device was pressurized at 5,000 N and 100 ° C. for 2 hours using a bonding machine (Bondtec Corporation, Japan). The bonded device was held at room temperature (25 ° C.) for 24 hours. All reagents for antibody immobilization were introduced into the channel by a pressure driven flow of 200 kPa. A water / ethanol (5/95) solution of 0.1 wt% trimethoxysilane-PEG was passed through the channel for 1 hour, and then the channel was washed with ethanol and water for 10 minutes. To chemically cross-link APTES and antibody through the amino group of the protein, 2.5% glutaraldehyde in 10 mM borate buffer was passed through the flow channel for 2 hours, then 1 in 25 μg / mL capture antibody in PBS. I passed the time. A 0.5 M ethanolamine solution (pH 8.3) containing 0.5 M NaCl was passed through the channel for 10 minutes to block the remaining reactive groups.

接触角の測定:VUV照射したAPTES表面の純水の接触角を接触角計(DM−500、協和界面科学、日本)を用いて測定した。   Measurement of contact angle: The contact angle of pure water on the surface of APTES irradiated with VUV was measured using a contact angle meter (DM-500, Kyowa Interface Science, Japan).

免疫化学反応の蛍光観察:蛍光標識抗原を使用して固定化抗体を視覚化し、抗体活性を確認した。標的抗原溶液の導入前に、流路を反応緩衝液で満たした。次いで、標的抗原溶液をマイクロ流路の一方からナノ流路に導入した。再生緩衝液への変更はバイアルを変更することにより達成した。電荷結合素子(CCD)カメラ(C9100−13、浜松ホトニクス株式会社、日本)を備えた倒立蛍光顕微鏡(IX71、オリンパス、日本)を使用してナノ流路の蛍光顕微鏡写真を得た。水銀ランプを用いて誘発された励起から生じた蛍光シグナルを、開口数0.60の40倍対物レンズを用いて集めた。経時的な観察のために、励起光路においてCCDカメラと開閉シャッターを同期化することにより、露光時間100msでの励起光の照射を最小化した。得られた顕微鏡写真をAquacosmosソフトウェア(浜松ホトニクス株式会社)を用いて分析した。顕微鏡写真の任意配置での検出窓における全強度を決定した。モーター駆動ステージにより、空間分解能0.1μmで設定位置の観察が可能となった。   Fluorescence observation of immunochemical reaction: Immobilized antibody was visualized using fluorescently labeled antigen to confirm antibody activity. Prior to introduction of the target antigen solution, the flow path was filled with reaction buffer. Next, the target antigen solution was introduced into the nanochannel from one of the microchannels. Changing to the regeneration buffer was accomplished by changing the vial. A fluorescence micrograph of the nanochannel was obtained using an inverted fluorescence microscope (IX71, Olympus, Japan) equipped with a charge coupled device (CCD) camera (C9100-13, Hamamatsu Photonics, Japan). The fluorescent signal resulting from excitation induced using a mercury lamp was collected using a 40 × objective lens with a numerical aperture of 0.60. For observation over time, irradiation of excitation light at an exposure time of 100 ms was minimized by synchronizing the CCD camera and the open / close shutter in the excitation light path. The obtained micrograph was analyzed using Aquacosmos software (Hamamatsu Photonics Co., Ltd.). The total intensity in the detection window at an arbitrary location in the micrograph was determined. The motor-driven stage made it possible to observe the set position with a spatial resolution of 0.1 μm.

実施例2 DIC-TLMを用いるサンドイッチ免疫測定
実施例1と同様な方法により、実施例1と同様なデバイスを作製した。デバイスの拡張ナノ流路部分を模式的に図7に示す。拡張ナノ流路の高さは800nm、幅は2μmであり、APTESを選択的にコーティングした特異物質結合領域の長さは3mmであった。APTES上に固定化した第1の特異結合物質は、抗マウスIgGポリクローナル抗体であった。抗マウスIgGポリクローナル抗体を固定化後、PBS中2% BSA溶液で30分間処理してブロッキングを行った。
Example 2 Sandwich immunoassay using DIC-TLM A device similar to that in Example 1 was produced in the same manner as in Example 1. The extended nanochannel portion of the device is schematically shown in FIG. The height of the extended nanochannel was 800 nm, the width was 2 μm, and the length of the specific substance binding region selectively coated with APTES was 3 mm. The first specific binding substance immobilized on APTES was an anti-mouse IgG polyclonal antibody. After immobilizing the anti-mouse IgG polyclonal antibody, blocking was performed by treatment with 2% BSA solution in PBS for 30 minutes.

以下の操作は全て20℃で行った。実施例1と同様にして試料液を注入した。試料液は、PBS中に、抗原であるマウスIgG抗体を含む溶液であり、抗原濃度は、0(抗原を含まない)、0.2pM、0.4pM、0.8pM又は1.7pMであり、体積は16pLであった(166fL/秒の流速で95秒間流通、圧力25kPa)。この濃度と体積では、試料液中に含まれる抗原の分子数は、それぞれ、0個、2個、4個、8個及び16個となる。実施例1と同様にして拡張ナノ流路を緩衝液で洗浄後(400kPa、30秒)、HRP標識した抗マウスIgG2aヤギポリクローナル抗体(Abcam社製)のPBS中溶液(濃度100pM)を25kPaで30秒間流通させた。拡張ナノ流路を上記と同様に洗浄後、基質溶液(1.7mMのTMB(商品名SureBlue TMB-1(米国KLM社製)及び0.02%の過酸化水素を緩衝液中に含む)を拡張ナノ流路に導入し(500kPa、30秒)、この状態で60秒間液の流通を停止し、酵素反応を行わせた。60秒経過後、緩衝液を再流通させ、特異結合物質固定化領域の下流端から1.5mm下流(図7参照)の位置で、酵素反応生成物である青色色素をDCI-TLMで測定した。   The following operations were all performed at 20 ° C. The sample solution was injected in the same manner as in Example 1. The sample solution is a solution containing mouse IgG antibody as an antigen in PBS. The antigen concentration is 0 (no antigen), 0.2 pM, 0.4 pM, 0.8 pM or 1.7 pM, and the volume is 16 pL. (95 seconds at a flow rate of 166 fL / sec, pressure 25 kPa). At this concentration and volume, the number of antigen molecules contained in the sample solution is 0, 2, 4, 8, and 16, respectively. In the same manner as in Example 1, the expanded nanochannel was washed with a buffer solution (400 kPa, 30 seconds), and then a solution of HRP-labeled anti-mouse IgG2a goat polyclonal antibody (Abcam) in PBS (concentration 100 pM) at 25 kPa at 30 kPa. Circulated for seconds. After washing the extended nanochannel in the same manner as above, a substrate solution (1.7 mM TMB (trade name SureBlue TMB-1 (manufactured by KLM, USA) and 0.02% hydrogen peroxide in the buffer) was added to the extended nanoflow. In this state, the flow of the liquid was stopped for 60 seconds, and the enzyme reaction was carried out.After 60 seconds, the buffer solution was recirculated and the downstream of the specific binding substance immobilization region. The blue pigment | dye which is an enzyme reaction product was measured by DCI-TLM in the position 1.5 mm downstream from the edge (refer FIG. 7).

用いたDIC-TLMは、2個のレーザー発振装置と他の光学装置を具備する公知のものである。励起ビームは、波長660nmのダイオード励起固体レーザー(Ignis660(商品名)、Laser Quantum社製)であり、出力は205mWであり、その強度は、変調周波数3.30kHzの機械的チョッパーにより調節した。プローブビームはYAGレーザーの波長532nmの輝線であった。両者のビームは、Glan-Thomsonプリズムにより線形的に偏光させ、偏光面は、二分の一波長板で回転させた。2本のビームは、光二色性ミラーにより共軸化した。プローブビームは、DICプリズムにより、直交偏光する2本のビームに分けた。一方、励起ビームは、偏光を制御することにより、第1のDICプリズムにより分割しなかった。分割したプローブビームと、励起ビームは両者とも対物レンズ(40x, N.A. 0.75)により焦点を合わせ、試料を通過させた。プローブビームのみを、下部DICプリズム及び偏光フィルターにより干渉した。干渉プローブビーム及び励起ビームの両者とも集光レンズで集光し、フィルターを通した。プローブビーム強度のみをフォトダイオードで監視した。ロックイン増幅器(5610B(商品名), 横浜のNF社)を用いて、フォトダイオードからの予め増幅したシグナルを同期的に増幅した。ロックイン増幅器の時間定数は1秒であり、データは0.2秒ごとに獲得した。シグナルの大きさは、パソコンに記録した。   The DIC-TLM used is a known one having two laser oscillation devices and other optical devices. The excitation beam was a diode-pumped solid-state laser (Ignis660 (trade name), manufactured by Laser Quantum) with a wavelength of 660 nm, the output was 205 mW, and its intensity was adjusted by a mechanical chopper with a modulation frequency of 3.30 kHz. The probe beam was an emission line with a wavelength of 532 nm of a YAG laser. Both beams were linearly polarized by a Glan-Thomson prism, and the plane of polarization was rotated by a half-wave plate. The two beams were coaxial with a dichroic mirror. The probe beam was divided into two orthogonally polarized beams by a DIC prism. On the other hand, the excitation beam was not split by the first DIC prism by controlling the polarization. The split probe beam and excitation beam were both focused by the objective lens (40x, N.A. 0.75) and passed through the sample. Only the probe beam was interfered by the lower DIC prism and polarizing filter. Both the interference probe beam and the excitation beam were collected by a condenser lens and passed through a filter. Only the probe beam intensity was monitored with a photodiode. A pre-amplified signal from the photodiode was synchronously amplified using a lock-in amplifier (5610B (trade name), NF, Yokohama). The time constant of the lock-in amplifier was 1 second and data was acquired every 0.2 seconds. The magnitude of the signal was recorded on a personal computer.

酵素反応の生成物である青色色素の分子が存在しない場合、干渉によりプローブビームの強度はゼロである。色素分子が励起ビームを吸収して発熱した場合、溶媒の屈折率が局所的に変化し、一方の分割プローブビームについてのみ、位相変化をもたらす。これにより、分割プローブビーム間で位相差が生じ、この位相差が新たな偏光成分を生成する。この成分のみがシグナルとして検出される。シグナルは、試料の吸光度に比例する。   In the absence of blue dye molecules that are the product of the enzyme reaction, the intensity of the probe beam is zero due to interference. When the dye molecules absorb the excitation beam and generate heat, the refractive index of the solvent changes locally, causing a phase change only for one split probe beam. As a result, a phase difference occurs between the split probe beams, and this phase difference generates a new polarization component. Only this component is detected as a signal. The signal is proportional to the absorbance of the sample.

結果を図8に示す。図8に示されるように、シグナルのピーク高さは、試料中の抗原(目的分子)の分子数に応じて変化している。これにより、この方法で、試料中の抗原分子を可算個レベルで定量できることが明らかになった。従来の分析デバイスでは濃度の定量であり、分子数で100万分子程度を必要としていた。しかし、本発明の方法やデバイスを用いると、可算個レベルで定量可能であるという、著しい性能の向上が見出された。   The results are shown in FIG. As shown in FIG. 8, the peak height of the signal changes according to the number of molecules of the antigen (target molecule) in the sample. As a result, it has been clarified that this method can quantitate antigen molecules in a sample at a count level. Conventional analytical devices are used for quantification of concentration and require about 1 million molecules. However, using the method and device of the present invention, a significant performance improvement has been found that it can be quantified at countable levels.

Claims (9)

第1の基板と、該第1の基板と接合される第2の基板と、該第1及び第2の基板の接合面に形成され、該第1及び第2の基板の外部に連通する流路と、該流路の一部領域であって、被検物質に特異的に結合する第1の特異結合物質が固定化された特異結合物質固定化領域とを具備し、前記流路の高さが10nm〜10μm、前記特異結合物質固定化領域の長さが1μm〜10cmである、試料中の被検物質の定量デバイスの前記流路に前記試料を流通させて該試料中の前記被検物質を、前記第1の特異結合物質に結合させる工程と、
前記特異結合物質固定化領域を洗浄後、前記被検物質に特異的に結合する、標識された第2の特異結合物質を前記流路に流通させて前記第1の特異結合物質に結合した被検物質と第2の特異結合物質とを結合させる工程と、
前記特異結合物質固定化領域を洗浄後、被検物質に結合した標識を定量する工程とを含む、試料中の被検物質の定量方法。
A first substrate, a second substrate bonded to the first substrate, and a flow formed on a bonding surface of the first and second substrates and communicating with the outside of the first and second substrates And a specific binding substance immobilization region in which a first specific binding substance that specifically binds to a test substance is immobilized, and is a partial area of the flow path. 10 μm to 10 μm, and the length of the specific binding substance immobilization region is 1 μm to 10 cm, and the sample in the sample is circulated through the flow path of the quantification device for the test substance in the sample. Binding a substance to the first specific binding substance;
After washing the specific binding substance-immobilized region, a labeled second specific binding substance that specifically binds to the test substance is circulated through the flow path and bound to the first specific binding substance. Binding the test substance and the second specific binding substance;
A method for quantifying a test substance in a sample, comprising washing the specific binding substance-immobilized region and then quantifying a label bound to the test substance.
前記試料の流速が、下記の式[I]
5 ≦ (2Dτ)1/2/d [I]
(式中、Dは被検物質の拡散係数(m2/s)、τは特異結合物質固定化領域上に被検物質の分子が滞在する平均時間(s)、dは流路の深さ(m))
を満足させる流速である、試料中の被検物質の定量方法。
The flow rate of the sample is expressed by the following formula [I]
5 ≤ (2Dτ) 1/2 / d [I]
(Where D is the diffusion coefficient of the test substance (m 2 / s), τ is the average time (s) that the molecules of the test substance stay on the specific binding substance immobilization region, and d is the depth of the flow path. (m))
A method for quantifying a test substance in a sample, the flow rate satisfying
前記試料の流速が、上記式[I]の右辺の値が30以上となる流速である請求項2記載の方法。   The method according to claim 2, wherein the flow rate of the sample is a flow rate at which the value on the right side of the formula [I] is 30 or more. 前記流路が、高さ10nm〜1000nmの拡張ナノ流路である、請求項1〜3のいずれか1項に記載の方法。   The method according to claim 1, wherein the channel is an extended nanochannel having a height of 10 nm to 1000 nm. 前記第1の特異結合物質が抗体若しくはその抗原結合性断片又は抗原であり、前記被検物質が抗原又は抗体である請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the first specific binding substance is an antibody, an antigen-binding fragment thereof, or an antigen, and the test substance is an antigen or an antibody. 前記標識が酵素標識であり、該酵素は、その基質と反応して発色する酵素であり、標識酵素と、その基質を酵素反応させて発色させる工程をさらに含み、前記標識の定量は、酵素反応の結果発色した物質を微分干渉熱レンズ顕微鏡で定量することにより行われる請求項1〜5のいずれか1項に記載の方法。   The label is an enzyme label, and the enzyme is an enzyme that reacts with the substrate to develop a color, and further includes a step of causing the label enzyme and the substrate to react with the substrate to develop a color. 6. The method according to any one of claims 1 to 5, which is carried out by quantifying the substance that has developed color as a result of differential interference thermal lens microscopy. 前記酵素反応は、試料の流通を停止した状態で行う請求項5又は6記載の方法。   The method according to claim 5 or 6, wherein the enzyme reaction is performed in a state where the flow of the sample is stopped. 前記微分干渉熱レンズ顕微鏡による定量は、前記特異結合物質固定化領域よりも下流の領域で行う請求項1〜7のいずれか1項に記載の方法。   The method according to any one of claims 1 to 7, wherein the quantitative determination by the differential interference thermal lens microscope is performed in a region downstream of the specific binding substance immobilization region. 第1の基板と、該第1の基板と接合される第2の基板と、該第1及び第2の基板の接合面に形成され、該第1及び第2の基板の外部に連通する流路と、該流路の一部領域であって、被検物質に特異的に結合する第1の特異結合物質が固定化された特異結合物質固定化領域とを具備し、前記流路の高さが10nm〜10μm、前記特異結合物質固定化領域の長さが1μm〜10cmである、請求項1〜8のいずれか1項に記載の定量方法に用いられる試料中の被検物質の定量デバイス。   A first substrate, a second substrate bonded to the first substrate, and a flow formed on a bonding surface of the first and second substrates and communicating with the outside of the first and second substrates And a specific binding substance immobilization region in which a first specific binding substance that specifically binds to a test substance is immobilized, and is a partial area of the flow path. A quantification device for a test substance in a sample used in the quantification method according to any one of claims 1 to 8, wherein the quantification method according to any one of claims 1 to 8, wherein the specific binding substance immobilization region has a length of 10 nm to 10 µm. .
JP2014123845A 2014-06-16 2014-06-16 Method of quantifying test substance and assay device therefor Active JP6512757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014123845A JP6512757B2 (en) 2014-06-16 2014-06-16 Method of quantifying test substance and assay device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014123845A JP6512757B2 (en) 2014-06-16 2014-06-16 Method of quantifying test substance and assay device therefor

Publications (2)

Publication Number Publication Date
JP2016003935A true JP2016003935A (en) 2016-01-12
JP6512757B2 JP6512757B2 (en) 2019-05-15

Family

ID=55223305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014123845A Active JP6512757B2 (en) 2014-06-16 2014-06-16 Method of quantifying test substance and assay device therefor

Country Status (1)

Country Link
JP (1) JP6512757B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500307A (en) * 2016-11-09 2020-01-09 フォルシュングスツェントルム ユーリッヒ ゲゼルシャフト ミット ベシュレンクテル ハフツングForschungszentrum Juelich GmbH Ultrasonic detection of virus and virus-like particles
WO2024101447A1 (en) * 2022-11-11 2024-05-16 国立大学法人信州大学 Diagnosis method, diagnosis device, and antibody regeneration method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227250A (en) * 2004-02-11 2005-08-25 Hitachi Chem Co Ltd Biochemical analysis method and biochemical analyzer
WO2005090972A1 (en) * 2004-03-18 2005-09-29 Nissui Pharmaceutical Co., Ltd. Biological substance analyzing kit, analyzer and analyzing method
US20070154895A1 (en) * 2005-12-30 2007-07-05 Caliper Life Sciences, Inc. Multi-assay microfluidic chips
JP2014026111A (en) * 2012-07-26 2014-02-06 Institute Of Microchemical Technology Differential interference thermal lens microscope
WO2014051054A1 (en) * 2012-09-28 2014-04-03 独立行政法人科学技術振興機構 Functional device and functional device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227250A (en) * 2004-02-11 2005-08-25 Hitachi Chem Co Ltd Biochemical analysis method and biochemical analyzer
WO2005090972A1 (en) * 2004-03-18 2005-09-29 Nissui Pharmaceutical Co., Ltd. Biological substance analyzing kit, analyzer and analyzing method
US20070154895A1 (en) * 2005-12-30 2007-07-05 Caliper Life Sciences, Inc. Multi-assay microfluidic chips
JP2014026111A (en) * 2012-07-26 2014-02-06 Institute Of Microchemical Technology Differential interference thermal lens microscope
WO2014051054A1 (en) * 2012-09-28 2014-04-03 独立行政法人科学技術振興機構 Functional device and functional device manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
白井健太郎ほか: "拡張ナノ空間を用いた免疫分析デバイスによる分子捕捉", 化学とマイクロ・ナノシステム学会研究会講演要旨集, vol. 第27回, JPN6018012191, 23 May 2013 (2013-05-23), pages 68, ISSN: 0003967609 *
白井健太郎ほか: "拡張ナノ空間を用いた免疫分析デバイスの開発", 分析化学討論会講演要旨集, vol. 第73回, JPN6018012189, 4 May 2013 (2013-05-04), pages 53, ISSN: 0003967608 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500307A (en) * 2016-11-09 2020-01-09 フォルシュングスツェントルム ユーリッヒ ゲゼルシャフト ミット ベシュレンクテル ハフツングForschungszentrum Juelich GmbH Ultrasonic detection of virus and virus-like particles
WO2024101447A1 (en) * 2022-11-11 2024-05-16 国立大学法人信州大学 Diagnosis method, diagnosis device, and antibody regeneration method

Also Published As

Publication number Publication date
JP6512757B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
Shirai et al. Extended nanofluidic immunochemical reaction with femtoliter sample volumes
EP2950096B1 (en) Sensing device, and sensing system and sensing method using the same
Jiang et al. A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens
US20130065777A1 (en) Nanostructure biosensors and systems and methods of use thereof
US20060191792A1 (en) Method and apparatus for gel electrophoretic immunoassay
US20060194306A1 (en) System for gel electrophoretic immunoassay
US20100279886A1 (en) Two-dimensional photonic bandgap structures for ultrahigh-sensitivity biosensing
KR20120013316A (en) Single-use microfluidic test cartridge for the bioassay of analytes
US8524060B1 (en) Microchannel gel electrophoretic separation systems and methods for preparing and using
EP2917742B1 (en) Electrophoretic bar code assay devices and methods for making and using the same
US20060286680A1 (en) Fiber-optic biosensor and biosensing methods
JP2024063241A (en) Systems and methods for delivering targeted molecules to nanopores - Patents.com
JP6512757B2 (en) Method of quantifying test substance and assay device therefor
Nakao et al. Enzyme-linked immunosorbent assay utilizing thin-layered microfluidics
JP6713601B2 (en) Analysis device
KR20090064942A (en) Method of multiplex detecting on microfluidic chip
JP2005528590A (en) Quantitative measurement method for several analytes
Kojima et al. Integration of immunoassay into extended nanospace
US20150316546A1 (en) Sensor chip
JP7490488B2 (en) Microdevices and Analytical Instruments
US9255923B2 (en) Quantitative multiplex detection of pathogen biomarkers
JP7503817B2 (en) Analytical Devices
EP4242654A1 (en) A method for rapid immunoassays using a three-dimensional microfluidic capillary system
Ozhikandathil Microphotonics and nanoislands integrated lab-on-chips (LOCs) for the detection of growth hormones in milk
Smirnova et al. Enzyme-linked immunosorbent assay using thin-layered microfluidics with perfect capture of the target protein

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190409

R150 Certificate of patent or registration of utility model

Ref document number: 6512757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250